afec56b43f
Expose the zfs_mdcomp_disable variable as a module option. This can be used to disable compression of zfs meta data which is enabled by default. This shouldn't need to be tuned but for most workloads, however there may be very specific instances where it makes sense to trade disk capacity for extra cpu cycles. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
1907 lines
44 KiB
C
1907 lines
44 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/sa.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/zfs_znode.h>
|
|
#endif
|
|
|
|
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
|
|
{ byteswap_uint8_array, TRUE, "unallocated" },
|
|
{ zap_byteswap, TRUE, "object directory" },
|
|
{ byteswap_uint64_array, TRUE, "object array" },
|
|
{ byteswap_uint8_array, TRUE, "packed nvlist" },
|
|
{ byteswap_uint64_array, TRUE, "packed nvlist size" },
|
|
{ byteswap_uint64_array, TRUE, "bpobj" },
|
|
{ byteswap_uint64_array, TRUE, "bpobj header" },
|
|
{ byteswap_uint64_array, TRUE, "SPA space map header" },
|
|
{ byteswap_uint64_array, TRUE, "SPA space map" },
|
|
{ byteswap_uint64_array, TRUE, "ZIL intent log" },
|
|
{ dnode_buf_byteswap, TRUE, "DMU dnode" },
|
|
{ dmu_objset_byteswap, TRUE, "DMU objset" },
|
|
{ byteswap_uint64_array, TRUE, "DSL directory" },
|
|
{ zap_byteswap, TRUE, "DSL directory child map"},
|
|
{ zap_byteswap, TRUE, "DSL dataset snap map" },
|
|
{ zap_byteswap, TRUE, "DSL props" },
|
|
{ byteswap_uint64_array, TRUE, "DSL dataset" },
|
|
{ zfs_znode_byteswap, TRUE, "ZFS znode" },
|
|
{ zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" },
|
|
{ byteswap_uint8_array, FALSE, "ZFS plain file" },
|
|
{ zap_byteswap, TRUE, "ZFS directory" },
|
|
{ zap_byteswap, TRUE, "ZFS master node" },
|
|
{ zap_byteswap, TRUE, "ZFS delete queue" },
|
|
{ byteswap_uint8_array, FALSE, "zvol object" },
|
|
{ zap_byteswap, TRUE, "zvol prop" },
|
|
{ byteswap_uint8_array, FALSE, "other uint8[]" },
|
|
{ byteswap_uint64_array, FALSE, "other uint64[]" },
|
|
{ zap_byteswap, TRUE, "other ZAP" },
|
|
{ zap_byteswap, TRUE, "persistent error log" },
|
|
{ byteswap_uint8_array, TRUE, "SPA history" },
|
|
{ byteswap_uint64_array, TRUE, "SPA history offsets" },
|
|
{ zap_byteswap, TRUE, "Pool properties" },
|
|
{ zap_byteswap, TRUE, "DSL permissions" },
|
|
{ zfs_acl_byteswap, TRUE, "ZFS ACL" },
|
|
{ byteswap_uint8_array, TRUE, "ZFS SYSACL" },
|
|
{ byteswap_uint8_array, TRUE, "FUID table" },
|
|
{ byteswap_uint64_array, TRUE, "FUID table size" },
|
|
{ zap_byteswap, TRUE, "DSL dataset next clones"},
|
|
{ zap_byteswap, TRUE, "scan work queue" },
|
|
{ zap_byteswap, TRUE, "ZFS user/group used" },
|
|
{ zap_byteswap, TRUE, "ZFS user/group quota" },
|
|
{ zap_byteswap, TRUE, "snapshot refcount tags"},
|
|
{ zap_byteswap, TRUE, "DDT ZAP algorithm" },
|
|
{ zap_byteswap, TRUE, "DDT statistics" },
|
|
{ byteswap_uint8_array, TRUE, "System attributes" },
|
|
{ zap_byteswap, TRUE, "SA master node" },
|
|
{ zap_byteswap, TRUE, "SA attr registration" },
|
|
{ zap_byteswap, TRUE, "SA attr layouts" },
|
|
{ zap_byteswap, TRUE, "scan translations" },
|
|
{ byteswap_uint8_array, FALSE, "deduplicated block" },
|
|
{ zap_byteswap, TRUE, "DSL deadlist map" },
|
|
{ byteswap_uint64_array, TRUE, "DSL deadlist map hdr" },
|
|
{ zap_byteswap, TRUE, "DSL dir clones" },
|
|
{ byteswap_uint64_array, TRUE, "bpobj subobj" },
|
|
};
|
|
|
|
int
|
|
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
|
|
void *tag, dmu_buf_t **dbp, int flags)
|
|
{
|
|
dnode_t *dn;
|
|
uint64_t blkid;
|
|
dmu_buf_impl_t *db;
|
|
int err;
|
|
int db_flags = DB_RF_CANFAIL;
|
|
|
|
if (flags & DMU_READ_NO_PREFETCH)
|
|
db_flags |= DB_RF_NOPREFETCH;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
db = dbuf_hold(dn, blkid, tag);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
if (db == NULL) {
|
|
err = EIO;
|
|
} else {
|
|
err = dbuf_read(db, NULL, db_flags);
|
|
if (err) {
|
|
dbuf_rele(db, tag);
|
|
db = NULL;
|
|
}
|
|
}
|
|
|
|
dnode_rele(dn, FTAG);
|
|
*dbp = &db->db; /* NULL db plus first field offset is NULL */
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_bonus_max(void)
|
|
{
|
|
return (DN_MAX_BONUSLEN);
|
|
}
|
|
|
|
int
|
|
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (dn->dn_bonus != db) {
|
|
error = EINVAL;
|
|
} else if (newsize < 0 || newsize > db_fake->db_size) {
|
|
error = EINVAL;
|
|
} else {
|
|
dnode_setbonuslen(dn, newsize, tx);
|
|
error = 0;
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (type > DMU_OT_NUMTYPES) {
|
|
error = EINVAL;
|
|
} else if (dn->dn_bonus != db) {
|
|
error = EINVAL;
|
|
} else {
|
|
dnode_setbonus_type(dn, type, tx);
|
|
error = 0;
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (error);
|
|
}
|
|
|
|
dmu_object_type_t
|
|
dmu_get_bonustype(dmu_buf_t *db_fake)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
dmu_object_type_t type;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
type = dn->dn_bonustype;
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (type);
|
|
}
|
|
|
|
int
|
|
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
error = dnode_hold(os, object, FTAG, &dn);
|
|
dbuf_rm_spill(dn, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
dnode_rm_spill(dn, tx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* returns ENOENT, EIO, or 0.
|
|
*/
|
|
int
|
|
dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_buf_impl_t *db;
|
|
int error;
|
|
|
|
error = dnode_hold(os, object, FTAG, &dn);
|
|
if (error)
|
|
return (error);
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_bonus == NULL) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
if (dn->dn_bonus == NULL)
|
|
dbuf_create_bonus(dn);
|
|
}
|
|
db = dn->dn_bonus;
|
|
|
|
/* as long as the bonus buf is held, the dnode will be held */
|
|
if (refcount_add(&db->db_holds, tag) == 1) {
|
|
VERIFY(dnode_add_ref(dn, db));
|
|
(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
|
|
}
|
|
|
|
/*
|
|
* Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
|
|
* hold and incrementing the dbuf count to ensure that dnode_move() sees
|
|
* a dnode hold for every dbuf.
|
|
*/
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
|
|
|
|
*dbp = &db->db;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* returns ENOENT, EIO, or 0.
|
|
*
|
|
* This interface will allocate a blank spill dbuf when a spill blk
|
|
* doesn't already exist on the dnode.
|
|
*
|
|
* if you only want to find an already existing spill db, then
|
|
* dmu_spill_hold_existing() should be used.
|
|
*/
|
|
int
|
|
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = NULL;
|
|
int err;
|
|
|
|
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
|
|
db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
|
|
|
|
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
ASSERT(db != NULL);
|
|
err = dbuf_read(db, NULL, flags);
|
|
if (err == 0)
|
|
*dbp = &db->db;
|
|
else
|
|
dbuf_rele(db, tag);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
|
|
err = EINVAL;
|
|
} else {
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
|
|
if (!dn->dn_have_spill) {
|
|
err = ENOENT;
|
|
} else {
|
|
err = dmu_spill_hold_by_dnode(dn,
|
|
DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
|
|
}
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Note: longer-term, we should modify all of the dmu_buf_*() interfaces
|
|
* to take a held dnode rather than <os, object> -- the lookup is wasteful,
|
|
* and can induce severe lock contention when writing to several files
|
|
* whose dnodes are in the same block.
|
|
*/
|
|
static int
|
|
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
|
|
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
|
|
{
|
|
dsl_pool_t *dp = NULL;
|
|
dmu_buf_t **dbp;
|
|
uint64_t blkid, nblks, i;
|
|
uint32_t dbuf_flags;
|
|
int err;
|
|
zio_t *zio;
|
|
hrtime_t start = 0;
|
|
|
|
ASSERT(length <= DMU_MAX_ACCESS);
|
|
|
|
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
|
|
if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
|
|
dbuf_flags |= DB_RF_NOPREFETCH;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_datablkshift) {
|
|
int blkshift = dn->dn_datablkshift;
|
|
nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
|
|
P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
|
|
} else {
|
|
if (offset + length > dn->dn_datablksz) {
|
|
zfs_panic_recover("zfs: accessing past end of object "
|
|
"%llx/%llx (size=%u access=%llu+%llu)",
|
|
(longlong_t)dn->dn_objset->
|
|
os_dsl_dataset->ds_object,
|
|
(longlong_t)dn->dn_object, dn->dn_datablksz,
|
|
(longlong_t)offset, (longlong_t)length);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return (EIO);
|
|
}
|
|
nblks = 1;
|
|
}
|
|
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP | KM_NODEBUG);
|
|
|
|
if (dn->dn_objset->os_dsl_dataset)
|
|
dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
|
|
if (dp && dsl_pool_sync_context(dp))
|
|
start = gethrtime();
|
|
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
for (i = 0; i < nblks; i++) {
|
|
dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
|
|
if (db == NULL) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
zio_nowait(zio);
|
|
return (EIO);
|
|
}
|
|
/* initiate async i/o */
|
|
if (read) {
|
|
(void) dbuf_read(db, zio, dbuf_flags);
|
|
}
|
|
dbp[i] = &db->db;
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
/* wait for async i/o */
|
|
err = zio_wait(zio);
|
|
/* track read overhead when we are in sync context */
|
|
if (dp && dsl_pool_sync_context(dp))
|
|
dp->dp_read_overhead += gethrtime() - start;
|
|
if (err) {
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
return (err);
|
|
}
|
|
|
|
/* wait for other io to complete */
|
|
if (read) {
|
|
for (i = 0; i < nblks; i++) {
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
|
|
mutex_enter(&db->db_mtx);
|
|
while (db->db_state == DB_READ ||
|
|
db->db_state == DB_FILL)
|
|
cv_wait(&db->db_changed, &db->db_mtx);
|
|
if (db->db_state == DB_UNCACHED)
|
|
err = EIO;
|
|
mutex_exit(&db->db_mtx);
|
|
if (err) {
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
return (err);
|
|
}
|
|
}
|
|
}
|
|
|
|
*numbufsp = nblks;
|
|
*dbpp = dbp;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
|
|
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
|
|
numbufsp, dbpp, DMU_READ_PREFETCH);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
|
|
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
|
|
numbufsp, dbpp, DMU_READ_PREFETCH);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
|
|
{
|
|
int i;
|
|
dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
|
|
|
|
if (numbufs == 0)
|
|
return;
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
if (dbp[i])
|
|
dbuf_rele(dbp[i], tag);
|
|
}
|
|
|
|
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
|
|
}
|
|
|
|
void
|
|
dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
|
|
{
|
|
dnode_t *dn;
|
|
uint64_t blkid;
|
|
int nblks, i, err;
|
|
|
|
if (zfs_prefetch_disable)
|
|
return;
|
|
|
|
if (len == 0) { /* they're interested in the bonus buffer */
|
|
dn = DMU_META_DNODE(os);
|
|
|
|
if (object == 0 || object >= DN_MAX_OBJECT)
|
|
return;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
|
|
dbuf_prefetch(dn, blkid);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX - Note, if the dnode for the requested object is not
|
|
* already cached, we will do a *synchronous* read in the
|
|
* dnode_hold() call. The same is true for any indirects.
|
|
*/
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err != 0)
|
|
return;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_datablkshift) {
|
|
int blkshift = dn->dn_datablkshift;
|
|
nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
|
|
P2ALIGN(offset, 1<<blkshift)) >> blkshift;
|
|
} else {
|
|
nblks = (offset < dn->dn_datablksz);
|
|
}
|
|
|
|
if (nblks != 0) {
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
for (i = 0; i < nblks; i++)
|
|
dbuf_prefetch(dn, blkid+i);
|
|
}
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Get the next "chunk" of file data to free. We traverse the file from
|
|
* the end so that the file gets shorter over time (if we crashes in the
|
|
* middle, this will leave us in a better state). We find allocated file
|
|
* data by simply searching the allocated level 1 indirects.
|
|
*/
|
|
static int
|
|
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
|
|
{
|
|
uint64_t len = *start - limit;
|
|
uint64_t blkcnt = 0;
|
|
uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
|
|
uint64_t iblkrange =
|
|
dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
|
|
|
|
ASSERT(limit <= *start);
|
|
|
|
if (len <= iblkrange * maxblks) {
|
|
*start = limit;
|
|
return (0);
|
|
}
|
|
ASSERT(ISP2(iblkrange));
|
|
|
|
while (*start > limit && blkcnt < maxblks) {
|
|
int err;
|
|
|
|
/* find next allocated L1 indirect */
|
|
err = dnode_next_offset(dn,
|
|
DNODE_FIND_BACKWARDS, start, 2, 1, 0);
|
|
|
|
/* if there are no more, then we are done */
|
|
if (err == ESRCH) {
|
|
*start = limit;
|
|
return (0);
|
|
} else if (err) {
|
|
return (err);
|
|
}
|
|
blkcnt += 1;
|
|
|
|
/* reset offset to end of "next" block back */
|
|
*start = P2ALIGN(*start, iblkrange);
|
|
if (*start <= limit)
|
|
*start = limit;
|
|
else
|
|
*start -= 1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
|
|
uint64_t length, boolean_t free_dnode)
|
|
{
|
|
dmu_tx_t *tx;
|
|
uint64_t object_size, start, end, len;
|
|
boolean_t trunc = (length == DMU_OBJECT_END);
|
|
int align, err;
|
|
|
|
align = 1 << dn->dn_datablkshift;
|
|
ASSERT(align > 0);
|
|
object_size = align == 1 ? dn->dn_datablksz :
|
|
(dn->dn_maxblkid + 1) << dn->dn_datablkshift;
|
|
|
|
end = offset + length;
|
|
if (trunc || end > object_size)
|
|
end = object_size;
|
|
if (end <= offset)
|
|
return (0);
|
|
length = end - offset;
|
|
|
|
while (length) {
|
|
start = end;
|
|
/* assert(offset <= start) */
|
|
err = get_next_chunk(dn, &start, offset);
|
|
if (err)
|
|
return (err);
|
|
len = trunc ? DMU_OBJECT_END : end - start;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_free(tx, dn->dn_object, start, len);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
dnode_free_range(dn, start, trunc ? -1 : len, tx);
|
|
|
|
if (start == 0 && free_dnode) {
|
|
ASSERT(trunc);
|
|
dnode_free(dn, tx);
|
|
}
|
|
|
|
length -= end - start;
|
|
|
|
dmu_tx_commit(tx);
|
|
end = start;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_free_long_range(objset_t *os, uint64_t object,
|
|
uint64_t offset, uint64_t length)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err != 0)
|
|
return (err);
|
|
err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_free_object(objset_t *os, uint64_t object)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
|
|
FTAG, &dn);
|
|
if (err != 0)
|
|
return (err);
|
|
if (dn->dn_nlevels == 1) {
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_bonus(tx, object);
|
|
dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err == 0) {
|
|
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
|
|
dnode_free(dn, tx);
|
|
dmu_tx_commit(tx);
|
|
} else {
|
|
dmu_tx_abort(tx);
|
|
}
|
|
} else {
|
|
err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
|
|
}
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
|
|
uint64_t size, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
ASSERT(offset < UINT64_MAX);
|
|
ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
|
|
dnode_free_range(dn, offset, size, tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
void *buf, uint32_t flags)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_buf_t **dbp;
|
|
int numbufs, err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
/*
|
|
* Deal with odd block sizes, where there can't be data past the first
|
|
* block. If we ever do the tail block optimization, we will need to
|
|
* handle that here as well.
|
|
*/
|
|
if (dn->dn_maxblkid == 0) {
|
|
int newsz = offset > dn->dn_datablksz ? 0 :
|
|
MIN(size, dn->dn_datablksz - offset);
|
|
bzero((char *)buf + newsz, size - newsz);
|
|
size = newsz;
|
|
}
|
|
|
|
while (size > 0) {
|
|
uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
|
|
int i;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
|
|
TRUE, FTAG, &numbufs, &dbp, flags);
|
|
if (err)
|
|
break;
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy;
|
|
int bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = offset - db->db_offset;
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
|
|
bcopy((char *)db->db_data + bufoff, buf, tocpy);
|
|
|
|
offset += tocpy;
|
|
size -= tocpy;
|
|
buf = (char *)buf + tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
const void *buf, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
|
|
FALSE, FTAG, &numbufs, &dbp));
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy;
|
|
int bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = offset - db->db_offset;
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
offset += tocpy;
|
|
size -= tocpy;
|
|
buf = (char *)buf + tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
|
|
FALSE, FTAG, &numbufs, &dbp));
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
dmu_buf_will_not_fill(db, tx);
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
|
|
/*
|
|
* DMU support for xuio
|
|
*/
|
|
kstat_t *xuio_ksp = NULL;
|
|
|
|
typedef struct xuio_stats {
|
|
/* loaned yet not returned arc_buf */
|
|
kstat_named_t xuiostat_onloan_rbuf;
|
|
kstat_named_t xuiostat_onloan_wbuf;
|
|
/* whether a copy is made when loaning out a read buffer */
|
|
kstat_named_t xuiostat_rbuf_copied;
|
|
kstat_named_t xuiostat_rbuf_nocopy;
|
|
/* whether a copy is made when assigning a write buffer */
|
|
kstat_named_t xuiostat_wbuf_copied;
|
|
kstat_named_t xuiostat_wbuf_nocopy;
|
|
} xuio_stats_t;
|
|
|
|
static xuio_stats_t xuio_stats = {
|
|
{ "onloan_read_buf", KSTAT_DATA_UINT64 },
|
|
{ "onloan_write_buf", KSTAT_DATA_UINT64 },
|
|
{ "read_buf_copied", KSTAT_DATA_UINT64 },
|
|
{ "read_buf_nocopy", KSTAT_DATA_UINT64 },
|
|
{ "write_buf_copied", KSTAT_DATA_UINT64 },
|
|
{ "write_buf_nocopy", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
#define XUIOSTAT_INCR(stat, val) \
|
|
atomic_add_64(&xuio_stats.stat.value.ui64, (val))
|
|
#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
|
|
|
|
int
|
|
dmu_xuio_init(xuio_t *xuio, int nblk)
|
|
{
|
|
dmu_xuio_t *priv;
|
|
uio_t *uio = &xuio->xu_uio;
|
|
|
|
uio->uio_iovcnt = nblk;
|
|
uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
|
|
|
|
priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
|
|
priv->cnt = nblk;
|
|
priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
|
|
priv->iovp = uio->uio_iov;
|
|
XUIO_XUZC_PRIV(xuio) = priv;
|
|
|
|
if (XUIO_XUZC_RW(xuio) == UIO_READ)
|
|
XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
|
|
else
|
|
XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dmu_xuio_fini(xuio_t *xuio)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
int nblk = priv->cnt;
|
|
|
|
kmem_free(priv->iovp, nblk * sizeof (iovec_t));
|
|
kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
|
|
kmem_free(priv, sizeof (dmu_xuio_t));
|
|
|
|
if (XUIO_XUZC_RW(xuio) == UIO_READ)
|
|
XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
|
|
else
|
|
XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
|
|
}
|
|
|
|
/*
|
|
* Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
|
|
* and increase priv->next by 1.
|
|
*/
|
|
int
|
|
dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
|
|
{
|
|
struct iovec *iov;
|
|
uio_t *uio = &xuio->xu_uio;
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
int i = priv->next++;
|
|
|
|
ASSERT(i < priv->cnt);
|
|
ASSERT(off + n <= arc_buf_size(abuf));
|
|
iov = uio->uio_iov + i;
|
|
iov->iov_base = (char *)abuf->b_data + off;
|
|
iov->iov_len = n;
|
|
priv->bufs[i] = abuf;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_xuio_cnt(xuio_t *xuio)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
return (priv->cnt);
|
|
}
|
|
|
|
arc_buf_t *
|
|
dmu_xuio_arcbuf(xuio_t *xuio, int i)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
|
|
ASSERT(i < priv->cnt);
|
|
return (priv->bufs[i]);
|
|
}
|
|
|
|
void
|
|
dmu_xuio_clear(xuio_t *xuio, int i)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
|
|
ASSERT(i < priv->cnt);
|
|
priv->bufs[i] = NULL;
|
|
}
|
|
|
|
static void
|
|
xuio_stat_init(void)
|
|
{
|
|
xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
if (xuio_ksp != NULL) {
|
|
xuio_ksp->ks_data = &xuio_stats;
|
|
kstat_install(xuio_ksp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xuio_stat_fini(void)
|
|
{
|
|
if (xuio_ksp != NULL) {
|
|
kstat_delete(xuio_ksp);
|
|
xuio_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
xuio_stat_wbuf_copied()
|
|
{
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
|
|
}
|
|
|
|
void
|
|
xuio_stat_wbuf_nocopy()
|
|
{
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
|
|
/*
|
|
* Copy up to size bytes between arg_buf and req based on the data direction
|
|
* described by the req. If an entire req's data cannot be transfered the
|
|
* req's is updated such that it's current index and bv offsets correctly
|
|
* reference any residual data which could not be copied. The return value
|
|
* is the number of bytes successfully copied to arg_buf.
|
|
*/
|
|
static int
|
|
dmu_req_copy(void *arg_buf, int size, int *offset, struct request *req)
|
|
{
|
|
struct bio_vec *bv;
|
|
struct req_iterator iter;
|
|
char *bv_buf;
|
|
int tocpy;
|
|
|
|
*offset = 0;
|
|
rq_for_each_segment(bv, req, iter) {
|
|
|
|
/* Fully consumed the passed arg_buf */
|
|
ASSERT3S(*offset, <=, size);
|
|
if (size == *offset)
|
|
break;
|
|
|
|
/* Skip fully consumed bv's */
|
|
if (bv->bv_len == 0)
|
|
continue;
|
|
|
|
tocpy = MIN(bv->bv_len, size - *offset);
|
|
ASSERT3S(tocpy, >=, 0);
|
|
|
|
bv_buf = page_address(bv->bv_page) + bv->bv_offset;
|
|
ASSERT3P(bv_buf, !=, NULL);
|
|
|
|
if (rq_data_dir(req) == WRITE)
|
|
memcpy(arg_buf + *offset, bv_buf, tocpy);
|
|
else
|
|
memcpy(bv_buf, arg_buf + *offset, tocpy);
|
|
|
|
*offset += tocpy;
|
|
bv->bv_offset += tocpy;
|
|
bv->bv_len -= tocpy;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dmu_read_req(objset_t *os, uint64_t object, struct request *req)
|
|
{
|
|
uint64_t size = blk_rq_bytes(req);
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i, err;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
|
|
&numbufs, &dbp);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy, didcpy, bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
bufoff = offset - db->db_offset;
|
|
ASSERT3S(bufoff, >=, 0);
|
|
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
if (tocpy == 0)
|
|
break;
|
|
|
|
err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
|
|
|
|
if (didcpy < tocpy)
|
|
err = EIO;
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
offset += didcpy;
|
|
err = 0;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
|
|
{
|
|
uint64_t size = blk_rq_bytes(req);
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
dmu_buf_t **dbp;
|
|
int numbufs;
|
|
int err = 0;
|
|
int i;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
|
|
&numbufs, &dbp);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy, didcpy, bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
bufoff = offset - db->db_offset;
|
|
ASSERT3S(bufoff, >=, 0);
|
|
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
if (tocpy == 0)
|
|
break;
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
if (didcpy < tocpy)
|
|
err = EIO;
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
offset += didcpy;
|
|
err = 0;
|
|
}
|
|
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i, err;
|
|
xuio_t *xuio = NULL;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
|
|
&numbufs, &dbp);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy;
|
|
int bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = uio->uio_loffset - db->db_offset;
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
|
|
if (xuio) {
|
|
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
|
|
arc_buf_t *dbuf_abuf = dbi->db_buf;
|
|
arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
|
|
err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
|
|
if (!err) {
|
|
uio->uio_resid -= tocpy;
|
|
uio->uio_loffset += tocpy;
|
|
}
|
|
|
|
if (abuf == dbuf_abuf)
|
|
XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
|
|
else
|
|
XUIOSTAT_BUMP(xuiostat_rbuf_copied);
|
|
} else {
|
|
err = uiomove((char *)db->db_data + bufoff, tocpy,
|
|
UIO_READ, uio);
|
|
}
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs;
|
|
int err = 0;
|
|
int i;
|
|
|
|
err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
|
|
FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
int tocpy;
|
|
int bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = uio->uio_loffset - db->db_offset;
|
|
tocpy = (int)MIN(db->db_size - bufoff, size);
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
/*
|
|
* XXX uiomove could block forever (eg.nfs-backed
|
|
* pages). There needs to be a uiolockdown() function
|
|
* to lock the pages in memory, so that uiomove won't
|
|
* block.
|
|
*/
|
|
err = uiomove((char *)db->db_data + bufoff, tocpy,
|
|
UIO_WRITE, uio);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
}
|
|
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_write_uio_dnode(dn, uio, size, tx);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_write_uio_dnode(dn, uio, size, tx);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
/*
|
|
* Allocate a loaned anonymous arc buffer.
|
|
*/
|
|
arc_buf_t *
|
|
dmu_request_arcbuf(dmu_buf_t *handle, int size)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
|
|
spa_t *spa;
|
|
|
|
DB_GET_SPA(&spa, db);
|
|
return (arc_loan_buf(spa, size));
|
|
}
|
|
|
|
/*
|
|
* Free a loaned arc buffer.
|
|
*/
|
|
void
|
|
dmu_return_arcbuf(arc_buf_t *buf)
|
|
{
|
|
arc_return_buf(buf, FTAG);
|
|
VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
|
|
}
|
|
|
|
/*
|
|
* When possible directly assign passed loaned arc buffer to a dbuf.
|
|
* If this is not possible copy the contents of passed arc buf via
|
|
* dmu_write().
|
|
*/
|
|
void
|
|
dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
|
|
dnode_t *dn;
|
|
dmu_buf_impl_t *db;
|
|
uint32_t blksz = (uint32_t)arc_buf_size(buf);
|
|
uint64_t blkid;
|
|
|
|
DB_DNODE_ENTER(dbuf);
|
|
dn = DB_DNODE(dbuf);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
DB_DNODE_EXIT(dbuf);
|
|
|
|
if (offset == db->db.db_offset && blksz == db->db.db_size) {
|
|
dbuf_assign_arcbuf(db, buf, tx);
|
|
dbuf_rele(db, FTAG);
|
|
} else {
|
|
objset_t *os;
|
|
uint64_t object;
|
|
|
|
DB_DNODE_ENTER(dbuf);
|
|
dn = DB_DNODE(dbuf);
|
|
os = dn->dn_objset;
|
|
object = dn->dn_object;
|
|
DB_DNODE_EXIT(dbuf);
|
|
|
|
dbuf_rele(db, FTAG);
|
|
dmu_write(os, object, offset, blksz, buf->b_data, tx);
|
|
dmu_return_arcbuf(buf);
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
dbuf_dirty_record_t *dsa_dr;
|
|
dmu_sync_cb_t *dsa_done;
|
|
zgd_t *dsa_zgd;
|
|
dmu_tx_t *dsa_tx;
|
|
} dmu_sync_arg_t;
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
|
|
{
|
|
dmu_sync_arg_t *dsa = varg;
|
|
dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (zio->io_error == 0) {
|
|
if (BP_IS_HOLE(bp)) {
|
|
/*
|
|
* A block of zeros may compress to a hole, but the
|
|
* block size still needs to be known for replay.
|
|
*/
|
|
BP_SET_LSIZE(bp, db->db_size);
|
|
} else {
|
|
ASSERT(BP_GET_LEVEL(bp) == 0);
|
|
bp->blk_fill = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dmu_sync_late_arrival_ready(zio_t *zio)
|
|
{
|
|
dmu_sync_ready(zio, NULL, zio->io_private);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
|
|
{
|
|
dmu_sync_arg_t *dsa = varg;
|
|
dbuf_dirty_record_t *dr = dsa->dsa_dr;
|
|
dmu_buf_impl_t *db = dr->dr_dbuf;
|
|
|
|
mutex_enter(&db->db_mtx);
|
|
ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
|
|
if (zio->io_error == 0) {
|
|
dr->dt.dl.dr_overridden_by = *zio->io_bp;
|
|
dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
|
|
dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
|
|
if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
|
|
BP_ZERO(&dr->dt.dl.dr_overridden_by);
|
|
} else {
|
|
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
|
|
}
|
|
cv_broadcast(&db->db_changed);
|
|
mutex_exit(&db->db_mtx);
|
|
|
|
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
|
|
|
|
kmem_free(dsa, sizeof (*dsa));
|
|
}
|
|
|
|
static void
|
|
dmu_sync_late_arrival_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
dmu_sync_arg_t *dsa = zio->io_private;
|
|
|
|
if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
|
|
ASSERT(zio->io_bp->blk_birth == zio->io_txg);
|
|
ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
|
|
zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
|
|
}
|
|
|
|
dmu_tx_commit(dsa->dsa_tx);
|
|
|
|
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
|
|
|
|
kmem_free(dsa, sizeof (*dsa));
|
|
}
|
|
|
|
static int
|
|
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
|
|
zio_prop_t *zp, zbookmark_t *zb)
|
|
{
|
|
dmu_sync_arg_t *dsa;
|
|
dmu_tx_t *tx;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
|
|
if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (EIO); /* Make zl_get_data do txg_waited_synced() */
|
|
}
|
|
|
|
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
|
|
dsa->dsa_dr = NULL;
|
|
dsa->dsa_done = done;
|
|
dsa->dsa_zgd = zgd;
|
|
dsa->dsa_tx = tx;
|
|
|
|
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
|
|
zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
|
|
dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
|
|
ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Intent log support: sync the block associated with db to disk.
|
|
* N.B. and XXX: the caller is responsible for making sure that the
|
|
* data isn't changing while dmu_sync() is writing it.
|
|
*
|
|
* Return values:
|
|
*
|
|
* EEXIST: this txg has already been synced, so there's nothing to to.
|
|
* The caller should not log the write.
|
|
*
|
|
* ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
|
|
* The caller should not log the write.
|
|
*
|
|
* EALREADY: this block is already in the process of being synced.
|
|
* The caller should track its progress (somehow).
|
|
*
|
|
* EIO: could not do the I/O.
|
|
* The caller should do a txg_wait_synced().
|
|
*
|
|
* 0: the I/O has been initiated.
|
|
* The caller should log this blkptr in the done callback.
|
|
* It is possible that the I/O will fail, in which case
|
|
* the error will be reported to the done callback and
|
|
* propagated to pio from zio_done().
|
|
*/
|
|
int
|
|
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
|
|
{
|
|
blkptr_t *bp = zgd->zgd_bp;
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
|
|
objset_t *os = db->db_objset;
|
|
dsl_dataset_t *ds = os->os_dsl_dataset;
|
|
dbuf_dirty_record_t *dr;
|
|
dmu_sync_arg_t *dsa;
|
|
zbookmark_t zb;
|
|
zio_prop_t zp;
|
|
dnode_t *dn;
|
|
|
|
ASSERT(pio != NULL);
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
ASSERT(txg != 0);
|
|
|
|
SET_BOOKMARK(&zb, ds->ds_object,
|
|
db->db.db_object, db->db_level, db->db_blkid);
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
/*
|
|
* If we're frozen (running ziltest), we always need to generate a bp.
|
|
*/
|
|
if (txg > spa_freeze_txg(os->os_spa))
|
|
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
|
|
|
|
/*
|
|
* Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
|
|
* and us. If we determine that this txg is not yet syncing,
|
|
* but it begins to sync a moment later, that's OK because the
|
|
* sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
|
|
*/
|
|
mutex_enter(&db->db_mtx);
|
|
|
|
if (txg <= spa_last_synced_txg(os->os_spa)) {
|
|
/*
|
|
* This txg has already synced. There's nothing to do.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (EEXIST);
|
|
}
|
|
|
|
if (txg <= spa_syncing_txg(os->os_spa)) {
|
|
/*
|
|
* This txg is currently syncing, so we can't mess with
|
|
* the dirty record anymore; just write a new log block.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
|
|
}
|
|
|
|
dr = db->db_last_dirty;
|
|
while (dr && dr->dr_txg != txg)
|
|
dr = dr->dr_next;
|
|
|
|
if (dr == NULL) {
|
|
/*
|
|
* There's no dr for this dbuf, so it must have been freed.
|
|
* There's no need to log writes to freed blocks, so we're done.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (ENOENT);
|
|
}
|
|
|
|
ASSERT(dr->dr_txg == txg);
|
|
if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
|
|
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
|
|
/*
|
|
* We have already issued a sync write for this buffer,
|
|
* or this buffer has already been synced. It could not
|
|
* have been dirtied since, or we would have cleared the state.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (EALREADY);
|
|
}
|
|
|
|
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
|
|
dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
|
|
mutex_exit(&db->db_mtx);
|
|
|
|
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
|
|
dsa->dsa_dr = dr;
|
|
dsa->dsa_done = done;
|
|
dsa->dsa_zgd = zgd;
|
|
dsa->dsa_tx = NULL;
|
|
|
|
zio_nowait(arc_write(pio, os->os_spa, txg,
|
|
bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
|
|
dmu_sync_ready, dmu_sync_done, dsa,
|
|
ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
err = dnode_set_blksz(dn, size, ibs, tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
/* XXX assumes dnode_hold will not get an i/o error */
|
|
(void) dnode_hold(os, object, FTAG, &dn);
|
|
ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
|
|
dn->dn_checksum = checksum;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
/* XXX assumes dnode_hold will not get an i/o error */
|
|
(void) dnode_hold(os, object, FTAG, &dn);
|
|
ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
|
|
dn->dn_compress = compress;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
int zfs_mdcomp_disable = 0;
|
|
|
|
void
|
|
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
|
|
{
|
|
dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
|
|
boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata ||
|
|
(wp & WP_SPILL));
|
|
enum zio_checksum checksum = os->os_checksum;
|
|
enum zio_compress compress = os->os_compress;
|
|
enum zio_checksum dedup_checksum = os->os_dedup_checksum;
|
|
boolean_t dedup;
|
|
boolean_t dedup_verify = os->os_dedup_verify;
|
|
int copies = os->os_copies;
|
|
|
|
/*
|
|
* Determine checksum setting.
|
|
*/
|
|
if (ismd) {
|
|
/*
|
|
* Metadata always gets checksummed. If the data
|
|
* checksum is multi-bit correctable, and it's not a
|
|
* ZBT-style checksum, then it's suitable for metadata
|
|
* as well. Otherwise, the metadata checksum defaults
|
|
* to fletcher4.
|
|
*/
|
|
if (zio_checksum_table[checksum].ci_correctable < 1 ||
|
|
zio_checksum_table[checksum].ci_eck)
|
|
checksum = ZIO_CHECKSUM_FLETCHER_4;
|
|
} else {
|
|
checksum = zio_checksum_select(dn->dn_checksum, checksum);
|
|
}
|
|
|
|
/*
|
|
* Determine compression setting.
|
|
*/
|
|
if (ismd) {
|
|
/*
|
|
* XXX -- we should design a compression algorithm
|
|
* that specializes in arrays of bps.
|
|
*/
|
|
compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
|
|
ZIO_COMPRESS_LZJB;
|
|
} else {
|
|
compress = zio_compress_select(dn->dn_compress, compress);
|
|
}
|
|
|
|
/*
|
|
* Determine dedup setting. If we are in dmu_sync(), we won't
|
|
* actually dedup now because that's all done in syncing context;
|
|
* but we do want to use the dedup checkum. If the checksum is not
|
|
* strong enough to ensure unique signatures, force dedup_verify.
|
|
*/
|
|
dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
|
|
if (dedup) {
|
|
checksum = dedup_checksum;
|
|
if (!zio_checksum_table[checksum].ci_dedup)
|
|
dedup_verify = 1;
|
|
}
|
|
|
|
if (wp & WP_DMU_SYNC)
|
|
dedup = 0;
|
|
|
|
if (wp & WP_NOFILL) {
|
|
ASSERT(!ismd && level == 0);
|
|
checksum = ZIO_CHECKSUM_OFF;
|
|
compress = ZIO_COMPRESS_OFF;
|
|
dedup = B_FALSE;
|
|
}
|
|
|
|
zp->zp_checksum = checksum;
|
|
zp->zp_compress = compress;
|
|
zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
|
|
zp->zp_level = level;
|
|
zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
|
|
zp->zp_dedup = dedup;
|
|
zp->zp_dedup_verify = dedup && dedup_verify;
|
|
}
|
|
|
|
int
|
|
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
|
|
{
|
|
dnode_t *dn;
|
|
int i, err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
/*
|
|
* Sync any current changes before
|
|
* we go trundling through the block pointers.
|
|
*/
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
if (list_link_active(&dn->dn_dirty_link[i]))
|
|
break;
|
|
}
|
|
if (i != TXG_SIZE) {
|
|
dnode_rele(dn, FTAG);
|
|
txg_wait_synced(dmu_objset_pool(os), 0);
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
|
|
err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
|
|
{
|
|
dnode_phys_t *dnp;
|
|
int i;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
mutex_enter(&dn->dn_mtx);
|
|
|
|
dnp = dn->dn_phys;
|
|
|
|
doi->doi_data_block_size = dn->dn_datablksz;
|
|
doi->doi_metadata_block_size = dn->dn_indblkshift ?
|
|
1ULL << dn->dn_indblkshift : 0;
|
|
doi->doi_type = dn->dn_type;
|
|
doi->doi_bonus_type = dn->dn_bonustype;
|
|
doi->doi_bonus_size = dn->dn_bonuslen;
|
|
doi->doi_indirection = dn->dn_nlevels;
|
|
doi->doi_checksum = dn->dn_checksum;
|
|
doi->doi_compress = dn->dn_compress;
|
|
doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
|
|
doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
|
|
doi->doi_fill_count = 0;
|
|
for (i = 0; i < dnp->dn_nblkptr; i++)
|
|
doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
|
|
|
|
mutex_exit(&dn->dn_mtx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
/*
|
|
* Get information on a DMU object.
|
|
* If doi is NULL, just indicates whether the object exists.
|
|
*/
|
|
int
|
|
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
|
|
{
|
|
dnode_t *dn;
|
|
int err = dnode_hold(os, object, FTAG, &dn);
|
|
|
|
if (err)
|
|
return (err);
|
|
|
|
if (doi != NULL)
|
|
dmu_object_info_from_dnode(dn, doi);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* As above, but faster; can be used when you have a held dbuf in hand.
|
|
*/
|
|
void
|
|
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dmu_object_info_from_dnode(DB_DNODE(db), doi);
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
|
|
/*
|
|
* Faster still when you only care about the size.
|
|
* This is specifically optimized for zfs_getattr().
|
|
*/
|
|
void
|
|
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
|
|
u_longlong_t *nblk512)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
*blksize = dn->dn_datablksz;
|
|
/* add 1 for dnode space */
|
|
*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
|
|
SPA_MINBLOCKSHIFT) + 1;
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
|
|
void
|
|
byteswap_uint64_array(void *vbuf, size_t size)
|
|
{
|
|
uint64_t *buf = vbuf;
|
|
size_t count = size >> 3;
|
|
int i;
|
|
|
|
ASSERT((size & 7) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_64(buf[i]);
|
|
}
|
|
|
|
void
|
|
byteswap_uint32_array(void *vbuf, size_t size)
|
|
{
|
|
uint32_t *buf = vbuf;
|
|
size_t count = size >> 2;
|
|
int i;
|
|
|
|
ASSERT((size & 3) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_32(buf[i]);
|
|
}
|
|
|
|
void
|
|
byteswap_uint16_array(void *vbuf, size_t size)
|
|
{
|
|
uint16_t *buf = vbuf;
|
|
size_t count = size >> 1;
|
|
int i;
|
|
|
|
ASSERT((size & 1) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_16(buf[i]);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
byteswap_uint8_array(void *vbuf, size_t size)
|
|
{
|
|
}
|
|
|
|
void
|
|
dmu_init(void)
|
|
{
|
|
zfs_dbgmsg_init();
|
|
sa_cache_init();
|
|
xuio_stat_init();
|
|
dmu_objset_init();
|
|
dnode_init();
|
|
dbuf_init();
|
|
zfetch_init();
|
|
dmu_tx_init();
|
|
arc_init();
|
|
l2arc_init();
|
|
}
|
|
|
|
void
|
|
dmu_fini(void)
|
|
{
|
|
l2arc_fini();
|
|
arc_fini();
|
|
dmu_tx_fini();
|
|
zfetch_fini();
|
|
dbuf_fini();
|
|
dnode_fini();
|
|
dmu_objset_fini();
|
|
xuio_stat_fini();
|
|
sa_cache_fini();
|
|
zfs_dbgmsg_fini();
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(dmu_bonus_hold);
|
|
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
|
|
EXPORT_SYMBOL(dmu_buf_rele_array);
|
|
EXPORT_SYMBOL(dmu_free_range);
|
|
EXPORT_SYMBOL(dmu_read);
|
|
EXPORT_SYMBOL(dmu_write);
|
|
EXPORT_SYMBOL(dmu_object_info);
|
|
EXPORT_SYMBOL(dmu_object_info_from_dnode);
|
|
EXPORT_SYMBOL(dmu_object_info_from_db);
|
|
EXPORT_SYMBOL(dmu_object_size_from_db);
|
|
EXPORT_SYMBOL(dmu_object_set_blocksize);
|
|
EXPORT_SYMBOL(dmu_object_set_checksum);
|
|
EXPORT_SYMBOL(dmu_object_set_compress);
|
|
EXPORT_SYMBOL(dmu_request_arcbuf);
|
|
EXPORT_SYMBOL(dmu_return_arcbuf);
|
|
EXPORT_SYMBOL(dmu_assign_arcbuf);
|
|
EXPORT_SYMBOL(dmu_buf_hold);
|
|
EXPORT_SYMBOL(dmu_ot);
|
|
|
|
module_param(zfs_mdcomp_disable, int, 0644);
|
|
MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
|
|
#endif
|