freebsd-nq/sys/dev/cpufreq/cpufreq_dt.c
2020-03-09 03:34:16 +00:00

575 lines
14 KiB
C

/*-
* Copyright (c) 2018 Emmanuel Vadot <manu@FreeBSD.Org>
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Generic DT based cpufreq driver
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/cpu.h>
#include <sys/cpuset.h>
#include <sys/smp.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/regulator/regulator.h>
#include "cpufreq_if.h"
#if 0
#define DEBUG(dev, msg...) device_printf(dev, "cpufreq_dt: " msg);
#else
#define DEBUG(dev, msg...)
#endif
enum opp_version {
OPP_V1 = 1,
OPP_V2,
};
struct cpufreq_dt_opp {
uint64_t freq;
uint32_t uvolt_target;
uint32_t uvolt_min;
uint32_t uvolt_max;
uint32_t uamps;
uint32_t clk_latency;
bool turbo_mode;
bool opp_suspend;
};
struct cpufreq_dt_softc {
device_t dev;
clk_t clk;
regulator_t reg;
struct cpufreq_dt_opp *opp;
ssize_t nopp;
int cpu;
cpuset_t cpus;
};
static void
cpufreq_dt_notify(device_t dev, uint64_t freq)
{
struct cpufreq_dt_softc *sc;
struct pcpu *pc;
int cpu;
sc = device_get_softc(dev);
CPU_FOREACH(cpu) {
if (CPU_ISSET(cpu, &sc->cpus)) {
pc = pcpu_find(cpu);
pc->pc_clock = freq;
}
}
}
static const struct cpufreq_dt_opp *
cpufreq_dt_find_opp(device_t dev, uint64_t freq)
{
struct cpufreq_dt_softc *sc;
ssize_t n;
sc = device_get_softc(dev);
DEBUG(dev, "Looking for freq %ju\n", freq);
for (n = 0; n < sc->nopp; n++)
if (CPUFREQ_CMP(sc->opp[n].freq, freq))
return (&sc->opp[n]);
DEBUG(dev, "Couldn't find one\n");
return (NULL);
}
static void
cpufreq_dt_opp_to_setting(device_t dev, const struct cpufreq_dt_opp *opp,
struct cf_setting *set)
{
struct cpufreq_dt_softc *sc;
sc = device_get_softc(dev);
memset(set, 0, sizeof(*set));
set->freq = opp->freq / 1000000;
set->volts = opp->uvolt_target / 1000;
set->power = CPUFREQ_VAL_UNKNOWN;
set->lat = opp->clk_latency;
set->dev = dev;
}
static int
cpufreq_dt_get(device_t dev, struct cf_setting *set)
{
struct cpufreq_dt_softc *sc;
const struct cpufreq_dt_opp *opp;
uint64_t freq;
sc = device_get_softc(dev);
DEBUG(dev, "cpufreq_dt_get\n");
if (clk_get_freq(sc->clk, &freq) != 0)
return (ENXIO);
opp = cpufreq_dt_find_opp(dev, freq);
if (opp == NULL) {
device_printf(dev, "Can't find the current freq in opp\n");
return (ENOENT);
}
cpufreq_dt_opp_to_setting(dev, opp, set);
DEBUG(dev, "Current freq %dMhz\n", set->freq);
return (0);
}
static int
cpufreq_dt_set(device_t dev, const struct cf_setting *set)
{
struct cpufreq_dt_softc *sc;
const struct cpufreq_dt_opp *opp, *copp;
uint64_t freq;
int uvolt, error;
sc = device_get_softc(dev);
DEBUG(dev, "Working on cpu %d\n", sc->cpu);
DEBUG(dev, "We have %d cpu on this dev\n", CPU_COUNT(&sc->cpus));
if (!CPU_ISSET(sc->cpu, &sc->cpus)) {
DEBUG(dev, "Not for this CPU\n");
return (0);
}
if (clk_get_freq(sc->clk, &freq) != 0) {
device_printf(dev, "Can't get current clk freq\n");
return (ENXIO);
}
/* Try to get current valtage by using regulator first. */
error = regulator_get_voltage(sc->reg, &uvolt);
if (error != 0) {
/*
* Try oppoints table as backup way. However,
* this is insufficient because the actual processor
* frequency may not be in the table. PLL frequency
* granularity can be different that granularity of
* oppoint table.
*/
copp = cpufreq_dt_find_opp(sc->dev, freq);
if (copp == NULL) {
device_printf(dev,
"Can't find the current freq in opp\n");
return (ENOENT);
}
uvolt = copp->uvolt_target;
}
opp = cpufreq_dt_find_opp(sc->dev, set->freq * 1000000);
if (opp == NULL) {
device_printf(dev, "Couldn't find an opp for this freq\n");
return (EINVAL);
}
DEBUG(sc->dev, "Current freq %ju, uvolt: %d\n", freq, uvolt);
DEBUG(sc->dev, "Target freq %ju, , uvolt: %d\n",
opp->freq, opp->uvolt_target);
if (uvolt < opp->uvolt_target) {
DEBUG(dev, "Changing regulator from %u to %u\n",
uvolt, opp->uvolt_target);
error = regulator_set_voltage(sc->reg,
opp->uvolt_min,
opp->uvolt_max);
if (error != 0) {
DEBUG(dev, "Failed, backout\n");
return (ENXIO);
}
}
DEBUG(dev, "Setting clk to %ju\n", opp->freq);
error = clk_set_freq(sc->clk, opp->freq, CLK_SET_ROUND_DOWN);
if (error != 0) {
DEBUG(dev, "Failed, backout\n");
/* Restore previous voltage (best effort) */
error = regulator_set_voltage(sc->reg,
copp->uvolt_min,
copp->uvolt_max);
return (ENXIO);
}
if (uvolt > opp->uvolt_target) {
DEBUG(dev, "Changing regulator from %u to %u\n",
uvolt, opp->uvolt_target);
error = regulator_set_voltage(sc->reg,
opp->uvolt_min,
opp->uvolt_max);
if (error != 0) {
DEBUG(dev, "Failed to switch regulator to %d\n",
opp->uvolt_target);
/* Restore previous CPU frequency (best effort) */
(void)clk_set_freq(sc->clk, copp->freq, 0);
return (ENXIO);
}
}
if (clk_get_freq(sc->clk, &freq) == 0)
cpufreq_dt_notify(dev, freq);
return (0);
}
static int
cpufreq_dt_type(device_t dev, int *type)
{
if (type == NULL)
return (EINVAL);
*type = CPUFREQ_TYPE_ABSOLUTE;
return (0);
}
static int
cpufreq_dt_settings(device_t dev, struct cf_setting *sets, int *count)
{
struct cpufreq_dt_softc *sc;
ssize_t n;
DEBUG(dev, "cpufreq_dt_settings\n");
if (sets == NULL || count == NULL)
return (EINVAL);
sc = device_get_softc(dev);
if (*count < sc->nopp) {
*count = (int)sc->nopp;
return (E2BIG);
}
for (n = 0; n < sc->nopp; n++)
cpufreq_dt_opp_to_setting(dev, &sc->opp[n], &sets[n]);
*count = (int)sc->nopp;
return (0);
}
static void
cpufreq_dt_identify(driver_t *driver, device_t parent)
{
phandle_t node;
/* Properties must be listed under node /cpus/cpu@0 */
node = ofw_bus_get_node(parent);
/* The cpu@0 node must have the following properties */
if (!OF_hasprop(node, "clocks") ||
(!OF_hasprop(node, "cpu-supply") &&
!OF_hasprop(node, "cpu0-supply")))
return;
if (!OF_hasprop(node, "operating-points") &&
!OF_hasprop(node, "operating-points-v2"))
return;
if (device_find_child(parent, "cpufreq_dt", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "cpufreq_dt", -1) == NULL)
device_printf(parent, "add cpufreq_dt child failed\n");
}
static int
cpufreq_dt_probe(device_t dev)
{
phandle_t node;
node = ofw_bus_get_node(device_get_parent(dev));
if (!OF_hasprop(node, "clocks") ||
(!OF_hasprop(node, "cpu-supply") &&
!OF_hasprop(node, "cpu0-supply")))
return (ENXIO);
if (!OF_hasprop(node, "operating-points") &&
!OF_hasprop(node, "operating-points-v2"))
return (ENXIO);
device_set_desc(dev, "Generic cpufreq driver");
return (BUS_PROBE_GENERIC);
}
static int
cpufreq_dt_oppv1_parse(struct cpufreq_dt_softc *sc, phandle_t node)
{
uint32_t *opp, lat;
ssize_t n;
sc->nopp = OF_getencprop_alloc_multi(node, "operating-points",
sizeof(uint32_t) * 2, (void **)&opp);
if (sc->nopp == -1)
return (ENXIO);
if (OF_getencprop(node, "clock-latency", &lat, sizeof(lat)) == -1)
lat = CPUFREQ_VAL_UNKNOWN;
sc->opp = malloc(sizeof(*sc->opp) * sc->nopp, M_DEVBUF, M_WAITOK);
for (n = 0; n < sc->nopp; n++) {
sc->opp[n].freq = opp[n * 2 + 0] * 1000;
sc->opp[n].uvolt_min = opp[n * 2 + 1];
sc->opp[n].uvolt_max = sc->opp[n].uvolt_min;
sc->opp[n].uvolt_target = sc->opp[n].uvolt_min;
sc->opp[n].clk_latency = lat;
if (bootverbose)
device_printf(sc->dev, "%ju.%03ju MHz, %u uV\n",
sc->opp[n].freq / 1000000,
sc->opp[n].freq % 1000000,
sc->opp[n].uvolt_target);
}
free(opp, M_OFWPROP);
return (0);
}
static int
cpufreq_dt_oppv2_parse(struct cpufreq_dt_softc *sc, phandle_t node)
{
phandle_t opp, opp_table, opp_xref;
pcell_t cell[2];
uint32_t *volts, lat;
int nvolt, i;
if (OF_getencprop(node, "operating-points-v2", &opp_xref,
sizeof(opp_xref)) == -1) {
device_printf(sc->dev, "Cannot get xref to oppv2 table\n");
return (ENXIO);
}
opp_table = OF_node_from_xref(opp_xref);
if (opp_table == opp_xref)
return (ENXIO);
if (!OF_hasprop(opp_table, "opp-shared")) {
device_printf(sc->dev, "Only opp-shared is supported\n");
return (ENXIO);
}
for (opp = OF_child(opp_table); opp > 0; opp = OF_peer(opp))
sc->nopp += 1;
sc->opp = malloc(sizeof(*sc->opp) * sc->nopp, M_DEVBUF, M_WAITOK);
for (i = 0, opp_table = OF_child(opp_table); opp_table > 0;
opp_table = OF_peer(opp_table), i++) {
/* opp-hz is a required property */
if (OF_getencprop(opp_table, "opp-hz", cell,
sizeof(cell)) == -1)
continue;
sc->opp[i].freq = cell[0];
sc->opp[i].freq <<= 32;
sc->opp[i].freq |= cell[1];
if (OF_getencprop(opp_table, "clock-latency", &lat,
sizeof(lat)) == -1)
sc->opp[i].clk_latency = CPUFREQ_VAL_UNKNOWN;
else
sc->opp[i].clk_latency = (int)lat;
if (OF_hasprop(opp_table, "turbo-mode"))
sc->opp[i].turbo_mode = true;
if (OF_hasprop(opp_table, "opp-suspend"))
sc->opp[i].opp_suspend = true;
nvolt = OF_getencprop_alloc_multi(opp_table, "opp-microvolt",
sizeof(*volts), (void **)&volts);
if (nvolt == 1) {
sc->opp[i].uvolt_target = volts[0];
sc->opp[i].uvolt_min = volts[0];
sc->opp[i].uvolt_max = volts[0];
} else if (nvolt == 3) {
sc->opp[i].uvolt_target = volts[0];
sc->opp[i].uvolt_min = volts[1];
sc->opp[i].uvolt_max = volts[2];
} else {
device_printf(sc->dev,
"Wrong count of opp-microvolt property\n");
OF_prop_free(volts);
free(sc->opp, M_DEVBUF);
return (ENXIO);
}
OF_prop_free(volts);
if (bootverbose)
device_printf(sc->dev, "%ju.%03ju Mhz (%u uV)\n",
sc->opp[i].freq / 1000000,
sc->opp[i].freq % 1000000,
sc->opp[i].uvolt_target);
}
return (0);
}
static int
cpufreq_dt_attach(device_t dev)
{
struct cpufreq_dt_softc *sc;
phandle_t node;
phandle_t cnode, opp, copp;
int cpu;
uint64_t freq;
int rv = 0;
char device_type[16];
enum opp_version version;
sc = device_get_softc(dev);
sc->dev = dev;
node = ofw_bus_get_node(device_get_parent(dev));
sc->cpu = device_get_unit(device_get_parent(dev));
DEBUG(dev, "cpu=%d\n", sc->cpu);
if (sc->cpu >= mp_ncpus) {
device_printf(dev, "Not attaching as cpu is not present\n");
return (ENXIO);
}
if (regulator_get_by_ofw_property(dev, node,
"cpu-supply", &sc->reg) != 0) {
if (regulator_get_by_ofw_property(dev, node,
"cpu0-supply", &sc->reg) != 0) {
device_printf(dev, "no regulator for %s\n",
ofw_bus_get_name(device_get_parent(dev)));
return (ENXIO);
}
}
if (clk_get_by_ofw_index(dev, node, 0, &sc->clk) != 0) {
device_printf(dev, "no clock for %s\n",
ofw_bus_get_name(device_get_parent(dev)));
regulator_release(sc->reg);
return (ENXIO);
}
if (OF_hasprop(node, "operating-points")) {
version = OPP_V1;
rv = cpufreq_dt_oppv1_parse(sc, node);
if (rv != 0) {
device_printf(dev, "Failed to parse opp-v1 table\n");
return (rv);
}
OF_getencprop(node, "operating-points", &opp,
sizeof(opp));
} else {
version = OPP_V2;
rv = cpufreq_dt_oppv2_parse(sc, node);
if (rv != 0) {
device_printf(dev, "Failed to parse opp-v2 table\n");
return (rv);
}
OF_getencprop(node, "operating-points-v2", &opp,
sizeof(opp));
}
/*
* Find all CPUs that share the same opp table
*/
CPU_ZERO(&sc->cpus);
cnode = OF_parent(node);
for (cpu = 0, cnode = OF_child(cnode); cnode > 0; cnode = OF_peer(cnode)) {
if (OF_getprop(cnode, "device_type", device_type, sizeof(device_type)) <= 0)
continue;
if (strcmp(device_type, "cpu") != 0)
continue;
if (cpu == sc->cpu) {
DEBUG(dev, "Skipping our cpu\n");
CPU_SET(cpu, &sc->cpus);
cpu++;
continue;
}
DEBUG(dev, "Testing CPU %d\n", cpu);
copp = -1;
if (version == OPP_V1)
OF_getencprop(cnode, "operating-points", &copp,
sizeof(copp));
else if (version == OPP_V2)
OF_getencprop(cnode, "operating-points-v2",
&copp, sizeof(copp));
if (opp == copp) {
DEBUG(dev, "CPU %d is using the same opp as this one (%d)\n", cpu, sc->cpu);
CPU_SET(cpu, &sc->cpus);
}
cpu++;
}
if (clk_get_freq(sc->clk, &freq) == 0)
cpufreq_dt_notify(dev, freq);
cpufreq_register(dev);
return (0);
}
static device_method_t cpufreq_dt_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, cpufreq_dt_identify),
DEVMETHOD(device_probe, cpufreq_dt_probe),
DEVMETHOD(device_attach, cpufreq_dt_attach),
/* cpufreq interface */
DEVMETHOD(cpufreq_drv_get, cpufreq_dt_get),
DEVMETHOD(cpufreq_drv_set, cpufreq_dt_set),
DEVMETHOD(cpufreq_drv_type, cpufreq_dt_type),
DEVMETHOD(cpufreq_drv_settings, cpufreq_dt_settings),
DEVMETHOD_END
};
static driver_t cpufreq_dt_driver = {
"cpufreq_dt",
cpufreq_dt_methods,
sizeof(struct cpufreq_dt_softc),
};
static devclass_t cpufreq_dt_devclass;
DRIVER_MODULE(cpufreq_dt, cpu, cpufreq_dt_driver, cpufreq_dt_devclass, 0, 0);
MODULE_VERSION(cpufreq_dt, 1);