Poul-Henning Kamp 4392001125 Move UFS from DEVFS backing to GEOM backing.
This eliminates a bunch of vnode overhead (approx 1-2 % speed
improvement) and gives us more control over the access to the storage
device.

Access counts on the underlying device are not correctly tracked and
therefore it is possible to read-only mount the same disk device multiple
times:
	syv# mount -p
	/dev/md0        /var    ufs rw  2 2
	/dev/ad0        /mnt    ufs ro  1 1
	/dev/ad0        /mnt2   ufs ro  1 1
	/dev/ad0        /mnt3   ufs ro  1 1

Since UFS/FFS is not a synchrousely consistent filesystem (ie: it caches
things in RAM) this is not possible with read-write mounts, and the system
will correctly reject this.

Details:

	Add a geom consumer and a bufobj pointer to ufsmount.

	Eliminate the vnode argument from softdep_disk_prewrite().
	Pick the vnode out of bp->b_vp for now.  Eventually we
	should find it through bp->b_bufobj->b_private.

	In the mountcode, use g_vfs_open() once we have used
	VOP_ACCESS() to check permissions.

	When upgrading and downgrading between r/o and r/w do the
	right thing with GEOM access counts.  Remove all the
	workarounds for not being able to do this with VOP_OPEN().

	If we are the root mount, drop the exclusive access count
	until we upgrade to r/w.  This allows fsck of the root
	filesystem and the MNT_RELOAD to work correctly.

	Set bo_private to the GEOM consumer on the device bufobj.

	Change the ffs_ops->strategy function to call g_vfs_strategy()

	In ufs_strategy() directly call the strategy on the disk
	bufobj.  Same in rawread.

	In ffs_fsync() we will no longer see VCHR device nodes, so
	remove code which synced the filesystem mounted on it, in
	case we came there.  I'm not sure this code made sense in
	the first place since we would have taken the specfs route
	on such a vnode.

	Redo the highly bogus readblock() function in the snapshot
	code to something slightly less bogus: Constructing an uio
	and using physio was really quite a detour.  Instead just
	fill in a bio and ship it down.
2004-10-29 10:15:56 +00:00
..

$FreeBSD$

  UFS Extended Attributes Copyright

The UFS Extended Attributes implementation is copyright Robert Watson, and
is made available under a Berkeley-style license.

  About UFS Extended Attributes

Extended attributes allow the association of additional arbitrary
meta-data with files and directories.  Extended attributes are defined in
the form name=value, where name is an nul-terminated string in the style
of a filename, and value is a binary blob of zero or more bytes. The UFS
extended attribute service layers support for extended attributes onto a
backing file, in the style of the quota implementation, meaning that it
requires no underlying format changes in the filesystem.  This design
choice exchanges simplicity, usability and easy deployment for
performance.  When defined, extended attribute names exist in a series of
disjoint namespaces: currently, two namespaces are defined:
EXTATTR_NAMESPACE_SYSTEM and EXTATTR_NAMESPACE_USER.  The primary
distinction lies in the protection model: USER EAs are protected using the
normal inode protections, whereas SYSTEM EAs require privilege to access
or modify.

  Using UFS Extended Attributes

Support for UFS extended attributes is natively available in UFS2, and
requires no special configuration.  For reliability, administrative,
and performance reasons, if you plan to use extended attributes, it
is recommended that you use UFS2 in preference to UFS1.

Support for UFS extended attributes may be enabled for UFS1 by adding:

	options UFS_EXTATTR

to your kernel configuration file.  This allows UFS-based filesystems to
support extended attributes, but requires manual administration of EAs
using the extattrctl tool, including the starting of EA support for each
filesystem, and the enabling of individual attributes for the file
system.  The extattrctl utility may be used to initialize backing files
before first use, to start and stop EA service on a filesystem, and to
enable and disable named attributes.  The command lines for extattrctl
take the following forms:

  extattrctl start [path]
  extattrctl stop [path]
  extattrctl initattr [-f] [-p path] [attrsize] [attrfile]
  extattrctl enable [path] [attrnamespace] [attrname] [attrfile]
  extattrctl disable [path] [attrnamespace] [attrname]

In each case, [path] is used to indicate the mounted filesystem on which
to perform the operation.  [attrnamespace] refers to the namespace in
which the attribute is being manipulated, and may be "system" or "user".  
The [attrname] is the attribute name to use for the operation. The
[attrfile] argument specifies the attribute backing file to use. When
using the "initattr" function to initialize a backing file, the maximum
size of attribute data must be defined in bytes using the [attrsize]
field.  Optionally, the [-p path] argument may be used to indicate to
extattrctl that it should pre-allocate space for EA data, rather than
creating a sparse backing file.  This prevents attribute operations from
failing in low disk-space conditions (which can be important when EAs are
used for security purposes), but pre-allocation will consume space
proportional to the product of the defined maximum attribute size and
number of attributes on the specified filesystem.

Manual configuration increases administrative overhead, but also
introduces the possibility of race conditions during filesystem mount, if
EAs are used to support other features, as starting the EAs manually is
not atomic with the mount operation.  To address this problem, an
additional kernel option may be defined to auto-start EAs on a UFS file
system based on special directories at mount-time:

	options UFS_EXTATTR_AUTOSTART

If this option is defined, UFS will search for a ".attribute"
sub-directory of the filesystem root during the mount operation.  If it
is found, EA support will be started for the filesystem.  UFS will then
search for "system" and "user" sub-directories of the ".attribute"
directory for any potential backing files, and enable an EA for each valid
backing file with the name of the backing file as the attribute name.  
For example, by creating the following tree, the two EAs,
posix1e.acl_access and posix1e.acl_default will be enabled in the system
namespace of the root filesystem, reserving space for attribute data:

  mkdir -p /.attribute/system
  cd /.attribute/system
  extattrctl initattr -p / 388 posix1e.acl_access
  extattrctl initattr -p / 388 posix1e.acl_default

On the next mount of the root filesystem, the attributes will be
automatically started.