Alexander Motin 9d42b1fc43 Add check missed in r314257.
MFC after:	11 days
2017-03-01 17:35:56 +00:00

13538 lines
372 KiB
C

/*-
* Copyright (c) 2003-2009 Silicon Graphics International Corp.
* Copyright (c) 2012 The FreeBSD Foundation
* Copyright (c) 2014-2017 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Portions of this software were developed by Edward Tomasz Napierala
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id$
*/
/*
* CAM Target Layer, a SCSI device emulation subsystem.
*
* Author: Ken Merry <ken@FreeBSD.org>
*/
#define _CTL_C
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ctype.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/kthread.h>
#include <sys/bio.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/endian.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#include <cam/cam.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_cd.h>
#include <cam/scsi/scsi_da.h>
#include <cam/ctl/ctl_io.h>
#include <cam/ctl/ctl.h>
#include <cam/ctl/ctl_frontend.h>
#include <cam/ctl/ctl_util.h>
#include <cam/ctl/ctl_backend.h>
#include <cam/ctl/ctl_ioctl.h>
#include <cam/ctl/ctl_ha.h>
#include <cam/ctl/ctl_private.h>
#include <cam/ctl/ctl_debug.h>
#include <cam/ctl/ctl_scsi_all.h>
#include <cam/ctl/ctl_error.h>
struct ctl_softc *control_softc = NULL;
/*
* Template mode pages.
*/
/*
* Note that these are default values only. The actual values will be
* filled in when the user does a mode sense.
*/
const static struct scsi_da_rw_recovery_page rw_er_page_default = {
/*page_code*/SMS_RW_ERROR_RECOVERY_PAGE,
/*page_length*/sizeof(struct scsi_da_rw_recovery_page) - 2,
/*byte3*/SMS_RWER_AWRE|SMS_RWER_ARRE,
/*read_retry_count*/0,
/*correction_span*/0,
/*head_offset_count*/0,
/*data_strobe_offset_cnt*/0,
/*byte8*/SMS_RWER_LBPERE,
/*write_retry_count*/0,
/*reserved2*/0,
/*recovery_time_limit*/{0, 0},
};
const static struct scsi_da_rw_recovery_page rw_er_page_changeable = {
/*page_code*/SMS_RW_ERROR_RECOVERY_PAGE,
/*page_length*/sizeof(struct scsi_da_rw_recovery_page) - 2,
/*byte3*/SMS_RWER_PER,
/*read_retry_count*/0,
/*correction_span*/0,
/*head_offset_count*/0,
/*data_strobe_offset_cnt*/0,
/*byte8*/SMS_RWER_LBPERE,
/*write_retry_count*/0,
/*reserved2*/0,
/*recovery_time_limit*/{0, 0},
};
const static struct scsi_format_page format_page_default = {
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
/*page_length*/sizeof(struct scsi_format_page) - 2,
/*tracks_per_zone*/ {0, 0},
/*alt_sectors_per_zone*/ {0, 0},
/*alt_tracks_per_zone*/ {0, 0},
/*alt_tracks_per_lun*/ {0, 0},
/*sectors_per_track*/ {(CTL_DEFAULT_SECTORS_PER_TRACK >> 8) & 0xff,
CTL_DEFAULT_SECTORS_PER_TRACK & 0xff},
/*bytes_per_sector*/ {0, 0},
/*interleave*/ {0, 0},
/*track_skew*/ {0, 0},
/*cylinder_skew*/ {0, 0},
/*flags*/ SFP_HSEC,
/*reserved*/ {0, 0, 0}
};
const static struct scsi_format_page format_page_changeable = {
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
/*page_length*/sizeof(struct scsi_format_page) - 2,
/*tracks_per_zone*/ {0, 0},
/*alt_sectors_per_zone*/ {0, 0},
/*alt_tracks_per_zone*/ {0, 0},
/*alt_tracks_per_lun*/ {0, 0},
/*sectors_per_track*/ {0, 0},
/*bytes_per_sector*/ {0, 0},
/*interleave*/ {0, 0},
/*track_skew*/ {0, 0},
/*cylinder_skew*/ {0, 0},
/*flags*/ 0,
/*reserved*/ {0, 0, 0}
};
const static struct scsi_rigid_disk_page rigid_disk_page_default = {
/*page_code*/SMS_RIGID_DISK_PAGE,
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
/*cylinders*/ {0, 0, 0},
/*heads*/ CTL_DEFAULT_HEADS,
/*start_write_precomp*/ {0, 0, 0},
/*start_reduced_current*/ {0, 0, 0},
/*step_rate*/ {0, 0},
/*landing_zone_cylinder*/ {0, 0, 0},
/*rpl*/ SRDP_RPL_DISABLED,
/*rotational_offset*/ 0,
/*reserved1*/ 0,
/*rotation_rate*/ {(CTL_DEFAULT_ROTATION_RATE >> 8) & 0xff,
CTL_DEFAULT_ROTATION_RATE & 0xff},
/*reserved2*/ {0, 0}
};
const static struct scsi_rigid_disk_page rigid_disk_page_changeable = {
/*page_code*/SMS_RIGID_DISK_PAGE,
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
/*cylinders*/ {0, 0, 0},
/*heads*/ 0,
/*start_write_precomp*/ {0, 0, 0},
/*start_reduced_current*/ {0, 0, 0},
/*step_rate*/ {0, 0},
/*landing_zone_cylinder*/ {0, 0, 0},
/*rpl*/ 0,
/*rotational_offset*/ 0,
/*reserved1*/ 0,
/*rotation_rate*/ {0, 0},
/*reserved2*/ {0, 0}
};
const static struct scsi_da_verify_recovery_page verify_er_page_default = {
/*page_code*/SMS_VERIFY_ERROR_RECOVERY_PAGE,
/*page_length*/sizeof(struct scsi_da_verify_recovery_page) - 2,
/*byte3*/0,
/*read_retry_count*/0,
/*reserved*/{ 0, 0, 0, 0, 0, 0 },
/*recovery_time_limit*/{0, 0},
};
const static struct scsi_da_verify_recovery_page verify_er_page_changeable = {
/*page_code*/SMS_VERIFY_ERROR_RECOVERY_PAGE,
/*page_length*/sizeof(struct scsi_da_verify_recovery_page) - 2,
/*byte3*/SMS_VER_PER,
/*read_retry_count*/0,
/*reserved*/{ 0, 0, 0, 0, 0, 0 },
/*recovery_time_limit*/{0, 0},
};
const static struct scsi_caching_page caching_page_default = {
/*page_code*/SMS_CACHING_PAGE,
/*page_length*/sizeof(struct scsi_caching_page) - 2,
/*flags1*/ SCP_DISC | SCP_WCE,
/*ret_priority*/ 0,
/*disable_pf_transfer_len*/ {0xff, 0xff},
/*min_prefetch*/ {0, 0},
/*max_prefetch*/ {0xff, 0xff},
/*max_pf_ceiling*/ {0xff, 0xff},
/*flags2*/ 0,
/*cache_segments*/ 0,
/*cache_seg_size*/ {0, 0},
/*reserved*/ 0,
/*non_cache_seg_size*/ {0, 0, 0}
};
const static struct scsi_caching_page caching_page_changeable = {
/*page_code*/SMS_CACHING_PAGE,
/*page_length*/sizeof(struct scsi_caching_page) - 2,
/*flags1*/ SCP_WCE | SCP_RCD,
/*ret_priority*/ 0,
/*disable_pf_transfer_len*/ {0, 0},
/*min_prefetch*/ {0, 0},
/*max_prefetch*/ {0, 0},
/*max_pf_ceiling*/ {0, 0},
/*flags2*/ 0,
/*cache_segments*/ 0,
/*cache_seg_size*/ {0, 0},
/*reserved*/ 0,
/*non_cache_seg_size*/ {0, 0, 0}
};
const static struct scsi_control_page control_page_default = {
/*page_code*/SMS_CONTROL_MODE_PAGE,
/*page_length*/sizeof(struct scsi_control_page) - 2,
/*rlec*/0,
/*queue_flags*/SCP_QUEUE_ALG_RESTRICTED,
/*eca_and_aen*/0,
/*flags4*/SCP_TAS,
/*aen_holdoff_period*/{0, 0},
/*busy_timeout_period*/{0, 0},
/*extended_selftest_completion_time*/{0, 0}
};
const static struct scsi_control_page control_page_changeable = {
/*page_code*/SMS_CONTROL_MODE_PAGE,
/*page_length*/sizeof(struct scsi_control_page) - 2,
/*rlec*/SCP_DSENSE,
/*queue_flags*/SCP_QUEUE_ALG_MASK | SCP_NUAR,
/*eca_and_aen*/SCP_SWP,
/*flags4*/0,
/*aen_holdoff_period*/{0, 0},
/*busy_timeout_period*/{0, 0},
/*extended_selftest_completion_time*/{0, 0}
};
#define CTL_CEM_LEN (sizeof(struct scsi_control_ext_page) - 4)
const static struct scsi_control_ext_page control_ext_page_default = {
/*page_code*/SMS_CONTROL_MODE_PAGE | SMPH_SPF,
/*subpage_code*/0x01,
/*page_length*/{CTL_CEM_LEN >> 8, CTL_CEM_LEN},
/*flags*/0,
/*prio*/0,
/*max_sense*/0
};
const static struct scsi_control_ext_page control_ext_page_changeable = {
/*page_code*/SMS_CONTROL_MODE_PAGE | SMPH_SPF,
/*subpage_code*/0x01,
/*page_length*/{CTL_CEM_LEN >> 8, CTL_CEM_LEN},
/*flags*/0,
/*prio*/0,
/*max_sense*/0xff
};
const static struct scsi_info_exceptions_page ie_page_default = {
/*page_code*/SMS_INFO_EXCEPTIONS_PAGE,
/*page_length*/sizeof(struct scsi_info_exceptions_page) - 2,
/*info_flags*/SIEP_FLAGS_EWASC,
/*mrie*/SIEP_MRIE_NO,
/*interval_timer*/{0, 0, 0, 0},
/*report_count*/{0, 0, 0, 1}
};
const static struct scsi_info_exceptions_page ie_page_changeable = {
/*page_code*/SMS_INFO_EXCEPTIONS_PAGE,
/*page_length*/sizeof(struct scsi_info_exceptions_page) - 2,
/*info_flags*/SIEP_FLAGS_EWASC | SIEP_FLAGS_DEXCPT | SIEP_FLAGS_TEST |
SIEP_FLAGS_LOGERR,
/*mrie*/0x0f,
/*interval_timer*/{0xff, 0xff, 0xff, 0xff},
/*report_count*/{0xff, 0xff, 0xff, 0xff}
};
#define CTL_LBPM_LEN (sizeof(struct ctl_logical_block_provisioning_page) - 4)
const static struct ctl_logical_block_provisioning_page lbp_page_default = {{
/*page_code*/SMS_INFO_EXCEPTIONS_PAGE | SMPH_SPF,
/*subpage_code*/0x02,
/*page_length*/{CTL_LBPM_LEN >> 8, CTL_LBPM_LEN},
/*flags*/0,
/*reserved*/{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
/*descr*/{}},
{{/*flags*/0,
/*resource*/0x01,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0x02,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0xf1,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0xf2,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}}
}
};
const static struct ctl_logical_block_provisioning_page lbp_page_changeable = {{
/*page_code*/SMS_INFO_EXCEPTIONS_PAGE | SMPH_SPF,
/*subpage_code*/0x02,
/*page_length*/{CTL_LBPM_LEN >> 8, CTL_LBPM_LEN},
/*flags*/SLBPP_SITUA,
/*reserved*/{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
/*descr*/{}},
{{/*flags*/0,
/*resource*/0,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}},
{/*flags*/0,
/*resource*/0,
/*reserved*/{0, 0},
/*count*/{0, 0, 0, 0}}
}
};
const static struct scsi_cddvd_capabilities_page cddvd_page_default = {
/*page_code*/SMS_CDDVD_CAPS_PAGE,
/*page_length*/sizeof(struct scsi_cddvd_capabilities_page) - 2,
/*caps1*/0x3f,
/*caps2*/0x00,
/*caps3*/0xf0,
/*caps4*/0x00,
/*caps5*/0x29,
/*caps6*/0x00,
/*obsolete*/{0, 0},
/*nvol_levels*/{0, 0},
/*buffer_size*/{8, 0},
/*obsolete2*/{0, 0},
/*reserved*/0,
/*digital*/0,
/*obsolete3*/0,
/*copy_management*/0,
/*reserved2*/0,
/*rotation_control*/0,
/*cur_write_speed*/0,
/*num_speed_descr*/0,
};
const static struct scsi_cddvd_capabilities_page cddvd_page_changeable = {
/*page_code*/SMS_CDDVD_CAPS_PAGE,
/*page_length*/sizeof(struct scsi_cddvd_capabilities_page) - 2,
/*caps1*/0,
/*caps2*/0,
/*caps3*/0,
/*caps4*/0,
/*caps5*/0,
/*caps6*/0,
/*obsolete*/{0, 0},
/*nvol_levels*/{0, 0},
/*buffer_size*/{0, 0},
/*obsolete2*/{0, 0},
/*reserved*/0,
/*digital*/0,
/*obsolete3*/0,
/*copy_management*/0,
/*reserved2*/0,
/*rotation_control*/0,
/*cur_write_speed*/0,
/*num_speed_descr*/0,
};
SYSCTL_NODE(_kern_cam, OID_AUTO, ctl, CTLFLAG_RD, 0, "CAM Target Layer");
static int worker_threads = -1;
SYSCTL_INT(_kern_cam_ctl, OID_AUTO, worker_threads, CTLFLAG_RDTUN,
&worker_threads, 1, "Number of worker threads");
static int ctl_debug = CTL_DEBUG_NONE;
SYSCTL_INT(_kern_cam_ctl, OID_AUTO, debug, CTLFLAG_RWTUN,
&ctl_debug, 0, "Enabled debug flags");
static int ctl_lun_map_size = 1024;
SYSCTL_INT(_kern_cam_ctl, OID_AUTO, lun_map_size, CTLFLAG_RWTUN,
&ctl_lun_map_size, 0, "Size of per-port LUN map (max LUN + 1)");
/*
* Supported pages (0x00), Serial number (0x80), Device ID (0x83),
* Extended INQUIRY Data (0x86), Mode Page Policy (0x87),
* SCSI Ports (0x88), Third-party Copy (0x8F), Block limits (0xB0),
* Block Device Characteristics (0xB1) and Logical Block Provisioning (0xB2)
*/
#define SCSI_EVPD_NUM_SUPPORTED_PAGES 10
static void ctl_isc_event_handler(ctl_ha_channel chanel, ctl_ha_event event,
int param);
static void ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest);
static void ctl_copy_sense_data_back(union ctl_io *src, union ctl_ha_msg *dest);
static int ctl_init(void);
static int ctl_shutdown(void);
static int ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td);
static int ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td);
static void ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio);
static void ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
struct ctl_ooa *ooa_hdr,
struct ctl_ooa_entry *kern_entries);
static int ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td);
static int ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *lun,
struct ctl_be_lun *be_lun);
static int ctl_free_lun(struct ctl_lun *lun);
static void ctl_create_lun(struct ctl_be_lun *be_lun);
static int ctl_do_mode_select(union ctl_io *io);
static int ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun,
uint64_t res_key, uint64_t sa_res_key,
uint8_t type, uint32_t residx,
struct ctl_scsiio *ctsio,
struct scsi_per_res_out *cdb,
struct scsi_per_res_out_parms* param);
static void ctl_pro_preempt_other(struct ctl_lun *lun,
union ctl_ha_msg *msg);
static void ctl_hndl_per_res_out_on_other_sc(union ctl_io *io);
static int ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_eid(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_mpp(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_scsi_ports(struct ctl_scsiio *ctsio,
int alloc_len);
static int ctl_inquiry_evpd_block_limits(struct ctl_scsiio *ctsio,
int alloc_len);
static int ctl_inquiry_evpd_bdc(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_lbp(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd(struct ctl_scsiio *ctsio);
static int ctl_inquiry_std(struct ctl_scsiio *ctsio);
static int ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint64_t *len);
static ctl_action ctl_extent_check(union ctl_io *io1, union ctl_io *io2,
bool seq);
static ctl_action ctl_extent_check_seq(union ctl_io *io1, union ctl_io *io2);
static ctl_action ctl_check_for_blockage(struct ctl_lun *lun,
union ctl_io *pending_io, union ctl_io *ooa_io);
static ctl_action ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
union ctl_io *starting_io);
static int ctl_check_blocked(struct ctl_lun *lun);
static int ctl_scsiio_lun_check(struct ctl_lun *lun,
const struct ctl_cmd_entry *entry,
struct ctl_scsiio *ctsio);
static void ctl_failover_lun(union ctl_io *io);
static int ctl_scsiio_precheck(struct ctl_softc *ctl_softc,
struct ctl_scsiio *ctsio);
static int ctl_scsiio(struct ctl_scsiio *ctsio);
static int ctl_target_reset(union ctl_io *io);
static void ctl_do_lun_reset(struct ctl_lun *lun, uint32_t initidx,
ctl_ua_type ua_type);
static int ctl_lun_reset(union ctl_io *io);
static int ctl_abort_task(union ctl_io *io);
static int ctl_abort_task_set(union ctl_io *io);
static int ctl_query_task(union ctl_io *io, int task_set);
static void ctl_i_t_nexus_loss(struct ctl_softc *softc, uint32_t initidx,
ctl_ua_type ua_type);
static int ctl_i_t_nexus_reset(union ctl_io *io);
static int ctl_query_async_event(union ctl_io *io);
static void ctl_run_task(union ctl_io *io);
#ifdef CTL_IO_DELAY
static void ctl_datamove_timer_wakeup(void *arg);
static void ctl_done_timer_wakeup(void *arg);
#endif /* CTL_IO_DELAY */
static void ctl_send_datamove_done(union ctl_io *io, int have_lock);
static void ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq);
static int ctl_datamove_remote_dm_write_cb(union ctl_io *io);
static void ctl_datamove_remote_write(union ctl_io *io);
static int ctl_datamove_remote_dm_read_cb(union ctl_io *io);
static void ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq);
static int ctl_datamove_remote_sgl_setup(union ctl_io *io);
static int ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
ctl_ha_dt_cb callback);
static void ctl_datamove_remote_read(union ctl_io *io);
static void ctl_datamove_remote(union ctl_io *io);
static void ctl_process_done(union ctl_io *io);
static void ctl_lun_thread(void *arg);
static void ctl_thresh_thread(void *arg);
static void ctl_work_thread(void *arg);
static void ctl_enqueue_incoming(union ctl_io *io);
static void ctl_enqueue_rtr(union ctl_io *io);
static void ctl_enqueue_done(union ctl_io *io);
static void ctl_enqueue_isc(union ctl_io *io);
static const struct ctl_cmd_entry *
ctl_get_cmd_entry(struct ctl_scsiio *ctsio, int *sa);
static const struct ctl_cmd_entry *
ctl_validate_command(struct ctl_scsiio *ctsio);
static int ctl_cmd_applicable(uint8_t lun_type,
const struct ctl_cmd_entry *entry);
static int ctl_ha_init(void);
static int ctl_ha_shutdown(void);
static uint64_t ctl_get_prkey(struct ctl_lun *lun, uint32_t residx);
static void ctl_clr_prkey(struct ctl_lun *lun, uint32_t residx);
static void ctl_alloc_prkey(struct ctl_lun *lun, uint32_t residx);
static void ctl_set_prkey(struct ctl_lun *lun, uint32_t residx, uint64_t key);
/*
* Load the serialization table. This isn't very pretty, but is probably
* the easiest way to do it.
*/
#include "ctl_ser_table.c"
/*
* We only need to define open, close and ioctl routines for this driver.
*/
static struct cdevsw ctl_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ctl_open,
.d_close = ctl_close,
.d_ioctl = ctl_ioctl,
.d_name = "ctl",
};
MALLOC_DEFINE(M_CTL, "ctlmem", "Memory used for CTL");
static int ctl_module_event_handler(module_t, int /*modeventtype_t*/, void *);
static moduledata_t ctl_moduledata = {
"ctl",
ctl_module_event_handler,
NULL
};
DECLARE_MODULE(ctl, ctl_moduledata, SI_SUB_CONFIGURE, SI_ORDER_THIRD);
MODULE_VERSION(ctl, 1);
static struct ctl_frontend ha_frontend =
{
.name = "ha",
.init = ctl_ha_init,
.shutdown = ctl_ha_shutdown,
};
static int
ctl_ha_init(void)
{
struct ctl_softc *softc = control_softc;
if (ctl_pool_create(softc, "othersc", CTL_POOL_ENTRIES_OTHER_SC,
&softc->othersc_pool) != 0)
return (ENOMEM);
if (ctl_ha_msg_init(softc) != CTL_HA_STATUS_SUCCESS) {
ctl_pool_free(softc->othersc_pool);
return (EIO);
}
if (ctl_ha_msg_register(CTL_HA_CHAN_CTL, ctl_isc_event_handler)
!= CTL_HA_STATUS_SUCCESS) {
ctl_ha_msg_destroy(softc);
ctl_pool_free(softc->othersc_pool);
return (EIO);
}
return (0);
};
static int
ctl_ha_shutdown(void)
{
struct ctl_softc *softc = control_softc;
struct ctl_port *port;
ctl_ha_msg_shutdown(softc);
if (ctl_ha_msg_deregister(CTL_HA_CHAN_CTL) != CTL_HA_STATUS_SUCCESS)
return (EIO);
if (ctl_ha_msg_destroy(softc) != CTL_HA_STATUS_SUCCESS)
return (EIO);
ctl_pool_free(softc->othersc_pool);
while ((port = STAILQ_FIRST(&ha_frontend.port_list)) != NULL) {
ctl_port_deregister(port);
free(port->port_name, M_CTL);
free(port, M_CTL);
}
return (0);
};
static void
ctl_ha_datamove(union ctl_io *io)
{
struct ctl_lun *lun = CTL_LUN(io);
struct ctl_sg_entry *sgl;
union ctl_ha_msg msg;
uint32_t sg_entries_sent;
int do_sg_copy, i, j;
memset(&msg.dt, 0, sizeof(msg.dt));
msg.hdr.msg_type = CTL_MSG_DATAMOVE;
msg.hdr.original_sc = io->io_hdr.original_sc;
msg.hdr.serializing_sc = io;
msg.hdr.nexus = io->io_hdr.nexus;
msg.hdr.status = io->io_hdr.status;
msg.dt.flags = io->io_hdr.flags;
/*
* We convert everything into a S/G list here. We can't
* pass by reference, only by value between controllers.
* So we can't pass a pointer to the S/G list, only as many
* S/G entries as we can fit in here. If it's possible for
* us to get more than CTL_HA_MAX_SG_ENTRIES S/G entries,
* then we need to break this up into multiple transfers.
*/
if (io->scsiio.kern_sg_entries == 0) {
msg.dt.kern_sg_entries = 1;
#if 0
if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
msg.dt.sg_list[0].addr = io->scsiio.kern_data_ptr;
} else {
/* XXX KDM use busdma here! */
msg.dt.sg_list[0].addr =
(void *)vtophys(io->scsiio.kern_data_ptr);
}
#else
KASSERT((io->io_hdr.flags & CTL_FLAG_BUS_ADDR) == 0,
("HA does not support BUS_ADDR"));
msg.dt.sg_list[0].addr = io->scsiio.kern_data_ptr;
#endif
msg.dt.sg_list[0].len = io->scsiio.kern_data_len;
do_sg_copy = 0;
} else {
msg.dt.kern_sg_entries = io->scsiio.kern_sg_entries;
do_sg_copy = 1;
}
msg.dt.kern_data_len = io->scsiio.kern_data_len;
msg.dt.kern_total_len = io->scsiio.kern_total_len;
msg.dt.kern_data_resid = io->scsiio.kern_data_resid;
msg.dt.kern_rel_offset = io->scsiio.kern_rel_offset;
msg.dt.sg_sequence = 0;
/*
* Loop until we've sent all of the S/G entries. On the
* other end, we'll recompose these S/G entries into one
* contiguous list before processing.
*/
for (sg_entries_sent = 0; sg_entries_sent < msg.dt.kern_sg_entries;
msg.dt.sg_sequence++) {
msg.dt.cur_sg_entries = MIN((sizeof(msg.dt.sg_list) /
sizeof(msg.dt.sg_list[0])),
msg.dt.kern_sg_entries - sg_entries_sent);
if (do_sg_copy != 0) {
sgl = (struct ctl_sg_entry *)io->scsiio.kern_data_ptr;
for (i = sg_entries_sent, j = 0;
i < msg.dt.cur_sg_entries; i++, j++) {
#if 0
if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
msg.dt.sg_list[j].addr = sgl[i].addr;
} else {
/* XXX KDM use busdma here! */
msg.dt.sg_list[j].addr =
(void *)vtophys(sgl[i].addr);
}
#else
KASSERT((io->io_hdr.flags &
CTL_FLAG_BUS_ADDR) == 0,
("HA does not support BUS_ADDR"));
msg.dt.sg_list[j].addr = sgl[i].addr;
#endif
msg.dt.sg_list[j].len = sgl[i].len;
}
}
sg_entries_sent += msg.dt.cur_sg_entries;
msg.dt.sg_last = (sg_entries_sent >= msg.dt.kern_sg_entries);
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg.dt) - sizeof(msg.dt.sg_list) +
sizeof(struct ctl_sg_entry) * msg.dt.cur_sg_entries,
M_WAITOK) > CTL_HA_STATUS_SUCCESS) {
io->io_hdr.port_status = 31341;
io->scsiio.be_move_done(io);
return;
}
msg.dt.sent_sg_entries = sg_entries_sent;
}
/*
* Officially handover the request from us to peer.
* If failover has just happened, then we must return error.
* If failover happen just after, then it is not our problem.
*/
if (lun)
mtx_lock(&lun->lun_lock);
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
if (lun)
mtx_unlock(&lun->lun_lock);
io->io_hdr.port_status = 31342;
io->scsiio.be_move_done(io);
return;
}
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
io->io_hdr.flags |= CTL_FLAG_DMA_INPROG;
if (lun)
mtx_unlock(&lun->lun_lock);
}
static void
ctl_ha_done(union ctl_io *io)
{
union ctl_ha_msg msg;
if (io->io_hdr.io_type == CTL_IO_SCSI) {
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_FINISH_IO;
msg.hdr.original_sc = io->io_hdr.original_sc;
msg.hdr.nexus = io->io_hdr.nexus;
msg.hdr.status = io->io_hdr.status;
msg.scsi.scsi_status = io->scsiio.scsi_status;
msg.scsi.tag_num = io->scsiio.tag_num;
msg.scsi.tag_type = io->scsiio.tag_type;
msg.scsi.sense_len = io->scsiio.sense_len;
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
io->scsiio.sense_len);
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg.scsi) - sizeof(msg.scsi.sense_data) +
msg.scsi.sense_len, M_WAITOK);
}
ctl_free_io(io);
}
static void
ctl_isc_handler_finish_xfer(struct ctl_softc *ctl_softc,
union ctl_ha_msg *msg_info)
{
struct ctl_scsiio *ctsio;
if (msg_info->hdr.original_sc == NULL) {
printf("%s: original_sc == NULL!\n", __func__);
/* XXX KDM now what? */
return;
}
ctsio = &msg_info->hdr.original_sc->scsiio;
ctsio->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
ctsio->io_hdr.status = msg_info->hdr.status;
ctsio->scsi_status = msg_info->scsi.scsi_status;
ctsio->sense_len = msg_info->scsi.sense_len;
memcpy(&ctsio->sense_data, &msg_info->scsi.sense_data,
msg_info->scsi.sense_len);
ctl_enqueue_isc((union ctl_io *)ctsio);
}
static void
ctl_isc_handler_finish_ser_only(struct ctl_softc *ctl_softc,
union ctl_ha_msg *msg_info)
{
struct ctl_scsiio *ctsio;
if (msg_info->hdr.serializing_sc == NULL) {
printf("%s: serializing_sc == NULL!\n", __func__);
/* XXX KDM now what? */
return;
}
ctsio = &msg_info->hdr.serializing_sc->scsiio;
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
ctl_enqueue_isc((union ctl_io *)ctsio);
}
void
ctl_isc_announce_lun(struct ctl_lun *lun)
{
struct ctl_softc *softc = lun->ctl_softc;
union ctl_ha_msg *msg;
struct ctl_ha_msg_lun_pr_key pr_key;
int i, k;
if (softc->ha_link != CTL_HA_LINK_ONLINE)
return;
mtx_lock(&lun->lun_lock);
i = sizeof(msg->lun);
if (lun->lun_devid)
i += lun->lun_devid->len;
i += sizeof(pr_key) * lun->pr_key_count;
alloc:
mtx_unlock(&lun->lun_lock);
msg = malloc(i, M_CTL, M_WAITOK);
mtx_lock(&lun->lun_lock);
k = sizeof(msg->lun);
if (lun->lun_devid)
k += lun->lun_devid->len;
k += sizeof(pr_key) * lun->pr_key_count;
if (i < k) {
free(msg, M_CTL);
i = k;
goto alloc;
}
bzero(&msg->lun, sizeof(msg->lun));
msg->hdr.msg_type = CTL_MSG_LUN_SYNC;
msg->hdr.nexus.targ_lun = lun->lun;
msg->hdr.nexus.targ_mapped_lun = lun->lun;
msg->lun.flags = lun->flags;
msg->lun.pr_generation = lun->pr_generation;
msg->lun.pr_res_idx = lun->pr_res_idx;
msg->lun.pr_res_type = lun->pr_res_type;
msg->lun.pr_key_count = lun->pr_key_count;
i = 0;
if (lun->lun_devid) {
msg->lun.lun_devid_len = lun->lun_devid->len;
memcpy(&msg->lun.data[i], lun->lun_devid->data,
msg->lun.lun_devid_len);
i += msg->lun.lun_devid_len;
}
for (k = 0; k < CTL_MAX_INITIATORS; k++) {
if ((pr_key.pr_key = ctl_get_prkey(lun, k)) == 0)
continue;
pr_key.pr_iid = k;
memcpy(&msg->lun.data[i], &pr_key, sizeof(pr_key));
i += sizeof(pr_key);
}
mtx_unlock(&lun->lun_lock);
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg->port, sizeof(msg->port) + i,
M_WAITOK);
free(msg, M_CTL);
if (lun->flags & CTL_LUN_PRIMARY_SC) {
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
ctl_isc_announce_mode(lun, -1,
lun->mode_pages.index[i].page_code & SMPH_PC_MASK,
lun->mode_pages.index[i].subpage);
}
}
}
void
ctl_isc_announce_port(struct ctl_port *port)
{
struct ctl_softc *softc = port->ctl_softc;
union ctl_ha_msg *msg;
int i;
if (port->targ_port < softc->port_min ||
port->targ_port >= softc->port_max ||
softc->ha_link != CTL_HA_LINK_ONLINE)
return;
i = sizeof(msg->port) + strlen(port->port_name) + 1;
if (port->lun_map)
i += port->lun_map_size * sizeof(uint32_t);
if (port->port_devid)
i += port->port_devid->len;
if (port->target_devid)
i += port->target_devid->len;
if (port->init_devid)
i += port->init_devid->len;
msg = malloc(i, M_CTL, M_WAITOK);
bzero(&msg->port, sizeof(msg->port));
msg->hdr.msg_type = CTL_MSG_PORT_SYNC;
msg->hdr.nexus.targ_port = port->targ_port;
msg->port.port_type = port->port_type;
msg->port.physical_port = port->physical_port;
msg->port.virtual_port = port->virtual_port;
msg->port.status = port->status;
i = 0;
msg->port.name_len = sprintf(&msg->port.data[i],
"%d:%s", softc->ha_id, port->port_name) + 1;
i += msg->port.name_len;
if (port->lun_map) {
msg->port.lun_map_len = port->lun_map_size * sizeof(uint32_t);
memcpy(&msg->port.data[i], port->lun_map,
msg->port.lun_map_len);
i += msg->port.lun_map_len;
}
if (port->port_devid) {
msg->port.port_devid_len = port->port_devid->len;
memcpy(&msg->port.data[i], port->port_devid->data,
msg->port.port_devid_len);
i += msg->port.port_devid_len;
}
if (port->target_devid) {
msg->port.target_devid_len = port->target_devid->len;
memcpy(&msg->port.data[i], port->target_devid->data,
msg->port.target_devid_len);
i += msg->port.target_devid_len;
}
if (port->init_devid) {
msg->port.init_devid_len = port->init_devid->len;
memcpy(&msg->port.data[i], port->init_devid->data,
msg->port.init_devid_len);
i += msg->port.init_devid_len;
}
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg->port, sizeof(msg->port) + i,
M_WAITOK);
free(msg, M_CTL);
}
void
ctl_isc_announce_iid(struct ctl_port *port, int iid)
{
struct ctl_softc *softc = port->ctl_softc;
union ctl_ha_msg *msg;
int i, l;
if (port->targ_port < softc->port_min ||
port->targ_port >= softc->port_max ||
softc->ha_link != CTL_HA_LINK_ONLINE)
return;
mtx_lock(&softc->ctl_lock);
i = sizeof(msg->iid);
l = 0;
if (port->wwpn_iid[iid].name)
l = strlen(port->wwpn_iid[iid].name) + 1;
i += l;
msg = malloc(i, M_CTL, M_NOWAIT);
if (msg == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
bzero(&msg->iid, sizeof(msg->iid));
msg->hdr.msg_type = CTL_MSG_IID_SYNC;
msg->hdr.nexus.targ_port = port->targ_port;
msg->hdr.nexus.initid = iid;
msg->iid.in_use = port->wwpn_iid[iid].in_use;
msg->iid.name_len = l;
msg->iid.wwpn = port->wwpn_iid[iid].wwpn;
if (port->wwpn_iid[iid].name)
strlcpy(msg->iid.data, port->wwpn_iid[iid].name, l);
mtx_unlock(&softc->ctl_lock);
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg->iid, i, M_NOWAIT);
free(msg, M_CTL);
}
void
ctl_isc_announce_mode(struct ctl_lun *lun, uint32_t initidx,
uint8_t page, uint8_t subpage)
{
struct ctl_softc *softc = lun->ctl_softc;
union ctl_ha_msg msg;
u_int i;
if (softc->ha_link != CTL_HA_LINK_ONLINE)
return;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) ==
page && lun->mode_pages.index[i].subpage == subpage)
break;
}
if (i == CTL_NUM_MODE_PAGES)
return;
/* Don't try to replicate pages not present on this device. */
if (lun->mode_pages.index[i].page_data == NULL)
return;
bzero(&msg.mode, sizeof(msg.mode));
msg.hdr.msg_type = CTL_MSG_MODE_SYNC;
msg.hdr.nexus.targ_port = initidx / CTL_MAX_INIT_PER_PORT;
msg.hdr.nexus.initid = initidx % CTL_MAX_INIT_PER_PORT;
msg.hdr.nexus.targ_lun = lun->lun;
msg.hdr.nexus.targ_mapped_lun = lun->lun;
msg.mode.page_code = page;
msg.mode.subpage = subpage;
msg.mode.page_len = lun->mode_pages.index[i].page_len;
memcpy(msg.mode.data, lun->mode_pages.index[i].page_data,
msg.mode.page_len);
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg.mode, sizeof(msg.mode),
M_WAITOK);
}
static void
ctl_isc_ha_link_up(struct ctl_softc *softc)
{
struct ctl_port *port;
struct ctl_lun *lun;
union ctl_ha_msg msg;
int i;
/* Announce this node parameters to peer for validation. */
msg.login.msg_type = CTL_MSG_LOGIN;
msg.login.version = CTL_HA_VERSION;
msg.login.ha_mode = softc->ha_mode;
msg.login.ha_id = softc->ha_id;
msg.login.max_luns = CTL_MAX_LUNS;
msg.login.max_ports = CTL_MAX_PORTS;
msg.login.max_init_per_port = CTL_MAX_INIT_PER_PORT;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg.login, sizeof(msg.login),
M_WAITOK);
STAILQ_FOREACH(port, &softc->port_list, links) {
ctl_isc_announce_port(port);
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
if (port->wwpn_iid[i].in_use)
ctl_isc_announce_iid(port, i);
}
}
STAILQ_FOREACH(lun, &softc->lun_list, links)
ctl_isc_announce_lun(lun);
}
static void
ctl_isc_ha_link_down(struct ctl_softc *softc)
{
struct ctl_port *port;
struct ctl_lun *lun;
union ctl_io *io;
int i;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
mtx_lock(&lun->lun_lock);
if (lun->flags & CTL_LUN_PEER_SC_PRIMARY) {
lun->flags &= ~CTL_LUN_PEER_SC_PRIMARY;
ctl_est_ua_all(lun, -1, CTL_UA_ASYM_ACC_CHANGE);
}
mtx_unlock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
io = ctl_alloc_io(softc->othersc_pool);
mtx_lock(&softc->ctl_lock);
ctl_zero_io(io);
io->io_hdr.msg_type = CTL_MSG_FAILOVER;
io->io_hdr.nexus.targ_mapped_lun = lun->lun;
ctl_enqueue_isc(io);
}
STAILQ_FOREACH(port, &softc->port_list, links) {
if (port->targ_port >= softc->port_min &&
port->targ_port < softc->port_max)
continue;
port->status &= ~CTL_PORT_STATUS_ONLINE;
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
port->wwpn_iid[i].in_use = 0;
free(port->wwpn_iid[i].name, M_CTL);
port->wwpn_iid[i].name = NULL;
}
}
mtx_unlock(&softc->ctl_lock);
}
static void
ctl_isc_ua(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
struct ctl_lun *lun;
uint32_t iid = ctl_get_initindex(&msg->hdr.nexus);
mtx_lock(&softc->ctl_lock);
if (msg->hdr.nexus.targ_mapped_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[msg->hdr.nexus.targ_mapped_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (msg->ua.ua_type == CTL_UA_THIN_PROV_THRES && msg->ua.ua_set)
memcpy(lun->ua_tpt_info, msg->ua.ua_info, 8);
if (msg->ua.ua_all) {
if (msg->ua.ua_set)
ctl_est_ua_all(lun, iid, msg->ua.ua_type);
else
ctl_clr_ua_all(lun, iid, msg->ua.ua_type);
} else {
if (msg->ua.ua_set)
ctl_est_ua(lun, iid, msg->ua.ua_type);
else
ctl_clr_ua(lun, iid, msg->ua.ua_type);
}
mtx_unlock(&lun->lun_lock);
}
static void
ctl_isc_lun_sync(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
struct ctl_lun *lun;
struct ctl_ha_msg_lun_pr_key pr_key;
int i, k;
ctl_lun_flags oflags;
uint32_t targ_lun;
targ_lun = msg->hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
return;
}
i = (lun->lun_devid != NULL) ? lun->lun_devid->len : 0;
if (msg->lun.lun_devid_len != i || (i > 0 &&
memcmp(&msg->lun.data[0], lun->lun_devid->data, i) != 0)) {
mtx_unlock(&lun->lun_lock);
printf("%s: Received conflicting HA LUN %d\n",
__func__, targ_lun);
return;
} else {
/* Record whether peer is primary. */
oflags = lun->flags;
if ((msg->lun.flags & CTL_LUN_PRIMARY_SC) &&
(msg->lun.flags & CTL_LUN_DISABLED) == 0)
lun->flags |= CTL_LUN_PEER_SC_PRIMARY;
else
lun->flags &= ~CTL_LUN_PEER_SC_PRIMARY;
if (oflags != lun->flags)
ctl_est_ua_all(lun, -1, CTL_UA_ASYM_ACC_CHANGE);
/* If peer is primary and we are not -- use data */
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0 &&
(lun->flags & CTL_LUN_PEER_SC_PRIMARY)) {
lun->pr_generation = msg->lun.pr_generation;
lun->pr_res_idx = msg->lun.pr_res_idx;
lun->pr_res_type = msg->lun.pr_res_type;
lun->pr_key_count = msg->lun.pr_key_count;
for (k = 0; k < CTL_MAX_INITIATORS; k++)
ctl_clr_prkey(lun, k);
for (k = 0; k < msg->lun.pr_key_count; k++) {
memcpy(&pr_key, &msg->lun.data[i],
sizeof(pr_key));
ctl_alloc_prkey(lun, pr_key.pr_iid);
ctl_set_prkey(lun, pr_key.pr_iid,
pr_key.pr_key);
i += sizeof(pr_key);
}
}
mtx_unlock(&lun->lun_lock);
CTL_DEBUG_PRINT(("%s: Known LUN %d, peer is %s\n",
__func__, targ_lun,
(msg->lun.flags & CTL_LUN_PRIMARY_SC) ?
"primary" : "secondary"));
/* If we are primary but peer doesn't know -- notify */
if ((lun->flags & CTL_LUN_PRIMARY_SC) &&
(msg->lun.flags & CTL_LUN_PEER_SC_PRIMARY) == 0)
ctl_isc_announce_lun(lun);
}
}
static void
ctl_isc_port_sync(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
struct ctl_port *port;
struct ctl_lun *lun;
int i, new;
port = softc->ctl_ports[msg->hdr.nexus.targ_port];
if (port == NULL) {
CTL_DEBUG_PRINT(("%s: New port %d\n", __func__,
msg->hdr.nexus.targ_port));
new = 1;
port = malloc(sizeof(*port), M_CTL, M_WAITOK | M_ZERO);
port->frontend = &ha_frontend;
port->targ_port = msg->hdr.nexus.targ_port;
port->fe_datamove = ctl_ha_datamove;
port->fe_done = ctl_ha_done;
} else if (port->frontend == &ha_frontend) {
CTL_DEBUG_PRINT(("%s: Updated port %d\n", __func__,
msg->hdr.nexus.targ_port));
new = 0;
} else {
printf("%s: Received conflicting HA port %d\n",
__func__, msg->hdr.nexus.targ_port);
return;
}
port->port_type = msg->port.port_type;
port->physical_port = msg->port.physical_port;
port->virtual_port = msg->port.virtual_port;
port->status = msg->port.status;
i = 0;
free(port->port_name, M_CTL);
port->port_name = strndup(&msg->port.data[i], msg->port.name_len,
M_CTL);
i += msg->port.name_len;
if (msg->port.lun_map_len != 0) {
if (port->lun_map == NULL ||
port->lun_map_size * sizeof(uint32_t) <
msg->port.lun_map_len) {
port->lun_map_size = 0;
free(port->lun_map, M_CTL);
port->lun_map = malloc(msg->port.lun_map_len,
M_CTL, M_WAITOK);
}
memcpy(port->lun_map, &msg->port.data[i], msg->port.lun_map_len);
port->lun_map_size = msg->port.lun_map_len / sizeof(uint32_t);
i += msg->port.lun_map_len;
} else {
port->lun_map_size = 0;
free(port->lun_map, M_CTL);
port->lun_map = NULL;
}
if (msg->port.port_devid_len != 0) {
if (port->port_devid == NULL ||
port->port_devid->len < msg->port.port_devid_len) {
free(port->port_devid, M_CTL);
port->port_devid = malloc(sizeof(struct ctl_devid) +
msg->port.port_devid_len, M_CTL, M_WAITOK);
}
memcpy(port->port_devid->data, &msg->port.data[i],
msg->port.port_devid_len);
port->port_devid->len = msg->port.port_devid_len;
i += msg->port.port_devid_len;
} else {
free(port->port_devid, M_CTL);
port->port_devid = NULL;
}
if (msg->port.target_devid_len != 0) {
if (port->target_devid == NULL ||
port->target_devid->len < msg->port.target_devid_len) {
free(port->target_devid, M_CTL);
port->target_devid = malloc(sizeof(struct ctl_devid) +
msg->port.target_devid_len, M_CTL, M_WAITOK);
}
memcpy(port->target_devid->data, &msg->port.data[i],
msg->port.target_devid_len);
port->target_devid->len = msg->port.target_devid_len;
i += msg->port.target_devid_len;
} else {
free(port->target_devid, M_CTL);
port->target_devid = NULL;
}
if (msg->port.init_devid_len != 0) {
if (port->init_devid == NULL ||
port->init_devid->len < msg->port.init_devid_len) {
free(port->init_devid, M_CTL);
port->init_devid = malloc(sizeof(struct ctl_devid) +
msg->port.init_devid_len, M_CTL, M_WAITOK);
}
memcpy(port->init_devid->data, &msg->port.data[i],
msg->port.init_devid_len);
port->init_devid->len = msg->port.init_devid_len;
i += msg->port.init_devid_len;
} else {
free(port->init_devid, M_CTL);
port->init_devid = NULL;
}
if (new) {
if (ctl_port_register(port) != 0) {
printf("%s: ctl_port_register() failed with error\n",
__func__);
}
}
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if (ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
mtx_lock(&lun->lun_lock);
ctl_est_ua_all(lun, -1, CTL_UA_INQ_CHANGE);
mtx_unlock(&lun->lun_lock);
}
mtx_unlock(&softc->ctl_lock);
}
static void
ctl_isc_iid_sync(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
struct ctl_port *port;
int iid;
port = softc->ctl_ports[msg->hdr.nexus.targ_port];
if (port == NULL) {
printf("%s: Received IID for unknown port %d\n",
__func__, msg->hdr.nexus.targ_port);
return;
}
iid = msg->hdr.nexus.initid;
if (port->wwpn_iid[iid].in_use != 0 &&
msg->iid.in_use == 0)
ctl_i_t_nexus_loss(softc, iid, CTL_UA_POWERON);
port->wwpn_iid[iid].in_use = msg->iid.in_use;
port->wwpn_iid[iid].wwpn = msg->iid.wwpn;
free(port->wwpn_iid[iid].name, M_CTL);
if (msg->iid.name_len) {
port->wwpn_iid[iid].name = strndup(&msg->iid.data[0],
msg->iid.name_len, M_CTL);
} else
port->wwpn_iid[iid].name = NULL;
}
static void
ctl_isc_login(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
if (msg->login.version != CTL_HA_VERSION) {
printf("CTL HA peers have different versions %d != %d\n",
msg->login.version, CTL_HA_VERSION);
ctl_ha_msg_abort(CTL_HA_CHAN_CTL);
return;
}
if (msg->login.ha_mode != softc->ha_mode) {
printf("CTL HA peers have different ha_mode %d != %d\n",
msg->login.ha_mode, softc->ha_mode);
ctl_ha_msg_abort(CTL_HA_CHAN_CTL);
return;
}
if (msg->login.ha_id == softc->ha_id) {
printf("CTL HA peers have same ha_id %d\n", msg->login.ha_id);
ctl_ha_msg_abort(CTL_HA_CHAN_CTL);
return;
}
if (msg->login.max_luns != CTL_MAX_LUNS ||
msg->login.max_ports != CTL_MAX_PORTS ||
msg->login.max_init_per_port != CTL_MAX_INIT_PER_PORT) {
printf("CTL HA peers have different limits\n");
ctl_ha_msg_abort(CTL_HA_CHAN_CTL);
return;
}
}
static void
ctl_isc_mode_sync(struct ctl_softc *softc, union ctl_ha_msg *msg, int len)
{
struct ctl_lun *lun;
u_int i;
uint32_t initidx, targ_lun;
targ_lun = msg->hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
return;
}
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) ==
msg->mode.page_code &&
lun->mode_pages.index[i].subpage == msg->mode.subpage)
break;
}
if (i == CTL_NUM_MODE_PAGES) {
mtx_unlock(&lun->lun_lock);
return;
}
memcpy(lun->mode_pages.index[i].page_data, msg->mode.data,
lun->mode_pages.index[i].page_len);
initidx = ctl_get_initindex(&msg->hdr.nexus);
if (initidx != -1)
ctl_est_ua_all(lun, initidx, CTL_UA_MODE_CHANGE);
mtx_unlock(&lun->lun_lock);
}
/*
* ISC (Inter Shelf Communication) event handler. Events from the HA
* subsystem come in here.
*/
static void
ctl_isc_event_handler(ctl_ha_channel channel, ctl_ha_event event, int param)
{
struct ctl_softc *softc = control_softc;
union ctl_io *io;
struct ctl_prio *presio;
ctl_ha_status isc_status;
CTL_DEBUG_PRINT(("CTL: Isc Msg event %d\n", event));
if (event == CTL_HA_EVT_MSG_RECV) {
union ctl_ha_msg *msg, msgbuf;
if (param > sizeof(msgbuf))
msg = malloc(param, M_CTL, M_WAITOK);
else
msg = &msgbuf;
isc_status = ctl_ha_msg_recv(CTL_HA_CHAN_CTL, msg, param,
M_WAITOK);
if (isc_status != CTL_HA_STATUS_SUCCESS) {
printf("%s: Error receiving message: %d\n",
__func__, isc_status);
if (msg != &msgbuf)
free(msg, M_CTL);
return;
}
CTL_DEBUG_PRINT(("CTL: msg_type %d\n", msg->msg_type));
switch (msg->hdr.msg_type) {
case CTL_MSG_SERIALIZE:
io = ctl_alloc_io(softc->othersc_pool);
ctl_zero_io(io);
// populate ctsio from msg
io->io_hdr.io_type = CTL_IO_SCSI;
io->io_hdr.msg_type = CTL_MSG_SERIALIZE;
io->io_hdr.original_sc = msg->hdr.original_sc;
io->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC |
CTL_FLAG_IO_ACTIVE;
/*
* If we're in serialization-only mode, we don't
* want to go through full done processing. Thus
* the COPY flag.
*
* XXX KDM add another flag that is more specific.
*/
if (softc->ha_mode != CTL_HA_MODE_XFER)
io->io_hdr.flags |= CTL_FLAG_INT_COPY;
io->io_hdr.nexus = msg->hdr.nexus;
#if 0
printf("port %u, iid %u, lun %u\n",
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.initid,
io->io_hdr.nexus.targ_lun);
#endif
io->scsiio.tag_num = msg->scsi.tag_num;
io->scsiio.tag_type = msg->scsi.tag_type;
#ifdef CTL_TIME_IO
io->io_hdr.start_time = time_uptime;
getbinuptime(&io->io_hdr.start_bt);
#endif /* CTL_TIME_IO */
io->scsiio.cdb_len = msg->scsi.cdb_len;
memcpy(io->scsiio.cdb, msg->scsi.cdb,
CTL_MAX_CDBLEN);
if (softc->ha_mode == CTL_HA_MODE_XFER) {
const struct ctl_cmd_entry *entry;
entry = ctl_get_cmd_entry(&io->scsiio, NULL);
io->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
io->io_hdr.flags |=
entry->flags & CTL_FLAG_DATA_MASK;
}
ctl_enqueue_isc(io);
break;
/* Performed on the Originating SC, XFER mode only */
case CTL_MSG_DATAMOVE: {
struct ctl_sg_entry *sgl;
int i, j;
io = msg->hdr.original_sc;
if (io == NULL) {
printf("%s: original_sc == NULL!\n", __func__);
/* XXX KDM do something here */
break;
}
io->io_hdr.msg_type = CTL_MSG_DATAMOVE;
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
/*
* Keep track of this, we need to send it back over
* when the datamove is complete.
*/
io->io_hdr.serializing_sc = msg->hdr.serializing_sc;
if (msg->hdr.status == CTL_SUCCESS)
io->io_hdr.status = msg->hdr.status;
if (msg->dt.sg_sequence == 0) {
#ifdef CTL_TIME_IO
getbinuptime(&io->io_hdr.dma_start_bt);
#endif
i = msg->dt.kern_sg_entries +
msg->dt.kern_data_len /
CTL_HA_DATAMOVE_SEGMENT + 1;
sgl = malloc(sizeof(*sgl) * i, M_CTL,
M_WAITOK | M_ZERO);
io->io_hdr.remote_sglist = sgl;
io->io_hdr.local_sglist =
&sgl[msg->dt.kern_sg_entries];
io->scsiio.kern_data_ptr = (uint8_t *)sgl;
io->scsiio.kern_sg_entries =
msg->dt.kern_sg_entries;
io->scsiio.rem_sg_entries =
msg->dt.kern_sg_entries;
io->scsiio.kern_data_len =
msg->dt.kern_data_len;
io->scsiio.kern_total_len =
msg->dt.kern_total_len;
io->scsiio.kern_data_resid =
msg->dt.kern_data_resid;
io->scsiio.kern_rel_offset =
msg->dt.kern_rel_offset;
io->io_hdr.flags &= ~CTL_FLAG_BUS_ADDR;
io->io_hdr.flags |= msg->dt.flags &
CTL_FLAG_BUS_ADDR;
} else
sgl = (struct ctl_sg_entry *)
io->scsiio.kern_data_ptr;
for (i = msg->dt.sent_sg_entries, j = 0;
i < (msg->dt.sent_sg_entries +
msg->dt.cur_sg_entries); i++, j++) {
sgl[i].addr = msg->dt.sg_list[j].addr;
sgl[i].len = msg->dt.sg_list[j].len;
#if 0
printf("%s: DATAMOVE: %p,%lu j=%d, i=%d\n",
__func__, sgl[i].addr, sgl[i].len, j, i);
#endif
}
/*
* If this is the last piece of the I/O, we've got
* the full S/G list. Queue processing in the thread.
* Otherwise wait for the next piece.
*/
if (msg->dt.sg_last != 0)
ctl_enqueue_isc(io);
break;
}
/* Performed on the Serializing (primary) SC, XFER mode only */
case CTL_MSG_DATAMOVE_DONE: {
if (msg->hdr.serializing_sc == NULL) {
printf("%s: serializing_sc == NULL!\n",
__func__);
/* XXX KDM now what? */
break;
}
/*
* We grab the sense information here in case
* there was a failure, so we can return status
* back to the initiator.
*/
io = msg->hdr.serializing_sc;
io->io_hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
io->io_hdr.flags &= ~CTL_FLAG_DMA_INPROG;
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
io->io_hdr.port_status = msg->scsi.port_status;
io->scsiio.kern_data_resid = msg->scsi.kern_data_resid;
if (msg->hdr.status != CTL_STATUS_NONE) {
io->io_hdr.status = msg->hdr.status;
io->scsiio.scsi_status = msg->scsi.scsi_status;
io->scsiio.sense_len = msg->scsi.sense_len;
memcpy(&io->scsiio.sense_data,
&msg->scsi.sense_data,
msg->scsi.sense_len);
if (msg->hdr.status == CTL_SUCCESS)
io->io_hdr.flags |= CTL_FLAG_STATUS_SENT;
}
ctl_enqueue_isc(io);
break;
}
/* Preformed on Originating SC, SER_ONLY mode */
case CTL_MSG_R2R:
io = msg->hdr.original_sc;
if (io == NULL) {
printf("%s: original_sc == NULL!\n",
__func__);
break;
}
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
io->io_hdr.msg_type = CTL_MSG_R2R;
io->io_hdr.serializing_sc = msg->hdr.serializing_sc;
ctl_enqueue_isc(io);
break;
/*
* Performed on Serializing(i.e. primary SC) SC in SER_ONLY
* mode.
* Performed on the Originating (i.e. secondary) SC in XFER
* mode
*/
case CTL_MSG_FINISH_IO:
if (softc->ha_mode == CTL_HA_MODE_XFER)
ctl_isc_handler_finish_xfer(softc, msg);
else
ctl_isc_handler_finish_ser_only(softc, msg);
break;
/* Preformed on Originating SC */
case CTL_MSG_BAD_JUJU:
io = msg->hdr.original_sc;
if (io == NULL) {
printf("%s: Bad JUJU!, original_sc is NULL!\n",
__func__);
break;
}
ctl_copy_sense_data(msg, io);
/*
* IO should have already been cleaned up on other
* SC so clear this flag so we won't send a message
* back to finish the IO there.
*/
io->io_hdr.flags &= ~CTL_FLAG_SENT_2OTHER_SC;
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
/* io = msg->hdr.serializing_sc; */
io->io_hdr.msg_type = CTL_MSG_BAD_JUJU;
ctl_enqueue_isc(io);
break;
/* Handle resets sent from the other side */
case CTL_MSG_MANAGE_TASKS: {
struct ctl_taskio *taskio;
taskio = (struct ctl_taskio *)ctl_alloc_io(
softc->othersc_pool);
ctl_zero_io((union ctl_io *)taskio);
taskio->io_hdr.io_type = CTL_IO_TASK;
taskio->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC;
taskio->io_hdr.nexus = msg->hdr.nexus;
taskio->task_action = msg->task.task_action;
taskio->tag_num = msg->task.tag_num;
taskio->tag_type = msg->task.tag_type;
#ifdef CTL_TIME_IO
taskio->io_hdr.start_time = time_uptime;
getbinuptime(&taskio->io_hdr.start_bt);
#endif /* CTL_TIME_IO */
ctl_run_task((union ctl_io *)taskio);
break;
}
/* Persistent Reserve action which needs attention */
case CTL_MSG_PERS_ACTION:
presio = (struct ctl_prio *)ctl_alloc_io(
softc->othersc_pool);
ctl_zero_io((union ctl_io *)presio);
presio->io_hdr.msg_type = CTL_MSG_PERS_ACTION;
presio->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC;
presio->io_hdr.nexus = msg->hdr.nexus;
presio->pr_msg = msg->pr;
ctl_enqueue_isc((union ctl_io *)presio);
break;
case CTL_MSG_UA:
ctl_isc_ua(softc, msg, param);
break;
case CTL_MSG_PORT_SYNC:
ctl_isc_port_sync(softc, msg, param);
break;
case CTL_MSG_LUN_SYNC:
ctl_isc_lun_sync(softc, msg, param);
break;
case CTL_MSG_IID_SYNC:
ctl_isc_iid_sync(softc, msg, param);
break;
case CTL_MSG_LOGIN:
ctl_isc_login(softc, msg, param);
break;
case CTL_MSG_MODE_SYNC:
ctl_isc_mode_sync(softc, msg, param);
break;
default:
printf("Received HA message of unknown type %d\n",
msg->hdr.msg_type);
ctl_ha_msg_abort(CTL_HA_CHAN_CTL);
break;
}
if (msg != &msgbuf)
free(msg, M_CTL);
} else if (event == CTL_HA_EVT_LINK_CHANGE) {
printf("CTL: HA link status changed from %d to %d\n",
softc->ha_link, param);
if (param == softc->ha_link)
return;
if (softc->ha_link == CTL_HA_LINK_ONLINE) {
softc->ha_link = param;
ctl_isc_ha_link_down(softc);
} else {
softc->ha_link = param;
if (softc->ha_link == CTL_HA_LINK_ONLINE)
ctl_isc_ha_link_up(softc);
}
return;
} else {
printf("ctl_isc_event_handler: Unknown event %d\n", event);
return;
}
}
static void
ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest)
{
memcpy(&dest->scsiio.sense_data, &src->scsi.sense_data,
src->scsi.sense_len);
dest->scsiio.scsi_status = src->scsi.scsi_status;
dest->scsiio.sense_len = src->scsi.sense_len;
dest->io_hdr.status = src->hdr.status;
}
static void
ctl_copy_sense_data_back(union ctl_io *src, union ctl_ha_msg *dest)
{
memcpy(&dest->scsi.sense_data, &src->scsiio.sense_data,
src->scsiio.sense_len);
dest->scsi.scsi_status = src->scsiio.scsi_status;
dest->scsi.sense_len = src->scsiio.sense_len;
dest->hdr.status = src->io_hdr.status;
}
void
ctl_est_ua(struct ctl_lun *lun, uint32_t initidx, ctl_ua_type ua)
{
struct ctl_softc *softc = lun->ctl_softc;
ctl_ua_type *pu;
if (initidx < softc->init_min || initidx >= softc->init_max)
return;
mtx_assert(&lun->lun_lock, MA_OWNED);
pu = lun->pending_ua[initidx / CTL_MAX_INIT_PER_PORT];
if (pu == NULL)
return;
pu[initidx % CTL_MAX_INIT_PER_PORT] |= ua;
}
void
ctl_est_ua_port(struct ctl_lun *lun, int port, uint32_t except, ctl_ua_type ua)
{
int i;
mtx_assert(&lun->lun_lock, MA_OWNED);
if (lun->pending_ua[port] == NULL)
return;
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
if (port * CTL_MAX_INIT_PER_PORT + i == except)
continue;
lun->pending_ua[port][i] |= ua;
}
}
void
ctl_est_ua_all(struct ctl_lun *lun, uint32_t except, ctl_ua_type ua)
{
struct ctl_softc *softc = lun->ctl_softc;
int i;
mtx_assert(&lun->lun_lock, MA_OWNED);
for (i = softc->port_min; i < softc->port_max; i++)
ctl_est_ua_port(lun, i, except, ua);
}
void
ctl_clr_ua(struct ctl_lun *lun, uint32_t initidx, ctl_ua_type ua)
{
struct ctl_softc *softc = lun->ctl_softc;
ctl_ua_type *pu;
if (initidx < softc->init_min || initidx >= softc->init_max)
return;
mtx_assert(&lun->lun_lock, MA_OWNED);
pu = lun->pending_ua[initidx / CTL_MAX_INIT_PER_PORT];
if (pu == NULL)
return;
pu[initidx % CTL_MAX_INIT_PER_PORT] &= ~ua;
}
void
ctl_clr_ua_all(struct ctl_lun *lun, uint32_t except, ctl_ua_type ua)
{
struct ctl_softc *softc = lun->ctl_softc;
int i, j;
mtx_assert(&lun->lun_lock, MA_OWNED);
for (i = softc->port_min; i < softc->port_max; i++) {
if (lun->pending_ua[i] == NULL)
continue;
for (j = 0; j < CTL_MAX_INIT_PER_PORT; j++) {
if (i * CTL_MAX_INIT_PER_PORT + j == except)
continue;
lun->pending_ua[i][j] &= ~ua;
}
}
}
void
ctl_clr_ua_allluns(struct ctl_softc *ctl_softc, uint32_t initidx,
ctl_ua_type ua_type)
{
struct ctl_lun *lun;
mtx_assert(&ctl_softc->ctl_lock, MA_OWNED);
STAILQ_FOREACH(lun, &ctl_softc->lun_list, links) {
mtx_lock(&lun->lun_lock);
ctl_clr_ua(lun, initidx, ua_type);
mtx_unlock(&lun->lun_lock);
}
}
static int
ctl_ha_role_sysctl(SYSCTL_HANDLER_ARGS)
{
struct ctl_softc *softc = (struct ctl_softc *)arg1;
struct ctl_lun *lun;
struct ctl_lun_req ireq;
int error, value;
value = (softc->flags & CTL_FLAG_ACTIVE_SHELF) ? 0 : 1;
error = sysctl_handle_int(oidp, &value, 0, req);
if ((error != 0) || (req->newptr == NULL))
return (error);
mtx_lock(&softc->ctl_lock);
if (value == 0)
softc->flags |= CTL_FLAG_ACTIVE_SHELF;
else
softc->flags &= ~CTL_FLAG_ACTIVE_SHELF;
STAILQ_FOREACH(lun, &softc->lun_list, links) {
mtx_unlock(&softc->ctl_lock);
bzero(&ireq, sizeof(ireq));
ireq.reqtype = CTL_LUNREQ_MODIFY;
ireq.reqdata.modify.lun_id = lun->lun;
lun->backend->ioctl(NULL, CTL_LUN_REQ, (caddr_t)&ireq, 0,
curthread);
if (ireq.status != CTL_LUN_OK) {
printf("%s: CTL_LUNREQ_MODIFY returned %d '%s'\n",
__func__, ireq.status, ireq.error_str);
}
mtx_lock(&softc->ctl_lock);
}
mtx_unlock(&softc->ctl_lock);
return (0);
}
static int
ctl_init(void)
{
struct make_dev_args args;
struct ctl_softc *softc;
int i, error;
softc = control_softc = malloc(sizeof(*control_softc), M_DEVBUF,
M_WAITOK | M_ZERO);
make_dev_args_init(&args);
args.mda_devsw = &ctl_cdevsw;
args.mda_uid = UID_ROOT;
args.mda_gid = GID_OPERATOR;
args.mda_mode = 0600;
args.mda_si_drv1 = softc;
error = make_dev_s(&args, &softc->dev, "cam/ctl");
if (error != 0) {
free(softc, M_DEVBUF);
control_softc = NULL;
return (error);
}
sysctl_ctx_init(&softc->sysctl_ctx);
softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_kern_cam), OID_AUTO, "ctl",
CTLFLAG_RD, 0, "CAM Target Layer");
if (softc->sysctl_tree == NULL) {
printf("%s: unable to allocate sysctl tree\n", __func__);
destroy_dev(softc->dev);
free(softc, M_DEVBUF);
control_softc = NULL;
return (ENOMEM);
}
mtx_init(&softc->ctl_lock, "CTL mutex", NULL, MTX_DEF);
softc->io_zone = uma_zcreate("CTL IO", sizeof(union ctl_io),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
softc->flags = 0;
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "ha_mode", CTLFLAG_RDTUN, (int *)&softc->ha_mode, 0,
"HA mode (0 - act/stby, 1 - serialize only, 2 - xfer)");
/*
* In Copan's HA scheme, the "master" and "slave" roles are
* figured out through the slot the controller is in. Although it
* is an active/active system, someone has to be in charge.
*/
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "ha_id", CTLFLAG_RDTUN, &softc->ha_id, 0,
"HA head ID (0 - no HA)");
if (softc->ha_id == 0 || softc->ha_id > NUM_HA_SHELVES) {
softc->flags |= CTL_FLAG_ACTIVE_SHELF;
softc->is_single = 1;
softc->port_cnt = CTL_MAX_PORTS;
softc->port_min = 0;
} else {
softc->port_cnt = CTL_MAX_PORTS / NUM_HA_SHELVES;
softc->port_min = (softc->ha_id - 1) * softc->port_cnt;
}
softc->port_max = softc->port_min + softc->port_cnt;
softc->init_min = softc->port_min * CTL_MAX_INIT_PER_PORT;
softc->init_max = softc->port_max * CTL_MAX_INIT_PER_PORT;
SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "ha_link", CTLFLAG_RD, (int *)&softc->ha_link, 0,
"HA link state (0 - offline, 1 - unknown, 2 - online)");
STAILQ_INIT(&softc->lun_list);
STAILQ_INIT(&softc->pending_lun_queue);
STAILQ_INIT(&softc->fe_list);
STAILQ_INIT(&softc->port_list);
STAILQ_INIT(&softc->be_list);
ctl_tpc_init(softc);
if (worker_threads <= 0)
worker_threads = max(1, mp_ncpus / 4);
if (worker_threads > CTL_MAX_THREADS)
worker_threads = CTL_MAX_THREADS;
for (i = 0; i < worker_threads; i++) {
struct ctl_thread *thr = &softc->threads[i];
mtx_init(&thr->queue_lock, "CTL queue mutex", NULL, MTX_DEF);
thr->ctl_softc = softc;
STAILQ_INIT(&thr->incoming_queue);
STAILQ_INIT(&thr->rtr_queue);
STAILQ_INIT(&thr->done_queue);
STAILQ_INIT(&thr->isc_queue);
error = kproc_kthread_add(ctl_work_thread, thr,
&softc->ctl_proc, &thr->thread, 0, 0, "ctl", "work%d", i);
if (error != 0) {
printf("error creating CTL work thread!\n");
return (error);
}
}
error = kproc_kthread_add(ctl_lun_thread, softc,
&softc->ctl_proc, &softc->lun_thread, 0, 0, "ctl", "lun");
if (error != 0) {
printf("error creating CTL lun thread!\n");
return (error);
}
error = kproc_kthread_add(ctl_thresh_thread, softc,
&softc->ctl_proc, &softc->thresh_thread, 0, 0, "ctl", "thresh");
if (error != 0) {
printf("error creating CTL threshold thread!\n");
return (error);
}
SYSCTL_ADD_PROC(&softc->sysctl_ctx,SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "ha_role", CTLTYPE_INT | CTLFLAG_RWTUN,
softc, 0, ctl_ha_role_sysctl, "I", "HA role for this head");
if (softc->is_single == 0) {
if (ctl_frontend_register(&ha_frontend) != 0)
softc->is_single = 1;
}
return (0);
}
static int
ctl_shutdown(void)
{
struct ctl_softc *softc = control_softc;
int i;
if (softc->is_single == 0)
ctl_frontend_deregister(&ha_frontend);
destroy_dev(softc->dev);
/* Shutdown CTL threads. */
softc->shutdown = 1;
for (i = 0; i < worker_threads; i++) {
struct ctl_thread *thr = &softc->threads[i];
while (thr->thread != NULL) {
wakeup(thr);
if (thr->thread != NULL)
pause("CTL thr shutdown", 1);
}
mtx_destroy(&thr->queue_lock);
}
while (softc->lun_thread != NULL) {
wakeup(&softc->pending_lun_queue);
if (softc->lun_thread != NULL)
pause("CTL thr shutdown", 1);
}
while (softc->thresh_thread != NULL) {
wakeup(softc->thresh_thread);
if (softc->thresh_thread != NULL)
pause("CTL thr shutdown", 1);
}
ctl_tpc_shutdown(softc);
uma_zdestroy(softc->io_zone);
mtx_destroy(&softc->ctl_lock);
sysctl_ctx_free(&softc->sysctl_ctx);
free(softc, M_DEVBUF);
control_softc = NULL;
return (0);
}
static int
ctl_module_event_handler(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
return (ctl_init());
case MOD_UNLOAD:
return (ctl_shutdown());
default:
return (EOPNOTSUPP);
}
}
/*
* XXX KDM should we do some access checks here? Bump a reference count to
* prevent a CTL module from being unloaded while someone has it open?
*/
static int
ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
/*
* Remove an initiator by port number and initiator ID.
* Returns 0 for success, -1 for failure.
*/
int
ctl_remove_initiator(struct ctl_port *port, int iid)
{
struct ctl_softc *softc = port->ctl_softc;
int last;
mtx_assert(&softc->ctl_lock, MA_NOTOWNED);
if (iid > CTL_MAX_INIT_PER_PORT) {
printf("%s: initiator ID %u > maximun %u!\n",
__func__, iid, CTL_MAX_INIT_PER_PORT);
return (-1);
}
mtx_lock(&softc->ctl_lock);
last = (--port->wwpn_iid[iid].in_use == 0);
port->wwpn_iid[iid].last_use = time_uptime;
mtx_unlock(&softc->ctl_lock);
if (last)
ctl_i_t_nexus_loss(softc, iid, CTL_UA_POWERON);
ctl_isc_announce_iid(port, iid);
return (0);
}
/*
* Add an initiator to the initiator map.
* Returns iid for success, < 0 for failure.
*/
int
ctl_add_initiator(struct ctl_port *port, int iid, uint64_t wwpn, char *name)
{
struct ctl_softc *softc = port->ctl_softc;
time_t best_time;
int i, best;
mtx_assert(&softc->ctl_lock, MA_NOTOWNED);
if (iid >= CTL_MAX_INIT_PER_PORT) {
printf("%s: WWPN %#jx initiator ID %u > maximum %u!\n",
__func__, wwpn, iid, CTL_MAX_INIT_PER_PORT);
free(name, M_CTL);
return (-1);
}
mtx_lock(&softc->ctl_lock);
if (iid < 0 && (wwpn != 0 || name != NULL)) {
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
if (wwpn != 0 && wwpn == port->wwpn_iid[i].wwpn) {
iid = i;
break;
}
if (name != NULL && port->wwpn_iid[i].name != NULL &&
strcmp(name, port->wwpn_iid[i].name) == 0) {
iid = i;
break;
}
}
}
if (iid < 0) {
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
if (port->wwpn_iid[i].in_use == 0 &&
port->wwpn_iid[i].wwpn == 0 &&
port->wwpn_iid[i].name == NULL) {
iid = i;
break;
}
}
}
if (iid < 0) {
best = -1;
best_time = INT32_MAX;
for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) {
if (port->wwpn_iid[i].in_use == 0) {
if (port->wwpn_iid[i].last_use < best_time) {
best = i;
best_time = port->wwpn_iid[i].last_use;
}
}
}
iid = best;
}
if (iid < 0) {
mtx_unlock(&softc->ctl_lock);
free(name, M_CTL);
return (-2);
}
if (port->wwpn_iid[iid].in_use > 0 && (wwpn != 0 || name != NULL)) {
/*
* This is not an error yet.
*/
if (wwpn != 0 && wwpn == port->wwpn_iid[iid].wwpn) {
#if 0
printf("%s: port %d iid %u WWPN %#jx arrived"
" again\n", __func__, port->targ_port,
iid, (uintmax_t)wwpn);
#endif
goto take;
}
if (name != NULL && port->wwpn_iid[iid].name != NULL &&
strcmp(name, port->wwpn_iid[iid].name) == 0) {
#if 0
printf("%s: port %d iid %u name '%s' arrived"
" again\n", __func__, port->targ_port,
iid, name);
#endif
goto take;
}
/*
* This is an error, but what do we do about it? The
* driver is telling us we have a new WWPN for this
* initiator ID, so we pretty much need to use it.
*/
printf("%s: port %d iid %u WWPN %#jx '%s' arrived,"
" but WWPN %#jx '%s' is still at that address\n",
__func__, port->targ_port, iid, wwpn, name,
(uintmax_t)port->wwpn_iid[iid].wwpn,
port->wwpn_iid[iid].name);
}
take:
free(port->wwpn_iid[iid].name, M_CTL);
port->wwpn_iid[iid].name = name;
port->wwpn_iid[iid].wwpn = wwpn;
port->wwpn_iid[iid].in_use++;
mtx_unlock(&softc->ctl_lock);
ctl_isc_announce_iid(port, iid);
return (iid);
}
static int
ctl_create_iid(struct ctl_port *port, int iid, uint8_t *buf)
{
int len;
switch (port->port_type) {
case CTL_PORT_FC:
{
struct scsi_transportid_fcp *id =
(struct scsi_transportid_fcp *)buf;
if (port->wwpn_iid[iid].wwpn == 0)
return (0);
memset(id, 0, sizeof(*id));
id->format_protocol = SCSI_PROTO_FC;
scsi_u64to8b(port->wwpn_iid[iid].wwpn, id->n_port_name);
return (sizeof(*id));
}
case CTL_PORT_ISCSI:
{
struct scsi_transportid_iscsi_port *id =
(struct scsi_transportid_iscsi_port *)buf;
if (port->wwpn_iid[iid].name == NULL)
return (0);
memset(id, 0, 256);
id->format_protocol = SCSI_TRN_ISCSI_FORMAT_PORT |
SCSI_PROTO_ISCSI;
len = strlcpy(id->iscsi_name, port->wwpn_iid[iid].name, 252) + 1;
len = roundup2(min(len, 252), 4);
scsi_ulto2b(len, id->additional_length);
return (sizeof(*id) + len);
}
case CTL_PORT_SAS:
{
struct scsi_transportid_sas *id =
(struct scsi_transportid_sas *)buf;
if (port->wwpn_iid[iid].wwpn == 0)
return (0);
memset(id, 0, sizeof(*id));
id->format_protocol = SCSI_PROTO_SAS;
scsi_u64to8b(port->wwpn_iid[iid].wwpn, id->sas_address);
return (sizeof(*id));
}
default:
{
struct scsi_transportid_spi *id =
(struct scsi_transportid_spi *)buf;
memset(id, 0, sizeof(*id));
id->format_protocol = SCSI_PROTO_SPI;
scsi_ulto2b(iid, id->scsi_addr);
scsi_ulto2b(port->targ_port, id->rel_trgt_port_id);
return (sizeof(*id));
}
}
}
/*
* Serialize a command that went down the "wrong" side, and so was sent to
* this controller for execution. The logic is a little different than the
* standard case in ctl_scsiio_precheck(). Errors in this case need to get
* sent back to the other side, but in the success case, we execute the
* command on this side (XFER mode) or tell the other side to execute it
* (SER_ONLY mode).
*/
static void
ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_port *port = CTL_PORT(ctsio);
union ctl_ha_msg msg_info;
struct ctl_lun *lun;
const struct ctl_cmd_entry *entry;
uint32_t targ_lun;
targ_lun = ctsio->io_hdr.nexus.targ_mapped_lun;
/* Make sure that we know about this port. */
if (port == NULL || (port->status & CTL_PORT_STATUS_ONLINE) == 0) {
ctl_set_internal_failure(ctsio, /*sks_valid*/ 0,
/*retry_count*/ 1);
goto badjuju;
}
/* Make sure that we know about this LUN. */
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
/*
* The other node would not send this request to us unless
* received announce that we are primary node for this LUN.
* If this LUN does not exist now, it is probably result of
* a race, so respond to initiator in the most opaque way.
*/
ctl_set_busy(ctsio);
goto badjuju;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
/*
* If the LUN is invalid, pretend that it doesn't exist.
* It will go away as soon as all pending I/Os completed.
*/
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
ctl_set_busy(ctsio);
goto badjuju;
}
entry = ctl_get_cmd_entry(ctsio, NULL);
if (ctl_scsiio_lun_check(lun, entry, ctsio) != 0) {
mtx_unlock(&lun->lun_lock);
goto badjuju;
}
CTL_LUN(ctsio) = lun;
CTL_BACKEND_LUN(ctsio) = lun->be_lun;
/*
* Every I/O goes into the OOA queue for a
* particular LUN, and stays there until completion.
*/
#ifdef CTL_TIME_IO
if (TAILQ_EMPTY(&lun->ooa_queue))
lun->idle_time += getsbinuptime() - lun->last_busy;
#endif
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr, ctl_ooaq,
ooa_links))) {
case CTL_ACTION_BLOCK:
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
blocked_links);
mtx_unlock(&lun->lun_lock);
break;
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP:
if (softc->ha_mode == CTL_HA_MODE_XFER) {
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
ctl_enqueue_rtr((union ctl_io *)ctsio);
mtx_unlock(&lun->lun_lock);
} else {
ctsio->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
mtx_unlock(&lun->lun_lock);
/* send msg back to other side */
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = (union ctl_io *)ctsio;
msg_info.hdr.msg_type = CTL_MSG_R2R;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.hdr), M_WAITOK);
}
break;
case CTL_ACTION_OVERLAP:
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
mtx_unlock(&lun->lun_lock);
ctl_set_overlapped_cmd(ctsio);
goto badjuju;
case CTL_ACTION_OVERLAP_TAG:
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
mtx_unlock(&lun->lun_lock);
ctl_set_overlapped_tag(ctsio, ctsio->tag_num);
goto badjuju;
case CTL_ACTION_ERROR:
default:
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
mtx_unlock(&lun->lun_lock);
ctl_set_internal_failure(ctsio, /*sks_valid*/ 0,
/*retry_count*/ 0);
badjuju:
ctl_copy_sense_data_back((union ctl_io *)ctsio, &msg_info);
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.scsi), M_WAITOK);
ctl_free_io((union ctl_io *)ctsio);
break;
}
}
/*
* Returns 0 for success, errno for failure.
*/
static void
ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
struct ctl_ooa *ooa_hdr, struct ctl_ooa_entry *kern_entries)
{
union ctl_io *io;
mtx_lock(&lun->lun_lock);
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); (io != NULL);
(*cur_fill_num)++, io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,
ooa_links)) {
struct ctl_ooa_entry *entry;
/*
* If we've got more than we can fit, just count the
* remaining entries.
*/
if (*cur_fill_num >= ooa_hdr->alloc_num)
continue;
entry = &kern_entries[*cur_fill_num];
entry->tag_num = io->scsiio.tag_num;
entry->lun_num = lun->lun;
#ifdef CTL_TIME_IO
entry->start_bt = io->io_hdr.start_bt;
#endif
bcopy(io->scsiio.cdb, entry->cdb, io->scsiio.cdb_len);
entry->cdb_len = io->scsiio.cdb_len;
if (io->io_hdr.flags & CTL_FLAG_BLOCKED)
entry->cmd_flags |= CTL_OOACMD_FLAG_BLOCKED;
if (io->io_hdr.flags & CTL_FLAG_DMA_INPROG)
entry->cmd_flags |= CTL_OOACMD_FLAG_DMA;
if (io->io_hdr.flags & CTL_FLAG_ABORT)
entry->cmd_flags |= CTL_OOACMD_FLAG_ABORT;
if (io->io_hdr.flags & CTL_FLAG_IS_WAS_ON_RTR)
entry->cmd_flags |= CTL_OOACMD_FLAG_RTR;
if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED)
entry->cmd_flags |= CTL_OOACMD_FLAG_DMA_QUEUED;
}
mtx_unlock(&lun->lun_lock);
}
static void *
ctl_copyin_alloc(void *user_addr, unsigned int len, char *error_str,
size_t error_str_len)
{
void *kptr;
kptr = malloc(len, M_CTL, M_WAITOK | M_ZERO);
if (copyin(user_addr, kptr, len) != 0) {
snprintf(error_str, error_str_len, "Error copying %d bytes "
"from user address %p to kernel address %p", len,
user_addr, kptr);
free(kptr, M_CTL);
return (NULL);
}
return (kptr);
}
static void
ctl_free_args(int num_args, struct ctl_be_arg *args)
{
int i;
if (args == NULL)
return;
for (i = 0; i < num_args; i++) {
free(args[i].kname, M_CTL);
free(args[i].kvalue, M_CTL);
}
free(args, M_CTL);
}
static struct ctl_be_arg *
ctl_copyin_args(int num_args, struct ctl_be_arg *uargs,
char *error_str, size_t error_str_len)
{
struct ctl_be_arg *args;
int i;
args = ctl_copyin_alloc(uargs, num_args * sizeof(*args),
error_str, error_str_len);
if (args == NULL)
goto bailout;
for (i = 0; i < num_args; i++) {
args[i].kname = NULL;
args[i].kvalue = NULL;
}
for (i = 0; i < num_args; i++) {
uint8_t *tmpptr;
if (args[i].namelen == 0) {
snprintf(error_str, error_str_len, "Argument %d "
"name length is zero", i);
goto bailout;
}
args[i].kname = ctl_copyin_alloc(args[i].name,
args[i].namelen, error_str, error_str_len);
if (args[i].kname == NULL)
goto bailout;
if (args[i].kname[args[i].namelen - 1] != '\0') {
snprintf(error_str, error_str_len, "Argument %d "
"name is not NUL-terminated", i);
goto bailout;
}
if (args[i].flags & CTL_BEARG_RD) {
if (args[i].vallen == 0) {
snprintf(error_str, error_str_len, "Argument %d "
"value length is zero", i);
goto bailout;
}
tmpptr = ctl_copyin_alloc(args[i].value,
args[i].vallen, error_str, error_str_len);
if (tmpptr == NULL)
goto bailout;
if ((args[i].flags & CTL_BEARG_ASCII)
&& (tmpptr[args[i].vallen - 1] != '\0')) {
snprintf(error_str, error_str_len, "Argument "
"%d value is not NUL-terminated", i);
free(tmpptr, M_CTL);
goto bailout;
}
args[i].kvalue = tmpptr;
} else {
args[i].kvalue = malloc(args[i].vallen,
M_CTL, M_WAITOK | M_ZERO);
}
}
return (args);
bailout:
ctl_free_args(num_args, args);
return (NULL);
}
static void
ctl_copyout_args(int num_args, struct ctl_be_arg *args)
{
int i;
for (i = 0; i < num_args; i++) {
if (args[i].flags & CTL_BEARG_WR)
copyout(args[i].kvalue, args[i].value, args[i].vallen);
}
}
/*
* Escape characters that are illegal or not recommended in XML.
*/
int
ctl_sbuf_printf_esc(struct sbuf *sb, char *str, int size)
{
char *end = str + size;
int retval;
retval = 0;
for (; *str && str < end; str++) {
switch (*str) {
case '&':
retval = sbuf_printf(sb, "&amp;");
break;
case '>':
retval = sbuf_printf(sb, "&gt;");
break;
case '<':
retval = sbuf_printf(sb, "&lt;");
break;
default:
retval = sbuf_putc(sb, *str);
break;
}
if (retval != 0)
break;
}
return (retval);
}
static void
ctl_id_sbuf(struct ctl_devid *id, struct sbuf *sb)
{
struct scsi_vpd_id_descriptor *desc;
int i;
if (id == NULL || id->len < 4)
return;
desc = (struct scsi_vpd_id_descriptor *)id->data;
switch (desc->id_type & SVPD_ID_TYPE_MASK) {
case SVPD_ID_TYPE_T10:
sbuf_printf(sb, "t10.");
break;
case SVPD_ID_TYPE_EUI64:
sbuf_printf(sb, "eui.");
break;
case SVPD_ID_TYPE_NAA:
sbuf_printf(sb, "naa.");
break;
case SVPD_ID_TYPE_SCSI_NAME:
break;
}
switch (desc->proto_codeset & SVPD_ID_CODESET_MASK) {
case SVPD_ID_CODESET_BINARY:
for (i = 0; i < desc->length; i++)
sbuf_printf(sb, "%02x", desc->identifier[i]);
break;
case SVPD_ID_CODESET_ASCII:
sbuf_printf(sb, "%.*s", (int)desc->length,
(char *)desc->identifier);
break;
case SVPD_ID_CODESET_UTF8:
sbuf_printf(sb, "%s", (char *)desc->identifier);
break;
}
}
static int
ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td)
{
struct ctl_softc *softc = dev->si_drv1;
struct ctl_port *port;
struct ctl_lun *lun;
int retval;
retval = 0;
switch (cmd) {
case CTL_IO:
retval = ctl_ioctl_io(dev, cmd, addr, flag, td);
break;
case CTL_ENABLE_PORT:
case CTL_DISABLE_PORT:
case CTL_SET_PORT_WWNS: {
struct ctl_port *port;
struct ctl_port_entry *entry;
entry = (struct ctl_port_entry *)addr;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
int action, done;
if (port->targ_port < softc->port_min ||
port->targ_port >= softc->port_max)
continue;
action = 0;
done = 0;
if ((entry->port_type == CTL_PORT_NONE)
&& (entry->targ_port == port->targ_port)) {
/*
* If the user only wants to enable or
* disable or set WWNs on a specific port,
* do the operation and we're done.
*/
action = 1;
done = 1;
} else if (entry->port_type & port->port_type) {
/*
* Compare the user's type mask with the
* particular frontend type to see if we
* have a match.
*/
action = 1;
done = 0;
/*
* Make sure the user isn't trying to set
* WWNs on multiple ports at the same time.
*/
if (cmd == CTL_SET_PORT_WWNS) {
printf("%s: Can't set WWNs on "
"multiple ports\n", __func__);
retval = EINVAL;
break;
}
}
if (action == 0)
continue;
/*
* XXX KDM we have to drop the lock here, because
* the online/offline operations can potentially
* block. We need to reference count the frontends
* so they can't go away,
*/
if (cmd == CTL_ENABLE_PORT) {
mtx_unlock(&softc->ctl_lock);
ctl_port_online(port);
mtx_lock(&softc->ctl_lock);
} else if (cmd == CTL_DISABLE_PORT) {
mtx_unlock(&softc->ctl_lock);
ctl_port_offline(port);
mtx_lock(&softc->ctl_lock);
} else if (cmd == CTL_SET_PORT_WWNS) {
ctl_port_set_wwns(port,
(entry->flags & CTL_PORT_WWNN_VALID) ?
1 : 0, entry->wwnn,
(entry->flags & CTL_PORT_WWPN_VALID) ?
1 : 0, entry->wwpn);
}
if (done != 0)
break;
}
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_GET_OOA: {
struct ctl_ooa *ooa_hdr;
struct ctl_ooa_entry *entries;
uint32_t cur_fill_num;
ooa_hdr = (struct ctl_ooa *)addr;
if ((ooa_hdr->alloc_len == 0)
|| (ooa_hdr->alloc_num == 0)) {
printf("%s: CTL_GET_OOA: alloc len %u and alloc num %u "
"must be non-zero\n", __func__,
ooa_hdr->alloc_len, ooa_hdr->alloc_num);
retval = EINVAL;
break;
}
if (ooa_hdr->alloc_len != (ooa_hdr->alloc_num *
sizeof(struct ctl_ooa_entry))) {
printf("%s: CTL_GET_OOA: alloc len %u must be alloc "
"num %d * sizeof(struct ctl_ooa_entry) %zd\n",
__func__, ooa_hdr->alloc_len,
ooa_hdr->alloc_num,sizeof(struct ctl_ooa_entry));
retval = EINVAL;
break;
}
entries = malloc(ooa_hdr->alloc_len, M_CTL, M_WAITOK | M_ZERO);
if (entries == NULL) {
printf("%s: could not allocate %d bytes for OOA "
"dump\n", __func__, ooa_hdr->alloc_len);
retval = ENOMEM;
break;
}
mtx_lock(&softc->ctl_lock);
if ((ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) == 0 &&
(ooa_hdr->lun_num >= CTL_MAX_LUNS ||
softc->ctl_luns[ooa_hdr->lun_num] == NULL)) {
mtx_unlock(&softc->ctl_lock);
free(entries, M_CTL);
printf("%s: CTL_GET_OOA: invalid LUN %ju\n",
__func__, (uintmax_t)ooa_hdr->lun_num);
retval = EINVAL;
break;
}
cur_fill_num = 0;
if (ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) {
STAILQ_FOREACH(lun, &softc->lun_list, links) {
ctl_ioctl_fill_ooa(lun, &cur_fill_num,
ooa_hdr, entries);
}
} else {
lun = softc->ctl_luns[ooa_hdr->lun_num];
ctl_ioctl_fill_ooa(lun, &cur_fill_num, ooa_hdr,
entries);
}
mtx_unlock(&softc->ctl_lock);
ooa_hdr->fill_num = min(cur_fill_num, ooa_hdr->alloc_num);
ooa_hdr->fill_len = ooa_hdr->fill_num *
sizeof(struct ctl_ooa_entry);
retval = copyout(entries, ooa_hdr->entries, ooa_hdr->fill_len);
if (retval != 0) {
printf("%s: error copying out %d bytes for OOA dump\n",
__func__, ooa_hdr->fill_len);
}
getbinuptime(&ooa_hdr->cur_bt);
if (cur_fill_num > ooa_hdr->alloc_num) {
ooa_hdr->dropped_num = cur_fill_num -ooa_hdr->alloc_num;
ooa_hdr->status = CTL_OOA_NEED_MORE_SPACE;
} else {
ooa_hdr->dropped_num = 0;
ooa_hdr->status = CTL_OOA_OK;
}
free(entries, M_CTL);
break;
}
case CTL_DELAY_IO: {
struct ctl_io_delay_info *delay_info;
delay_info = (struct ctl_io_delay_info *)addr;
#ifdef CTL_IO_DELAY
mtx_lock(&softc->ctl_lock);
if (delay_info->lun_id >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[delay_info->lun_id]) == NULL) {
mtx_unlock(&softc->ctl_lock);
delay_info->status = CTL_DELAY_STATUS_INVALID_LUN;
break;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
delay_info->status = CTL_DELAY_STATUS_OK;
switch (delay_info->delay_type) {
case CTL_DELAY_TYPE_CONT:
case CTL_DELAY_TYPE_ONESHOT:
break;
default:
delay_info->status = CTL_DELAY_STATUS_INVALID_TYPE;
break;
}
switch (delay_info->delay_loc) {
case CTL_DELAY_LOC_DATAMOVE:
lun->delay_info.datamove_type = delay_info->delay_type;
lun->delay_info.datamove_delay = delay_info->delay_secs;
break;
case CTL_DELAY_LOC_DONE:
lun->delay_info.done_type = delay_info->delay_type;
lun->delay_info.done_delay = delay_info->delay_secs;
break;
default:
delay_info->status = CTL_DELAY_STATUS_INVALID_LOC;
break;
}
mtx_unlock(&lun->lun_lock);
#else
delay_info->status = CTL_DELAY_STATUS_NOT_IMPLEMENTED;
#endif /* CTL_IO_DELAY */
break;
}
#ifdef CTL_LEGACY_STATS
case CTL_GETSTATS: {
struct ctl_stats *stats = (struct ctl_stats *)addr;
int i;
/*
* XXX KDM no locking here. If the LUN list changes,
* things can blow up.
*/
i = 0;
stats->status = CTL_SS_OK;
stats->fill_len = 0;
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if (stats->fill_len + sizeof(lun->legacy_stats) >
stats->alloc_len) {
stats->status = CTL_SS_NEED_MORE_SPACE;
break;
}
retval = copyout(&lun->legacy_stats, &stats->lun_stats[i++],
sizeof(lun->legacy_stats));
if (retval != 0)
break;
stats->fill_len += sizeof(lun->legacy_stats);
}
stats->num_luns = softc->num_luns;
stats->flags = CTL_STATS_FLAG_NONE;
#ifdef CTL_TIME_IO
stats->flags |= CTL_STATS_FLAG_TIME_VALID;
#endif
getnanouptime(&stats->timestamp);
break;
}
#endif /* CTL_LEGACY_STATS */
case CTL_ERROR_INJECT: {
struct ctl_error_desc *err_desc, *new_err_desc;
err_desc = (struct ctl_error_desc *)addr;
new_err_desc = malloc(sizeof(*new_err_desc), M_CTL,
M_WAITOK | M_ZERO);
bcopy(err_desc, new_err_desc, sizeof(*new_err_desc));
mtx_lock(&softc->ctl_lock);
if (err_desc->lun_id >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[err_desc->lun_id]) == NULL) {
mtx_unlock(&softc->ctl_lock);
free(new_err_desc, M_CTL);
printf("%s: CTL_ERROR_INJECT: invalid LUN %ju\n",
__func__, (uintmax_t)err_desc->lun_id);
retval = EINVAL;
break;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
/*
* We could do some checking here to verify the validity
* of the request, but given the complexity of error
* injection requests, the checking logic would be fairly
* complex.
*
* For now, if the request is invalid, it just won't get
* executed and might get deleted.
*/
STAILQ_INSERT_TAIL(&lun->error_list, new_err_desc, links);
/*
* XXX KDM check to make sure the serial number is unique,
* in case we somehow manage to wrap. That shouldn't
* happen for a very long time, but it's the right thing to
* do.
*/
new_err_desc->serial = lun->error_serial;
err_desc->serial = lun->error_serial;
lun->error_serial++;
mtx_unlock(&lun->lun_lock);
break;
}
case CTL_ERROR_INJECT_DELETE: {
struct ctl_error_desc *delete_desc, *desc, *desc2;
int delete_done;
delete_desc = (struct ctl_error_desc *)addr;
delete_done = 0;
mtx_lock(&softc->ctl_lock);
if (delete_desc->lun_id >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[delete_desc->lun_id]) == NULL) {
mtx_unlock(&softc->ctl_lock);
printf("%s: CTL_ERROR_INJECT_DELETE: invalid LUN %ju\n",
__func__, (uintmax_t)delete_desc->lun_id);
retval = EINVAL;
break;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
if (desc->serial != delete_desc->serial)
continue;
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc,
links);
free(desc, M_CTL);
delete_done = 1;
}
mtx_unlock(&lun->lun_lock);
if (delete_done == 0) {
printf("%s: CTL_ERROR_INJECT_DELETE: can't find "
"error serial %ju on LUN %u\n", __func__,
delete_desc->serial, delete_desc->lun_id);
retval = EINVAL;
break;
}
break;
}
case CTL_DUMP_STRUCTS: {
int j, k;
struct ctl_port *port;
struct ctl_frontend *fe;
mtx_lock(&softc->ctl_lock);
printf("CTL Persistent Reservation information start:\n");
STAILQ_FOREACH(lun, &softc->lun_list, links) {
mtx_lock(&lun->lun_lock);
if ((lun->flags & CTL_LUN_DISABLED) != 0) {
mtx_unlock(&lun->lun_lock);
continue;
}
for (j = 0; j < CTL_MAX_PORTS; j++) {
if (lun->pr_keys[j] == NULL)
continue;
for (k = 0; k < CTL_MAX_INIT_PER_PORT; k++){
if (lun->pr_keys[j][k] == 0)
continue;
printf(" LUN %ju port %d iid %d key "
"%#jx\n", lun->lun, j, k,
(uintmax_t)lun->pr_keys[j][k]);
}
}
mtx_unlock(&lun->lun_lock);
}
printf("CTL Persistent Reservation information end\n");
printf("CTL Ports:\n");
STAILQ_FOREACH(port, &softc->port_list, links) {
printf(" Port %d '%s' Frontend '%s' Type %u pp %d vp %d WWNN "
"%#jx WWPN %#jx\n", port->targ_port, port->port_name,
port->frontend->name, port->port_type,
port->physical_port, port->virtual_port,
(uintmax_t)port->wwnn, (uintmax_t)port->wwpn);
for (j = 0; j < CTL_MAX_INIT_PER_PORT; j++) {
if (port->wwpn_iid[j].in_use == 0 &&
port->wwpn_iid[j].wwpn == 0 &&
port->wwpn_iid[j].name == NULL)
continue;
printf(" iid %u use %d WWPN %#jx '%s'\n",
j, port->wwpn_iid[j].in_use,
(uintmax_t)port->wwpn_iid[j].wwpn,
port->wwpn_iid[j].name);
}
}
printf("CTL Port information end\n");
mtx_unlock(&softc->ctl_lock);
/*
* XXX KDM calling this without a lock. We'd likely want
* to drop the lock before calling the frontend's dump
* routine anyway.
*/
printf("CTL Frontends:\n");
STAILQ_FOREACH(fe, &softc->fe_list, links) {
printf(" Frontend '%s'\n", fe->name);
if (fe->fe_dump != NULL)
fe->fe_dump();
}
printf("CTL Frontend information end\n");
break;
}
case CTL_LUN_REQ: {
struct ctl_lun_req *lun_req;
struct ctl_backend_driver *backend;
lun_req = (struct ctl_lun_req *)addr;
backend = ctl_backend_find(lun_req->backend);
if (backend == NULL) {
lun_req->status = CTL_LUN_ERROR;
snprintf(lun_req->error_str,
sizeof(lun_req->error_str),
"Backend \"%s\" not found.",
lun_req->backend);
break;
}
if (lun_req->num_be_args > 0) {
lun_req->kern_be_args = ctl_copyin_args(
lun_req->num_be_args,
lun_req->be_args,
lun_req->error_str,
sizeof(lun_req->error_str));
if (lun_req->kern_be_args == NULL) {
lun_req->status = CTL_LUN_ERROR;
break;
}
}
retval = backend->ioctl(dev, cmd, addr, flag, td);
if (lun_req->num_be_args > 0) {
ctl_copyout_args(lun_req->num_be_args,
lun_req->kern_be_args);
ctl_free_args(lun_req->num_be_args,
lun_req->kern_be_args);
}
break;
}
case CTL_LUN_LIST: {
struct sbuf *sb;
struct ctl_lun_list *list;
struct ctl_option *opt;
list = (struct ctl_lun_list *)addr;
/*
* Allocate a fixed length sbuf here, based on the length
* of the user's buffer. We could allocate an auto-extending
* buffer, and then tell the user how much larger our
* amount of data is than his buffer, but that presents
* some problems:
*
* 1. The sbuf(9) routines use a blocking malloc, and so
* we can't hold a lock while calling them with an
* auto-extending buffer.
*
* 2. There is not currently a LUN reference counting
* mechanism, outside of outstanding transactions on
* the LUN's OOA queue. So a LUN could go away on us
* while we're getting the LUN number, backend-specific
* information, etc. Thus, given the way things
* currently work, we need to hold the CTL lock while
* grabbing LUN information.
*
* So, from the user's standpoint, the best thing to do is
* allocate what he thinks is a reasonable buffer length,
* and then if he gets a CTL_LUN_LIST_NEED_MORE_SPACE error,
* double the buffer length and try again. (And repeat
* that until he succeeds.)
*/
sb = sbuf_new(NULL, NULL, list->alloc_len, SBUF_FIXEDLEN);
if (sb == NULL) {
list->status = CTL_LUN_LIST_ERROR;
snprintf(list->error_str, sizeof(list->error_str),
"Unable to allocate %d bytes for LUN list",
list->alloc_len);
break;
}
sbuf_printf(sb, "<ctllunlist>\n");
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
mtx_lock(&lun->lun_lock);
retval = sbuf_printf(sb, "<lun id=\"%ju\">\n",
(uintmax_t)lun->lun);
/*
* Bail out as soon as we see that we've overfilled
* the buffer.
*/
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<backend_type>%s"
"</backend_type>\n",
(lun->backend == NULL) ? "none" :
lun->backend->name);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<lun_type>%d</lun_type>\n",
lun->be_lun->lun_type);
if (retval != 0)
break;
if (lun->backend == NULL) {
retval = sbuf_printf(sb, "</lun>\n");
if (retval != 0)
break;
continue;
}
retval = sbuf_printf(sb, "\t<size>%ju</size>\n",
(lun->be_lun->maxlba > 0) ?
lun->be_lun->maxlba + 1 : 0);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<blocksize>%u</blocksize>\n",
lun->be_lun->blocksize);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<serial_number>");
if (retval != 0)
break;
retval = ctl_sbuf_printf_esc(sb,
lun->be_lun->serial_num,
sizeof(lun->be_lun->serial_num));
if (retval != 0)
break;
retval = sbuf_printf(sb, "</serial_number>\n");
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<device_id>");
if (retval != 0)
break;
retval = ctl_sbuf_printf_esc(sb,
lun->be_lun->device_id,
sizeof(lun->be_lun->device_id));
if (retval != 0)
break;
retval = sbuf_printf(sb, "</device_id>\n");
if (retval != 0)
break;
if (lun->backend->lun_info != NULL) {
retval = lun->backend->lun_info(lun->be_lun->be_lun, sb);
if (retval != 0)
break;
}
STAILQ_FOREACH(opt, &lun->be_lun->options, links) {
retval = sbuf_printf(sb, "\t<%s>%s</%s>\n",
opt->name, opt->value, opt->name);
if (retval != 0)
break;
}
retval = sbuf_printf(sb, "</lun>\n");
if (retval != 0)
break;
mtx_unlock(&lun->lun_lock);
}
if (lun != NULL)
mtx_unlock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if ((retval != 0)
|| ((retval = sbuf_printf(sb, "</ctllunlist>\n")) != 0)) {
retval = 0;
sbuf_delete(sb);
list->status = CTL_LUN_LIST_NEED_MORE_SPACE;
snprintf(list->error_str, sizeof(list->error_str),
"Out of space, %d bytes is too small",
list->alloc_len);
break;
}
sbuf_finish(sb);
retval = copyout(sbuf_data(sb), list->lun_xml,
sbuf_len(sb) + 1);
list->fill_len = sbuf_len(sb) + 1;
list->status = CTL_LUN_LIST_OK;
sbuf_delete(sb);
break;
}
case CTL_ISCSI: {
struct ctl_iscsi *ci;
struct ctl_frontend *fe;
ci = (struct ctl_iscsi *)addr;
fe = ctl_frontend_find("iscsi");
if (fe == NULL) {
ci->status = CTL_ISCSI_ERROR;
snprintf(ci->error_str, sizeof(ci->error_str),
"Frontend \"iscsi\" not found.");
break;
}
retval = fe->ioctl(dev, cmd, addr, flag, td);
break;
}
case CTL_PORT_REQ: {
struct ctl_req *req;
struct ctl_frontend *fe;
req = (struct ctl_req *)addr;
fe = ctl_frontend_find(req->driver);
if (fe == NULL) {
req->status = CTL_LUN_ERROR;
snprintf(req->error_str, sizeof(req->error_str),
"Frontend \"%s\" not found.", req->driver);
break;
}
if (req->num_args > 0) {
req->kern_args = ctl_copyin_args(req->num_args,
req->args, req->error_str, sizeof(req->error_str));
if (req->kern_args == NULL) {
req->status = CTL_LUN_ERROR;
break;
}
}
if (fe->ioctl)
retval = fe->ioctl(dev, cmd, addr, flag, td);
else
retval = ENODEV;
if (req->num_args > 0) {
ctl_copyout_args(req->num_args, req->kern_args);
ctl_free_args(req->num_args, req->kern_args);
}
break;
}
case CTL_PORT_LIST: {
struct sbuf *sb;
struct ctl_port *port;
struct ctl_lun_list *list;
struct ctl_option *opt;
int j;
uint32_t plun;
list = (struct ctl_lun_list *)addr;
sb = sbuf_new(NULL, NULL, list->alloc_len, SBUF_FIXEDLEN);
if (sb == NULL) {
list->status = CTL_LUN_LIST_ERROR;
snprintf(list->error_str, sizeof(list->error_str),
"Unable to allocate %d bytes for LUN list",
list->alloc_len);
break;
}
sbuf_printf(sb, "<ctlportlist>\n");
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
retval = sbuf_printf(sb, "<targ_port id=\"%ju\">\n",
(uintmax_t)port->targ_port);
/*
* Bail out as soon as we see that we've overfilled
* the buffer.
*/
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<frontend_type>%s"
"</frontend_type>\n", port->frontend->name);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<port_type>%d</port_type>\n",
port->port_type);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<online>%s</online>\n",
(port->status & CTL_PORT_STATUS_ONLINE) ? "YES" : "NO");
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<port_name>%s</port_name>\n",
port->port_name);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<physical_port>%d</physical_port>\n",
port->physical_port);
if (retval != 0)
break;
retval = sbuf_printf(sb, "\t<virtual_port>%d</virtual_port>\n",
port->virtual_port);
if (retval != 0)
break;
if (port->target_devid != NULL) {
sbuf_printf(sb, "\t<target>");
ctl_id_sbuf(port->target_devid, sb);
sbuf_printf(sb, "</target>\n");
}
if (port->port_devid != NULL) {
sbuf_printf(sb, "\t<port>");
ctl_id_sbuf(port->port_devid, sb);
sbuf_printf(sb, "</port>\n");
}
if (port->port_info != NULL) {
retval = port->port_info(port->onoff_arg, sb);
if (retval != 0)
break;
}
STAILQ_FOREACH(opt, &port->options, links) {
retval = sbuf_printf(sb, "\t<%s>%s</%s>\n",
opt->name, opt->value, opt->name);
if (retval != 0)
break;
}
if (port->lun_map != NULL) {
sbuf_printf(sb, "\t<lun_map>on</lun_map>\n");
for (j = 0; j < port->lun_map_size; j++) {
plun = ctl_lun_map_from_port(port, j);
if (plun == UINT32_MAX)
continue;
sbuf_printf(sb,
"\t<lun id=\"%u\">%u</lun>\n",
j, plun);
}
}
for (j = 0; j < CTL_MAX_INIT_PER_PORT; j++) {
if (port->wwpn_iid[j].in_use == 0 ||
(port->wwpn_iid[j].wwpn == 0 &&
port->wwpn_iid[j].name == NULL))
continue;
if (port->wwpn_iid[j].name != NULL)
retval = sbuf_printf(sb,
"\t<initiator id=\"%u\">%s</initiator>\n",
j, port->wwpn_iid[j].name);
else
retval = sbuf_printf(sb,
"\t<initiator id=\"%u\">naa.%08jx</initiator>\n",
j, port->wwpn_iid[j].wwpn);
if (retval != 0)
break;
}
if (retval != 0)
break;
retval = sbuf_printf(sb, "</targ_port>\n");
if (retval != 0)
break;
}
mtx_unlock(&softc->ctl_lock);
if ((retval != 0)
|| ((retval = sbuf_printf(sb, "</ctlportlist>\n")) != 0)) {
retval = 0;
sbuf_delete(sb);
list->status = CTL_LUN_LIST_NEED_MORE_SPACE;
snprintf(list->error_str, sizeof(list->error_str),
"Out of space, %d bytes is too small",
list->alloc_len);
break;
}
sbuf_finish(sb);
retval = copyout(sbuf_data(sb), list->lun_xml,
sbuf_len(sb) + 1);
list->fill_len = sbuf_len(sb) + 1;
list->status = CTL_LUN_LIST_OK;
sbuf_delete(sb);
break;
}
case CTL_LUN_MAP: {
struct ctl_lun_map *lm = (struct ctl_lun_map *)addr;
struct ctl_port *port;
mtx_lock(&softc->ctl_lock);
if (lm->port < softc->port_min ||
lm->port >= softc->port_max ||
(port = softc->ctl_ports[lm->port]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return (ENXIO);
}
if (port->status & CTL_PORT_STATUS_ONLINE) {
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if (ctl_lun_map_to_port(port, lun->lun) ==
UINT32_MAX)
continue;
mtx_lock(&lun->lun_lock);
ctl_est_ua_port(lun, lm->port, -1,
CTL_UA_LUN_CHANGE);
mtx_unlock(&lun->lun_lock);
}
}
mtx_unlock(&softc->ctl_lock); // XXX: port_enable sleeps
if (lm->plun != UINT32_MAX) {
if (lm->lun == UINT32_MAX)
retval = ctl_lun_map_unset(port, lm->plun);
else if (lm->lun < CTL_MAX_LUNS &&
softc->ctl_luns[lm->lun] != NULL)
retval = ctl_lun_map_set(port, lm->plun, lm->lun);
else
return (ENXIO);
} else {
if (lm->lun == UINT32_MAX)
retval = ctl_lun_map_deinit(port);
else
retval = ctl_lun_map_init(port);
}
if (port->status & CTL_PORT_STATUS_ONLINE)
ctl_isc_announce_port(port);
break;
}
case CTL_GET_LUN_STATS: {
struct ctl_get_io_stats *stats = (struct ctl_get_io_stats *)addr;
int i;
/*
* XXX KDM no locking here. If the LUN list changes,
* things can blow up.
*/
i = 0;
stats->status = CTL_SS_OK;
stats->fill_len = 0;
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if (lun->lun < stats->first_item)
continue;
if (stats->fill_len + sizeof(lun->stats) >
stats->alloc_len) {
stats->status = CTL_SS_NEED_MORE_SPACE;
break;
}
retval = copyout(&lun->stats, &stats->stats[i++],
sizeof(lun->stats));
if (retval != 0)
break;
stats->fill_len += sizeof(lun->stats);
}
stats->num_items = softc->num_luns;
stats->flags = CTL_STATS_FLAG_NONE;
#ifdef CTL_TIME_IO
stats->flags |= CTL_STATS_FLAG_TIME_VALID;
#endif
getnanouptime(&stats->timestamp);
break;
}
case CTL_GET_PORT_STATS: {
struct ctl_get_io_stats *stats = (struct ctl_get_io_stats *)addr;
int i;
/*
* XXX KDM no locking here. If the LUN list changes,
* things can blow up.
*/
i = 0;
stats->status = CTL_SS_OK;
stats->fill_len = 0;
STAILQ_FOREACH(port, &softc->port_list, links) {
if (port->targ_port < stats->first_item)
continue;
if (stats->fill_len + sizeof(port->stats) >
stats->alloc_len) {
stats->status = CTL_SS_NEED_MORE_SPACE;
break;
}
retval = copyout(&port->stats, &stats->stats[i++],
sizeof(port->stats));
if (retval != 0)
break;
stats->fill_len += sizeof(port->stats);
}
stats->num_items = softc->num_ports;
stats->flags = CTL_STATS_FLAG_NONE;
#ifdef CTL_TIME_IO
stats->flags |= CTL_STATS_FLAG_TIME_VALID;
#endif
getnanouptime(&stats->timestamp);
break;
}
default: {
/* XXX KDM should we fix this? */
#if 0
struct ctl_backend_driver *backend;
unsigned int type;
int found;
found = 0;
/*
* We encode the backend type as the ioctl type for backend
* ioctls. So parse it out here, and then search for a
* backend of this type.
*/
type = _IOC_TYPE(cmd);
STAILQ_FOREACH(backend, &softc->be_list, links) {
if (backend->type == type) {
found = 1;
break;
}
}
if (found == 0) {
printf("ctl: unknown ioctl command %#lx or backend "
"%d\n", cmd, type);
retval = EINVAL;
break;
}
retval = backend->ioctl(dev, cmd, addr, flag, td);
#endif
retval = ENOTTY;
break;
}
}
return (retval);
}
uint32_t
ctl_get_initindex(struct ctl_nexus *nexus)
{
return (nexus->initid + (nexus->targ_port * CTL_MAX_INIT_PER_PORT));
}
int
ctl_lun_map_init(struct ctl_port *port)
{
struct ctl_softc *softc = port->ctl_softc;
struct ctl_lun *lun;
int size = ctl_lun_map_size;
uint32_t i;
if (port->lun_map == NULL || port->lun_map_size < size) {
port->lun_map_size = 0;
free(port->lun_map, M_CTL);
port->lun_map = malloc(size * sizeof(uint32_t),
M_CTL, M_NOWAIT);
}
if (port->lun_map == NULL)
return (ENOMEM);
for (i = 0; i < size; i++)
port->lun_map[i] = UINT32_MAX;
port->lun_map_size = size;
if (port->status & CTL_PORT_STATUS_ONLINE) {
if (port->lun_disable != NULL) {
STAILQ_FOREACH(lun, &softc->lun_list, links)
port->lun_disable(port->targ_lun_arg, lun->lun);
}
ctl_isc_announce_port(port);
}
return (0);
}
int
ctl_lun_map_deinit(struct ctl_port *port)
{
struct ctl_softc *softc = port->ctl_softc;
struct ctl_lun *lun;
if (port->lun_map == NULL)
return (0);
port->lun_map_size = 0;
free(port->lun_map, M_CTL);
port->lun_map = NULL;
if (port->status & CTL_PORT_STATUS_ONLINE) {
if (port->lun_enable != NULL) {
STAILQ_FOREACH(lun, &softc->lun_list, links)
port->lun_enable(port->targ_lun_arg, lun->lun);
}
ctl_isc_announce_port(port);
}
return (0);
}
int
ctl_lun_map_set(struct ctl_port *port, uint32_t plun, uint32_t glun)
{
int status;
uint32_t old;
if (port->lun_map == NULL) {
status = ctl_lun_map_init(port);
if (status != 0)
return (status);
}
if (plun >= port->lun_map_size)
return (EINVAL);
old = port->lun_map[plun];
port->lun_map[plun] = glun;
if ((port->status & CTL_PORT_STATUS_ONLINE) && old == UINT32_MAX) {
if (port->lun_enable != NULL)
port->lun_enable(port->targ_lun_arg, plun);
ctl_isc_announce_port(port);
}
return (0);
}
int
ctl_lun_map_unset(struct ctl_port *port, uint32_t plun)
{
uint32_t old;
if (port->lun_map == NULL || plun >= port->lun_map_size)
return (0);
old = port->lun_map[plun];
port->lun_map[plun] = UINT32_MAX;
if ((port->status & CTL_PORT_STATUS_ONLINE) && old != UINT32_MAX) {
if (port->lun_disable != NULL)
port->lun_disable(port->targ_lun_arg, plun);
ctl_isc_announce_port(port);
}
return (0);
}
uint32_t
ctl_lun_map_from_port(struct ctl_port *port, uint32_t lun_id)
{
if (port == NULL)
return (UINT32_MAX);
if (port->lun_map == NULL)
return (lun_id);
if (lun_id > port->lun_map_size)
return (UINT32_MAX);
return (port->lun_map[lun_id]);
}
uint32_t
ctl_lun_map_to_port(struct ctl_port *port, uint32_t lun_id)
{
uint32_t i;
if (port == NULL)
return (UINT32_MAX);
if (port->lun_map == NULL)
return (lun_id);
for (i = 0; i < port->lun_map_size; i++) {
if (port->lun_map[i] == lun_id)
return (i);
}
return (UINT32_MAX);
}
uint32_t
ctl_decode_lun(uint64_t encoded)
{
uint8_t lun[8];
uint32_t result = 0xffffffff;
be64enc(lun, encoded);
switch (lun[0] & RPL_LUNDATA_ATYP_MASK) {
case RPL_LUNDATA_ATYP_PERIPH:
if ((lun[0] & 0x3f) == 0 && lun[2] == 0 && lun[3] == 0 &&
lun[4] == 0 && lun[5] == 0 && lun[6] == 0 && lun[7] == 0)
result = lun[1];
break;
case RPL_LUNDATA_ATYP_FLAT:
if (lun[2] == 0 && lun[3] == 0 && lun[4] == 0 && lun[5] == 0 &&
lun[6] == 0 && lun[7] == 0)
result = ((lun[0] & 0x3f) << 8) + lun[1];
break;
case RPL_LUNDATA_ATYP_EXTLUN:
switch (lun[0] & RPL_LUNDATA_EXT_EAM_MASK) {
case 0x02:
switch (lun[0] & RPL_LUNDATA_EXT_LEN_MASK) {
case 0x00:
result = lun[1];
break;
case 0x10:
result = (lun[1] << 16) + (lun[2] << 8) +
lun[3];
break;
case 0x20:
if (lun[1] == 0 && lun[6] == 0 && lun[7] == 0)
result = (lun[2] << 24) +
(lun[3] << 16) + (lun[4] << 8) +
lun[5];
break;
}
break;
case RPL_LUNDATA_EXT_EAM_NOT_SPEC:
result = 0xffffffff;
break;
}
break;
}
return (result);
}
uint64_t
ctl_encode_lun(uint32_t decoded)
{
uint64_t l = decoded;
if (l <= 0xff)
return (((uint64_t)RPL_LUNDATA_ATYP_PERIPH << 56) | (l << 48));
if (l <= 0x3fff)
return (((uint64_t)RPL_LUNDATA_ATYP_FLAT << 56) | (l << 48));
if (l <= 0xffffff)
return (((uint64_t)(RPL_LUNDATA_ATYP_EXTLUN | 0x12) << 56) |
(l << 32));
return ((((uint64_t)RPL_LUNDATA_ATYP_EXTLUN | 0x22) << 56) | (l << 16));
}
int
ctl_ffz(uint32_t *mask, uint32_t first, uint32_t last)
{
int i;
for (i = first; i < last; i++) {
if ((mask[i / 32] & (1 << (i % 32))) == 0)
return (i);
}
return (-1);
}
int
ctl_set_mask(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) != 0)
return (-1);
else
mask[chunk] |= (1 << piece);
return (0);
}
int
ctl_clear_mask(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) == 0)
return (-1);
else
mask[chunk] &= ~(1 << piece);
return (0);
}
int
ctl_is_set(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) == 0)
return (0);
else
return (1);
}
static uint64_t
ctl_get_prkey(struct ctl_lun *lun, uint32_t residx)
{
uint64_t *t;
t = lun->pr_keys[residx/CTL_MAX_INIT_PER_PORT];
if (t == NULL)
return (0);
return (t[residx % CTL_MAX_INIT_PER_PORT]);
}
static void
ctl_clr_prkey(struct ctl_lun *lun, uint32_t residx)
{
uint64_t *t;
t = lun->pr_keys[residx/CTL_MAX_INIT_PER_PORT];
if (t == NULL)
return;
t[residx % CTL_MAX_INIT_PER_PORT] = 0;
}
static void
ctl_alloc_prkey(struct ctl_lun *lun, uint32_t residx)
{
uint64_t *p;
u_int i;
i = residx/CTL_MAX_INIT_PER_PORT;
if (lun->pr_keys[i] != NULL)
return;
mtx_unlock(&lun->lun_lock);
p = malloc(sizeof(uint64_t) * CTL_MAX_INIT_PER_PORT, M_CTL,
M_WAITOK | M_ZERO);
mtx_lock(&lun->lun_lock);
if (lun->pr_keys[i] == NULL)
lun->pr_keys[i] = p;
else
free(p, M_CTL);
}
static void
ctl_set_prkey(struct ctl_lun *lun, uint32_t residx, uint64_t key)
{
uint64_t *t;
t = lun->pr_keys[residx/CTL_MAX_INIT_PER_PORT];
KASSERT(t != NULL, ("prkey %d is not allocated", residx));
t[residx % CTL_MAX_INIT_PER_PORT] = key;
}
/*
* ctl_softc, pool_name, total_ctl_io are passed in.
* npool is passed out.
*/
int
ctl_pool_create(struct ctl_softc *ctl_softc, const char *pool_name,
uint32_t total_ctl_io, void **npool)
{
struct ctl_io_pool *pool;
pool = (struct ctl_io_pool *)malloc(sizeof(*pool), M_CTL,
M_NOWAIT | M_ZERO);
if (pool == NULL)
return (ENOMEM);
snprintf(pool->name, sizeof(pool->name), "CTL IO %s", pool_name);
pool->ctl_softc = ctl_softc;
#ifdef IO_POOLS
pool->zone = uma_zsecond_create(pool->name, NULL,
NULL, NULL, NULL, ctl_softc->io_zone);
/* uma_prealloc(pool->zone, total_ctl_io); */
#else
pool->zone = ctl_softc->io_zone;
#endif
*npool = pool;
return (0);
}
void
ctl_pool_free(struct ctl_io_pool *pool)
{
if (pool == NULL)
return;
#ifdef IO_POOLS
uma_zdestroy(pool->zone);
#endif
free(pool, M_CTL);
}
union ctl_io *
ctl_alloc_io(void *pool_ref)
{
struct ctl_io_pool *pool = (struct ctl_io_pool *)pool_ref;
union ctl_io *io;
io = uma_zalloc(pool->zone, M_WAITOK);
if (io != NULL) {
io->io_hdr.pool = pool_ref;
CTL_SOFTC(io) = pool->ctl_softc;
}
return (io);
}
union ctl_io *
ctl_alloc_io_nowait(void *pool_ref)
{
struct ctl_io_pool *pool = (struct ctl_io_pool *)pool_ref;
union ctl_io *io;
io = uma_zalloc(pool->zone, M_NOWAIT);
if (io != NULL) {
io->io_hdr.pool = pool_ref;
CTL_SOFTC(io) = pool->ctl_softc;
}
return (io);
}
void
ctl_free_io(union ctl_io *io)
{
struct ctl_io_pool *pool;
if (io == NULL)
return;
pool = (struct ctl_io_pool *)io->io_hdr.pool;
uma_zfree(pool->zone, io);
}
void
ctl_zero_io(union ctl_io *io)
{
struct ctl_io_pool *pool;
if (io == NULL)
return;
/*
* May need to preserve linked list pointers at some point too.
*/
pool = io->io_hdr.pool;
memset(io, 0, sizeof(*io));
io->io_hdr.pool = pool;
CTL_SOFTC(io) = pool->ctl_softc;
}
int
ctl_expand_number(const char *buf, uint64_t *num)
{
char *endptr;
uint64_t number;
unsigned shift;
number = strtoq(buf, &endptr, 0);
switch (tolower((unsigned char)*endptr)) {
case 'e':
shift = 60;
break;
case 'p':
shift = 50;
break;
case 't':
shift = 40;
break;
case 'g':
shift = 30;
break;
case 'm':
shift = 20;
break;
case 'k':
shift = 10;
break;
case 'b':
case '\0': /* No unit. */
*num = number;
return (0);
default:
/* Unrecognized unit. */
return (-1);
}
if ((number << shift) >> shift != number) {
/* Overflow */
return (-1);
}
*num = number << shift;
return (0);
}
/*
* This routine could be used in the future to load default and/or saved
* mode page parameters for a particuar lun.
*/
static int
ctl_init_page_index(struct ctl_lun *lun)
{
int i, page_code;
struct ctl_page_index *page_index;
const char *value;
uint64_t ival;
memcpy(&lun->mode_pages.index, page_index_template,
sizeof(page_index_template));
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
page_index = &lun->mode_pages.index[i];
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
page_code = page_index->page_code & SMPH_PC_MASK;
switch (page_code) {
case SMS_RW_ERROR_RECOVERY_PAGE: {
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
memcpy(&lun->mode_pages.rw_er_page[CTL_PAGE_CURRENT],
&rw_er_page_default,
sizeof(rw_er_page_default));
memcpy(&lun->mode_pages.rw_er_page[CTL_PAGE_CHANGEABLE],
&rw_er_page_changeable,
sizeof(rw_er_page_changeable));
memcpy(&lun->mode_pages.rw_er_page[CTL_PAGE_DEFAULT],
&rw_er_page_default,
sizeof(rw_er_page_default));
memcpy(&lun->mode_pages.rw_er_page[CTL_PAGE_SAVED],
&rw_er_page_default,
sizeof(rw_er_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.rw_er_page;
break;
}
case SMS_FORMAT_DEVICE_PAGE: {
struct scsi_format_page *format_page;
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
/*
* Sectors per track are set above. Bytes per
* sector need to be set here on a per-LUN basis.
*/
memcpy(&lun->mode_pages.format_page[CTL_PAGE_CURRENT],
&format_page_default,
sizeof(format_page_default));
memcpy(&lun->mode_pages.format_page[
CTL_PAGE_CHANGEABLE], &format_page_changeable,
sizeof(format_page_changeable));
memcpy(&lun->mode_pages.format_page[CTL_PAGE_DEFAULT],
&format_page_default,
sizeof(format_page_default));
memcpy(&lun->mode_pages.format_page[CTL_PAGE_SAVED],
&format_page_default,
sizeof(format_page_default));
format_page = &lun->mode_pages.format_page[
CTL_PAGE_CURRENT];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
format_page = &lun->mode_pages.format_page[
CTL_PAGE_DEFAULT];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
format_page = &lun->mode_pages.format_page[
CTL_PAGE_SAVED];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
page_index->page_data =
(uint8_t *)lun->mode_pages.format_page;
break;
}
case SMS_RIGID_DISK_PAGE: {
struct scsi_rigid_disk_page *rigid_disk_page;
uint32_t sectors_per_cylinder;
uint64_t cylinders;
#ifndef __XSCALE__
int shift;
#endif /* !__XSCALE__ */
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
/*
* Rotation rate and sectors per track are set
* above. We calculate the cylinders here based on
* capacity. Due to the number of heads and
* sectors per track we're using, smaller arrays
* may turn out to have 0 cylinders. Linux and
* FreeBSD don't pay attention to these mode pages
* to figure out capacity, but Solaris does. It
* seems to deal with 0 cylinders just fine, and
* works out a fake geometry based on the capacity.
*/
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_DEFAULT], &rigid_disk_page_default,
sizeof(rigid_disk_page_default));
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_CHANGEABLE],&rigid_disk_page_changeable,
sizeof(rigid_disk_page_changeable));
sectors_per_cylinder = CTL_DEFAULT_SECTORS_PER_TRACK *
CTL_DEFAULT_HEADS;
/*
* The divide method here will be more accurate,
* probably, but results in floating point being
* used in the kernel on i386 (__udivdi3()). On the
* XScale, though, __udivdi3() is implemented in
* software.
*
* The shift method for cylinder calculation is
* accurate if sectors_per_cylinder is a power of
* 2. Otherwise it might be slightly off -- you
* might have a bit of a truncation problem.
*/
#ifdef __XSCALE__
cylinders = (lun->be_lun->maxlba + 1) /
sectors_per_cylinder;
#else
for (shift = 31; shift > 0; shift--) {
if (sectors_per_cylinder & (1 << shift))
break;
}
cylinders = (lun->be_lun->maxlba + 1) >> shift;
#endif
/*
* We've basically got 3 bytes, or 24 bits for the
* cylinder size in the mode page. If we're over,
* just round down to 2^24.
*/
if (cylinders > 0xffffff)
cylinders = 0xffffff;
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
CTL_PAGE_DEFAULT];
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
if ((value = ctl_get_opt(&lun->be_lun->options,
"rpm")) != NULL) {
scsi_ulto2b(strtol(value, NULL, 0),
rigid_disk_page->rotation_rate);
}
memcpy(&lun->mode_pages.rigid_disk_page[CTL_PAGE_CURRENT],
&lun->mode_pages.rigid_disk_page[CTL_PAGE_DEFAULT],
sizeof(rigid_disk_page_default));
memcpy(&lun->mode_pages.rigid_disk_page[CTL_PAGE_SAVED],
&lun->mode_pages.rigid_disk_page[CTL_PAGE_DEFAULT],
sizeof(rigid_disk_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.rigid_disk_page;
break;
}
case SMS_VERIFY_ERROR_RECOVERY_PAGE: {
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
memcpy(&lun->mode_pages.verify_er_page[CTL_PAGE_CURRENT],
&verify_er_page_default,
sizeof(verify_er_page_default));
memcpy(&lun->mode_pages.verify_er_page[CTL_PAGE_CHANGEABLE],
&verify_er_page_changeable,
sizeof(verify_er_page_changeable));
memcpy(&lun->mode_pages.verify_er_page[CTL_PAGE_DEFAULT],
&verify_er_page_default,
sizeof(verify_er_page_default));
memcpy(&lun->mode_pages.verify_er_page[CTL_PAGE_SAVED],
&verify_er_page_default,
sizeof(verify_er_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.verify_er_page;
break;
}
case SMS_CACHING_PAGE: {
struct scsi_caching_page *caching_page;
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_DEFAULT],
&caching_page_default,
sizeof(caching_page_default));
memcpy(&lun->mode_pages.caching_page[
CTL_PAGE_CHANGEABLE], &caching_page_changeable,
sizeof(caching_page_changeable));
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_SAVED],
&caching_page_default,
sizeof(caching_page_default));
caching_page = &lun->mode_pages.caching_page[
CTL_PAGE_SAVED];
value = ctl_get_opt(&lun->be_lun->options, "writecache");
if (value != NULL && strcmp(value, "off") == 0)
caching_page->flags1 &= ~SCP_WCE;
value = ctl_get_opt(&lun->be_lun->options, "readcache");
if (value != NULL && strcmp(value, "off") == 0)
caching_page->flags1 |= SCP_RCD;
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_CURRENT],
&lun->mode_pages.caching_page[CTL_PAGE_SAVED],
sizeof(caching_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.caching_page;
break;
}
case SMS_CONTROL_MODE_PAGE: {
switch (page_index->subpage) {
case SMS_SUBPAGE_PAGE_0: {
struct scsi_control_page *control_page;
memcpy(&lun->mode_pages.control_page[
CTL_PAGE_DEFAULT],
&control_page_default,
sizeof(control_page_default));
memcpy(&lun->mode_pages.control_page[
CTL_PAGE_CHANGEABLE],
&control_page_changeable,
sizeof(control_page_changeable));
memcpy(&lun->mode_pages.control_page[
CTL_PAGE_SAVED],
&control_page_default,
sizeof(control_page_default));
control_page = &lun->mode_pages.control_page[
CTL_PAGE_SAVED];
value = ctl_get_opt(&lun->be_lun->options,
"reordering");
if (value != NULL &&
strcmp(value, "unrestricted") == 0) {
control_page->queue_flags &=
~SCP_QUEUE_ALG_MASK;
control_page->queue_flags |=
SCP_QUEUE_ALG_UNRESTRICTED;
}
memcpy(&lun->mode_pages.control_page[
CTL_PAGE_CURRENT],
&lun->mode_pages.control_page[
CTL_PAGE_SAVED],
sizeof(control_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.control_page;
break;
}
case 0x01:
memcpy(&lun->mode_pages.control_ext_page[
CTL_PAGE_DEFAULT],
&control_ext_page_default,
sizeof(control_ext_page_default));
memcpy(&lun->mode_pages.control_ext_page[
CTL_PAGE_CHANGEABLE],
&control_ext_page_changeable,
sizeof(control_ext_page_changeable));
memcpy(&lun->mode_pages.control_ext_page[
CTL_PAGE_SAVED],
&control_ext_page_default,
sizeof(control_ext_page_default));
memcpy(&lun->mode_pages.control_ext_page[
CTL_PAGE_CURRENT],
&lun->mode_pages.control_ext_page[
CTL_PAGE_SAVED],
sizeof(control_ext_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.control_ext_page;
break;
default:
panic("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code);
}
break;
}
case SMS_INFO_EXCEPTIONS_PAGE: {
switch (page_index->subpage) {
case SMS_SUBPAGE_PAGE_0:
memcpy(&lun->mode_pages.ie_page[CTL_PAGE_CURRENT],
&ie_page_default,
sizeof(ie_page_default));
memcpy(&lun->mode_pages.ie_page[
CTL_PAGE_CHANGEABLE], &ie_page_changeable,
sizeof(ie_page_changeable));
memcpy(&lun->mode_pages.ie_page[CTL_PAGE_DEFAULT],
&ie_page_default,
sizeof(ie_page_default));
memcpy(&lun->mode_pages.ie_page[CTL_PAGE_SAVED],
&ie_page_default,
sizeof(ie_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.ie_page;
break;
case 0x02: {
struct ctl_logical_block_provisioning_page *page;
memcpy(&lun->mode_pages.lbp_page[CTL_PAGE_DEFAULT],
&lbp_page_default,
sizeof(lbp_page_default));
memcpy(&lun->mode_pages.lbp_page[
CTL_PAGE_CHANGEABLE], &lbp_page_changeable,
sizeof(lbp_page_changeable));
memcpy(&lun->mode_pages.lbp_page[CTL_PAGE_SAVED],
&lbp_page_default,
sizeof(lbp_page_default));
page = &lun->mode_pages.lbp_page[CTL_PAGE_SAVED];
value = ctl_get_opt(&lun->be_lun->options,
"avail-threshold");
if (value != NULL &&
ctl_expand_number(value, &ival) == 0) {
page->descr[0].flags |= SLBPPD_ENABLED |
SLBPPD_ARMING_DEC;
if (lun->be_lun->blocksize)
ival /= lun->be_lun->blocksize;
else
ival /= 512;
scsi_ulto4b(ival >> CTL_LBP_EXPONENT,
page->descr[0].count);
}
value = ctl_get_opt(&lun->be_lun->options,
"used-threshold");
if (value != NULL &&
ctl_expand_number(value, &ival) == 0) {
page->descr[1].flags |= SLBPPD_ENABLED |
SLBPPD_ARMING_INC;
if (lun->be_lun->blocksize)
ival /= lun->be_lun->blocksize;
else
ival /= 512;
scsi_ulto4b(ival >> CTL_LBP_EXPONENT,
page->descr[1].count);
}
value = ctl_get_opt(&lun->be_lun->options,
"pool-avail-threshold");
if (value != NULL &&
ctl_expand_number(value, &ival) == 0) {
page->descr[2].flags |= SLBPPD_ENABLED |
SLBPPD_ARMING_DEC;
if (lun->be_lun->blocksize)
ival /= lun->be_lun->blocksize;
else
ival /= 512;
scsi_ulto4b(ival >> CTL_LBP_EXPONENT,
page->descr[2].count);
}
value = ctl_get_opt(&lun->be_lun->options,
"pool-used-threshold");
if (value != NULL &&
ctl_expand_number(value, &ival) == 0) {
page->descr[3].flags |= SLBPPD_ENABLED |
SLBPPD_ARMING_INC;
if (lun->be_lun->blocksize)
ival /= lun->be_lun->blocksize;
else
ival /= 512;
scsi_ulto4b(ival >> CTL_LBP_EXPONENT,
page->descr[3].count);
}
memcpy(&lun->mode_pages.lbp_page[CTL_PAGE_CURRENT],
&lun->mode_pages.lbp_page[CTL_PAGE_SAVED],
sizeof(lbp_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.lbp_page;
break;
}
default:
panic("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code);
}
break;
}
case SMS_CDDVD_CAPS_PAGE:{
KASSERT(page_index->subpage == SMS_SUBPAGE_PAGE_0,
("subpage %#x for page %#x is incorrect!",
page_index->subpage, page_code));
memcpy(&lun->mode_pages.cddvd_page[CTL_PAGE_DEFAULT],
&cddvd_page_default,
sizeof(cddvd_page_default));
memcpy(&lun->mode_pages.cddvd_page[
CTL_PAGE_CHANGEABLE], &cddvd_page_changeable,
sizeof(cddvd_page_changeable));
memcpy(&lun->mode_pages.cddvd_page[CTL_PAGE_SAVED],
&cddvd_page_default,
sizeof(cddvd_page_default));
memcpy(&lun->mode_pages.cddvd_page[CTL_PAGE_CURRENT],
&lun->mode_pages.cddvd_page[CTL_PAGE_SAVED],
sizeof(cddvd_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.cddvd_page;
break;
}
default:
panic("invalid page code value %#x", page_code);
}
}
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_init_log_page_index(struct ctl_lun *lun)
{
struct ctl_page_index *page_index;
int i, j, k, prev;
memcpy(&lun->log_pages.index, log_page_index_template,
sizeof(log_page_index_template));
prev = -1;
for (i = 0, j = 0, k = 0; i < CTL_NUM_LOG_PAGES; i++) {
page_index = &lun->log_pages.index[i];
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
if (page_index->page_code == SLS_LOGICAL_BLOCK_PROVISIONING &&
lun->backend->lun_attr == NULL)
continue;
if (page_index->page_code != prev) {
lun->log_pages.pages_page[j] = page_index->page_code;
prev = page_index->page_code;
j++;
}
lun->log_pages.subpages_page[k*2] = page_index->page_code;
lun->log_pages.subpages_page[k*2+1] = page_index->subpage;
k++;
}
lun->log_pages.index[0].page_data = &lun->log_pages.pages_page[0];
lun->log_pages.index[0].page_len = j;
lun->log_pages.index[1].page_data = &lun->log_pages.subpages_page[0];
lun->log_pages.index[1].page_len = k * 2;
lun->log_pages.index[2].page_data = &lun->log_pages.lbp_page[0];
lun->log_pages.index[2].page_len = 12*CTL_NUM_LBP_PARAMS;
lun->log_pages.index[3].page_data = (uint8_t *)&lun->log_pages.stat_page;
lun->log_pages.index[3].page_len = sizeof(lun->log_pages.stat_page);
lun->log_pages.index[4].page_data = (uint8_t *)&lun->log_pages.ie_page;
lun->log_pages.index[4].page_len = sizeof(lun->log_pages.ie_page);
return (CTL_RETVAL_COMPLETE);
}
static int
hex2bin(const char *str, uint8_t *buf, int buf_size)
{
int i;
u_char c;
memset(buf, 0, buf_size);
while (isspace(str[0]))
str++;
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
str += 2;
buf_size *= 2;
for (i = 0; str[i] != 0 && i < buf_size; i++) {
while (str[i] == '-') /* Skip dashes in UUIDs. */
str++;
c = str[i];
if (isdigit(c))
c -= '0';
else if (isalpha(c))
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
else
break;
if (c >= 16)
break;
if ((i & 1) == 0)
buf[i / 2] |= (c << 4);
else
buf[i / 2] |= c;
}
return ((i + 1) / 2);
}
/*
* LUN allocation.
*
* Requirements:
* - caller allocates and zeros LUN storage, or passes in a NULL LUN if he
* wants us to allocate the LUN and he can block.
* - ctl_softc is always set
* - be_lun is set if the LUN has a backend (needed for disk LUNs)
*
* Returns 0 for success, non-zero (errno) for failure.
*/
static int
ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *ctl_lun,
struct ctl_be_lun *const be_lun)
{
struct ctl_lun *nlun, *lun;
struct scsi_vpd_id_descriptor *desc;
struct scsi_vpd_id_t10 *t10id;
const char *eui, *naa, *scsiname, *uuid, *vendor, *value;
int lun_number, lun_malloced;
int devidlen, idlen1, idlen2 = 0, len;
if (be_lun == NULL)
return (EINVAL);
/*
* We currently only support Direct Access or Processor LUN types.
*/
switch (be_lun->lun_type) {
case T_DIRECT:
case T_PROCESSOR:
case T_CDROM:
break;
case T_SEQUENTIAL:
case T_CHANGER:
default:
be_lun->lun_config_status(be_lun->be_lun,
CTL_LUN_CONFIG_FAILURE);
break;
}
if (ctl_lun == NULL) {
lun = malloc(sizeof(*lun), M_CTL, M_WAITOK);
lun_malloced = 1;
} else {
lun_malloced = 0;
lun = ctl_lun;
}
memset(lun, 0, sizeof(*lun));
if (lun_malloced)
lun->flags = CTL_LUN_MALLOCED;
/* Generate LUN ID. */
devidlen = max(CTL_DEVID_MIN_LEN,
strnlen(be_lun->device_id, CTL_DEVID_LEN));
idlen1 = sizeof(*t10id) + devidlen;
len = sizeof(struct scsi_vpd_id_descriptor) + idlen1;
scsiname = ctl_get_opt(&be_lun->options, "scsiname");
if (scsiname != NULL) {
idlen2 = roundup2(strlen(scsiname) + 1, 4);
len += sizeof(struct scsi_vpd_id_descriptor) + idlen2;
}
eui = ctl_get_opt(&be_lun->options, "eui");
if (eui != NULL) {
len += sizeof(struct scsi_vpd_id_descriptor) + 16;
}
naa = ctl_get_opt(&be_lun->options, "naa");
if (naa != NULL) {
len += sizeof(struct scsi_vpd_id_descriptor) + 16;
}
uuid = ctl_get_opt(&be_lun->options, "uuid");
if (uuid != NULL) {
len += sizeof(struct scsi_vpd_id_descriptor) + 18;
}
lun->lun_devid = malloc(sizeof(struct ctl_devid) + len,
M_CTL, M_WAITOK | M_ZERO);
desc = (struct scsi_vpd_id_descriptor *)lun->lun_devid->data;
desc->proto_codeset = SVPD_ID_CODESET_ASCII;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN | SVPD_ID_TYPE_T10;
desc->length = idlen1;
t10id = (struct scsi_vpd_id_t10 *)&desc->identifier[0];
memset(t10id->vendor, ' ', sizeof(t10id->vendor));
if ((vendor = ctl_get_opt(&be_lun->options, "vendor")) == NULL) {
strncpy((char *)t10id->vendor, CTL_VENDOR, sizeof(t10id->vendor));
} else {
strncpy(t10id->vendor, vendor,
min(sizeof(t10id->vendor), strlen(vendor)));
}
strncpy((char *)t10id->vendor_spec_id,
(char *)be_lun->device_id, devidlen);
if (scsiname != NULL) {
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
desc->length);
desc->proto_codeset = SVPD_ID_CODESET_UTF8;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN |
SVPD_ID_TYPE_SCSI_NAME;
desc->length = idlen2;
strlcpy(desc->identifier, scsiname, idlen2);
}
if (eui != NULL) {
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
desc->length);
desc->proto_codeset = SVPD_ID_CODESET_BINARY;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN |
SVPD_ID_TYPE_EUI64;
desc->length = hex2bin(eui, desc->identifier, 16);
desc->length = desc->length > 12 ? 16 :
(desc->length > 8 ? 12 : 8);
len -= 16 - desc->length;
}
if (naa != NULL) {
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
desc->length);
desc->proto_codeset = SVPD_ID_CODESET_BINARY;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN |
SVPD_ID_TYPE_NAA;
desc->length = hex2bin(naa, desc->identifier, 16);
desc->length = desc->length > 8 ? 16 : 8;
len -= 16 - desc->length;
}
if (uuid != NULL) {
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
desc->length);
desc->proto_codeset = SVPD_ID_CODESET_BINARY;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN |
SVPD_ID_TYPE_UUID;
desc->identifier[0] = 0x10;
hex2bin(uuid, &desc->identifier[2], 16);
desc->length = 18;
}
lun->lun_devid->len = len;
mtx_lock(&ctl_softc->ctl_lock);
/*
* See if the caller requested a particular LUN number. If so, see
* if it is available. Otherwise, allocate the first available LUN.
*/
if (be_lun->flags & CTL_LUN_FLAG_ID_REQ) {
if ((be_lun->req_lun_id > (CTL_MAX_LUNS - 1))
|| (ctl_is_set(ctl_softc->ctl_lun_mask, be_lun->req_lun_id))) {
mtx_unlock(&ctl_softc->ctl_lock);
if (be_lun->req_lun_id > (CTL_MAX_LUNS - 1)) {
printf("ctl: requested LUN ID %d is higher "
"than CTL_MAX_LUNS - 1 (%d)\n",
be_lun->req_lun_id, CTL_MAX_LUNS - 1);
} else {
/*
* XXX KDM return an error, or just assign
* another LUN ID in this case??
*/
printf("ctl: requested LUN ID %d is already "
"in use\n", be_lun->req_lun_id);
}
fail:
free(lun->lun_devid, M_CTL);
if (lun->flags & CTL_LUN_MALLOCED)
free(lun, M_CTL);
be_lun->lun_config_status(be_lun->be_lun,
CTL_LUN_CONFIG_FAILURE);
return (ENOSPC);
}
lun_number = be_lun->req_lun_id;
} else {
lun_number = ctl_ffz(ctl_softc->ctl_lun_mask, 0, CTL_MAX_LUNS);
if (lun_number == -1) {
mtx_unlock(&ctl_softc->ctl_lock);
printf("ctl: can't allocate LUN, out of LUNs\n");
goto fail;
}
}
ctl_set_mask(ctl_softc->ctl_lun_mask, lun_number);
mtx_unlock(&ctl_softc->ctl_lock);
mtx_init(&lun->lun_lock, "CTL LUN", NULL, MTX_DEF);
lun->lun = lun_number;
lun->be_lun = be_lun;
/*
* The processor LUN is always enabled. Disk LUNs come on line
* disabled, and must be enabled by the backend.
*/
lun->flags |= CTL_LUN_DISABLED;
lun->backend = be_lun->be;
be_lun->ctl_lun = lun;
be_lun->lun_id = lun_number;
atomic_add_int(&be_lun->be->num_luns, 1);
if (be_lun->flags & CTL_LUN_FLAG_EJECTED)
lun->flags |= CTL_LUN_EJECTED;
if (be_lun->flags & CTL_LUN_FLAG_NO_MEDIA)
lun->flags |= CTL_LUN_NO_MEDIA;
if (be_lun->flags & CTL_LUN_FLAG_STOPPED)
lun->flags |= CTL_LUN_STOPPED;
if (be_lun->flags & CTL_LUN_FLAG_PRIMARY)
lun->flags |= CTL_LUN_PRIMARY_SC;
value = ctl_get_opt(&be_lun->options, "removable");
if (value != NULL) {
if (strcmp(value, "on") == 0)
lun->flags |= CTL_LUN_REMOVABLE;
} else if (be_lun->lun_type == T_CDROM)
lun->flags |= CTL_LUN_REMOVABLE;
lun->ctl_softc = ctl_softc;
#ifdef CTL_TIME_IO
lun->last_busy = getsbinuptime();
#endif
TAILQ_INIT(&lun->ooa_queue);
TAILQ_INIT(&lun->blocked_queue);
STAILQ_INIT(&lun->error_list);
lun->ie_reported = 1;
callout_init_mtx(&lun->ie_callout, &lun->lun_lock, 0);
ctl_tpc_lun_init(lun);
if (lun->flags & CTL_LUN_REMOVABLE) {
lun->prevent = malloc((CTL_MAX_INITIATORS + 31) / 32 * 4,
M_CTL, M_WAITOK);
}
/*
* Initialize the mode and log page index.
*/
ctl_init_page_index(lun);
ctl_init_log_page_index(lun);
/* Setup statistics gathering */
#ifdef CTL_LEGACY_STATS
lun->legacy_stats.device_type = be_lun->lun_type;
lun->legacy_stats.lun_number = lun_number;
lun->legacy_stats.blocksize = be_lun->blocksize;
if (be_lun->blocksize == 0)
lun->legacy_stats.flags = CTL_LUN_STATS_NO_BLOCKSIZE;
for (len = 0; len < CTL_MAX_PORTS; len++)
lun->legacy_stats.ports[len].targ_port = len;
#endif /* CTL_LEGACY_STATS */
lun->stats.item = lun_number;
/*
* Now, before we insert this lun on the lun list, set the lun
* inventory changed UA for all other luns.
*/
mtx_lock(&ctl_softc->ctl_lock);
STAILQ_FOREACH(nlun, &ctl_softc->lun_list, links) {
mtx_lock(&nlun->lun_lock);
ctl_est_ua_all(nlun, -1, CTL_UA_LUN_CHANGE);
mtx_unlock(&nlun->lun_lock);
}
STAILQ_INSERT_TAIL(&ctl_softc->lun_list, lun, links);
ctl_softc->ctl_luns[lun_number] = lun;
ctl_softc->num_luns++;
mtx_unlock(&ctl_softc->ctl_lock);
lun->be_lun->lun_config_status(lun->be_lun->be_lun, CTL_LUN_CONFIG_OK);
return (0);
}
/*
* Delete a LUN.
* Assumptions:
* - LUN has already been marked invalid and any pending I/O has been taken
* care of.
*/
static int
ctl_free_lun(struct ctl_lun *lun)
{
struct ctl_softc *softc = lun->ctl_softc;
struct ctl_lun *nlun;
int i;
mtx_assert(&softc->ctl_lock, MA_OWNED);
STAILQ_REMOVE(&softc->lun_list, lun, ctl_lun, links);
ctl_clear_mask(softc->ctl_lun_mask, lun->lun);
softc->ctl_luns[lun->lun] = NULL;
if (!TAILQ_EMPTY(&lun->ooa_queue))
panic("Freeing a LUN %p with outstanding I/O!!\n", lun);
softc->num_luns--;
/*
* Tell the backend to free resources, if this LUN has a backend.
*/
atomic_subtract_int(&lun->be_lun->be->num_luns, 1);
lun->be_lun->lun_shutdown(lun->be_lun->be_lun);
lun->ie_reportcnt = UINT32_MAX;
callout_drain(&lun->ie_callout);
ctl_tpc_lun_shutdown(lun);
mtx_destroy(&lun->lun_lock);
free(lun->lun_devid, M_CTL);
for (i = 0; i < CTL_MAX_PORTS; i++)
free(lun->pending_ua[i], M_CTL);
for (i = 0; i < CTL_MAX_PORTS; i++)
free(lun->pr_keys[i], M_CTL);
free(lun->write_buffer, M_CTL);
free(lun->prevent, M_CTL);
if (lun->flags & CTL_LUN_MALLOCED)
free(lun, M_CTL);
STAILQ_FOREACH(nlun, &softc->lun_list, links) {
mtx_lock(&nlun->lun_lock);
ctl_est_ua_all(nlun, -1, CTL_UA_LUN_CHANGE);
mtx_unlock(&nlun->lun_lock);
}
return (0);
}
static void
ctl_create_lun(struct ctl_be_lun *be_lun)
{
/*
* ctl_alloc_lun() should handle all potential failure cases.
*/
ctl_alloc_lun(control_softc, NULL, be_lun);
}
int
ctl_add_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *softc = control_softc;
mtx_lock(&softc->ctl_lock);
STAILQ_INSERT_TAIL(&softc->pending_lun_queue, be_lun, links);
mtx_unlock(&softc->ctl_lock);
wakeup(&softc->pending_lun_queue);
return (0);
}
int
ctl_enable_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *softc;
struct ctl_port *port, *nport;
struct ctl_lun *lun;
int retval;
lun = (struct ctl_lun *)be_lun->ctl_lun;
softc = lun->ctl_softc;
mtx_lock(&softc->ctl_lock);
mtx_lock(&lun->lun_lock);
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
/*
* eh? Why did we get called if the LUN is already
* enabled?
*/
mtx_unlock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
return (0);
}
lun->flags &= ~CTL_LUN_DISABLED;
mtx_unlock(&lun->lun_lock);
STAILQ_FOREACH_SAFE(port, &softc->port_list, links, nport) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0 ||
port->lun_map != NULL || port->lun_enable == NULL)
continue;
/*
* Drop the lock while we call the FETD's enable routine.
* This can lead to a callback into CTL (at least in the
* case of the internal initiator frontend.
*/
mtx_unlock(&softc->ctl_lock);
retval = port->lun_enable(port->targ_lun_arg, lun->lun);
mtx_lock(&softc->ctl_lock);
if (retval != 0) {
printf("%s: FETD %s port %d returned error "
"%d for lun_enable on lun %jd\n",
__func__, port->port_name, port->targ_port,
retval, (intmax_t)lun->lun);
}
}
mtx_unlock(&softc->ctl_lock);
ctl_isc_announce_lun(lun);
return (0);
}
int
ctl_disable_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *softc;
struct ctl_port *port;
struct ctl_lun *lun;
int retval;
lun = (struct ctl_lun *)be_lun->ctl_lun;
softc = lun->ctl_softc;
mtx_lock(&softc->ctl_lock);
mtx_lock(&lun->lun_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
return (0);
}
lun->flags |= CTL_LUN_DISABLED;
mtx_unlock(&lun->lun_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0 ||
port->lun_map != NULL || port->lun_disable == NULL)
continue;
/*
* Drop the lock before we call the frontend's disable
* routine, to avoid lock order reversals.
*
* XXX KDM what happens if the frontend list changes while
* we're traversing it? It's unlikely, but should be handled.
*/
mtx_unlock(&softc->ctl_lock);
retval = port->lun_disable(port->targ_lun_arg, lun->lun);
mtx_lock(&softc->ctl_lock);
if (retval != 0) {
printf("%s: FETD %s port %d returned error "
"%d for lun_disable on lun %jd\n",
__func__, port->port_name, port->targ_port,
retval, (intmax_t)lun->lun);
}
}
mtx_unlock(&softc->ctl_lock);
ctl_isc_announce_lun(lun);
return (0);
}
int
ctl_start_lun(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags &= ~CTL_LUN_STOPPED;
mtx_unlock(&lun->lun_lock);
return (0);
}
int
ctl_stop_lun(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags |= CTL_LUN_STOPPED;
mtx_unlock(&lun->lun_lock);
return (0);
}
int
ctl_lun_no_media(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags |= CTL_LUN_NO_MEDIA;
mtx_unlock(&lun->lun_lock);
return (0);
}
int
ctl_lun_has_media(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
union ctl_ha_msg msg;
mtx_lock(&lun->lun_lock);
lun->flags &= ~(CTL_LUN_NO_MEDIA | CTL_LUN_EJECTED);
if (lun->flags & CTL_LUN_REMOVABLE)
ctl_est_ua_all(lun, -1, CTL_UA_MEDIUM_CHANGE);
mtx_unlock(&lun->lun_lock);
if ((lun->flags & CTL_LUN_REMOVABLE) &&
lun->ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
bzero(&msg.ua, sizeof(msg.ua));
msg.hdr.msg_type = CTL_MSG_UA;
msg.hdr.nexus.initid = -1;
msg.hdr.nexus.targ_port = -1;
msg.hdr.nexus.targ_lun = lun->lun;
msg.hdr.nexus.targ_mapped_lun = lun->lun;
msg.ua.ua_all = 1;
msg.ua.ua_set = 1;
msg.ua.ua_type = CTL_UA_MEDIUM_CHANGE;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg.ua),
M_WAITOK);
}
return (0);
}
int
ctl_lun_ejected(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags |= CTL_LUN_EJECTED;
mtx_unlock(&lun->lun_lock);
return (0);
}
int
ctl_lun_primary(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags |= CTL_LUN_PRIMARY_SC;
ctl_est_ua_all(lun, -1, CTL_UA_ASYM_ACC_CHANGE);
mtx_unlock(&lun->lun_lock);
ctl_isc_announce_lun(lun);
return (0);
}
int
ctl_lun_secondary(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&lun->lun_lock);
lun->flags &= ~CTL_LUN_PRIMARY_SC;
ctl_est_ua_all(lun, -1, CTL_UA_ASYM_ACC_CHANGE);
mtx_unlock(&lun->lun_lock);
ctl_isc_announce_lun(lun);
return (0);
}
int
ctl_invalidate_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *softc;
struct ctl_lun *lun;
lun = (struct ctl_lun *)be_lun->ctl_lun;
softc = lun->ctl_softc;
mtx_lock(&lun->lun_lock);
/*
* The LUN needs to be disabled before it can be marked invalid.
*/
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
mtx_unlock(&lun->lun_lock);
return (-1);
}
/*
* Mark the LUN invalid.
*/
lun->flags |= CTL_LUN_INVALID;
/*
* If there is nothing in the OOA queue, go ahead and free the LUN.
* If we have something in the OOA queue, we'll free it when the
* last I/O completes.
*/
if (TAILQ_EMPTY(&lun->ooa_queue)) {
mtx_unlock(&lun->lun_lock);
mtx_lock(&softc->ctl_lock);
ctl_free_lun(lun);
mtx_unlock(&softc->ctl_lock);
} else
mtx_unlock(&lun->lun_lock);
return (0);
}
void
ctl_lun_capacity_changed(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun = (struct ctl_lun *)be_lun->ctl_lun;
union ctl_ha_msg msg;
mtx_lock(&lun->lun_lock);
ctl_est_ua_all(lun, -1, CTL_UA_CAPACITY_CHANGE);
mtx_unlock(&lun->lun_lock);
if (lun->ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
/* Send msg to other side. */
bzero(&msg.ua, sizeof(msg.ua));
msg.hdr.msg_type = CTL_MSG_UA;
msg.hdr.nexus.initid = -1;
msg.hdr.nexus.targ_port = -1;
msg.hdr.nexus.targ_lun = lun->lun;
msg.hdr.nexus.targ_mapped_lun = lun->lun;
msg.ua.ua_all = 1;
msg.ua.ua_set = 1;
msg.ua.ua_type = CTL_UA_CAPACITY_CHANGE;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg.ua),
M_WAITOK);
}
}
/*
* Backend "memory move is complete" callback for requests that never
* make it down to say RAIDCore's configuration code.
*/
int
ctl_config_move_done(union ctl_io *io)
{
int retval;
CTL_DEBUG_PRINT(("ctl_config_move_done\n"));
KASSERT(io->io_hdr.io_type == CTL_IO_SCSI,
("Config I/O type isn't CTL_IO_SCSI (%d)!", io->io_hdr.io_type));
if ((io->io_hdr.port_status != 0) &&
((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE ||
(io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)) {
ctl_set_internal_failure(&io->scsiio, /*sks_valid*/ 1,
/*retry_count*/ io->io_hdr.port_status);
} else if (io->scsiio.kern_data_resid != 0 &&
(io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT &&
((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE ||
(io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)) {
ctl_set_invalid_field_ciu(&io->scsiio);
}
if (ctl_debug & CTL_DEBUG_CDB_DATA)
ctl_data_print(io);
if (((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN) ||
((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE &&
(io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS) ||
((io->io_hdr.flags & CTL_FLAG_ABORT) != 0)) {
/*
* XXX KDM just assuming a single pointer here, and not a
* S/G list. If we start using S/G lists for config data,
* we'll need to know how to clean them up here as well.
*/
if (io->io_hdr.flags & CTL_FLAG_ALLOCATED)
free(io->scsiio.kern_data_ptr, M_CTL);
ctl_done(io);
retval = CTL_RETVAL_COMPLETE;
} else {
/*
* XXX KDM now we need to continue data movement. Some
* options:
* - call ctl_scsiio() again? We don't do this for data
* writes, because for those at least we know ahead of
* time where the write will go and how long it is. For
* config writes, though, that information is largely
* contained within the write itself, thus we need to
* parse out the data again.
*
* - Call some other function once the data is in?
*/
/*
* XXX KDM call ctl_scsiio() again for now, and check flag
* bits to see whether we're allocated or not.
*/
retval = ctl_scsiio(&io->scsiio);
}
return (retval);
}
/*
* This gets called by a backend driver when it is done with a
* data_submit method.
*/
void
ctl_data_submit_done(union ctl_io *io)
{
/*
* If the IO_CONT flag is set, we need to call the supplied
* function to continue processing the I/O, instead of completing
* the I/O just yet.
*
* If there is an error, though, we don't want to keep processing.
* Instead, just send status back to the initiator.
*/
if ((io->io_hdr.flags & CTL_FLAG_IO_CONT) &&
(io->io_hdr.flags & CTL_FLAG_ABORT) == 0 &&
((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE ||
(io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)) {
io->scsiio.io_cont(io);
return;
}
ctl_done(io);
}
/*
* This gets called by a backend driver when it is done with a
* configuration write.
*/
void
ctl_config_write_done(union ctl_io *io)
{
uint8_t *buf;
/*
* If the IO_CONT flag is set, we need to call the supplied
* function to continue processing the I/O, instead of completing
* the I/O just yet.
*
* If there is an error, though, we don't want to keep processing.
* Instead, just send status back to the initiator.
*/
if ((io->io_hdr.flags & CTL_FLAG_IO_CONT) &&
(io->io_hdr.flags & CTL_FLAG_ABORT) == 0 &&
((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE ||
(io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS)) {
io->scsiio.io_cont(io);
return;
}
/*
* Since a configuration write can be done for commands that actually
* have data allocated, like write buffer, and commands that have
* no data, like start/stop unit, we need to check here.
*/
if (io->io_hdr.flags & CTL_FLAG_ALLOCATED)
buf = io->scsiio.kern_data_ptr;
else
buf = NULL;
ctl_done(io);
if (buf)
free(buf, M_CTL);
}
void
ctl_config_read_done(union ctl_io *io)
{
uint8_t *buf;
/*
* If there is some error -- we are done, skip data transfer.
*/
if ((io->io_hdr.flags & CTL_FLAG_ABORT) != 0 ||
((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE &&
(io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)) {
if (io->io_hdr.flags & CTL_FLAG_ALLOCATED)
buf = io->scsiio.kern_data_ptr;
else
buf = NULL;
ctl_done(io);
if (buf)
free(buf, M_CTL);
return;
}
/*
* If the IO_CONT flag is set, we need to call the supplied
* function to continue processing the I/O, instead of completing
* the I/O just yet.
*/
if (io->io_hdr.flags & CTL_FLAG_IO_CONT) {
io->scsiio.io_cont(io);
return;
}
ctl_datamove(io);
}
/*
* SCSI release command.
*/
int
ctl_scsi_release(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
uint32_t residx;
CTL_DEBUG_PRINT(("ctl_scsi_release\n"));
residx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* XXX KDM right now, we only support LUN reservation. We don't
* support 3rd party reservations, or extent reservations, which
* might actually need the parameter list. If we've gotten this
* far, we've got a LUN reservation. Anything else got kicked out
* above. So, according to SPC, ignore the length.
*/
mtx_lock(&lun->lun_lock);
/*
* According to SPC, it is not an error for an intiator to attempt
* to release a reservation on a LUN that isn't reserved, or that
* is reserved by another initiator. The reservation can only be
* released, though, by the initiator who made it or by one of
* several reset type events.
*/
if ((lun->flags & CTL_LUN_RESERVED) && (lun->res_idx == residx))
lun->flags &= ~CTL_LUN_RESERVED;
mtx_unlock(&lun->lun_lock);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_scsi_reserve(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
uint32_t residx;
CTL_DEBUG_PRINT(("ctl_reserve\n"));
residx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* XXX KDM right now, we only support LUN reservation. We don't
* support 3rd party reservations, or extent reservations, which
* might actually need the parameter list. If we've gotten this
* far, we've got a LUN reservation. Anything else got kicked out
* above. So, according to SPC, ignore the length.
*/
mtx_lock(&lun->lun_lock);
if ((lun->flags & CTL_LUN_RESERVED) && (lun->res_idx != residx)) {
ctl_set_reservation_conflict(ctsio);
goto bailout;
}
/* SPC-3 exceptions to SPC-2 RESERVE and RELEASE behavior. */
if (lun->flags & CTL_LUN_PR_RESERVED) {
ctl_set_success(ctsio);
goto bailout;
}
lun->flags |= CTL_LUN_RESERVED;
lun->res_idx = residx;
ctl_set_success(ctsio);
bailout:
mtx_unlock(&lun->lun_lock);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_start_stop(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_start_stop_unit *cdb;
int retval;
CTL_DEBUG_PRINT(("ctl_start_stop\n"));
cdb = (struct scsi_start_stop_unit *)ctsio->cdb;
if ((cdb->how & SSS_PC_MASK) == 0) {
if ((lun->flags & CTL_LUN_PR_RESERVED) &&
(cdb->how & SSS_START) == 0) {
uint32_t residx;
residx = ctl_get_initindex(&ctsio->io_hdr.nexus);
if (ctl_get_prkey(lun, residx) == 0 ||
(lun->pr_res_idx != residx && lun->pr_res_type < 4)) {
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
if ((cdb->how & SSS_LOEJ) &&
(lun->flags & CTL_LUN_REMOVABLE) == 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 4,
/*bit_valid*/ 1,
/*bit*/ 1);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if ((cdb->how & SSS_START) == 0 && (cdb->how & SSS_LOEJ) &&
lun->prevent_count > 0) {
/* "Medium removal prevented" */
ctl_set_sense(ctsio, /*current_error*/ 1,
/*sense_key*/(lun->flags & CTL_LUN_NO_MEDIA) ?
SSD_KEY_NOT_READY : SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x53, /*ascq*/ 0x02, SSD_ELEM_NONE);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
retval = lun->backend->config_write((union ctl_io *)ctsio);
return (retval);
}
int
ctl_prevent_allow(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_prevent *cdb;
int retval;
uint32_t initidx;
CTL_DEBUG_PRINT(("ctl_prevent_allow\n"));
cdb = (struct scsi_prevent *)ctsio->cdb;
if ((lun->flags & CTL_LUN_REMOVABLE) == 0 || lun->prevent == NULL) {
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
mtx_lock(&lun->lun_lock);
if ((cdb->how & PR_PREVENT) &&
ctl_is_set(lun->prevent, initidx) == 0) {
ctl_set_mask(lun->prevent, initidx);
lun->prevent_count++;
} else if ((cdb->how & PR_PREVENT) == 0 &&
ctl_is_set(lun->prevent, initidx)) {
ctl_clear_mask(lun->prevent, initidx);
lun->prevent_count--;
}
mtx_unlock(&lun->lun_lock);
retval = lun->backend->config_write((union ctl_io *)ctsio);
return (retval);
}
/*
* We support the SYNCHRONIZE CACHE command (10 and 16 byte versions), but
* we don't really do anything with the LBA and length fields if the user
* passes them in. Instead we'll just flush out the cache for the entire
* LUN.
*/
int
ctl_sync_cache(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct ctl_lba_len_flags *lbalen;
uint64_t starting_lba;
uint32_t block_count;
int retval;
uint8_t byte2;
CTL_DEBUG_PRINT(("ctl_sync_cache\n"));
retval = 0;
switch (ctsio->cdb[0]) {
case SYNCHRONIZE_CACHE: {
struct scsi_sync_cache *cdb;
cdb = (struct scsi_sync_cache *)ctsio->cdb;
starting_lba = scsi_4btoul(cdb->begin_lba);
block_count = scsi_2btoul(cdb->lb_count);
byte2 = cdb->byte2;
break;
}
case SYNCHRONIZE_CACHE_16: {
struct scsi_sync_cache_16 *cdb;
cdb = (struct scsi_sync_cache_16 *)ctsio->cdb;
starting_lba = scsi_8btou64(cdb->begin_lba);
block_count = scsi_4btoul(cdb->lb_count);
byte2 = cdb->byte2;
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
goto bailout;
break; /* NOTREACHED */
}
/*
* We check the LBA and length, but don't do anything with them.
* A SYNCHRONIZE CACHE will cause the entire cache for this lun to
* get flushed. This check will just help satisfy anyone who wants
* to see an error for an out of range LBA.
*/
if ((starting_lba + block_count) > (lun->be_lun->maxlba + 1)) {
ctl_set_lba_out_of_range(ctsio,
MAX(starting_lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
lbalen = (struct ctl_lba_len_flags *)&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = starting_lba;
lbalen->len = block_count;
lbalen->flags = byte2;
retval = lun->backend->config_write((union ctl_io *)ctsio);
bailout:
return (retval);
}
int
ctl_format(struct ctl_scsiio *ctsio)
{
struct scsi_format *cdb;
int length, defect_list_len;
CTL_DEBUG_PRINT(("ctl_format\n"));
cdb = (struct scsi_format *)ctsio->cdb;
length = 0;
if (cdb->byte2 & SF_FMTDATA) {
if (cdb->byte2 & SF_LONGLIST)
length = sizeof(struct scsi_format_header_long);
else
length = sizeof(struct scsi_format_header_short);
}
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
&& (length > 0)) {
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
ctsio->kern_data_len = length;
ctsio->kern_total_len = length;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
defect_list_len = 0;
if (cdb->byte2 & SF_FMTDATA) {
if (cdb->byte2 & SF_LONGLIST) {
struct scsi_format_header_long *header;
header = (struct scsi_format_header_long *)
ctsio->kern_data_ptr;
defect_list_len = scsi_4btoul(header->defect_list_len);
if (defect_list_len != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
goto bailout;
}
} else {
struct scsi_format_header_short *header;
header = (struct scsi_format_header_short *)
ctsio->kern_data_ptr;
defect_list_len = scsi_2btoul(header->defect_list_len);
if (defect_list_len != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
goto bailout;
}
}
}
ctl_set_success(ctsio);
bailout:
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
free(ctsio->kern_data_ptr, M_CTL);
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
}
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_read_buffer(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
uint64_t buffer_offset;
uint32_t len;
uint8_t byte2;
static uint8_t descr[4];
static uint8_t echo_descr[4] = { 0 };
CTL_DEBUG_PRINT(("ctl_read_buffer\n"));
switch (ctsio->cdb[0]) {
case READ_BUFFER: {
struct scsi_read_buffer *cdb;
cdb = (struct scsi_read_buffer *)ctsio->cdb;
buffer_offset = scsi_3btoul(cdb->offset);
len = scsi_3btoul(cdb->length);
byte2 = cdb->byte2;
break;
}
case READ_BUFFER_16: {
struct scsi_read_buffer_16 *cdb;
cdb = (struct scsi_read_buffer_16 *)ctsio->cdb;
buffer_offset = scsi_8btou64(cdb->offset);
len = scsi_4btoul(cdb->length);
byte2 = cdb->byte2;
break;
}
default: /* This shouldn't happen. */
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (buffer_offset > CTL_WRITE_BUFFER_SIZE ||
buffer_offset + len > CTL_WRITE_BUFFER_SIZE) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 6,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if ((byte2 & RWB_MODE) == RWB_MODE_DESCR) {
descr[0] = 0;
scsi_ulto3b(CTL_WRITE_BUFFER_SIZE, &descr[1]);
ctsio->kern_data_ptr = descr;
len = min(len, sizeof(descr));
} else if ((byte2 & RWB_MODE) == RWB_MODE_ECHO_DESCR) {
ctsio->kern_data_ptr = echo_descr;
len = min(len, sizeof(echo_descr));
} else {
if (lun->write_buffer == NULL) {
lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE,
M_CTL, M_WAITOK);
}
ctsio->kern_data_ptr = lun->write_buffer + buffer_offset;
}
ctsio->kern_data_len = len;
ctsio->kern_total_len = len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctl_set_success(ctsio);
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_write_buffer(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_write_buffer *cdb;
int buffer_offset, len;
CTL_DEBUG_PRINT(("ctl_write_buffer\n"));
cdb = (struct scsi_write_buffer *)ctsio->cdb;
len = scsi_3btoul(cdb->length);
buffer_offset = scsi_3btoul(cdb->offset);
if (buffer_offset + len > CTL_WRITE_BUFFER_SIZE) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 6,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* If we've got a kernel request that hasn't been malloced yet,
* malloc it and tell the caller the data buffer is here.
*/
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
if (lun->write_buffer == NULL) {
lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE,
M_CTL, M_WAITOK);
}
ctsio->kern_data_ptr = lun->write_buffer + buffer_offset;
ctsio->kern_data_len = len;
ctsio->kern_total_len = len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_write_same(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct ctl_lba_len_flags *lbalen;
uint64_t lba;
uint32_t num_blocks;
int len, retval;
uint8_t byte2;
CTL_DEBUG_PRINT(("ctl_write_same\n"));
switch (ctsio->cdb[0]) {
case WRITE_SAME_10: {
struct scsi_write_same_10 *cdb;
cdb = (struct scsi_write_same_10 *)ctsio->cdb;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
byte2 = cdb->byte2;
break;
}
case WRITE_SAME_16: {
struct scsi_write_same_16 *cdb;
cdb = (struct scsi_write_same_16 *)ctsio->cdb;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
byte2 = cdb->byte2;
break;
}
default:
/*
* We got a command we don't support. This shouldn't
* happen, commands should be filtered out above us.
*/
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/* ANCHOR flag can be used only together with UNMAP */
if ((byte2 & SWS_UNMAP) == 0 && (byte2 & SWS_ANCHOR) != 0) {
ctl_set_invalid_field(ctsio, /*sks_valid*/ 1,
/*command*/ 1, /*field*/ 1, /*bit_valid*/ 1, /*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* The first check is to make sure we're in bounds, the second
* check is to catch wrap-around problems. If the lba + num blocks
* is less than the lba, then we've wrapped around and the block
* range is invalid anyway.
*/
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio,
MAX(lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* Zero number of blocks means "to the last logical block" */
if (num_blocks == 0) {
if ((lun->be_lun->maxlba + 1) - lba > UINT32_MAX) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 0,
/*command*/ 1,
/*field*/ 0,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
num_blocks = (lun->be_lun->maxlba + 1) - lba;
}
len = lun->be_lun->blocksize;
/*
* If we've got a kernel request that hasn't been malloced yet,
* malloc it and tell the caller the data buffer is here.
*/
if ((byte2 & SWS_NDOB) == 0 &&
(ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(len, M_CTL, M_WAITOK);
ctsio->kern_data_len = len;
ctsio->kern_total_len = len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lbalen = (struct ctl_lba_len_flags *)&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = lba;
lbalen->len = num_blocks;
lbalen->flags = byte2;
retval = lun->backend->config_write((union ctl_io *)ctsio);
return (retval);
}
int
ctl_unmap(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_unmap *cdb;
struct ctl_ptr_len_flags *ptrlen;
struct scsi_unmap_header *hdr;
struct scsi_unmap_desc *buf, *end, *endnz, *range;
uint64_t lba;
uint32_t num_blocks;
int len, retval;
uint8_t byte2;
CTL_DEBUG_PRINT(("ctl_unmap\n"));
cdb = (struct scsi_unmap *)ctsio->cdb;
len = scsi_2btoul(cdb->length);
byte2 = cdb->byte2;
/*
* If we've got a kernel request that hasn't been malloced yet,
* malloc it and tell the caller the data buffer is here.
*/
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(len, M_CTL, M_WAITOK);
ctsio->kern_data_len = len;
ctsio->kern_total_len = len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
len = ctsio->kern_total_len - ctsio->kern_data_resid;
hdr = (struct scsi_unmap_header *)ctsio->kern_data_ptr;
if (len < sizeof (*hdr) ||
len < (scsi_2btoul(hdr->length) + sizeof(hdr->length)) ||
len < (scsi_2btoul(hdr->desc_length) + sizeof (*hdr)) ||
scsi_2btoul(hdr->desc_length) % sizeof(*buf) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 0,
/*command*/ 0,
/*field*/ 0,
/*bit_valid*/ 0,
/*bit*/ 0);
goto done;
}
len = scsi_2btoul(hdr->desc_length);
buf = (struct scsi_unmap_desc *)(hdr + 1);
end = buf + len / sizeof(*buf);
endnz = buf;
for (range = buf; range < end; range++) {
lba = scsi_8btou64(range->lba);
num_blocks = scsi_4btoul(range->length);
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio,
MAX(lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (num_blocks != 0)
endnz = range + 1;
}
/*
* Block backend can not handle zero last range.
* Filter it out and return if there is nothing left.
*/
len = (uint8_t *)endnz - (uint8_t *)buf;
if (len == 0) {
ctl_set_success(ctsio);
goto done;
}
mtx_lock(&lun->lun_lock);
ptrlen = (struct ctl_ptr_len_flags *)
&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
ptrlen->ptr = (void *)buf;
ptrlen->len = len;
ptrlen->flags = byte2;
ctl_check_blocked(lun);
mtx_unlock(&lun->lun_lock);
retval = lun->backend->config_write((union ctl_io *)ctsio);
return (retval);
done:
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
free(ctsio->kern_data_ptr, M_CTL);
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
}
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_default_page_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, uint8_t *page_ptr)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
uint8_t *current_cp;
int set_ua;
uint32_t initidx;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
set_ua = 0;
current_cp = (page_index->page_data + (page_index->page_len *
CTL_PAGE_CURRENT));
mtx_lock(&lun->lun_lock);
if (memcmp(current_cp, page_ptr, page_index->page_len)) {
memcpy(current_cp, page_ptr, page_index->page_len);
set_ua = 1;
}
if (set_ua != 0)
ctl_est_ua_all(lun, initidx, CTL_UA_MODE_CHANGE);
mtx_unlock(&lun->lun_lock);
if (set_ua) {
ctl_isc_announce_mode(lun,
ctl_get_initindex(&ctsio->io_hdr.nexus),
page_index->page_code, page_index->subpage);
}
return (CTL_RETVAL_COMPLETE);
}
static void
ctl_ie_timer(void *arg)
{
struct ctl_lun *lun = arg;
uint64_t t;
if (lun->ie_asc == 0)
return;
if (lun->MODE_IE.mrie == SIEP_MRIE_UA)
ctl_est_ua_all(lun, -1, CTL_UA_IE);
else
lun->ie_reported = 0;
if (lun->ie_reportcnt < scsi_4btoul(lun->MODE_IE.report_count)) {
lun->ie_reportcnt++;
t = scsi_4btoul(lun->MODE_IE.interval_timer);
if (t == 0 || t == UINT32_MAX)
t = 3000; /* 5 min */
callout_schedule(&lun->ie_callout, t * hz / 10);
}
}
int
ctl_ie_page_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, uint8_t *page_ptr)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_info_exceptions_page *pg;
uint64_t t;
(void)ctl_default_page_handler(ctsio, page_index, page_ptr);
pg = (struct scsi_info_exceptions_page *)page_ptr;
mtx_lock(&lun->lun_lock);
if (pg->info_flags & SIEP_FLAGS_TEST) {
lun->ie_asc = 0x5d;
lun->ie_ascq = 0xff;
if (pg->mrie == SIEP_MRIE_UA) {
ctl_est_ua_all(lun, -1, CTL_UA_IE);
lun->ie_reported = 1;
} else {
ctl_clr_ua_all(lun, -1, CTL_UA_IE);
lun->ie_reported = -1;
}
lun->ie_reportcnt = 1;
if (lun->ie_reportcnt < scsi_4btoul(pg->report_count)) {
lun->ie_reportcnt++;
t = scsi_4btoul(pg->interval_timer);
if (t == 0 || t == UINT32_MAX)
t = 3000; /* 5 min */
callout_reset(&lun->ie_callout, t * hz / 10,
ctl_ie_timer, lun);
}
} else {
lun->ie_asc = 0;
lun->ie_ascq = 0;
lun->ie_reported = 1;
ctl_clr_ua_all(lun, -1, CTL_UA_IE);
lun->ie_reportcnt = UINT32_MAX;
callout_stop(&lun->ie_callout);
}
mtx_unlock(&lun->lun_lock);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_do_mode_select(union ctl_io *io)
{
struct ctl_lun *lun = CTL_LUN(io);
struct scsi_mode_page_header *page_header;
struct ctl_page_index *page_index;
struct ctl_scsiio *ctsio;
int page_len, page_len_offset, page_len_size;
union ctl_modepage_info *modepage_info;
uint16_t *len_left, *len_used;
int retval, i;
ctsio = &io->scsiio;
page_index = NULL;
page_len = 0;
modepage_info = (union ctl_modepage_info *)
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
len_left = &modepage_info->header.len_left;
len_used = &modepage_info->header.len_used;
do_next_page:
page_header = (struct scsi_mode_page_header *)
(ctsio->kern_data_ptr + *len_used);
if (*len_left == 0) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if (*len_left < sizeof(struct scsi_mode_page_header)) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if ((page_header->page_code & SMPH_SPF)
&& (*len_left < sizeof(struct scsi_mode_page_header_sp))) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* XXX KDM should we do something with the block descriptor?
*/
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
page_index = &lun->mode_pages.index[i];
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
if ((page_index->page_code & SMPH_PC_MASK) !=
(page_header->page_code & SMPH_PC_MASK))
continue;
/*
* If neither page has a subpage code, then we've got a
* match.
*/
if (((page_index->page_code & SMPH_SPF) == 0)
&& ((page_header->page_code & SMPH_SPF) == 0)) {
page_len = page_header->page_length;
break;
}
/*
* If both pages have subpages, then the subpage numbers
* have to match.
*/
if ((page_index->page_code & SMPH_SPF)
&& (page_header->page_code & SMPH_SPF)) {
struct scsi_mode_page_header_sp *sph;
sph = (struct scsi_mode_page_header_sp *)page_header;
if (page_index->subpage == sph->subpage) {
page_len = scsi_2btoul(sph->page_length);
break;
}
}
}
/*
* If we couldn't find the page, or if we don't have a mode select
* handler for it, send back an error to the user.
*/
if ((i >= CTL_NUM_MODE_PAGES)
|| (page_index->select_handler == NULL)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used,
/*bit_valid*/ 0,
/*bit*/ 0);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (page_index->page_code & SMPH_SPF) {
page_len_offset = 2;
page_len_size = 2;
} else {
page_len_size = 1;
page_len_offset = 1;
}
/*
* If the length the initiator gives us isn't the one we specify in
* the mode page header, or if they didn't specify enough data in
* the CDB to avoid truncating this page, kick out the request.
*/
if (page_len != page_index->page_len - page_len_offset - page_len_size) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used + page_len_offset,
/*bit_valid*/ 0,
/*bit*/ 0);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (*len_left < page_index->page_len) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Run through the mode page, checking to make sure that the bits
* the user changed are actually legal for him to change.
*/
for (i = 0; i < page_index->page_len; i++) {
uint8_t *user_byte, *change_mask, *current_byte;
int bad_bit;
int j;
user_byte = (uint8_t *)page_header + i;
change_mask = page_index->page_data +
(page_index->page_len * CTL_PAGE_CHANGEABLE) + i;
current_byte = page_index->page_data +
(page_index->page_len * CTL_PAGE_CURRENT) + i;
/*
* Check to see whether the user set any bits in this byte
* that he is not allowed to set.
*/
if ((*user_byte & ~(*change_mask)) ==
(*current_byte & ~(*change_mask)))
continue;
/*
* Go through bit by bit to determine which one is illegal.
*/
bad_bit = 0;
for (j = 7; j >= 0; j--) {
if ((((1 << i) & ~(*change_mask)) & *user_byte) !=
(((1 << i) & ~(*change_mask)) & *current_byte)) {
bad_bit = i;
break;
}
}
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used + i,
/*bit_valid*/ 1,
/*bit*/ bad_bit);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Decrement these before we call the page handler, since we may
* end up getting called back one way or another before the handler
* returns to this context.
*/
*len_left -= page_index->page_len;
*len_used += page_index->page_len;
retval = page_index->select_handler(ctsio, page_index,
(uint8_t *)page_header);
/*
* If the page handler returns CTL_RETVAL_QUEUED, then we need to
* wait until this queued command completes to finish processing
* the mode page. If it returns anything other than
* CTL_RETVAL_COMPLETE (e.g. CTL_RETVAL_ERROR), then it should have
* already set the sense information, freed the data pointer, and
* completed the io for us.
*/
if (retval != CTL_RETVAL_COMPLETE)
goto bailout_no_done;
/*
* If the initiator sent us more than one page, parse the next one.
*/
if (*len_left > 0)
goto do_next_page;
ctl_set_success(ctsio);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
bailout_no_done:
return (CTL_RETVAL_COMPLETE);
}
int
ctl_mode_select(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
union ctl_modepage_info *modepage_info;
int bd_len, i, header_size, param_len, pf, rtd, sp;
uint32_t initidx;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
switch (ctsio->cdb[0]) {
case MODE_SELECT_6: {
struct scsi_mode_select_6 *cdb;
cdb = (struct scsi_mode_select_6 *)ctsio->cdb;
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
rtd = (cdb->byte2 & SMS_RTD) ? 1 : 0;
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
param_len = cdb->length;
header_size = sizeof(struct scsi_mode_header_6);
break;
}
case MODE_SELECT_10: {
struct scsi_mode_select_10 *cdb;
cdb = (struct scsi_mode_select_10 *)ctsio->cdb;
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
rtd = (cdb->byte2 & SMS_RTD) ? 1 : 0;
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
param_len = scsi_2btoul(cdb->length);
header_size = sizeof(struct scsi_mode_header_10);
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (rtd) {
if (param_len != 0) {
ctl_set_invalid_field(ctsio, /*sks_valid*/ 0,
/*command*/ 1, /*field*/ 0,
/*bit_valid*/ 0, /*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* Revert to defaults. */
ctl_init_page_index(lun);
mtx_lock(&lun->lun_lock);
ctl_est_ua_all(lun, initidx, CTL_UA_MODE_CHANGE);
mtx_unlock(&lun->lun_lock);
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
ctl_isc_announce_mode(lun, -1,
lun->mode_pages.index[i].page_code & SMPH_PC_MASK,
lun->mode_pages.index[i].subpage);
}
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* From SPC-3:
* "A parameter list length of zero indicates that the Data-Out Buffer
* shall be empty. This condition shall not be considered as an error."
*/
if (param_len == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Since we'll hit this the first time through, prior to
* allocation, we don't need to free a data buffer here.
*/
if (param_len < header_size) {
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Allocate the data buffer and grab the user's data. In theory,
* we shouldn't have to sanity check the parameter list length here
* because the maximum size is 64K. We should be able to malloc
* that much without too many problems.
*/
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
ctsio->kern_data_len = param_len;
ctsio->kern_total_len = param_len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
switch (ctsio->cdb[0]) {
case MODE_SELECT_6: {
struct scsi_mode_header_6 *mh6;
mh6 = (struct scsi_mode_header_6 *)ctsio->kern_data_ptr;
bd_len = mh6->blk_desc_len;
break;
}
case MODE_SELECT_10: {
struct scsi_mode_header_10 *mh10;
mh10 = (struct scsi_mode_header_10 *)ctsio->kern_data_ptr;
bd_len = scsi_2btoul(mh10->blk_desc_len);
break;
}
default:
panic("%s: Invalid CDB type %#x", __func__, ctsio->cdb[0]);
}
if (param_len < (header_size + bd_len)) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Set the IO_CONT flag, so that if this I/O gets passed to
* ctl_config_write_done(), it'll get passed back to
* ctl_do_mode_select() for further processing, or completion if
* we're all done.
*/
ctsio->io_hdr.flags |= CTL_FLAG_IO_CONT;
ctsio->io_cont = ctl_do_mode_select;
modepage_info = (union ctl_modepage_info *)
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
memset(modepage_info, 0, sizeof(*modepage_info));
modepage_info->header.len_left = param_len - header_size - bd_len;
modepage_info->header.len_used = header_size + bd_len;
return (ctl_do_mode_select((union ctl_io *)ctsio));
}
int
ctl_mode_sense(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
int pc, page_code, dbd, llba, subpage;
int alloc_len, page_len, header_len, total_len;
struct scsi_mode_block_descr *block_desc;
struct ctl_page_index *page_index;
dbd = 0;
llba = 0;
block_desc = NULL;
CTL_DEBUG_PRINT(("ctl_mode_sense\n"));
switch (ctsio->cdb[0]) {
case MODE_SENSE_6: {
struct scsi_mode_sense_6 *cdb;
cdb = (struct scsi_mode_sense_6 *)ctsio->cdb;
header_len = sizeof(struct scsi_mode_hdr_6);
if (cdb->byte2 & SMS_DBD)
dbd = 1;
else
header_len += sizeof(struct scsi_mode_block_descr);
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
page_code = cdb->page & SMS_PAGE_CODE;
subpage = cdb->subpage;
alloc_len = cdb->length;
break;
}
case MODE_SENSE_10: {
struct scsi_mode_sense_10 *cdb;
cdb = (struct scsi_mode_sense_10 *)ctsio->cdb;
header_len = sizeof(struct scsi_mode_hdr_10);
if (cdb->byte2 & SMS_DBD)
dbd = 1;
else
header_len += sizeof(struct scsi_mode_block_descr);
if (cdb->byte2 & SMS10_LLBAA)
llba = 1;
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
page_code = cdb->page & SMS_PAGE_CODE;
subpage = cdb->subpage;
alloc_len = scsi_2btoul(cdb->length);
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* We have to make a first pass through to calculate the size of
* the pages that match the user's query. Then we allocate enough
* memory to hold it, and actually copy the data into the buffer.
*/
switch (page_code) {
case SMS_ALL_PAGES_PAGE: {
u_int i;
page_len = 0;
/*
* At the moment, values other than 0 and 0xff here are
* reserved according to SPC-3.
*/
if ((subpage != SMS_SUBPAGE_PAGE_0)
&& (subpage != SMS_SUBPAGE_ALL)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 3,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
page_index = &lun->mode_pages.index[i];
/* Make sure the page is supported for this dev type */
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
/*
* We don't use this subpage if the user didn't
* request all subpages.
*/
if ((page_index->subpage != 0)
&& (subpage == SMS_SUBPAGE_PAGE_0))
continue;
#if 0
printf("found page %#x len %d\n",
page_index->page_code & SMPH_PC_MASK,
page_index->page_len);
#endif
page_len += page_index->page_len;
}
break;
}
default: {
u_int i;
page_len = 0;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
page_index = &lun->mode_pages.index[i];
/* Make sure the page is supported for this dev type */
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
/* Look for the right page code */
if ((page_index->page_code & SMPH_PC_MASK) != page_code)
continue;
/* Look for the right subpage or the subpage wildcard*/
if ((page_index->subpage != subpage)
&& (subpage != SMS_SUBPAGE_ALL))
continue;
#if 0
printf("found page %#x len %d\n",
page_index->page_code & SMPH_PC_MASK,
page_index->page_len);
#endif
page_len += page_index->page_len;
}
if (page_len == 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 5);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
break;
}
}
total_len = header_len + page_len;
#if 0
printf("header_len = %d, page_len = %d, total_len = %d\n",
header_len, page_len, total_len);
#endif
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
switch (ctsio->cdb[0]) {
case MODE_SENSE_6: {
struct scsi_mode_hdr_6 *header;
header = (struct scsi_mode_hdr_6 *)ctsio->kern_data_ptr;
header->datalen = MIN(total_len - 1, 254);
if (lun->be_lun->lun_type == T_DIRECT) {
header->dev_specific = 0x10; /* DPOFUA */
if ((lun->be_lun->flags & CTL_LUN_FLAG_READONLY) ||
(lun->MODE_CTRL.eca_and_aen & SCP_SWP) != 0)
header->dev_specific |= 0x80; /* WP */
}
if (dbd)
header->block_descr_len = 0;
else
header->block_descr_len =
sizeof(struct scsi_mode_block_descr);
block_desc = (struct scsi_mode_block_descr *)&header[1];
break;
}
case MODE_SENSE_10: {
struct scsi_mode_hdr_10 *header;
int datalen;
header = (struct scsi_mode_hdr_10 *)ctsio->kern_data_ptr;
datalen = MIN(total_len - 2, 65533);
scsi_ulto2b(datalen, header->datalen);
if (lun->be_lun->lun_type == T_DIRECT) {
header->dev_specific = 0x10; /* DPOFUA */
if ((lun->be_lun->flags & CTL_LUN_FLAG_READONLY) ||
(lun->MODE_CTRL.eca_and_aen & SCP_SWP) != 0)
header->dev_specific |= 0x80; /* WP */
}
if (dbd)
scsi_ulto2b(0, header->block_descr_len);
else
scsi_ulto2b(sizeof(struct scsi_mode_block_descr),
header->block_descr_len);
block_desc = (struct scsi_mode_block_descr *)&header[1];
break;
}
default:
panic("%s: Invalid CDB type %#x", __func__, ctsio->cdb[0]);
}
/*
* If we've got a disk, use its blocksize in the block
* descriptor. Otherwise, just set it to 0.
*/
if (dbd == 0) {
if (lun->be_lun->lun_type == T_DIRECT)
scsi_ulto3b(lun->be_lun->blocksize,
block_desc->block_len);
else
scsi_ulto3b(0, block_desc->block_len);
}
switch (page_code) {
case SMS_ALL_PAGES_PAGE: {
int i, data_used;
data_used = header_len;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
struct ctl_page_index *page_index;
page_index = &lun->mode_pages.index[i];
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
/*
* We don't use this subpage if the user didn't
* request all subpages. We already checked (above)
* to make sure the user only specified a subpage
* of 0 or 0xff in the SMS_ALL_PAGES_PAGE case.
*/
if ((page_index->subpage != 0)
&& (subpage == SMS_SUBPAGE_PAGE_0))
continue;
/*
* Call the handler, if it exists, to update the
* page to the latest values.
*/
if (page_index->sense_handler != NULL)
page_index->sense_handler(ctsio, page_index,pc);
memcpy(ctsio->kern_data_ptr + data_used,
page_index->page_data +
(page_index->page_len * pc),
page_index->page_len);
data_used += page_index->page_len;
}
break;
}
default: {
int i, data_used;
data_used = header_len;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
struct ctl_page_index *page_index;
page_index = &lun->mode_pages.index[i];
/* Look for the right page code */
if ((page_index->page_code & SMPH_PC_MASK) != page_code)
continue;
/* Look for the right subpage or the subpage wildcard*/
if ((page_index->subpage != subpage)
&& (subpage != SMS_SUBPAGE_ALL))
continue;
/* Make sure the page is supported for this dev type */
if (lun->be_lun->lun_type == T_DIRECT &&
(page_index->page_flags & CTL_PAGE_FLAG_DIRECT) == 0)
continue;
if (lun->be_lun->lun_type == T_PROCESSOR &&
(page_index->page_flags & CTL_PAGE_FLAG_PROC) == 0)
continue;
if (lun->be_lun->lun_type == T_CDROM &&
(page_index->page_flags & CTL_PAGE_FLAG_CDROM) == 0)
continue;
/*
* Call the handler, if it exists, to update the
* page to the latest values.
*/
if (page_index->sense_handler != NULL)
page_index->sense_handler(ctsio, page_index,pc);
memcpy(ctsio->kern_data_ptr + data_used,
page_index->page_data +
(page_index->page_len * pc),
page_index->page_len);
data_used += page_index->page_len;
}
break;
}
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_lbp_log_sense_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index,
int pc)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_log_param_header *phdr;
uint8_t *data;
uint64_t val;
data = page_index->page_data;
if (lun->backend->lun_attr != NULL &&
(val = lun->backend->lun_attr(lun->be_lun->be_lun, "blocksavail"))
!= UINT64_MAX) {
phdr = (struct scsi_log_param_header *)data;
scsi_ulto2b(0x0001, phdr->param_code);
phdr->param_control = SLP_LBIN | SLP_LP;
phdr->param_len = 8;
data = (uint8_t *)(phdr + 1);
scsi_ulto4b(val >> CTL_LBP_EXPONENT, data);
data[4] = 0x02; /* per-pool */
data += phdr->param_len;
}
if (lun->backend->lun_attr != NULL &&
(val = lun->backend->lun_attr(lun->be_lun->be_lun, "blocksused"))
!= UINT64_MAX) {
phdr = (struct scsi_log_param_header *)data;
scsi_ulto2b(0x0002, phdr->param_code);
phdr->param_control = SLP_LBIN | SLP_LP;
phdr->param_len = 8;
data = (uint8_t *)(phdr + 1);
scsi_ulto4b(val >> CTL_LBP_EXPONENT, data);
data[4] = 0x01; /* per-LUN */
data += phdr->param_len;
}
if (lun->backend->lun_attr != NULL &&
(val = lun->backend->lun_attr(lun->be_lun->be_lun, "poolblocksavail"))
!= UINT64_MAX) {
phdr = (struct scsi_log_param_header *)data;
scsi_ulto2b(0x00f1, phdr->param_code);
phdr->param_control = SLP_LBIN | SLP_LP;
phdr->param_len = 8;
data = (uint8_t *)(phdr + 1);
scsi_ulto4b(val >> CTL_LBP_EXPONENT, data);
data[4] = 0x02; /* per-pool */
data += phdr->param_len;
}
if (lun->backend->lun_attr != NULL &&
(val = lun->backend->lun_attr(lun->be_lun->be_lun, "poolblocksused"))
!= UINT64_MAX) {
phdr = (struct scsi_log_param_header *)data;
scsi_ulto2b(0x00f2, phdr->param_code);
phdr->param_control = SLP_LBIN | SLP_LP;
phdr->param_len = 8;
data = (uint8_t *)(phdr + 1);
scsi_ulto4b(val >> CTL_LBP_EXPONENT, data);
data[4] = 0x02; /* per-pool */
data += phdr->param_len;
}
page_index->page_len = data - page_index->page_data;
return (0);
}
int
ctl_sap_log_sense_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index,
int pc)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct stat_page *data;
struct bintime *t;
data = (struct stat_page *)page_index->page_data;
scsi_ulto2b(SLP_SAP, data->sap.hdr.param_code);
data->sap.hdr.param_control = SLP_LBIN;
data->sap.hdr.param_len = sizeof(struct scsi_log_stat_and_perf) -
sizeof(struct scsi_log_param_header);
scsi_u64to8b(lun->stats.operations[CTL_STATS_READ],
data->sap.read_num);
scsi_u64to8b(lun->stats.operations[CTL_STATS_WRITE],
data->sap.write_num);
if (lun->be_lun->blocksize > 0) {
scsi_u64to8b(lun->stats.bytes[CTL_STATS_WRITE] /
lun->be_lun->blocksize, data->sap.recvieved_lba);
scsi_u64to8b(lun->stats.bytes[CTL_STATS_READ] /
lun->be_lun->blocksize, data->sap.transmitted_lba);
}
t = &lun->stats.time[CTL_STATS_READ];
scsi_u64to8b((uint64_t)t->sec * 1000 + t->frac / (UINT64_MAX / 1000),
data->sap.read_int);
t = &lun->stats.time[CTL_STATS_WRITE];
scsi_u64to8b((uint64_t)t->sec * 1000 + t->frac / (UINT64_MAX / 1000),
data->sap.write_int);
scsi_u64to8b(0, data->sap.weighted_num);
scsi_u64to8b(0, data->sap.weighted_int);
scsi_ulto2b(SLP_IT, data->it.hdr.param_code);
data->it.hdr.param_control = SLP_LBIN;
data->it.hdr.param_len = sizeof(struct scsi_log_idle_time) -
sizeof(struct scsi_log_param_header);
#ifdef CTL_TIME_IO
scsi_u64to8b(lun->idle_time / SBT_1MS, data->it.idle_int);
#endif
scsi_ulto2b(SLP_TI, data->ti.hdr.param_code);
data->it.hdr.param_control = SLP_LBIN;
data->ti.hdr.param_len = sizeof(struct scsi_log_time_interval) -
sizeof(struct scsi_log_param_header);
scsi_ulto4b(3, data->ti.exponent);
scsi_ulto4b(1, data->ti.integer);
return (0);
}
int
ctl_ie_log_sense_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index,
int pc)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_log_informational_exceptions *data;
data = (struct scsi_log_informational_exceptions *)page_index->page_data;
scsi_ulto2b(SLP_IE_GEN, data->hdr.param_code);
data->hdr.param_control = SLP_LBIN;
data->hdr.param_len = sizeof(struct scsi_log_informational_exceptions) -
sizeof(struct scsi_log_param_header);
data->ie_asc = lun->ie_asc;
data->ie_ascq = lun->ie_ascq;
data->temperature = 0xff;
return (0);
}
int
ctl_log_sense(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
int i, pc, page_code, subpage;
int alloc_len, total_len;
struct ctl_page_index *page_index;
struct scsi_log_sense *cdb;
struct scsi_log_header *header;
CTL_DEBUG_PRINT(("ctl_log_sense\n"));
cdb = (struct scsi_log_sense *)ctsio->cdb;
pc = (cdb->page & SLS_PAGE_CTRL_MASK) >> 6;
page_code = cdb->page & SLS_PAGE_CODE;
subpage = cdb->subpage;
alloc_len = scsi_2btoul(cdb->length);
page_index = NULL;
for (i = 0; i < CTL_NUM_LOG_PAGES; i++) {
page_index = &lun->log_pages.index[i];
/* Look for the right page code */
if ((page_index->page_code & SL_PAGE_CODE) != page_code)
continue;
/* Look for the right subpage or the subpage wildcard*/
if (page_index->subpage != subpage)
continue;
break;
}
if (i >= CTL_NUM_LOG_PAGES) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
total_len = sizeof(struct scsi_log_header) + page_index->page_len;
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
header = (struct scsi_log_header *)ctsio->kern_data_ptr;
header->page = page_index->page_code;
if (page_index->page_code == SLS_LOGICAL_BLOCK_PROVISIONING)
header->page |= SL_DS;
if (page_index->subpage) {
header->page |= SL_SPF;
header->subpage = page_index->subpage;
}
scsi_ulto2b(page_index->page_len, header->datalen);
/*
* Call the handler, if it exists, to update the
* page to the latest values.
*/
if (page_index->sense_handler != NULL)
page_index->sense_handler(ctsio, page_index, pc);
memcpy(header + 1, page_index->page_data, page_index->page_len);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_read_capacity(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_read_capacity *cdb;
struct scsi_read_capacity_data *data;
uint32_t lba;
CTL_DEBUG_PRINT(("ctl_read_capacity\n"));
cdb = (struct scsi_read_capacity *)ctsio->cdb;
lba = scsi_4btoul(cdb->addr);
if (((cdb->pmi & SRC_PMI) == 0)
&& (lba != 0)) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK | M_ZERO);
data = (struct scsi_read_capacity_data *)ctsio->kern_data_ptr;
ctsio->kern_data_len = sizeof(*data);
ctsio->kern_total_len = sizeof(*data);
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
/*
* If the maximum LBA is greater than 0xfffffffe, the user must
* issue a SERVICE ACTION IN (16) command, with the read capacity
* serivce action set.
*/
if (lun->be_lun->maxlba > 0xfffffffe)
scsi_ulto4b(0xffffffff, data->addr);
else
scsi_ulto4b(lun->be_lun->maxlba, data->addr);
/*
* XXX KDM this may not be 512 bytes...
*/
scsi_ulto4b(lun->be_lun->blocksize, data->length);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_read_capacity_16(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_read_capacity_16 *cdb;
struct scsi_read_capacity_data_long *data;
uint64_t lba;
uint32_t alloc_len;
CTL_DEBUG_PRINT(("ctl_read_capacity_16\n"));
cdb = (struct scsi_read_capacity_16 *)ctsio->cdb;
alloc_len = scsi_4btoul(cdb->alloc_len);
lba = scsi_8btou64(cdb->addr);
if ((cdb->reladr & SRC16_PMI)
&& (lba != 0)) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK | M_ZERO);
data = (struct scsi_read_capacity_data_long *)ctsio->kern_data_ptr;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(sizeof(*data), alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
scsi_u64to8b(lun->be_lun->maxlba, data->addr);
/* XXX KDM this may not be 512 bytes... */
scsi_ulto4b(lun->be_lun->blocksize, data->length);
data->prot_lbppbe = lun->be_lun->pblockexp & SRC16_LBPPBE;
scsi_ulto2b(lun->be_lun->pblockoff & SRC16_LALBA_A, data->lalba_lbp);
if (lun->be_lun->flags & CTL_LUN_FLAG_UNMAP)
data->lalba_lbp[0] |= SRC16_LBPME | SRC16_LBPRZ;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_get_lba_status(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_get_lba_status *cdb;
struct scsi_get_lba_status_data *data;
struct ctl_lba_len_flags *lbalen;
uint64_t lba;
uint32_t alloc_len, total_len;
int retval;
CTL_DEBUG_PRINT(("ctl_get_lba_status\n"));
cdb = (struct scsi_get_lba_status *)ctsio->cdb;
lba = scsi_8btou64(cdb->addr);
alloc_len = scsi_4btoul(cdb->alloc_len);
if (lba > lun->be_lun->maxlba) {
ctl_set_lba_out_of_range(ctsio, lba);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
total_len = sizeof(*data) + sizeof(data->descr[0]);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
data = (struct scsi_get_lba_status_data *)ctsio->kern_data_ptr;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/* Fill dummy data in case backend can't tell anything. */
scsi_ulto4b(4 + sizeof(data->descr[0]), data->length);
scsi_u64to8b(lba, data->descr[0].addr);
scsi_ulto4b(MIN(UINT32_MAX, lun->be_lun->maxlba + 1 - lba),
data->descr[0].length);
data->descr[0].status = 0; /* Mapped or unknown. */
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
lbalen = (struct ctl_lba_len_flags *)&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = lba;
lbalen->len = total_len;
lbalen->flags = 0;
retval = lun->backend->config_read((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_read_defect(struct ctl_scsiio *ctsio)
{
struct scsi_read_defect_data_10 *ccb10;
struct scsi_read_defect_data_12 *ccb12;
struct scsi_read_defect_data_hdr_10 *data10;
struct scsi_read_defect_data_hdr_12 *data12;
uint32_t alloc_len, data_len;
uint8_t format;
CTL_DEBUG_PRINT(("ctl_read_defect\n"));
if (ctsio->cdb[0] == READ_DEFECT_DATA_10) {
ccb10 = (struct scsi_read_defect_data_10 *)&ctsio->cdb;
format = ccb10->format;
alloc_len = scsi_2btoul(ccb10->alloc_length);
data_len = sizeof(*data10);
} else {
ccb12 = (struct scsi_read_defect_data_12 *)&ctsio->cdb;
format = ccb12->format;
alloc_len = scsi_4btoul(ccb12->alloc_length);
data_len = sizeof(*data12);
}
if (alloc_len == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
if (ctsio->cdb[0] == READ_DEFECT_DATA_10) {
data10 = (struct scsi_read_defect_data_hdr_10 *)
ctsio->kern_data_ptr;
data10->format = format;
scsi_ulto2b(0, data10->length);
} else {
data12 = (struct scsi_read_defect_data_hdr_12 *)
ctsio->kern_data_ptr;
data12->format = format;
scsi_ulto2b(0, data12->generation);
scsi_ulto4b(0, data12->length);
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_report_tagret_port_groups(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_maintenance_in *cdb;
int retval;
int alloc_len, ext, total_len = 0, g, pc, pg, ts, os;
int num_ha_groups, num_target_ports, shared_group;
struct ctl_port *port;
struct scsi_target_group_data *rtg_ptr;
struct scsi_target_group_data_extended *rtg_ext_ptr;
struct scsi_target_port_group_descriptor *tpg_desc;
CTL_DEBUG_PRINT(("ctl_report_tagret_port_groups\n"));
cdb = (struct scsi_maintenance_in *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
switch (cdb->byte2 & STG_PDF_MASK) {
case STG_PDF_LENGTH:
ext = 0;
break;
case STG_PDF_EXTENDED:
ext = 1;
break;
default:
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 5);
ctl_done((union ctl_io *)ctsio);
return(retval);
}
num_target_ports = 0;
shared_group = (softc->is_single != 0);
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0)
continue;
if (ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
num_target_ports++;
if (port->status & CTL_PORT_STATUS_HA_SHARED)
shared_group = 1;
}
mtx_unlock(&softc->ctl_lock);
num_ha_groups = (softc->is_single) ? 0 : NUM_HA_SHELVES;
if (ext)
total_len = sizeof(struct scsi_target_group_data_extended);
else
total_len = sizeof(struct scsi_target_group_data);
total_len += sizeof(struct scsi_target_port_group_descriptor) *
(shared_group + num_ha_groups) +
sizeof(struct scsi_target_port_descriptor) * num_target_ports;
alloc_len = scsi_4btoul(cdb->length);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
if (ext) {
rtg_ext_ptr = (struct scsi_target_group_data_extended *)
ctsio->kern_data_ptr;
scsi_ulto4b(total_len - 4, rtg_ext_ptr->length);
rtg_ext_ptr->format_type = 0x10;
rtg_ext_ptr->implicit_transition_time = 0;
tpg_desc = &rtg_ext_ptr->groups[0];
} else {
rtg_ptr = (struct scsi_target_group_data *)
ctsio->kern_data_ptr;
scsi_ulto4b(total_len - 4, rtg_ptr->length);
tpg_desc = &rtg_ptr->groups[0];
}
mtx_lock(&softc->ctl_lock);
pg = softc->port_min / softc->port_cnt;
if (lun->flags & (CTL_LUN_PRIMARY_SC | CTL_LUN_PEER_SC_PRIMARY)) {
/* Some shelf is known to be primary. */
if (softc->ha_link == CTL_HA_LINK_OFFLINE)
os = TPG_ASYMMETRIC_ACCESS_UNAVAILABLE;
else if (softc->ha_link == CTL_HA_LINK_UNKNOWN)
os = TPG_ASYMMETRIC_ACCESS_TRANSITIONING;
else if (softc->ha_mode == CTL_HA_MODE_ACT_STBY)
os = TPG_ASYMMETRIC_ACCESS_STANDBY;
else
os = TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
if (lun->flags & CTL_LUN_PRIMARY_SC) {
ts = TPG_ASYMMETRIC_ACCESS_OPTIMIZED;
} else {
ts = os;
os = TPG_ASYMMETRIC_ACCESS_OPTIMIZED;
}
} else {
/* No known primary shelf. */
if (softc->ha_link == CTL_HA_LINK_OFFLINE) {
ts = TPG_ASYMMETRIC_ACCESS_UNAVAILABLE;
os = TPG_ASYMMETRIC_ACCESS_OPTIMIZED;
} else if (softc->ha_link == CTL_HA_LINK_UNKNOWN) {
ts = TPG_ASYMMETRIC_ACCESS_TRANSITIONING;
os = TPG_ASYMMETRIC_ACCESS_OPTIMIZED;
} else {
ts = os = TPG_ASYMMETRIC_ACCESS_TRANSITIONING;
}
}
if (shared_group) {
tpg_desc->pref_state = ts;
tpg_desc->support = TPG_AO_SUP | TPG_AN_SUP | TPG_S_SUP |
TPG_U_SUP | TPG_T_SUP;
scsi_ulto2b(1, tpg_desc->target_port_group);
tpg_desc->status = TPG_IMPLICIT;
pc = 0;
STAILQ_FOREACH(port, &softc->port_list, links) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0)
continue;
if (!softc->is_single &&
(port->status & CTL_PORT_STATUS_HA_SHARED) == 0)
continue;
if (ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
scsi_ulto2b(port->targ_port, tpg_desc->descriptors[pc].
relative_target_port_identifier);
pc++;
}
tpg_desc->target_port_count = pc;
tpg_desc = (struct scsi_target_port_group_descriptor *)
&tpg_desc->descriptors[pc];
}
for (g = 0; g < num_ha_groups; g++) {
tpg_desc->pref_state = (g == pg) ? ts : os;
tpg_desc->support = TPG_AO_SUP | TPG_AN_SUP | TPG_S_SUP |
TPG_U_SUP | TPG_T_SUP;
scsi_ulto2b(2 + g, tpg_desc->target_port_group);
tpg_desc->status = TPG_IMPLICIT;
pc = 0;
STAILQ_FOREACH(port, &softc->port_list, links) {
if (port->targ_port < g * softc->port_cnt ||
port->targ_port >= (g + 1) * softc->port_cnt)
continue;
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0)
continue;
if (port->status & CTL_PORT_STATUS_HA_SHARED)
continue;
if (ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
scsi_ulto2b(port->targ_port, tpg_desc->descriptors[pc].
relative_target_port_identifier);
pc++;
}
tpg_desc->target_port_count = pc;
tpg_desc = (struct scsi_target_port_group_descriptor *)
&tpg_desc->descriptors[pc];
}
mtx_unlock(&softc->ctl_lock);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return(retval);
}
int
ctl_report_supported_opcodes(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_report_supported_opcodes *cdb;
const struct ctl_cmd_entry *entry, *sentry;
struct scsi_report_supported_opcodes_all *all;
struct scsi_report_supported_opcodes_descr *descr;
struct scsi_report_supported_opcodes_one *one;
int retval;
int alloc_len, total_len;
int opcode, service_action, i, j, num;
CTL_DEBUG_PRINT(("ctl_report_supported_opcodes\n"));
cdb = (struct scsi_report_supported_opcodes *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
opcode = cdb->requested_opcode;
service_action = scsi_2btoul(cdb->requested_service_action);
switch (cdb->options & RSO_OPTIONS_MASK) {
case RSO_OPTIONS_ALL:
num = 0;
for (i = 0; i < 256; i++) {
entry = &ctl_cmd_table[i];
if (entry->flags & CTL_CMD_FLAG_SA5) {
for (j = 0; j < 32; j++) {
sentry = &((const struct ctl_cmd_entry *)
entry->execute)[j];
if (ctl_cmd_applicable(
lun->be_lun->lun_type, sentry))
num++;
}
} else {
if (ctl_cmd_applicable(lun->be_lun->lun_type,
entry))
num++;
}
}
total_len = sizeof(struct scsi_report_supported_opcodes_all) +
num * sizeof(struct scsi_report_supported_opcodes_descr);
break;
case RSO_OPTIONS_OC:
if (ctl_cmd_table[opcode].flags & CTL_CMD_FLAG_SA5) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 2);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
total_len = sizeof(struct scsi_report_supported_opcodes_one) + 32;
break;
case RSO_OPTIONS_OC_SA:
if ((ctl_cmd_table[opcode].flags & CTL_CMD_FLAG_SA5) == 0 ||
service_action >= 32) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 2);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* FALLTHROUGH */
case RSO_OPTIONS_OC_ASA:
total_len = sizeof(struct scsi_report_supported_opcodes_one) + 32;
break;
default:
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 2);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
alloc_len = scsi_4btoul(cdb->length);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
switch (cdb->options & RSO_OPTIONS_MASK) {
case RSO_OPTIONS_ALL:
all = (struct scsi_report_supported_opcodes_all *)
ctsio->kern_data_ptr;
num = 0;
for (i = 0; i < 256; i++) {
entry = &ctl_cmd_table[i];
if (entry->flags & CTL_CMD_FLAG_SA5) {
for (j = 0; j < 32; j++) {
sentry = &((const struct ctl_cmd_entry *)
entry->execute)[j];
if (!ctl_cmd_applicable(
lun->be_lun->lun_type, sentry))
continue;
descr = &all->descr[num++];
descr->opcode = i;
scsi_ulto2b(j, descr->service_action);
descr->flags = RSO_SERVACTV;
scsi_ulto2b(sentry->length,
descr->cdb_length);
}
} else {
if (!ctl_cmd_applicable(lun->be_lun->lun_type,
entry))
continue;
descr = &all->descr[num++];
descr->opcode = i;
scsi_ulto2b(0, descr->service_action);
descr->flags = 0;
scsi_ulto2b(entry->length, descr->cdb_length);
}
}
scsi_ulto4b(
num * sizeof(struct scsi_report_supported_opcodes_descr),
all->length);
break;
case RSO_OPTIONS_OC:
one = (struct scsi_report_supported_opcodes_one *)
ctsio->kern_data_ptr;
entry = &ctl_cmd_table[opcode];
goto fill_one;
case RSO_OPTIONS_OC_SA:
one = (struct scsi_report_supported_opcodes_one *)
ctsio->kern_data_ptr;
entry = &ctl_cmd_table[opcode];
entry = &((const struct ctl_cmd_entry *)
entry->execute)[service_action];
fill_one:
if (ctl_cmd_applicable(lun->be_lun->lun_type, entry)) {
one->support = 3;
scsi_ulto2b(entry->length, one->cdb_length);
one->cdb_usage[0] = opcode;
memcpy(&one->cdb_usage[1], entry->usage,
entry->length - 1);
} else
one->support = 1;
break;
case RSO_OPTIONS_OC_ASA:
one = (struct scsi_report_supported_opcodes_one *)
ctsio->kern_data_ptr;
entry = &ctl_cmd_table[opcode];
if (entry->flags & CTL_CMD_FLAG_SA5) {
entry = &((const struct ctl_cmd_entry *)
entry->execute)[service_action];
} else if (service_action != 0) {
one->support = 1;
break;
}
goto fill_one;
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return(retval);
}
int
ctl_report_supported_tmf(struct ctl_scsiio *ctsio)
{
struct scsi_report_supported_tmf *cdb;
struct scsi_report_supported_tmf_ext_data *data;
int retval;
int alloc_len, total_len;
CTL_DEBUG_PRINT(("ctl_report_supported_tmf\n"));
cdb = (struct scsi_report_supported_tmf *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
if (cdb->options & RST_REPD)
total_len = sizeof(struct scsi_report_supported_tmf_ext_data);
else
total_len = sizeof(struct scsi_report_supported_tmf_data);
alloc_len = scsi_4btoul(cdb->length);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
data = (struct scsi_report_supported_tmf_ext_data *)ctsio->kern_data_ptr;
data->byte1 |= RST_ATS | RST_ATSS | RST_CTSS | RST_LURS | RST_QTS |
RST_TRS;
data->byte2 |= RST_QAES | RST_QTSS | RST_ITNRS;
data->length = total_len - 4;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (retval);
}
int
ctl_report_timestamp(struct ctl_scsiio *ctsio)
{
struct scsi_report_timestamp *cdb;
struct scsi_report_timestamp_data *data;
struct timeval tv;
int64_t timestamp;
int retval;
int alloc_len, total_len;
CTL_DEBUG_PRINT(("ctl_report_timestamp\n"));
cdb = (struct scsi_report_timestamp *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
total_len = sizeof(struct scsi_report_timestamp_data);
alloc_len = scsi_4btoul(cdb->length);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
data = (struct scsi_report_timestamp_data *)ctsio->kern_data_ptr;
scsi_ulto2b(sizeof(*data) - 2, data->length);
data->origin = RTS_ORIG_OUTSIDE;
getmicrotime(&tv);
timestamp = (int64_t)tv.tv_sec * 1000 + tv.tv_usec / 1000;
scsi_ulto4b(timestamp >> 16, data->timestamp);
scsi_ulto2b(timestamp & 0xffff, &data->timestamp[4]);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (retval);
}
int
ctl_persistent_reserve_in(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_per_res_in *cdb;
int alloc_len, total_len = 0;
/* struct scsi_per_res_in_rsrv in_data; */
uint64_t key;
CTL_DEBUG_PRINT(("ctl_persistent_reserve_in\n"));
cdb = (struct scsi_per_res_in *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
retry:
mtx_lock(&lun->lun_lock);
switch (cdb->action) {
case SPRI_RK: /* read keys */
total_len = sizeof(struct scsi_per_res_in_keys) +
lun->pr_key_count *
sizeof(struct scsi_per_res_key);
break;
case SPRI_RR: /* read reservation */
if (lun->flags & CTL_LUN_PR_RESERVED)
total_len = sizeof(struct scsi_per_res_in_rsrv);
else
total_len = sizeof(struct scsi_per_res_in_header);
break;
case SPRI_RC: /* report capabilities */
total_len = sizeof(struct scsi_per_res_cap);
break;
case SPRI_RS: /* read full status */
total_len = sizeof(struct scsi_per_res_in_header) +
(sizeof(struct scsi_per_res_in_full_desc) + 256) *
lun->pr_key_count;
break;
default:
panic("%s: Invalid PR type %#x", __func__, cdb->action);
}
mtx_unlock(&lun->lun_lock);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(total_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
mtx_lock(&lun->lun_lock);
switch (cdb->action) {
case SPRI_RK: { // read keys
struct scsi_per_res_in_keys *res_keys;
int i, key_count;
res_keys = (struct scsi_per_res_in_keys*)ctsio->kern_data_ptr;
/*
* We had to drop the lock to allocate our buffer, which
* leaves time for someone to come in with another
* persistent reservation. (That is unlikely, though,
* since this should be the only persistent reservation
* command active right now.)
*/
if (total_len != (sizeof(struct scsi_per_res_in_keys) +
(lun->pr_key_count *
sizeof(struct scsi_per_res_key)))){
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
printf("%s: reservation length changed, retrying\n",
__func__);
goto retry;
}
scsi_ulto4b(lun->pr_generation, res_keys->header.generation);
scsi_ulto4b(sizeof(struct scsi_per_res_key) *
lun->pr_key_count, res_keys->header.length);
for (i = 0, key_count = 0; i < CTL_MAX_INITIATORS; i++) {
if ((key = ctl_get_prkey(lun, i)) == 0)
continue;
/*
* We used lun->pr_key_count to calculate the
* size to allocate. If it turns out the number of
* initiators with the registered flag set is
* larger than that (i.e. they haven't been kept in
* sync), we've got a problem.
*/
if (key_count >= lun->pr_key_count) {
key_count++;
continue;
}
scsi_u64to8b(key, res_keys->keys[key_count].key);
key_count++;
}
break;
}
case SPRI_RR: { // read reservation
struct scsi_per_res_in_rsrv *res;
int tmp_len, header_only;
res = (struct scsi_per_res_in_rsrv *)ctsio->kern_data_ptr;
scsi_ulto4b(lun->pr_generation, res->header.generation);
if (lun->flags & CTL_LUN_PR_RESERVED)
{
tmp_len = sizeof(struct scsi_per_res_in_rsrv);
scsi_ulto4b(sizeof(struct scsi_per_res_in_rsrv_data),
res->header.length);
header_only = 0;
} else {
tmp_len = sizeof(struct scsi_per_res_in_header);
scsi_ulto4b(0, res->header.length);
header_only = 1;
}
/*
* We had to drop the lock to allocate our buffer, which
* leaves time for someone to come in with another
* persistent reservation. (That is unlikely, though,
* since this should be the only persistent reservation
* command active right now.)
*/
if (tmp_len != total_len) {
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
printf("%s: reservation status changed, retrying\n",
__func__);
goto retry;
}
/*
* No reservation held, so we're done.
*/
if (header_only != 0)
break;
/*
* If the registration is an All Registrants type, the key
* is 0, since it doesn't really matter.
*/
if (lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
scsi_u64to8b(ctl_get_prkey(lun, lun->pr_res_idx),
res->data.reservation);
}
res->data.scopetype = lun->pr_res_type;
break;
}
case SPRI_RC: //report capabilities
{
struct scsi_per_res_cap *res_cap;
uint16_t type_mask;
res_cap = (struct scsi_per_res_cap *)ctsio->kern_data_ptr;
scsi_ulto2b(sizeof(*res_cap), res_cap->length);
res_cap->flags1 = SPRI_CRH;
res_cap->flags2 = SPRI_TMV | SPRI_ALLOW_5;
type_mask = SPRI_TM_WR_EX_AR |
SPRI_TM_EX_AC_RO |
SPRI_TM_WR_EX_RO |
SPRI_TM_EX_AC |
SPRI_TM_WR_EX |
SPRI_TM_EX_AC_AR;
scsi_ulto2b(type_mask, res_cap->type_mask);
break;
}
case SPRI_RS: { // read full status
struct scsi_per_res_in_full *res_status;
struct scsi_per_res_in_full_desc *res_desc;
struct ctl_port *port;
int i, len;
res_status = (struct scsi_per_res_in_full*)ctsio->kern_data_ptr;
/*
* We had to drop the lock to allocate our buffer, which
* leaves time for someone to come in with another
* persistent reservation. (That is unlikely, though,
* since this should be the only persistent reservation
* command active right now.)
*/
if (total_len < (sizeof(struct scsi_per_res_in_header) +
(sizeof(struct scsi_per_res_in_full_desc) + 256) *
lun->pr_key_count)){
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
printf("%s: reservation length changed, retrying\n",
__func__);
goto retry;
}
scsi_ulto4b(lun->pr_generation, res_status->header.generation);
res_desc = &res_status->desc[0];
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if ((key = ctl_get_prkey(lun, i)) == 0)
continue;
scsi_u64to8b(key, res_desc->res_key.key);
if ((lun->flags & CTL_LUN_PR_RESERVED) &&
(lun->pr_res_idx == i ||
lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS)) {
res_desc->flags = SPRI_FULL_R_HOLDER;
res_desc->scopetype = lun->pr_res_type;
}
scsi_ulto2b(i / CTL_MAX_INIT_PER_PORT,
res_desc->rel_trgt_port_id);
len = 0;
port = softc->ctl_ports[i / CTL_MAX_INIT_PER_PORT];
if (port != NULL)
len = ctl_create_iid(port,
i % CTL_MAX_INIT_PER_PORT,
res_desc->transport_id);
scsi_ulto4b(len, res_desc->additional_length);
res_desc = (struct scsi_per_res_in_full_desc *)
&res_desc->transport_id[len];
}
scsi_ulto4b((uint8_t *)res_desc - (uint8_t *)&res_status->desc[0],
res_status->header.length);
break;
}
default:
panic("%s: Invalid PR type %#x", __func__, cdb->action);
}
mtx_unlock(&lun->lun_lock);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Returns 0 if ctl_persistent_reserve_out() should continue, non-zero if
* it should return.
*/
static int
ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun, uint64_t res_key,
uint64_t sa_res_key, uint8_t type, uint32_t residx,
struct ctl_scsiio *ctsio, struct scsi_per_res_out *cdb,
struct scsi_per_res_out_parms* param)
{
union ctl_ha_msg persis_io;
int i;
mtx_lock(&lun->lun_lock);
if (sa_res_key == 0) {
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
/* validate scope and type */
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
SPR_LU_SCOPE) {
mtx_unlock(&lun->lun_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (1);
}
if (type>8 || type==2 || type==4 || type==0) {
mtx_unlock(&lun->lun_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
/*
* Unregister everybody else and build UA for
* them
*/
for(i = 0; i < CTL_MAX_INITIATORS; i++) {
if (i == residx || ctl_get_prkey(lun, i) == 0)
continue;
ctl_clr_prkey(lun, i);
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
lun->pr_key_count = 1;
lun->pr_res_type = type;
if (lun->pr_res_type != SPR_TYPE_WR_EX_AR &&
lun->pr_res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx;
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
} else {
/* not all registrants */
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 8,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|| !(lun->flags & CTL_LUN_PR_RESERVED)) {
int found = 0;
if (res_key == sa_res_key) {
/* special case */
/*
* The spec implies this is not good but doesn't
* say what to do. There are two choices either
* generate a res conflict or check condition
* with illegal field in parameter data. Since
* that is what is done when the sa_res_key is
* zero I'll take that approach since this has
* to do with the sa_res_key.
*/
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 8,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (ctl_get_prkey(lun, i) != sa_res_key)
continue;
found = 1;
ctl_clr_prkey(lun, i);
lun->pr_key_count--;
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
if (!found) {
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
} else {
/* Reserved but not all registrants */
/* sa_res_key is res holder */
if (sa_res_key == ctl_get_prkey(lun, lun->pr_res_idx)) {
/* validate scope and type */
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
SPR_LU_SCOPE) {
mtx_unlock(&lun->lun_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (1);
}
if (type>8 || type==2 || type==4 || type==0) {
mtx_unlock(&lun->lun_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
/*
* Do the following:
* if sa_res_key != res_key remove all
* registrants w/sa_res_key and generate UA
* for these registrants(Registrations
* Preempted) if it wasn't an exclusive
* reservation generate UA(Reservations
* Preempted) for all other registered nexuses
* if the type has changed. Establish the new
* reservation and holder. If res_key and
* sa_res_key are the same do the above
* except don't unregister the res holder.
*/
for(i = 0; i < CTL_MAX_INITIATORS; i++) {
if (i == residx || ctl_get_prkey(lun, i) == 0)
continue;
if (sa_res_key == ctl_get_prkey(lun, i)) {
ctl_clr_prkey(lun, i);
lun->pr_key_count--;
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
} else if (type != lun->pr_res_type &&
(lun->pr_res_type == SPR_TYPE_WR_EX_RO ||
lun->pr_res_type == SPR_TYPE_EX_AC_RO)) {
ctl_est_ua(lun, i, CTL_UA_RES_RELEASE);
}
}
lun->pr_res_type = type;
if (lun->pr_res_type != SPR_TYPE_WR_EX_AR &&
lun->pr_res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx;
else
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
} else {
/*
* sa_res_key is not the res holder just
* remove registrants
*/
int found=0;
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (sa_res_key != ctl_get_prkey(lun, i))
continue;
found = 1;
ctl_clr_prkey(lun, i);
lun->pr_key_count--;
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
if (!found) {
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (1);
}
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
}
}
return (0);
}
static void
ctl_pro_preempt_other(struct ctl_lun *lun, union ctl_ha_msg *msg)
{
uint64_t sa_res_key;
int i;
sa_res_key = scsi_8btou64(msg->pr.pr_info.sa_res_key);
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|| lun->pr_res_idx == CTL_PR_NO_RESERVATION
|| sa_res_key != ctl_get_prkey(lun, lun->pr_res_idx)) {
if (sa_res_key == 0) {
/*
* Unregister everybody else and build UA for
* them
*/
for(i = 0; i < CTL_MAX_INITIATORS; i++) {
if (i == msg->pr.pr_info.residx ||
ctl_get_prkey(lun, i) == 0)
continue;
ctl_clr_prkey(lun, i);
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
lun->pr_key_count = 1;
lun->pr_res_type = msg->pr.pr_info.res_type;
if (lun->pr_res_type != SPR_TYPE_WR_EX_AR &&
lun->pr_res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = msg->pr.pr_info.residx;
} else {
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (sa_res_key == ctl_get_prkey(lun, i))
continue;
ctl_clr_prkey(lun, i);
lun->pr_key_count--;
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
}
} else {
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (i == msg->pr.pr_info.residx ||
ctl_get_prkey(lun, i) == 0)
continue;
if (sa_res_key == ctl_get_prkey(lun, i)) {
ctl_clr_prkey(lun, i);
lun->pr_key_count--;
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
} else if (msg->pr.pr_info.res_type != lun->pr_res_type
&& (lun->pr_res_type == SPR_TYPE_WR_EX_RO ||
lun->pr_res_type == SPR_TYPE_EX_AC_RO)) {
ctl_est_ua(lun, i, CTL_UA_RES_RELEASE);
}
}
lun->pr_res_type = msg->pr.pr_info.res_type;
if (lun->pr_res_type != SPR_TYPE_WR_EX_AR &&
lun->pr_res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = msg->pr.pr_info.residx;
else
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
}
lun->pr_generation++;
}
int
ctl_persistent_reserve_out(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
int retval;
u_int32_t param_len;
struct scsi_per_res_out *cdb;
struct scsi_per_res_out_parms* param;
uint32_t residx;
uint64_t res_key, sa_res_key, key;
uint8_t type;
union ctl_ha_msg persis_io;
int i;
CTL_DEBUG_PRINT(("ctl_persistent_reserve_out\n"));
cdb = (struct scsi_per_res_out *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
/*
* We only support whole-LUN scope. The scope & type are ignored for
* register, register and ignore existing key and clear.
* We sometimes ignore scope and type on preempts too!!
* Verify reservation type here as well.
*/
type = cdb->scope_type & SPR_TYPE_MASK;
if ((cdb->action == SPRO_RESERVE)
|| (cdb->action == SPRO_RELEASE)) {
if ((cdb->scope_type & SPR_SCOPE_MASK) != SPR_LU_SCOPE) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (type>8 || type==2 || type==4 || type==0) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
param_len = scsi_4btoul(cdb->length);
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
ctsio->kern_data_len = param_len;
ctsio->kern_total_len = param_len;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
param = (struct scsi_per_res_out_parms *)ctsio->kern_data_ptr;
residx = ctl_get_initindex(&ctsio->io_hdr.nexus);
res_key = scsi_8btou64(param->res_key.key);
sa_res_key = scsi_8btou64(param->serv_act_res_key);
/*
* Validate the reservation key here except for SPRO_REG_IGNO
* This must be done for all other service actions
*/
if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REG_IGNO) {
mtx_lock(&lun->lun_lock);
if ((key = ctl_get_prkey(lun, residx)) != 0) {
if (res_key != key) {
/*
* The current key passed in doesn't match
* the one the initiator previously
* registered.
*/
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
} else if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REGISTER) {
/*
* We are not registered
*/
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if (res_key != 0) {
/*
* We are not registered and trying to register but
* the register key isn't zero.
*/
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
mtx_unlock(&lun->lun_lock);
}
switch (cdb->action & SPRO_ACTION_MASK) {
case SPRO_REGISTER:
case SPRO_REG_IGNO: {
#if 0
printf("Registration received\n");
#endif
/*
* We don't support any of these options, as we report in
* the read capabilities request (see
* ctl_persistent_reserve_in(), above).
*/
if ((param->flags & SPR_SPEC_I_PT)
|| (param->flags & SPR_ALL_TG_PT)
|| (param->flags & SPR_APTPL)) {
int bit_ptr;
if (param->flags & SPR_APTPL)
bit_ptr = 0;
else if (param->flags & SPR_ALL_TG_PT)
bit_ptr = 2;
else /* SPR_SPEC_I_PT */
bit_ptr = 3;
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 20,
/*bit_valid*/ 1,
/*bit*/ bit_ptr);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
mtx_lock(&lun->lun_lock);
/*
* The initiator wants to clear the
* key/unregister.
*/
if (sa_res_key == 0) {
if ((res_key == 0
&& (cdb->action & SPRO_ACTION_MASK) == SPRO_REGISTER)
|| ((cdb->action & SPRO_ACTION_MASK) == SPRO_REG_IGNO
&& ctl_get_prkey(lun, residx) == 0)) {
mtx_unlock(&lun->lun_lock);
goto done;
}
ctl_clr_prkey(lun, residx);
lun->pr_key_count--;
if (residx == lun->pr_res_idx) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
if ((lun->pr_res_type == SPR_TYPE_WR_EX_RO ||
lun->pr_res_type == SPR_TYPE_EX_AC_RO) &&
lun->pr_key_count) {
/*
* If the reservation is a registrants
* only type we need to generate a UA
* for other registered inits. The
* sense code should be RESERVATIONS
* RELEASED
*/
for (i = softc->init_min; i < softc->init_max; i++){
if (ctl_get_prkey(lun, i) == 0)
continue;
ctl_est_ua(lun, i,
CTL_UA_RES_RELEASE);
}
}
lun->pr_res_type = 0;
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
if (lun->pr_key_count==0) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_type = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
}
}
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_UNREG_KEY;
persis_io.pr.pr_info.residx = residx;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
} else /* sa_res_key != 0 */ {
/*
* If we aren't registered currently then increment
* the key count and set the registered flag.
*/
ctl_alloc_prkey(lun, residx);
if (ctl_get_prkey(lun, residx) == 0)
lun->pr_key_count++;
ctl_set_prkey(lun, residx, sa_res_key);
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_REG_KEY;
persis_io.pr.pr_info.residx = residx;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
}
break;
}
case SPRO_RESERVE:
#if 0
printf("Reserve executed type %d\n", type);
#endif
mtx_lock(&lun->lun_lock);
if (lun->flags & CTL_LUN_PR_RESERVED) {
/*
* if this isn't the reservation holder and it's
* not a "all registrants" type or if the type is
* different then we have a conflict
*/
if ((lun->pr_res_idx != residx
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS)
|| lun->pr_res_type != type) {
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
mtx_unlock(&lun->lun_lock);
} else /* create a reservation */ {
/*
* If it's not an "all registrants" type record
* reservation holder
*/
if (type != SPR_TYPE_WR_EX_AR
&& type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx; /* Res holder */
else
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
lun->flags |= CTL_LUN_PR_RESERVED;
lun->pr_res_type = type;
mtx_unlock(&lun->lun_lock);
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_RESERVE;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
}
break;
case SPRO_RELEASE:
mtx_lock(&lun->lun_lock);
if ((lun->flags & CTL_LUN_PR_RESERVED) == 0) {
/* No reservation exists return good status */
mtx_unlock(&lun->lun_lock);
goto done;
}
/*
* Is this nexus a reservation holder?
*/
if (lun->pr_res_idx != residx
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
/*
* not a res holder return good status but
* do nothing
*/
mtx_unlock(&lun->lun_lock);
goto done;
}
if (lun->pr_res_type != type) {
mtx_unlock(&lun->lun_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_illegal_pr_release(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* okay to release */
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
lun->pr_res_type = 0;
/*
* If this isn't an exclusive access reservation and NUAR
* is not set, generate UA for all other registrants.
*/
if (type != SPR_TYPE_EX_AC && type != SPR_TYPE_WR_EX &&
(lun->MODE_CTRL.queue_flags & SCP_NUAR) == 0) {
for (i = softc->init_min; i < softc->init_max; i++) {
if (i == residx || ctl_get_prkey(lun, i) == 0)
continue;
ctl_est_ua(lun, i, CTL_UA_RES_RELEASE);
}
}
mtx_unlock(&lun->lun_lock);
/* Send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_RELEASE;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
break;
case SPRO_CLEAR:
/* send msg to other side */
mtx_lock(&lun->lun_lock);
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_type = 0;
lun->pr_key_count = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
ctl_clr_prkey(lun, residx);
for (i = 0; i < CTL_MAX_INITIATORS; i++)
if (ctl_get_prkey(lun, i) != 0) {
ctl_clr_prkey(lun, i);
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
lun->pr_generation++;
mtx_unlock(&lun->lun_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_CLEAR;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io.pr), M_WAITOK);
break;
case SPRO_PREEMPT:
case SPRO_PRE_ABO: {
int nretval;
nretval = ctl_pro_preempt(softc, lun, res_key, sa_res_key, type,
residx, ctsio, cdb, param);
if (nretval != 0)
return (CTL_RETVAL_COMPLETE);
break;
}
default:
panic("%s: Invalid PR type %#x", __func__, cdb->action);
}
done:
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
/*
* This routine is for handling a message from the other SC pertaining to
* persistent reserve out. All the error checking will have been done
* so only perorming the action need be done here to keep the two
* in sync.
*/
static void
ctl_hndl_per_res_out_on_other_sc(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
union ctl_ha_msg *msg = (union ctl_ha_msg *)&io->presio.pr_msg;
struct ctl_lun *lun;
int i;
uint32_t residx, targ_lun;
targ_lun = msg->hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
return;
}
residx = ctl_get_initindex(&msg->hdr.nexus);
switch(msg->pr.pr_info.action) {
case CTL_PR_REG_KEY:
ctl_alloc_prkey(lun, msg->pr.pr_info.residx);
if (ctl_get_prkey(lun, msg->pr.pr_info.residx) == 0)
lun->pr_key_count++;
ctl_set_prkey(lun, msg->pr.pr_info.residx,
scsi_8btou64(msg->pr.pr_info.sa_res_key));
lun->pr_generation++;
break;
case CTL_PR_UNREG_KEY:
ctl_clr_prkey(lun, msg->pr.pr_info.residx);
lun->pr_key_count--;
/* XXX Need to see if the reservation has been released */
/* if so do we need to generate UA? */
if (msg->pr.pr_info.residx == lun->pr_res_idx) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
if ((lun->pr_res_type == SPR_TYPE_WR_EX_RO ||
lun->pr_res_type == SPR_TYPE_EX_AC_RO) &&
lun->pr_key_count) {
/*
* If the reservation is a registrants
* only type we need to generate a UA
* for other registered inits. The
* sense code should be RESERVATIONS
* RELEASED
*/
for (i = softc->init_min; i < softc->init_max; i++) {
if (ctl_get_prkey(lun, i) == 0)
continue;
ctl_est_ua(lun, i, CTL_UA_RES_RELEASE);
}
}
lun->pr_res_type = 0;
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
if (lun->pr_key_count==0) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_type = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
}
}
lun->pr_generation++;
break;
case CTL_PR_RESERVE:
lun->flags |= CTL_LUN_PR_RESERVED;
lun->pr_res_type = msg->pr.pr_info.res_type;
lun->pr_res_idx = msg->pr.pr_info.residx;
break;
case CTL_PR_RELEASE:
/*
* If this isn't an exclusive access reservation and NUAR
* is not set, generate UA for all other registrants.
*/
if (lun->pr_res_type != SPR_TYPE_EX_AC &&
lun->pr_res_type != SPR_TYPE_WR_EX &&
(lun->MODE_CTRL.queue_flags & SCP_NUAR) == 0) {
for (i = softc->init_min; i < softc->init_max; i++)
if (i == residx || ctl_get_prkey(lun, i) == 0)
continue;
ctl_est_ua(lun, i, CTL_UA_RES_RELEASE);
}
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
lun->pr_res_type = 0;
break;
case CTL_PR_PREEMPT:
ctl_pro_preempt_other(lun, msg);
break;
case CTL_PR_CLEAR:
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_type = 0;
lun->pr_key_count = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
for (i=0; i < CTL_MAX_INITIATORS; i++) {
if (ctl_get_prkey(lun, i) == 0)
continue;
ctl_clr_prkey(lun, i);
ctl_est_ua(lun, i, CTL_UA_REG_PREEMPT);
}
lun->pr_generation++;
break;
}
mtx_unlock(&lun->lun_lock);
}
int
ctl_read_write(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct ctl_lba_len_flags *lbalen;
uint64_t lba;
uint32_t num_blocks;
int flags, retval;
int isread;
CTL_DEBUG_PRINT(("ctl_read_write: command: %#x\n", ctsio->cdb[0]));
flags = 0;
isread = ctsio->cdb[0] == READ_6 || ctsio->cdb[0] == READ_10
|| ctsio->cdb[0] == READ_12 || ctsio->cdb[0] == READ_16;
switch (ctsio->cdb[0]) {
case READ_6:
case WRITE_6: {
struct scsi_rw_6 *cdb;
cdb = (struct scsi_rw_6 *)ctsio->cdb;
lba = scsi_3btoul(cdb->addr);
/* only 5 bits are valid in the most significant address byte */
lba &= 0x1fffff;
num_blocks = cdb->length;
/*
* This is correct according to SBC-2.
*/
if (num_blocks == 0)
num_blocks = 256;
break;
}
case READ_10:
case WRITE_10: {
struct scsi_rw_10 *cdb;
cdb = (struct scsi_rw_10 *)ctsio->cdb;
if (cdb->byte2 & SRW10_FUA)
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SRW10_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
break;
}
case WRITE_VERIFY_10: {
struct scsi_write_verify_10 *cdb;
cdb = (struct scsi_write_verify_10 *)ctsio->cdb;
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SWV_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
break;
}
case READ_12:
case WRITE_12: {
struct scsi_rw_12 *cdb;
cdb = (struct scsi_rw_12 *)ctsio->cdb;
if (cdb->byte2 & SRW12_FUA)
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SRW12_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_12: {
struct scsi_write_verify_12 *cdb;
cdb = (struct scsi_write_verify_12 *)ctsio->cdb;
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SWV_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case READ_16:
case WRITE_16: {
struct scsi_rw_16 *cdb;
cdb = (struct scsi_rw_16 *)ctsio->cdb;
if (cdb->byte2 & SRW12_FUA)
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SRW12_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case WRITE_ATOMIC_16: {
struct scsi_write_atomic_16 *cdb;
if (lun->be_lun->atomicblock == 0) {
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
cdb = (struct scsi_write_atomic_16 *)ctsio->cdb;
if (cdb->byte2 & SRW12_FUA)
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SRW12_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
if (num_blocks > lun->be_lun->atomicblock) {
ctl_set_invalid_field(ctsio, /*sks_valid*/ 1,
/*command*/ 1, /*field*/ 12, /*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
break;
}
case WRITE_VERIFY_16: {
struct scsi_write_verify_16 *cdb;
cdb = (struct scsi_write_verify_16 *)ctsio->cdb;
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SWV_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
default:
/*
* We got a command we don't support. This shouldn't
* happen, commands should be filtered out above us.
*/
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* The first check is to make sure we're in bounds, the second
* check is to catch wrap-around problems. If the lba + num blocks
* is less than the lba, then we've wrapped around and the block
* range is invalid anyway.
*/
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio,
MAX(lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* According to SBC-3, a transfer length of 0 is not an error.
* Note that this cannot happen with WRITE(6) or READ(6), since 0
* translates to 256 blocks for those commands.
*/
if (num_blocks == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* Set FUA and/or DPO if caches are disabled. */
if (isread) {
if ((lun->MODE_CACHING.flags1 & SCP_RCD) != 0)
flags |= CTL_LLF_FUA | CTL_LLF_DPO;
} else {
if ((lun->MODE_CACHING.flags1 & SCP_WCE) == 0)
flags |= CTL_LLF_FUA;
}
lbalen = (struct ctl_lba_len_flags *)
&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = lba;
lbalen->len = num_blocks;
lbalen->flags = (isread ? CTL_LLF_READ : CTL_LLF_WRITE) | flags;
ctsio->kern_total_len = num_blocks * lun->be_lun->blocksize;
ctsio->kern_rel_offset = 0;
CTL_DEBUG_PRINT(("ctl_read_write: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
static int
ctl_cnw_cont(union ctl_io *io)
{
struct ctl_lun *lun = CTL_LUN(io);
struct ctl_scsiio *ctsio;
struct ctl_lba_len_flags *lbalen;
int retval;
ctsio = &io->scsiio;
ctsio->io_hdr.status = CTL_STATUS_NONE;
ctsio->io_hdr.flags &= ~CTL_FLAG_IO_CONT;
lbalen = (struct ctl_lba_len_flags *)
&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->flags &= ~CTL_LLF_COMPARE;
lbalen->flags |= CTL_LLF_WRITE;
CTL_DEBUG_PRINT(("ctl_cnw_cont: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
int
ctl_cnw(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct ctl_lba_len_flags *lbalen;
uint64_t lba;
uint32_t num_blocks;
int flags, retval;
CTL_DEBUG_PRINT(("ctl_cnw: command: %#x\n", ctsio->cdb[0]));
flags = 0;
switch (ctsio->cdb[0]) {
case COMPARE_AND_WRITE: {
struct scsi_compare_and_write *cdb;
cdb = (struct scsi_compare_and_write *)ctsio->cdb;
if (cdb->byte2 & SRW10_FUA)
flags |= CTL_LLF_FUA;
if (cdb->byte2 & SRW10_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_8btou64(cdb->addr);
num_blocks = cdb->length;
break;
}
default:
/*
* We got a command we don't support. This shouldn't
* happen, commands should be filtered out above us.
*/
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* The first check is to make sure we're in bounds, the second
* check is to catch wrap-around problems. If the lba + num blocks
* is less than the lba, then we've wrapped around and the block
* range is invalid anyway.
*/
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio,
MAX(lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* According to SBC-3, a transfer length of 0 is not an error.
*/
if (num_blocks == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* Set FUA if write cache is disabled. */
if ((lun->MODE_CACHING.flags1 & SCP_WCE) == 0)
flags |= CTL_LLF_FUA;
ctsio->kern_total_len = 2 * num_blocks * lun->be_lun->blocksize;
ctsio->kern_rel_offset = 0;
/*
* Set the IO_CONT flag, so that if this I/O gets passed to
* ctl_data_submit_done(), it'll get passed back to
* ctl_ctl_cnw_cont() for further processing.
*/
ctsio->io_hdr.flags |= CTL_FLAG_IO_CONT;
ctsio->io_cont = ctl_cnw_cont;
lbalen = (struct ctl_lba_len_flags *)
&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = lba;
lbalen->len = num_blocks;
lbalen->flags = CTL_LLF_COMPARE | flags;
CTL_DEBUG_PRINT(("ctl_cnw: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
int
ctl_verify(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct ctl_lba_len_flags *lbalen;
uint64_t lba;
uint32_t num_blocks;
int bytchk, flags;
int retval;
CTL_DEBUG_PRINT(("ctl_verify: command: %#x\n", ctsio->cdb[0]));
bytchk = 0;
flags = CTL_LLF_FUA;
switch (ctsio->cdb[0]) {
case VERIFY_10: {
struct scsi_verify_10 *cdb;
cdb = (struct scsi_verify_10 *)ctsio->cdb;
if (cdb->byte2 & SVFY_BYTCHK)
bytchk = 1;
if (cdb->byte2 & SVFY_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
break;
}
case VERIFY_12: {
struct scsi_verify_12 *cdb;
cdb = (struct scsi_verify_12 *)ctsio->cdb;
if (cdb->byte2 & SVFY_BYTCHK)
bytchk = 1;
if (cdb->byte2 & SVFY_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case VERIFY_16: {
struct scsi_rw_16 *cdb;
cdb = (struct scsi_rw_16 *)ctsio->cdb;
if (cdb->byte2 & SVFY_BYTCHK)
bytchk = 1;
if (cdb->byte2 & SVFY_DPO)
flags |= CTL_LLF_DPO;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
default:
/*
* We got a command we don't support. This shouldn't
* happen, commands should be filtered out above us.
*/
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* The first check is to make sure we're in bounds, the second
* check is to catch wrap-around problems. If the lba + num blocks
* is less than the lba, then we've wrapped around and the block
* range is invalid anyway.
*/
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio,
MAX(lba, lun->be_lun->maxlba + 1));
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* According to SBC-3, a transfer length of 0 is not an error.
*/
if (num_blocks == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lbalen = (struct ctl_lba_len_flags *)
&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
lbalen->lba = lba;
lbalen->len = num_blocks;
if (bytchk) {
lbalen->flags = CTL_LLF_COMPARE | flags;
ctsio->kern_total_len = num_blocks * lun->be_lun->blocksize;
} else {
lbalen->flags = CTL_LLF_VERIFY | flags;
ctsio->kern_total_len = 0;
}
ctsio->kern_rel_offset = 0;
CTL_DEBUG_PRINT(("ctl_verify: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
int
ctl_report_luns(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_port *port = CTL_PORT(ctsio);
struct ctl_lun *lun, *request_lun = CTL_LUN(ctsio);
struct scsi_report_luns *cdb;
struct scsi_report_luns_data *lun_data;
int num_filled, num_luns, num_port_luns, retval;
uint32_t alloc_len, lun_datalen;
uint32_t initidx, targ_lun_id, lun_id;
retval = CTL_RETVAL_COMPLETE;
cdb = (struct scsi_report_luns *)ctsio->cdb;
CTL_DEBUG_PRINT(("ctl_report_luns\n"));
num_luns = 0;
num_port_luns = port->lun_map ? port->lun_map_size : CTL_MAX_LUNS;
mtx_lock(&softc->ctl_lock);
for (targ_lun_id = 0; targ_lun_id < num_port_luns; targ_lun_id++) {
if (ctl_lun_map_from_port(port, targ_lun_id) != UINT32_MAX)
num_luns++;
}
mtx_unlock(&softc->ctl_lock);
switch (cdb->select_report) {
case RPL_REPORT_DEFAULT:
case RPL_REPORT_ALL:
case RPL_REPORT_NONSUBSID:
break;
case RPL_REPORT_WELLKNOWN:
case RPL_REPORT_ADMIN:
case RPL_REPORT_CONGLOM:
num_luns = 0;
break;
default:
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (retval);
break; /* NOTREACHED */
}
alloc_len = scsi_4btoul(cdb->length);
/*
* The initiator has to allocate at least 16 bytes for this request,
* so he can at least get the header and the first LUN. Otherwise
* we reject the request (per SPC-3 rev 14, section 6.21).
*/
if (alloc_len < (sizeof(struct scsi_report_luns_data) +
sizeof(struct scsi_report_luns_lundata))) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 6,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
lun_datalen = sizeof(*lun_data) +
(num_luns * sizeof(struct scsi_report_luns_lundata));
ctsio->kern_data_ptr = malloc(lun_datalen, M_CTL, M_WAITOK | M_ZERO);
lun_data = (struct scsi_report_luns_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
mtx_lock(&softc->ctl_lock);
for (targ_lun_id = 0, num_filled = 0;
targ_lun_id < num_port_luns && num_filled < num_luns;
targ_lun_id++) {
lun_id = ctl_lun_map_from_port(port, targ_lun_id);
if (lun_id == UINT32_MAX)
continue;
lun = softc->ctl_luns[lun_id];
if (lun == NULL)
continue;
be64enc(lun_data->luns[num_filled++].lundata,
ctl_encode_lun(targ_lun_id));
/*
* According to SPC-3, rev 14 section 6.21:
*
* "The execution of a REPORT LUNS command to any valid and
* installed logical unit shall clear the REPORTED LUNS DATA
* HAS CHANGED unit attention condition for all logical
* units of that target with respect to the requesting
* initiator. A valid and installed logical unit is one
* having a PERIPHERAL QUALIFIER of 000b in the standard
* INQUIRY data (see 6.4.2)."
*
* If request_lun is NULL, the LUN this report luns command
* was issued to is either disabled or doesn't exist. In that
* case, we shouldn't clear any pending lun change unit
* attention.
*/
if (request_lun != NULL) {
mtx_lock(&lun->lun_lock);
ctl_clr_ua(lun, initidx, CTL_UA_LUN_CHANGE);
mtx_unlock(&lun->lun_lock);
}
}
mtx_unlock(&softc->ctl_lock);
/*
* It's quite possible that we've returned fewer LUNs than we allocated
* space for. Trim it.
*/
lun_datalen = sizeof(*lun_data) +
(num_filled * sizeof(struct scsi_report_luns_lundata));
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(lun_datalen, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* We set this to the actual data length, regardless of how much
* space we actually have to return results. If the user looks at
* this value, he'll know whether or not he allocated enough space
* and reissue the command if necessary. We don't support well
* known logical units, so if the user asks for that, return none.
*/
scsi_ulto4b(lun_datalen - 8, lun_data->length);
/*
* We can only return SCSI_STATUS_CHECK_COND when we can't satisfy
* this request.
*/
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (retval);
}
int
ctl_request_sense(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_request_sense *cdb;
struct scsi_sense_data *sense_ptr, *ps;
uint32_t initidx;
int have_error;
u_int sense_len = SSD_FULL_SIZE;
scsi_sense_data_type sense_format;
ctl_ua_type ua_type;
uint8_t asc = 0, ascq = 0;
cdb = (struct scsi_request_sense *)ctsio->cdb;
CTL_DEBUG_PRINT(("ctl_request_sense\n"));
/*
* Determine which sense format the user wants.
*/
if (cdb->byte2 & SRS_DESC)
sense_format = SSD_TYPE_DESC;
else
sense_format = SSD_TYPE_FIXED;
ctsio->kern_data_ptr = malloc(sizeof(*sense_ptr), M_CTL, M_WAITOK);
sense_ptr = (struct scsi_sense_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
/*
* struct scsi_sense_data, which is currently set to 256 bytes, is
* larger than the largest allowed value for the length field in the
* REQUEST SENSE CDB, which is 252 bytes as of SPC-4.
*/
ctsio->kern_data_len = cdb->length;
ctsio->kern_total_len = cdb->length;
/*
* If we don't have a LUN, we don't have any pending sense.
*/
if (lun == NULL ||
((lun->flags & CTL_LUN_PRIMARY_SC) == 0 &&
softc->ha_link < CTL_HA_LINK_UNKNOWN)) {
/* "Logical unit not supported" */
ctl_set_sense_data(sense_ptr, &sense_len, NULL, sense_format,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x25,
/*ascq*/ 0x00,
SSD_ELEM_NONE);
goto send;
}
have_error = 0;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* Check for pending sense, and then for pending unit attentions.
* Pending sense gets returned first, then pending unit attentions.
*/
mtx_lock(&lun->lun_lock);
ps = lun->pending_sense[initidx / CTL_MAX_INIT_PER_PORT];
if (ps != NULL)
ps += initidx % CTL_MAX_INIT_PER_PORT;
if (ps != NULL && ps->error_code != 0) {
scsi_sense_data_type stored_format;
/*
* Check to see which sense format was used for the stored
* sense data.
*/
stored_format = scsi_sense_type(ps);
/*
* If the user requested a different sense format than the
* one we stored, then we need to convert it to the other
* format. If we're going from descriptor to fixed format
* sense data, we may lose things in translation, depending
* on what options were used.
*
* If the stored format is SSD_TYPE_NONE (i.e. invalid),
* for some reason we'll just copy it out as-is.
*/
if ((stored_format == SSD_TYPE_FIXED)
&& (sense_format == SSD_TYPE_DESC))
ctl_sense_to_desc((struct scsi_sense_data_fixed *)
ps, (struct scsi_sense_data_desc *)sense_ptr);
else if ((stored_format == SSD_TYPE_DESC)
&& (sense_format == SSD_TYPE_FIXED))
ctl_sense_to_fixed((struct scsi_sense_data_desc *)
ps, (struct scsi_sense_data_fixed *)sense_ptr);
else
memcpy(sense_ptr, ps, sizeof(*sense_ptr));
ps->error_code = 0;
have_error = 1;
} else {
ua_type = ctl_build_ua(lun, initidx, sense_ptr, &sense_len,
sense_format);
if (ua_type != CTL_UA_NONE)
have_error = 1;
}
if (have_error == 0) {
/*
* Report informational exception if have one and allowed.
*/
if (lun->MODE_IE.mrie != SIEP_MRIE_NO) {
asc = lun->ie_asc;
ascq = lun->ie_ascq;
}
ctl_set_sense_data(sense_ptr, &sense_len, lun, sense_format,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_NO_SENSE,
/*asc*/ asc,
/*ascq*/ ascq,
SSD_ELEM_NONE);
}
mtx_unlock(&lun->lun_lock);
send:
/*
* We report the SCSI status as OK, since the status of the command
* itself is OK. We're reporting sense as parameter data.
*/
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_tur(struct ctl_scsiio *ctsio)
{
CTL_DEBUG_PRINT(("ctl_tur\n"));
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* SCSI VPD page 0x00, the Supported VPD Pages page.
*/
static int
ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_supported_pages *pages;
int sup_page_size;
int p;
sup_page_size = sizeof(struct scsi_vpd_supported_pages) *
SCSI_EVPD_NUM_SUPPORTED_PAGES;
ctsio->kern_data_ptr = malloc(sup_page_size, M_CTL, M_WAITOK | M_ZERO);
pages = (struct scsi_vpd_supported_pages *)ctsio->kern_data_ptr;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(sup_page_size, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
pages->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
pages->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
p = 0;
/* Supported VPD pages */
pages->page_list[p++] = SVPD_SUPPORTED_PAGES;
/* Serial Number */
pages->page_list[p++] = SVPD_UNIT_SERIAL_NUMBER;
/* Device Identification */
pages->page_list[p++] = SVPD_DEVICE_ID;
/* Extended INQUIRY Data */
pages->page_list[p++] = SVPD_EXTENDED_INQUIRY_DATA;
/* Mode Page Policy */
pages->page_list[p++] = SVPD_MODE_PAGE_POLICY;
/* SCSI Ports */
pages->page_list[p++] = SVPD_SCSI_PORTS;
/* Third-party Copy */
pages->page_list[p++] = SVPD_SCSI_TPC;
if (lun != NULL && lun->be_lun->lun_type == T_DIRECT) {
/* Block limits */
pages->page_list[p++] = SVPD_BLOCK_LIMITS;
/* Block Device Characteristics */
pages->page_list[p++] = SVPD_BDC;
/* Logical Block Provisioning */
pages->page_list[p++] = SVPD_LBP;
}
pages->length = p;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* SCSI VPD page 0x80, the Unit Serial Number page.
*/
static int
ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_unit_serial_number *sn_ptr;
int data_len;
data_len = 4 + CTL_SN_LEN;
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
sn_ptr = (struct scsi_vpd_unit_serial_number *)ctsio->kern_data_ptr;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
sn_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
sn_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
sn_ptr->page_code = SVPD_UNIT_SERIAL_NUMBER;
sn_ptr->length = CTL_SN_LEN;
/*
* If we don't have a LUN, we just leave the serial number as
* all spaces.
*/
if (lun != NULL) {
strncpy((char *)sn_ptr->serial_num,
(char *)lun->be_lun->serial_num, CTL_SN_LEN);
} else
memset(sn_ptr->serial_num, 0x20, CTL_SN_LEN);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* SCSI VPD page 0x86, the Extended INQUIRY Data page.
*/
static int
ctl_inquiry_evpd_eid(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_extended_inquiry_data *eid_ptr;
int data_len;
data_len = sizeof(struct scsi_vpd_extended_inquiry_data);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
eid_ptr = (struct scsi_vpd_extended_inquiry_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time.
*/
if (lun != NULL)
eid_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
eid_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
eid_ptr->page_code = SVPD_EXTENDED_INQUIRY_DATA;
scsi_ulto2b(data_len - 4, eid_ptr->page_length);
/*
* We support head of queue, ordered and simple tags.
*/
eid_ptr->flags2 = SVPD_EID_HEADSUP | SVPD_EID_ORDSUP | SVPD_EID_SIMPSUP;
/*
* Volatile cache supported.
*/
eid_ptr->flags3 = SVPD_EID_V_SUP;
/*
* This means that we clear the REPORTED LUNS DATA HAS CHANGED unit
* attention for a particular IT nexus on all LUNs once we report
* it to that nexus once. This bit is required as of SPC-4.
*/
eid_ptr->flags4 = SVPD_EID_LUICLR;
/*
* We support revert to defaults (RTD) bit in MODE SELECT.
*/
eid_ptr->flags5 = SVPD_EID_RTD_SUP;
/*
* XXX KDM in order to correctly answer this, we would need
* information from the SIM to determine how much sense data it
* can send. So this would really be a path inquiry field, most
* likely. This can be set to a maximum of 252 according to SPC-4,
* but the hardware may or may not be able to support that much.
* 0 just means that the maximum sense data length is not reported.
*/
eid_ptr->max_sense_length = 0;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_mpp(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_mode_page_policy *mpp_ptr;
int data_len;
data_len = sizeof(struct scsi_vpd_mode_page_policy) +
sizeof(struct scsi_vpd_mode_page_policy_descr);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
mpp_ptr = (struct scsi_vpd_mode_page_policy *)ctsio->kern_data_ptr;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time.
*/
if (lun != NULL)
mpp_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
mpp_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
mpp_ptr->page_code = SVPD_MODE_PAGE_POLICY;
scsi_ulto2b(data_len - 4, mpp_ptr->page_length);
mpp_ptr->descr[0].page_code = 0x3f;
mpp_ptr->descr[0].subpage_code = 0xff;
mpp_ptr->descr[0].policy = SVPD_MPP_SHARED;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* SCSI VPD page 0x83, the Device Identification page.
*/
static int
ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_port *port = CTL_PORT(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_device_id *devid_ptr;
struct scsi_vpd_id_descriptor *desc;
int data_len, g;
uint8_t proto;
data_len = sizeof(struct scsi_vpd_device_id) +
sizeof(struct scsi_vpd_id_descriptor) +
sizeof(struct scsi_vpd_id_rel_trgt_port_id) +
sizeof(struct scsi_vpd_id_descriptor) +
sizeof(struct scsi_vpd_id_trgt_port_grp_id);
if (lun && lun->lun_devid)
data_len += lun->lun_devid->len;
if (port && port->port_devid)
data_len += port->port_devid->len;
if (port && port->target_devid)
data_len += port->target_devid->len;
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
devid_ptr = (struct scsi_vpd_device_id *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time.
*/
if (lun != NULL)
devid_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
devid_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
devid_ptr->page_code = SVPD_DEVICE_ID;
scsi_ulto2b(data_len - 4, devid_ptr->length);
if (port && port->port_type == CTL_PORT_FC)
proto = SCSI_PROTO_FC << 4;
else if (port && port->port_type == CTL_PORT_SAS)
proto = SCSI_PROTO_SAS << 4;
else if (port && port->port_type == CTL_PORT_ISCSI)
proto = SCSI_PROTO_ISCSI << 4;
else
proto = SCSI_PROTO_SPI << 4;
desc = (struct scsi_vpd_id_descriptor *)devid_ptr->desc_list;
/*
* We're using a LUN association here. i.e., this device ID is a
* per-LUN identifier.
*/
if (lun && lun->lun_devid) {
memcpy(desc, lun->lun_devid->data, lun->lun_devid->len);
desc = (struct scsi_vpd_id_descriptor *)((uint8_t *)desc +
lun->lun_devid->len);
}
/*
* This is for the WWPN which is a port association.
*/
if (port && port->port_devid) {
memcpy(desc, port->port_devid->data, port->port_devid->len);
desc = (struct scsi_vpd_id_descriptor *)((uint8_t *)desc +
port->port_devid->len);
}
/*
* This is for the Relative Target Port(type 4h) identifier
*/
desc->proto_codeset = proto | SVPD_ID_CODESET_BINARY;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT |
SVPD_ID_TYPE_RELTARG;
desc->length = 4;
scsi_ulto2b(ctsio->io_hdr.nexus.targ_port, &desc->identifier[2]);
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
sizeof(struct scsi_vpd_id_rel_trgt_port_id));
/*
* This is for the Target Port Group(type 5h) identifier
*/
desc->proto_codeset = proto | SVPD_ID_CODESET_BINARY;
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT |
SVPD_ID_TYPE_TPORTGRP;
desc->length = 4;
if (softc->is_single ||
(port && port->status & CTL_PORT_STATUS_HA_SHARED))
g = 1;
else
g = 2 + ctsio->io_hdr.nexus.targ_port / softc->port_cnt;
scsi_ulto2b(g, &desc->identifier[2]);
desc = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
sizeof(struct scsi_vpd_id_trgt_port_grp_id));
/*
* This is for the Target identifier
*/
if (port && port->target_devid) {
memcpy(desc, port->target_devid->data, port->target_devid->len);
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_scsi_ports(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_scsi_ports *sp;
struct scsi_vpd_port_designation *pd;
struct scsi_vpd_port_designation_cont *pdc;
struct ctl_port *port;
int data_len, num_target_ports, iid_len, id_len;
num_target_ports = 0;
iid_len = 0;
id_len = 0;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0)
continue;
if (lun != NULL &&
ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
num_target_ports++;
if (port->init_devid)
iid_len += port->init_devid->len;
if (port->port_devid)
id_len += port->port_devid->len;
}
mtx_unlock(&softc->ctl_lock);
data_len = sizeof(struct scsi_vpd_scsi_ports) +
num_target_ports * (sizeof(struct scsi_vpd_port_designation) +
sizeof(struct scsi_vpd_port_designation_cont)) + iid_len + id_len;
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
sp = (struct scsi_vpd_scsi_ports *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
sp->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
sp->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
sp->page_code = SVPD_SCSI_PORTS;
scsi_ulto2b(data_len - sizeof(struct scsi_vpd_scsi_ports),
sp->page_length);
pd = &sp->design[0];
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(port, &softc->port_list, links) {
if ((port->status & CTL_PORT_STATUS_ONLINE) == 0)
continue;
if (lun != NULL &&
ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
scsi_ulto2b(port->targ_port, pd->relative_port_id);
if (port->init_devid) {
iid_len = port->init_devid->len;
memcpy(pd->initiator_transportid,
port->init_devid->data, port->init_devid->len);
} else
iid_len = 0;
scsi_ulto2b(iid_len, pd->initiator_transportid_length);
pdc = (struct scsi_vpd_port_designation_cont *)
(&pd->initiator_transportid[iid_len]);
if (port->port_devid) {
id_len = port->port_devid->len;
memcpy(pdc->target_port_descriptors,
port->port_devid->data, port->port_devid->len);
} else
id_len = 0;
scsi_ulto2b(id_len, pdc->target_port_descriptors_length);
pd = (struct scsi_vpd_port_designation *)
((uint8_t *)pdc->target_port_descriptors + id_len);
}
mtx_unlock(&softc->ctl_lock);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_block_limits(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_block_limits *bl_ptr;
uint64_t ival;
ctsio->kern_data_ptr = malloc(sizeof(*bl_ptr), M_CTL, M_WAITOK | M_ZERO);
bl_ptr = (struct scsi_vpd_block_limits *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_len = min(sizeof(*bl_ptr), alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
bl_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
bl_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
bl_ptr->page_code = SVPD_BLOCK_LIMITS;
scsi_ulto2b(sizeof(*bl_ptr) - 4, bl_ptr->page_length);
bl_ptr->max_cmp_write_len = 0xff;
scsi_ulto4b(0xffffffff, bl_ptr->max_txfer_len);
if (lun != NULL) {
scsi_ulto4b(lun->be_lun->opttxferlen, bl_ptr->opt_txfer_len);
if (lun->be_lun->flags & CTL_LUN_FLAG_UNMAP) {
ival = 0xffffffff;
ctl_get_opt_number(&lun->be_lun->options,
"unmap_max_lba", &ival);
scsi_ulto4b(ival, bl_ptr->max_unmap_lba_cnt);
ival = 0xffffffff;
ctl_get_opt_number(&lun->be_lun->options,
"unmap_max_descr", &ival);
scsi_ulto4b(ival, bl_ptr->max_unmap_blk_cnt);
if (lun->be_lun->ublockexp != 0) {
scsi_ulto4b((1 << lun->be_lun->ublockexp),
bl_ptr->opt_unmap_grain);
scsi_ulto4b(0x80000000 | lun->be_lun->ublockoff,
bl_ptr->unmap_grain_align);
}
}
scsi_ulto4b(lun->be_lun->atomicblock,
bl_ptr->max_atomic_transfer_length);
scsi_ulto4b(0, bl_ptr->atomic_alignment);
scsi_ulto4b(0, bl_ptr->atomic_transfer_length_granularity);
scsi_ulto4b(0, bl_ptr->max_atomic_transfer_length_with_atomic_boundary);
scsi_ulto4b(0, bl_ptr->max_atomic_boundary_size);
ival = UINT64_MAX;
ctl_get_opt_number(&lun->be_lun->options, "write_same_max_lba", &ival);
scsi_u64to8b(ival, bl_ptr->max_write_same_length);
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_bdc(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_block_device_characteristics *bdc_ptr;
const char *value;
u_int i;
ctsio->kern_data_ptr = malloc(sizeof(*bdc_ptr), M_CTL, M_WAITOK | M_ZERO);
bdc_ptr = (struct scsi_vpd_block_device_characteristics *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(sizeof(*bdc_ptr), alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
bdc_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
bdc_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
bdc_ptr->page_code = SVPD_BDC;
scsi_ulto2b(sizeof(*bdc_ptr) - 4, bdc_ptr->page_length);
if (lun != NULL &&
(value = ctl_get_opt(&lun->be_lun->options, "rpm")) != NULL)
i = strtol(value, NULL, 0);
else
i = CTL_DEFAULT_ROTATION_RATE;
scsi_ulto2b(i, bdc_ptr->medium_rotation_rate);
if (lun != NULL &&
(value = ctl_get_opt(&lun->be_lun->options, "formfactor")) != NULL)
i = strtol(value, NULL, 0);
else
i = 0;
bdc_ptr->wab_wac_ff = (i & 0x0f);
bdc_ptr->flags = SVPD_FUAB | SVPD_VBULS;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_lbp(struct ctl_scsiio *ctsio, int alloc_len)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_vpd_logical_block_prov *lbp_ptr;
const char *value;
ctsio->kern_data_ptr = malloc(sizeof(*lbp_ptr), M_CTL, M_WAITOK | M_ZERO);
lbp_ptr = (struct scsi_vpd_logical_block_prov *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(sizeof(*lbp_ptr), alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
lbp_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
lbp_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
lbp_ptr->page_code = SVPD_LBP;
scsi_ulto2b(sizeof(*lbp_ptr) - 4, lbp_ptr->page_length);
lbp_ptr->threshold_exponent = CTL_LBP_EXPONENT;
if (lun != NULL && lun->be_lun->flags & CTL_LUN_FLAG_UNMAP) {
lbp_ptr->flags = SVPD_LBP_UNMAP | SVPD_LBP_WS16 |
SVPD_LBP_WS10 | SVPD_LBP_RZ | SVPD_LBP_ANC_SUP;
value = ctl_get_opt(&lun->be_lun->options, "provisioning_type");
if (value != NULL) {
if (strcmp(value, "resource") == 0)
lbp_ptr->prov_type = SVPD_LBP_RESOURCE;
else if (strcmp(value, "thin") == 0)
lbp_ptr->prov_type = SVPD_LBP_THIN;
} else
lbp_ptr->prov_type = SVPD_LBP_THIN;
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* INQUIRY with the EVPD bit set.
*/
static int
ctl_inquiry_evpd(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_inquiry *cdb;
int alloc_len, retval;
cdb = (struct scsi_inquiry *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
switch (cdb->page_code) {
case SVPD_SUPPORTED_PAGES:
retval = ctl_inquiry_evpd_supported(ctsio, alloc_len);
break;
case SVPD_UNIT_SERIAL_NUMBER:
retval = ctl_inquiry_evpd_serial(ctsio, alloc_len);
break;
case SVPD_DEVICE_ID:
retval = ctl_inquiry_evpd_devid(ctsio, alloc_len);
break;
case SVPD_EXTENDED_INQUIRY_DATA:
retval = ctl_inquiry_evpd_eid(ctsio, alloc_len);
break;
case SVPD_MODE_PAGE_POLICY:
retval = ctl_inquiry_evpd_mpp(ctsio, alloc_len);
break;
case SVPD_SCSI_PORTS:
retval = ctl_inquiry_evpd_scsi_ports(ctsio, alloc_len);
break;
case SVPD_SCSI_TPC:
retval = ctl_inquiry_evpd_tpc(ctsio, alloc_len);
break;
case SVPD_BLOCK_LIMITS:
if (lun == NULL || lun->be_lun->lun_type != T_DIRECT)
goto err;
retval = ctl_inquiry_evpd_block_limits(ctsio, alloc_len);
break;
case SVPD_BDC:
if (lun == NULL || lun->be_lun->lun_type != T_DIRECT)
goto err;
retval = ctl_inquiry_evpd_bdc(ctsio, alloc_len);
break;
case SVPD_LBP:
if (lun == NULL || lun->be_lun->lun_type != T_DIRECT)
goto err;
retval = ctl_inquiry_evpd_lbp(ctsio, alloc_len);
break;
default:
err:
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
retval = CTL_RETVAL_COMPLETE;
break;
}
return (retval);
}
/*
* Standard INQUIRY data.
*/
static int
ctl_inquiry_std(struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = CTL_SOFTC(ctsio);
struct ctl_port *port = CTL_PORT(ctsio);
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_inquiry_data *inq_ptr;
struct scsi_inquiry *cdb;
char *val;
uint32_t alloc_len, data_len;
ctl_port_type port_type;
port_type = port->port_type;
if (port_type == CTL_PORT_IOCTL || port_type == CTL_PORT_INTERNAL)
port_type = CTL_PORT_SCSI;
cdb = (struct scsi_inquiry *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
/*
* We malloc the full inquiry data size here and fill it
* in. If the user only asks for less, we'll give him
* that much.
*/
data_len = offsetof(struct scsi_inquiry_data, vendor_specific1);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
inq_ptr = (struct scsi_inquiry_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
if (lun != NULL) {
if ((lun->flags & CTL_LUN_PRIMARY_SC) ||
softc->ha_link >= CTL_HA_LINK_UNKNOWN) {
inq_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
} else {
inq_ptr->device = (SID_QUAL_LU_OFFLINE << 5) |
lun->be_lun->lun_type;
}
if (lun->flags & CTL_LUN_REMOVABLE)
inq_ptr->dev_qual2 |= SID_RMB;
} else
inq_ptr->device = (SID_QUAL_BAD_LU << 5) | T_NODEVICE;
/* RMB in byte 2 is 0 */
inq_ptr->version = SCSI_REV_SPC5;
/*
* According to SAM-3, even if a device only supports a single
* level of LUN addressing, it should still set the HISUP bit:
*
* 4.9.1 Logical unit numbers overview
*
* All logical unit number formats described in this standard are
* hierarchical in structure even when only a single level in that
* hierarchy is used. The HISUP bit shall be set to one in the
* standard INQUIRY data (see SPC-2) when any logical unit number
* format described in this standard is used. Non-hierarchical
* formats are outside the scope of this standard.
*
* Therefore we set the HiSup bit here.
*
* The response format is 2, per SPC-3.
*/
inq_ptr->response_format = SID_HiSup | 2;
inq_ptr->additional_length = data_len -
(offsetof(struct scsi_inquiry_data, additional_length) + 1);
CTL_DEBUG_PRINT(("additional_length = %d\n",
inq_ptr->additional_length));
inq_ptr->spc3_flags = SPC3_SID_3PC | SPC3_SID_TPGS_IMPLICIT;
if (port_type == CTL_PORT_SCSI)
inq_ptr->spc2_flags = SPC2_SID_ADDR16;
inq_ptr->spc2_flags |= SPC2_SID_MultiP;
inq_ptr->flags = SID_CmdQue;
if (port_type == CTL_PORT_SCSI)
inq_ptr->flags |= SID_WBus16 | SID_Sync;
/*
* Per SPC-3, unused bytes in ASCII strings are filled with spaces.
* We have 8 bytes for the vendor name, and 16 bytes for the device
* name and 4 bytes for the revision.
*/
if (lun == NULL || (val = ctl_get_opt(&lun->be_lun->options,
"vendor")) == NULL) {
strncpy(inq_ptr->vendor, CTL_VENDOR, sizeof(inq_ptr->vendor));
} else {
memset(inq_ptr->vendor, ' ', sizeof(inq_ptr->vendor));
strncpy(inq_ptr->vendor, val,
min(sizeof(inq_ptr->vendor), strlen(val)));
}
if (lun == NULL) {
strncpy(inq_ptr->product, CTL_DIRECT_PRODUCT,
sizeof(inq_ptr->product));
} else if ((val = ctl_get_opt(&lun->be_lun->options, "product")) == NULL) {
switch (lun->be_lun->lun_type) {
case T_DIRECT:
strncpy(inq_ptr->product, CTL_DIRECT_PRODUCT,
sizeof(inq_ptr->product));
break;
case T_PROCESSOR:
strncpy(inq_ptr->product, CTL_PROCESSOR_PRODUCT,
sizeof(inq_ptr->product));
break;
case T_CDROM:
strncpy(inq_ptr->product, CTL_CDROM_PRODUCT,
sizeof(inq_ptr->product));
break;
default:
strncpy(inq_ptr->product, CTL_UNKNOWN_PRODUCT,
sizeof(inq_ptr->product));
break;
}
} else {
memset(inq_ptr->product, ' ', sizeof(inq_ptr->product));
strncpy(inq_ptr->product, val,
min(sizeof(inq_ptr->product), strlen(val)));
}
/*
* XXX make this a macro somewhere so it automatically gets
* incremented when we make changes.
*/
if (lun == NULL || (val = ctl_get_opt(&lun->be_lun->options,
"revision")) == NULL) {
strncpy(inq_ptr->revision, "0001", sizeof(inq_ptr->revision));
} else {
memset(inq_ptr->revision, ' ', sizeof(inq_ptr->revision));
strncpy(inq_ptr->revision, val,
min(sizeof(inq_ptr->revision), strlen(val)));
}
/*
* For parallel SCSI, we support double transition and single
* transition clocking. We also support QAS (Quick Arbitration
* and Selection) and Information Unit transfers on both the
* control and array devices.
*/
if (port_type == CTL_PORT_SCSI)
inq_ptr->spi3data = SID_SPI_CLOCK_DT_ST | SID_SPI_QAS |
SID_SPI_IUS;
/* SAM-6 (no version claimed) */
scsi_ulto2b(0x00C0, inq_ptr->version1);
/* SPC-5 (no version claimed) */
scsi_ulto2b(0x05C0, inq_ptr->version2);
if (port_type == CTL_PORT_FC) {
/* FCP-2 ANSI INCITS.350:2003 */
scsi_ulto2b(0x0917, inq_ptr->version3);
} else if (port_type == CTL_PORT_SCSI) {
/* SPI-4 ANSI INCITS.362:200x */
scsi_ulto2b(0x0B56, inq_ptr->version3);
} else if (port_type == CTL_PORT_ISCSI) {
/* iSCSI (no version claimed) */
scsi_ulto2b(0x0960, inq_ptr->version3);
} else if (port_type == CTL_PORT_SAS) {
/* SAS (no version claimed) */
scsi_ulto2b(0x0BE0, inq_ptr->version3);
} else if (port_type == CTL_PORT_UMASS) {
/* USB Mass Storage Class Bulk-Only Transport, Revision 1.0 */
scsi_ulto2b(0x1730, inq_ptr->version3);
}
if (lun == NULL) {
/* SBC-4 (no version claimed) */
scsi_ulto2b(0x0600, inq_ptr->version4);
} else {
switch (lun->be_lun->lun_type) {
case T_DIRECT:
/* SBC-4 (no version claimed) */
scsi_ulto2b(0x0600, inq_ptr->version4);
break;
case T_PROCESSOR:
break;
case T_CDROM:
/* MMC-6 (no version claimed) */
scsi_ulto2b(0x04E0, inq_ptr->version4);
break;
default:
break;
}
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_inquiry(struct ctl_scsiio *ctsio)
{
struct scsi_inquiry *cdb;
int retval;
CTL_DEBUG_PRINT(("ctl_inquiry\n"));
cdb = (struct scsi_inquiry *)ctsio->cdb;
if (cdb->byte2 & SI_EVPD)
retval = ctl_inquiry_evpd(ctsio);
else if (cdb->page_code == 0)
retval = ctl_inquiry_std(ctsio);
else {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
return (retval);
}
int
ctl_get_config(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_get_config_header *hdr;
struct scsi_get_config_feature *feature;
struct scsi_get_config *cdb;
uint32_t alloc_len, data_len;
int rt, starting;
cdb = (struct scsi_get_config *)ctsio->cdb;
rt = (cdb->rt & SGC_RT_MASK);
starting = scsi_2btoul(cdb->starting_feature);
alloc_len = scsi_2btoul(cdb->length);
data_len = sizeof(struct scsi_get_config_header) +
sizeof(struct scsi_get_config_feature) + 8 +
sizeof(struct scsi_get_config_feature) + 8 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 8 +
sizeof(struct scsi_get_config_feature) +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4 +
sizeof(struct scsi_get_config_feature) + 4;
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
hdr = (struct scsi_get_config_header *)ctsio->kern_data_ptr;
if (lun->flags & CTL_LUN_NO_MEDIA)
scsi_ulto2b(0x0000, hdr->current_profile);
else
scsi_ulto2b(0x0010, hdr->current_profile);
feature = (struct scsi_get_config_feature *)(hdr + 1);
if (starting > 0x003b)
goto done;
if (starting > 0x003a)
goto f3b;
if (starting > 0x002b)
goto f3a;
if (starting > 0x002a)
goto f2b;
if (starting > 0x001f)
goto f2a;
if (starting > 0x001e)
goto f1f;
if (starting > 0x001d)
goto f1e;
if (starting > 0x0010)
goto f1d;
if (starting > 0x0003)
goto f10;
if (starting > 0x0002)
goto f3;
if (starting > 0x0001)
goto f2;
if (starting > 0x0000)
goto f1;
/* Profile List */
scsi_ulto2b(0x0000, feature->feature_code);
feature->flags = SGC_F_PERSISTENT | SGC_F_CURRENT;
feature->add_length = 8;
scsi_ulto2b(0x0008, &feature->feature_data[0]); /* CD-ROM */
feature->feature_data[2] = 0x00;
scsi_ulto2b(0x0010, &feature->feature_data[4]); /* DVD-ROM */
feature->feature_data[6] = 0x01;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f1: /* Core */
scsi_ulto2b(0x0001, feature->feature_code);
feature->flags = 0x08 | SGC_F_PERSISTENT | SGC_F_CURRENT;
feature->add_length = 8;
scsi_ulto4b(0x00000000, &feature->feature_data[0]);
feature->feature_data[4] = 0x03;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f2: /* Morphing */
scsi_ulto2b(0x0002, feature->feature_code);
feature->flags = 0x04 | SGC_F_PERSISTENT | SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x02;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f3: /* Removable Medium */
scsi_ulto2b(0x0003, feature->feature_code);
feature->flags = 0x04 | SGC_F_PERSISTENT | SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x39;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
if (rt == SGC_RT_CURRENT && (lun->flags & CTL_LUN_NO_MEDIA))
goto done;
f10: /* Random Read */
scsi_ulto2b(0x0010, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 8;
scsi_ulto4b(lun->be_lun->blocksize, &feature->feature_data[0]);
scsi_ulto2b(1, &feature->feature_data[4]);
feature->feature_data[6] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f1d: /* Multi-Read */
scsi_ulto2b(0x001D, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 0;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f1e: /* CD Read */
scsi_ulto2b(0x001E, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f1f: /* DVD Read */
scsi_ulto2b(0x001F, feature->feature_code);
feature->flags = 0x08;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x01;
feature->feature_data[2] = 0x03;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f2a: /* DVD+RW */
scsi_ulto2b(0x002A, feature->feature_code);
feature->flags = 0x04;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x00;
feature->feature_data[1] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f2b: /* DVD+R */
scsi_ulto2b(0x002B, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f3a: /* DVD+RW Dual Layer */
scsi_ulto2b(0x003A, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x00;
feature->feature_data[1] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
f3b: /* DVD+R Dual Layer */
scsi_ulto2b(0x003B, feature->feature_code);
feature->flags = 0x00;
if ((lun->flags & CTL_LUN_NO_MEDIA) == 0)
feature->flags |= SGC_F_CURRENT;
feature->add_length = 4;
feature->feature_data[0] = 0x00;
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
done:
data_len = (uint8_t *)feature - (uint8_t *)hdr;
if (rt == SGC_RT_SPECIFIC && data_len > 4) {
feature = (struct scsi_get_config_feature *)(hdr + 1);
if (scsi_2btoul(feature->feature_code) == starting)
feature = (struct scsi_get_config_feature *)
&feature->feature_data[feature->add_length];
data_len = (uint8_t *)feature - (uint8_t *)hdr;
}
scsi_ulto4b(data_len - 4, hdr->data_length);
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_get_event_status(struct ctl_scsiio *ctsio)
{
struct scsi_get_event_status_header *hdr;
struct scsi_get_event_status *cdb;
uint32_t alloc_len, data_len;
int notif_class;
cdb = (struct scsi_get_event_status *)ctsio->cdb;
if ((cdb->byte2 & SGESN_POLLED) == 0) {
ctl_set_invalid_field(ctsio, /*sks_valid*/ 1, /*command*/ 1,
/*field*/ 1, /*bit_valid*/ 1, /*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
notif_class = cdb->notif_class;
alloc_len = scsi_2btoul(cdb->length);
data_len = sizeof(struct scsi_get_event_status_header);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
hdr = (struct scsi_get_event_status_header *)ctsio->kern_data_ptr;
scsi_ulto2b(0, hdr->descr_length);
hdr->nea_class = SGESN_NEA;
hdr->supported_class = 0;
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_mechanism_status(struct ctl_scsiio *ctsio)
{
struct scsi_mechanism_status_header *hdr;
struct scsi_mechanism_status *cdb;
uint32_t alloc_len, data_len;
cdb = (struct scsi_mechanism_status *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
data_len = sizeof(struct scsi_mechanism_status_header);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
hdr = (struct scsi_mechanism_status_header *)ctsio->kern_data_ptr;
hdr->state1 = 0x00;
hdr->state2 = 0xe0;
scsi_ulto3b(0, hdr->lba);
hdr->slots_num = 0;
scsi_ulto2b(0, hdr->slots_length);
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static void
ctl_ultomsf(uint32_t lba, uint8_t *buf)
{
lba += 150;
buf[0] = 0;
buf[1] = bin2bcd((lba / 75) / 60);
buf[2] = bin2bcd((lba / 75) % 60);
buf[3] = bin2bcd(lba % 75);
}
int
ctl_read_toc(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun = CTL_LUN(ctsio);
struct scsi_read_toc_hdr *hdr;
struct scsi_read_toc_type01_descr *descr;
struct scsi_read_toc *cdb;
uint32_t alloc_len, data_len;
int format, msf;
cdb = (struct scsi_read_toc *)ctsio->cdb;
msf = (cdb->byte2 & CD_MSF) != 0;
format = cdb->format;
alloc_len = scsi_2btoul(cdb->data_len);
data_len = sizeof(struct scsi_read_toc_hdr);
if (format == 0)
data_len += 2 * sizeof(struct scsi_read_toc_type01_descr);
else
data_len += sizeof(struct scsi_read_toc_type01_descr);
ctsio->kern_data_ptr = malloc(data_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_data_len = min(data_len, alloc_len);
ctsio->kern_total_len = ctsio->kern_data_len;
hdr = (struct scsi_read_toc_hdr *)ctsio->kern_data_ptr;
if (format == 0) {
scsi_ulto2b(0x12, hdr->data_length);
hdr->first = 1;
hdr->last = 1;
descr = (struct scsi_read_toc_type01_descr *)(hdr + 1);
descr->addr_ctl = 0x14;
descr->track_number = 1;
if (msf)
ctl_ultomsf(0, descr->track_start);
else
scsi_ulto4b(0, descr->track_start);
descr++;
descr->addr_ctl = 0x14;
descr->track_number = 0xaa;
if (msf)
ctl_ultomsf(lun->be_lun->maxlba+1, descr->track_start);
else
scsi_ulto4b(lun->be_lun->maxlba+1, descr->track_start);
} else {
scsi_ulto2b(0x0a, hdr->data_length);
hdr->first = 1;
hdr->last = 1;
descr = (struct scsi_read_toc_type01_descr *)(hdr + 1);
descr->addr_ctl = 0x14;
descr->track_number = 1;
if (msf)
ctl_ultomsf(0, descr->track_start);
else
scsi_ulto4b(0, descr->track_start);
}
ctl_set_success(ctsio);
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* For known CDB types, parse the LBA and length.
*/
static int
ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint64_t *len)
{
if (io->io_hdr.io_type != CTL_IO_SCSI)
return (1);
switch (io->scsiio.cdb[0]) {
case COMPARE_AND_WRITE: {
struct scsi_compare_and_write *cdb;
cdb = (struct scsi_compare_and_write *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = cdb->length;
break;
}
case READ_6:
case WRITE_6: {
struct scsi_rw_6 *cdb;
cdb = (struct scsi_rw_6 *)io->scsiio.cdb;
*lba = scsi_3btoul(cdb->addr);
/* only 5 bits are valid in the most significant address byte */
*lba &= 0x1fffff;
*len = cdb->length;
break;
}
case READ_10:
case WRITE_10: {
struct scsi_rw_10 *cdb;
cdb = (struct scsi_rw_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case WRITE_VERIFY_10: {
struct scsi_write_verify_10 *cdb;
cdb = (struct scsi_write_verify_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case READ_12:
case WRITE_12: {
struct scsi_rw_12 *cdb;
cdb = (struct scsi_rw_12 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_12: {
struct scsi_write_verify_12 *cdb;
cdb = (struct scsi_write_verify_12 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case READ_16:
case WRITE_16: {
struct scsi_rw_16 *cdb;
cdb = (struct scsi_rw_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case WRITE_ATOMIC_16: {
struct scsi_write_atomic_16 *cdb;
cdb = (struct scsi_write_atomic_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case WRITE_VERIFY_16: {
struct scsi_write_verify_16 *cdb;
cdb = (struct scsi_write_verify_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case WRITE_SAME_10: {
struct scsi_write_same_10 *cdb;
cdb = (struct scsi_write_same_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case WRITE_SAME_16: {
struct scsi_write_same_16 *cdb;
cdb = (struct scsi_write_same_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case VERIFY_10: {
struct scsi_verify_10 *cdb;
cdb = (struct scsi_verify_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case VERIFY_12: {
struct scsi_verify_12 *cdb;
cdb = (struct scsi_verify_12 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case VERIFY_16: {
struct scsi_verify_16 *cdb;
cdb = (struct scsi_verify_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case UNMAP: {
*lba = 0;
*len = UINT64_MAX;
break;
}
case SERVICE_ACTION_IN: { /* GET LBA STATUS */
struct scsi_get_lba_status *cdb;
cdb = (struct scsi_get_lba_status *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = UINT32_MAX;
break;
}
default:
return (1);
break; /* NOTREACHED */
}
return (0);
}
static ctl_action
ctl_extent_check_lba(uint64_t lba1, uint64_t len1, uint64_t lba2, uint64_t len2,
bool seq)
{
uint64_t endlba1, endlba2;
endlba1 = lba1 + len1 - (seq ? 0 : 1);
endlba2 = lba2 + len2 - 1;
if ((endlba1 < lba2) || (endlba2 < lba1))
return (CTL_ACTION_PASS);
else
return (CTL_ACTION_BLOCK);
}
static int
ctl_extent_check_unmap(union ctl_io *io, uint64_t lba2, uint64_t len2)
{
struct ctl_ptr_len_flags *ptrlen;
struct scsi_unmap_desc *buf, *end, *range;
uint64_t lba;
uint32_t len;
/* If not UNMAP -- go other way. */
if (io->io_hdr.io_type != CTL_IO_SCSI ||
io->scsiio.cdb[0] != UNMAP)
return (CTL_ACTION_ERROR);
/* If UNMAP without data -- block and wait for data. */
ptrlen = (struct ctl_ptr_len_flags *)
&io->io_hdr.ctl_private[CTL_PRIV_LBA_LEN];
if ((io->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0 ||
ptrlen->ptr == NULL)
return (CTL_ACTION_BLOCK);
/* UNMAP with data -- check for collision. */
buf = (struct scsi_unmap_desc *)ptrlen->ptr;
end = buf + ptrlen->len / sizeof(*buf);
for (range = buf; range < end; range++) {
lba = scsi_8btou64(range->lba);
len = scsi_4btoul(range->length);
if ((lba < lba2 + len2) && (lba + len > lba2))
return (CTL_ACTION_BLOCK);
}
return (CTL_ACTION_PASS);
}
static ctl_action
ctl_extent_check(union ctl_io *io1, union ctl_io *io2, bool seq)
{
uint64_t lba1, lba2;
uint64_t len1, len2;
int retval;
if (ctl_get_lba_len(io2, &lba2, &len2) != 0)
return (CTL_ACTION_ERROR);
retval = ctl_extent_check_unmap(io1, lba2, len2);
if (retval != CTL_ACTION_ERROR)
return (retval);
if (ctl_get_lba_len(io1, &lba1, &len1) != 0)
return (CTL_ACTION_ERROR);
if (io1->io_hdr.flags & CTL_FLAG_SERSEQ_DONE)
seq = FALSE;
return (ctl_extent_check_lba(lba1, len1, lba2, len2, seq));
}
static ctl_action
ctl_extent_check_seq(union ctl_io *io1, union ctl_io *io2)
{
uint64_t lba1, lba2;
uint64_t len1, len2;
if (io1->io_hdr.flags & CTL_FLAG_SERSEQ_DONE)
return (CTL_ACTION_PASS);
if (ctl_get_lba_len(io1, &lba1, &len1) != 0)
return (CTL_ACTION_ERROR);
if (ctl_get_lba_len(io2, &lba2, &len2) != 0)
return (CTL_ACTION_ERROR);
if (lba1 + len1 == lba2)
return (CTL_ACTION_BLOCK);
return (CTL_ACTION_PASS);
}
static ctl_action
ctl_check_for_blockage(struct ctl_lun *lun, union ctl_io *pending_io,
union ctl_io *ooa_io)
{
const struct ctl_cmd_entry *pending_entry, *ooa_entry;
const ctl_serialize_action *serialize_row;
/*
* The initiator attempted multiple untagged commands at the same
* time. Can't do that.
*/
if ((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& (ooa_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& ((pending_io->io_hdr.nexus.targ_port ==
ooa_io->io_hdr.nexus.targ_port)
&& (pending_io->io_hdr.nexus.initid ==
ooa_io->io_hdr.nexus.initid))
&& ((ooa_io->io_hdr.flags & (CTL_FLAG_ABORT |
CTL_FLAG_STATUS_SENT)) == 0))
return (CTL_ACTION_OVERLAP);
/*
* The initiator attempted to send multiple tagged commands with
* the same ID. (It's fine if different initiators have the same
* tag ID.)
*
* Even if all of those conditions are true, we don't kill the I/O
* if the command ahead of us has been aborted. We won't end up
* sending it to the FETD, and it's perfectly legal to resend a
* command with the same tag number as long as the previous
* instance of this tag number has been aborted somehow.
*/
if ((pending_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
&& (ooa_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
&& (pending_io->scsiio.tag_num == ooa_io->scsiio.tag_num)
&& ((pending_io->io_hdr.nexus.targ_port ==
ooa_io->io_hdr.nexus.targ_port)
&& (pending_io->io_hdr.nexus.initid ==
ooa_io->io_hdr.nexus.initid))
&& ((ooa_io->io_hdr.flags & (CTL_FLAG_ABORT |
CTL_FLAG_STATUS_SENT)) == 0))
return (CTL_ACTION_OVERLAP_TAG);
/*
* If we get a head of queue tag, SAM-3 says that we should
* immediately execute it.
*
* What happens if this command would normally block for some other
* reason? e.g. a request sense with a head of queue tag
* immediately after a write. Normally that would block, but this
* will result in its getting executed immediately...
*
* We currently return "pass" instead of "skip", so we'll end up
* going through the rest of the queue to check for overlapped tags.
*
* XXX KDM check for other types of blockage first??
*/
if (pending_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
return (CTL_ACTION_PASS);
/*
* Ordered tags have to block until all items ahead of them
* have completed. If we get called with an ordered tag, we always
* block, if something else is ahead of us in the queue.
*/
if (pending_io->scsiio.tag_type == CTL_TAG_ORDERED)
return (CTL_ACTION_BLOCK);
/*
* Simple tags get blocked until all head of queue and ordered tags
* ahead of them have completed. I'm lumping untagged commands in
* with simple tags here. XXX KDM is that the right thing to do?
*/
if (((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
|| (pending_io->scsiio.tag_type == CTL_TAG_SIMPLE))
&& ((ooa_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
|| (ooa_io->scsiio.tag_type == CTL_TAG_ORDERED)))
return (CTL_ACTION_BLOCK);
pending_entry = ctl_get_cmd_entry(&pending_io->scsiio, NULL);
KASSERT(pending_entry->seridx < CTL_SERIDX_COUNT,
("%s: Invalid seridx %d for pending CDB %02x %02x @ %p",
__func__, pending_entry->seridx, pending_io->scsiio.cdb[0],
pending_io->scsiio.cdb[1], pending_io));
ooa_entry = ctl_get_cmd_entry(&ooa_io->scsiio, NULL);
if (ooa_entry->seridx == CTL_SERIDX_INVLD)
return (CTL_ACTION_PASS); /* Unsupported command in OOA queue */
KASSERT(ooa_entry->seridx < CTL_SERIDX_COUNT,
("%s: Invalid seridx %d for ooa CDB %02x %02x @ %p",
__func__, ooa_entry->seridx, ooa_io->scsiio.cdb[0],
ooa_io->scsiio.cdb[1], ooa_io));
serialize_row = ctl_serialize_table[ooa_entry->seridx];
switch (serialize_row[pending_entry->seridx]) {
case CTL_SER_BLOCK:
return (CTL_ACTION_BLOCK);
case CTL_SER_EXTENT:
return (ctl_extent_check(ooa_io, pending_io,
(lun->be_lun && lun->be_lun->serseq == CTL_LUN_SERSEQ_ON)));
case CTL_SER_EXTENTOPT:
if ((lun->MODE_CTRL.queue_flags & SCP_QUEUE_ALG_MASK) !=
SCP_QUEUE_ALG_UNRESTRICTED)
return (ctl_extent_check(ooa_io, pending_io,
(lun->be_lun &&
lun->be_lun->serseq == CTL_LUN_SERSEQ_ON)));
return (CTL_ACTION_PASS);
case CTL_SER_EXTENTSEQ:
if (lun->be_lun && lun->be_lun->serseq != CTL_LUN_SERSEQ_OFF)
return (ctl_extent_check_seq(ooa_io, pending_io));
return (CTL_ACTION_PASS);
case CTL_SER_PASS:
return (CTL_ACTION_PASS);
case CTL_SER_BLOCKOPT:
if ((lun->MODE_CTRL.queue_flags & SCP_QUEUE_ALG_MASK) !=
SCP_QUEUE_ALG_UNRESTRICTED)
return (CTL_ACTION_BLOCK);
return (CTL_ACTION_PASS);
case CTL_SER_SKIP:
return (CTL_ACTION_SKIP);
default:
panic("%s: Invalid serialization value %d for %d => %d",
__func__, serialize_row[pending_entry->seridx],
pending_entry->seridx, ooa_entry->seridx);
}
return (CTL_ACTION_ERROR);
}
/*
* Check for blockage or overlaps against the OOA (Order Of Arrival) queue.
* Assumptions:
* - pending_io is generally either incoming, or on the blocked queue
* - starting I/O is the I/O we want to start the check with.
*/
static ctl_action
ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
union ctl_io *starting_io)
{
union ctl_io *ooa_io;
ctl_action action;
mtx_assert(&lun->lun_lock, MA_OWNED);
/*
* Run back along the OOA queue, starting with the current
* blocked I/O and going through every I/O before it on the
* queue. If starting_io is NULL, we'll just end up returning
* CTL_ACTION_PASS.
*/
for (ooa_io = starting_io; ooa_io != NULL;
ooa_io = (union ctl_io *)TAILQ_PREV(&ooa_io->io_hdr, ctl_ooaq,
ooa_links)){
/*
* This routine just checks to see whether
* cur_blocked is blocked by ooa_io, which is ahead
* of it in the queue. It doesn't queue/dequeue
* cur_blocked.
*/
action = ctl_check_for_blockage(lun, pending_io, ooa_io);
switch (action) {
case CTL_ACTION_BLOCK:
case CTL_ACTION_OVERLAP:
case CTL_ACTION_OVERLAP_TAG:
case CTL_ACTION_SKIP:
case CTL_ACTION_ERROR:
return (action);
break; /* NOTREACHED */
case CTL_ACTION_PASS:
break;
default:
panic("%s: Invalid action %d\n", __func__, action);
}
}
return (CTL_ACTION_PASS);
}
/*
* Assumptions:
* - An I/O has just completed, and has been removed from the per-LUN OOA
* queue, so some items on the blocked queue may now be unblocked.
*/
static int
ctl_check_blocked(struct ctl_lun *lun)
{
struct ctl_softc *softc = lun->ctl_softc;
union ctl_io *cur_blocked, *next_blocked;
mtx_assert(&lun->lun_lock, MA_OWNED);
/*
* Run forward from the head of the blocked queue, checking each
* entry against the I/Os prior to it on the OOA queue to see if
* there is still any blockage.
*
* We cannot use the TAILQ_FOREACH() macro, because it can't deal
* with our removing a variable on it while it is traversing the
* list.
*/
for (cur_blocked = (union ctl_io *)TAILQ_FIRST(&lun->blocked_queue);
cur_blocked != NULL; cur_blocked = next_blocked) {
union ctl_io *prev_ooa;
ctl_action action;
next_blocked = (union ctl_io *)TAILQ_NEXT(&cur_blocked->io_hdr,
blocked_links);
prev_ooa = (union ctl_io *)TAILQ_PREV(&cur_blocked->io_hdr,
ctl_ooaq, ooa_links);
/*
* If cur_blocked happens to be the first item in the OOA
* queue now, prev_ooa will be NULL, and the action
* returned will just be CTL_ACTION_PASS.
*/
action = ctl_check_ooa(lun, cur_blocked, prev_ooa);
switch (action) {
case CTL_ACTION_BLOCK:
/* Nothing to do here, still blocked */
break;
case CTL_ACTION_OVERLAP:
case CTL_ACTION_OVERLAP_TAG:
/*
* This shouldn't happen! In theory we've already
* checked this command for overlap...
*/
break;
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP: {
const struct ctl_cmd_entry *entry;
/*
* The skip case shouldn't happen, this transaction
* should have never made it onto the blocked queue.
*/
/*
* This I/O is no longer blocked, we can remove it
* from the blocked queue. Since this is a TAILQ
* (doubly linked list), we can do O(1) removals
* from any place on the list.
*/
TAILQ_REMOVE(&lun->blocked_queue, &cur_blocked->io_hdr,
blocked_links);
cur_blocked->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
if ((softc->ha_mode != CTL_HA_MODE_XFER) &&
(cur_blocked->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)){
/*
* Need to send IO back to original side to
* run
*/
union ctl_ha_msg msg_info;
cur_blocked->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
msg_info.hdr.original_sc =
cur_blocked->io_hdr.original_sc;
msg_info.hdr.serializing_sc = cur_blocked;
msg_info.hdr.msg_type = CTL_MSG_R2R;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.hdr), M_NOWAIT);
break;
}
entry = ctl_get_cmd_entry(&cur_blocked->scsiio, NULL);
/*
* Check this I/O for LUN state changes that may
* have happened while this command was blocked.
* The LUN state may have been changed by a command
* ahead of us in the queue, so we need to re-check
* for any states that can be caused by SCSI
* commands.
*/
if (ctl_scsiio_lun_check(lun, entry,
&cur_blocked->scsiio) == 0) {
cur_blocked->io_hdr.flags |=
CTL_FLAG_IS_WAS_ON_RTR;
ctl_enqueue_rtr(cur_blocked);
} else
ctl_done(cur_blocked);
break;
}
default:
/*
* This probably shouldn't happen -- we shouldn't
* get CTL_ACTION_ERROR, or anything else.
*/
break;
}
}
return (CTL_RETVAL_COMPLETE);
}
/*
* This routine (with one exception) checks LUN flags that can be set by
* commands ahead of us in the OOA queue. These flags have to be checked
* when a command initially comes in, and when we pull a command off the
* blocked queue and are preparing to execute it. The reason we have to
* check these flags for commands on the blocked queue is that the LUN
* state may have been changed by a command ahead of us while we're on the
* blocked queue.
*
* Ordering is somewhat important with these checks, so please pay
* careful attention to the placement of any new checks.
*/
static int
ctl_scsiio_lun_check(struct ctl_lun *lun,
const struct ctl_cmd_entry *entry, struct ctl_scsiio *ctsio)
{
struct ctl_softc *softc = lun->ctl_softc;
int retval;
uint32_t residx;
retval = 0;
mtx_assert(&lun->lun_lock, MA_OWNED);
/*
* If this shelf is a secondary shelf controller, we may have to
* reject some commands disallowed by HA mode and link state.
*/
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0) {
if (softc->ha_link == CTL_HA_LINK_OFFLINE &&
(entry->flags & CTL_CMD_FLAG_OK_ON_UNAVAIL) == 0) {
ctl_set_lun_unavail(ctsio);
retval = 1;
goto bailout;
}
if ((lun->flags & CTL_LUN_PEER_SC_PRIMARY) == 0 &&
(entry->flags & CTL_CMD_FLAG_OK_ON_UNAVAIL) == 0) {
ctl_set_lun_transit(ctsio);
retval = 1;
goto bailout;
}
if (softc->ha_mode == CTL_HA_MODE_ACT_STBY &&
(entry->flags & CTL_CMD_FLAG_OK_ON_STANDBY) == 0) {
ctl_set_lun_standby(ctsio);
retval = 1;
goto bailout;
}
/* The rest of checks are only done on executing side */
if (softc->ha_mode == CTL_HA_MODE_XFER)
goto bailout;
}
if (entry->pattern & CTL_LUN_PAT_WRITE) {
if (lun->be_lun &&
lun->be_lun->flags & CTL_LUN_FLAG_READONLY) {
ctl_set_hw_write_protected(ctsio);
retval = 1;
goto bailout;
}
if ((lun->MODE_CTRL.eca_and_aen & SCP_SWP) != 0) {
ctl_set_sense(ctsio, /*current_error*/ 1,
/*sense_key*/ SSD_KEY_DATA_PROTECT,
/*asc*/ 0x27, /*ascq*/ 0x02, SSD_ELEM_NONE);
retval = 1;
goto bailout;
}
}
/*
* Check for a reservation conflict. If this command isn't allowed
* even on reserved LUNs, and if this initiator isn't the one who
* reserved us, reject the command with a reservation conflict.
*/
residx = ctl_get_initindex(&ctsio->io_hdr.nexus);
if ((lun->flags & CTL_LUN_RESERVED)
&& ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_RESV) == 0)) {
if (lun->res_idx != residx) {
ctl_set_reservation_conflict(ctsio);
retval = 1;
goto bailout;
}
}
if ((lun->flags & CTL_LUN_PR_RESERVED) == 0 ||
(entry->flags & CTL_CMD_FLAG_ALLOW_ON_PR_RESV)) {
/* No reservation or command is allowed. */;
} else if ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_PR_WRESV) &&
(lun->pr_res_type == SPR_TYPE_WR_EX ||
lun->pr_res_type == SPR_TYPE_WR_EX_RO ||
lun->pr_res_type == SPR_TYPE_WR_EX_AR)) {
/* The command is allowed for Write Exclusive resv. */;
} else {
/*
* if we aren't registered or it's a res holder type
* reservation and this isn't the res holder then set a
* conflict.
*/
if (ctl_get_prkey(lun, residx) == 0 ||
(residx != lun->pr_res_idx && lun->pr_res_type < 4)) {
ctl_set_reservation_conflict(ctsio);
retval = 1;
goto bailout;
}
}
if ((entry->flags & CTL_CMD_FLAG_OK_ON_NO_MEDIA) == 0) {
if (lun->flags & CTL_LUN_EJECTED)
ctl_set_lun_ejected(ctsio);
else if (lun->flags & CTL_LUN_NO_MEDIA) {
if (lun->flags & CTL_LUN_REMOVABLE)
ctl_set_lun_no_media(ctsio);
else
ctl_set_lun_int_reqd(ctsio);
} else if (lun->flags & CTL_LUN_STOPPED)
ctl_set_lun_stopped(ctsio);
else
goto bailout;
retval = 1;
goto bailout;
}
bailout:
return (retval);
}
static void
ctl_failover_io(union ctl_io *io, int have_lock)
{
ctl_set_busy(&io->scsiio);
ctl_done(io);
}
static void
ctl_failover_lun(union ctl_io *rio)
{
struct ctl_softc *softc = CTL_SOFTC(rio);
struct ctl_lun *lun;
struct ctl_io_hdr *io, *next_io;
uint32_t targ_lun;
targ_lun = rio->io_hdr.nexus.targ_mapped_lun;
CTL_DEBUG_PRINT(("FAILOVER for lun %ju\n", targ_lun));
/* Find and lock the LUN. */
mtx_lock(&softc->ctl_lock);
if (targ_lun > CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
return;
}
if (softc->ha_mode == CTL_HA_MODE_XFER) {
TAILQ_FOREACH_SAFE(io, &lun->ooa_queue, ooa_links, next_io) {
/* We are master */
if (io->flags & CTL_FLAG_FROM_OTHER_SC) {
if (io->flags & CTL_FLAG_IO_ACTIVE) {
io->flags |= CTL_FLAG_ABORT;
io->flags |= CTL_FLAG_FAILOVER;
} else { /* This can be only due to DATAMOVE */
io->msg_type = CTL_MSG_DATAMOVE_DONE;
io->flags &= ~CTL_FLAG_DMA_INPROG;
io->flags |= CTL_FLAG_IO_ACTIVE;
io->port_status = 31340;
ctl_enqueue_isc((union ctl_io *)io);
}
}
/* We are slave */
if (io->flags & CTL_FLAG_SENT_2OTHER_SC) {
io->flags &= ~CTL_FLAG_SENT_2OTHER_SC;
if (io->flags & CTL_FLAG_IO_ACTIVE) {
io->flags |= CTL_FLAG_FAILOVER;
} else {
ctl_set_busy(&((union ctl_io *)io)->
scsiio);
ctl_done((union ctl_io *)io);
}
}
}
} else { /* SERIALIZE modes */
TAILQ_FOREACH_SAFE(io, &lun->blocked_queue, blocked_links,
next_io) {
/* We are master */
if (io->flags & CTL_FLAG_FROM_OTHER_SC) {
TAILQ_REMOVE(&lun->blocked_queue, io,
blocked_links);
io->flags &= ~CTL_FLAG_BLOCKED;
TAILQ_REMOVE(&lun->ooa_queue, io, ooa_links);
ctl_free_io((union ctl_io *)io);
}
}
TAILQ_FOREACH_SAFE(io, &lun->ooa_queue, ooa_links, next_io) {
/* We are master */
if (io->flags & CTL_FLAG_FROM_OTHER_SC) {
TAILQ_REMOVE(&lun->ooa_queue, io, ooa_links);
ctl_free_io((union ctl_io *)io);
}
/* We are slave */
if (io->flags & CTL_FLAG_SENT_2OTHER_SC) {
io->flags &= ~CTL_FLAG_SENT_2OTHER_SC;
if (!(io->flags & CTL_FLAG_IO_ACTIVE)) {
ctl_set_busy(&((union ctl_io *)io)->
scsiio);
ctl_done((union ctl_io *)io);
}
}
}
ctl_check_blocked(lun);
}
mtx_unlock(&lun->lun_lock);
}
static int
ctl_scsiio_precheck(struct ctl_softc *softc, struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
const struct ctl_cmd_entry *entry;
uint32_t initidx, targ_lun;
int retval = 0;
lun = NULL;
targ_lun = ctsio->io_hdr.nexus.targ_mapped_lun;
if (targ_lun < CTL_MAX_LUNS)
lun = softc->ctl_luns[targ_lun];
if (lun) {
/*
* If the LUN is invalid, pretend that it doesn't exist.
* It will go away as soon as all pending I/O has been
* completed.
*/
mtx_lock(&lun->lun_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&lun->lun_lock);
lun = NULL;
}
}
CTL_LUN(ctsio) = lun;
if (lun) {
CTL_BACKEND_LUN(ctsio) = lun->be_lun;
/*
* Every I/O goes into the OOA queue for a particular LUN,
* and stays there until completion.
*/
#ifdef CTL_TIME_IO
if (TAILQ_EMPTY(&lun->ooa_queue))
lun->idle_time += getsbinuptime() - lun->last_busy;
#endif
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
}
/* Get command entry and return error if it is unsuppotyed. */
entry = ctl_validate_command(ctsio);
if (entry == NULL) {
if (lun)
mtx_unlock(&lun->lun_lock);
return (retval);
}
ctsio->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
ctsio->io_hdr.flags |= entry->flags & CTL_FLAG_DATA_MASK;
/*
* Check to see whether we can send this command to LUNs that don't
* exist. This should pretty much only be the case for inquiry
* and request sense. Further checks, below, really require having
* a LUN, so we can't really check the command anymore. Just put
* it on the rtr queue.
*/
if (lun == NULL) {
if (entry->flags & CTL_CMD_FLAG_OK_ON_NO_LUN) {
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
ctl_enqueue_rtr((union ctl_io *)ctsio);
return (retval);
}
ctl_set_unsupported_lun(ctsio);
ctl_done((union ctl_io *)ctsio);
CTL_DEBUG_PRINT(("ctl_scsiio_precheck: bailing out due to invalid LUN\n"));
return (retval);
} else {
/*
* Make sure we support this particular command on this LUN.
* e.g., we don't support writes to the control LUN.
*/
if (!ctl_cmd_applicable(lun->be_lun->lun_type, entry)) {
mtx_unlock(&lun->lun_lock);
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
}
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* If we've got a request sense, it'll clear the contingent
* allegiance condition. Otherwise, if we have a CA condition for
* this initiator, clear it, because it sent down a command other
* than request sense.
*/
if (ctsio->cdb[0] != REQUEST_SENSE) {
struct scsi_sense_data *ps;
ps = lun->pending_sense[initidx / CTL_MAX_INIT_PER_PORT];
if (ps != NULL)
ps[initidx % CTL_MAX_INIT_PER_PORT].error_code = 0;
}
/*
* If the command has this flag set, it handles its own unit
* attention reporting, we shouldn't do anything. Otherwise we
* check for any pending unit attentions, and send them back to the
* initiator. We only do this when a command initially comes in,
* not when we pull it off the blocked queue.
*
* According to SAM-3, section 5.3.2, the order that things get
* presented back to the host is basically unit attentions caused
* by some sort of reset event, busy status, reservation conflicts
* or task set full, and finally any other status.
*
* One issue here is that some of the unit attentions we report
* don't fall into the "reset" category (e.g. "reported luns data
* has changed"). So reporting it here, before the reservation
* check, may be technically wrong. I guess the only thing to do
* would be to check for and report the reset events here, and then
* check for the other unit attention types after we check for a
* reservation conflict.
*
* XXX KDM need to fix this
*/
if ((entry->flags & CTL_CMD_FLAG_NO_SENSE) == 0) {
ctl_ua_type ua_type;
u_int sense_len = 0;
ua_type = ctl_build_ua(lun, initidx, &ctsio->sense_data,
&sense_len, SSD_TYPE_NONE);
if (ua_type != CTL_UA_NONE) {
mtx_unlock(&lun->lun_lock);
ctsio->scsi_status = SCSI_STATUS_CHECK_COND;
ctsio->io_hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
ctsio->sense_len = sense_len;
ctl_done((union ctl_io *)ctsio);
return (retval);
}
}
if (ctl_scsiio_lun_check(lun, entry, ctsio) != 0) {
mtx_unlock(&lun->lun_lock);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
/*
* XXX CHD this is where we want to send IO to other side if
* this LUN is secondary on this SC. We will need to make a copy
* of the IO and flag the IO on this side as SENT_2OTHER and the flag
* the copy we send as FROM_OTHER.
* We also need to stuff the address of the original IO so we can
* find it easily. Something similar will need be done on the other
* side so when we are done we can find the copy.
*/
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0 &&
(lun->flags & CTL_LUN_PEER_SC_PRIMARY) != 0 &&
(entry->flags & CTL_CMD_FLAG_RUN_HERE) == 0) {
union ctl_ha_msg msg_info;
int isc_retval;
ctsio->io_hdr.flags |= CTL_FLAG_SENT_2OTHER_SC;
ctsio->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
mtx_unlock(&lun->lun_lock);
msg_info.hdr.msg_type = CTL_MSG_SERIALIZE;
msg_info.hdr.original_sc = (union ctl_io *)ctsio;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.nexus = ctsio->io_hdr.nexus;
msg_info.scsi.tag_num = ctsio->tag_num;
msg_info.scsi.tag_type = ctsio->tag_type;
msg_info.scsi.cdb_len = ctsio->cdb_len;
memcpy(msg_info.scsi.cdb, ctsio->cdb, CTL_MAX_CDBLEN);
if ((isc_retval = ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.scsi) - sizeof(msg_info.scsi.sense_data),
M_WAITOK)) > CTL_HA_STATUS_SUCCESS) {
ctl_set_busy(ctsio);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
return (retval);
}
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr,
ctl_ooaq, ooa_links))) {
case CTL_ACTION_BLOCK:
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
blocked_links);
mtx_unlock(&lun->lun_lock);
return (retval);
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP:
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
mtx_unlock(&lun->lun_lock);
ctl_enqueue_rtr((union ctl_io *)ctsio);
break;
case CTL_ACTION_OVERLAP:
mtx_unlock(&lun->lun_lock);
ctl_set_overlapped_cmd(ctsio);
ctl_done((union ctl_io *)ctsio);
break;
case CTL_ACTION_OVERLAP_TAG:
mtx_unlock(&lun->lun_lock);
ctl_set_overlapped_tag(ctsio, ctsio->tag_num & 0xff);
ctl_done((union ctl_io *)ctsio);
break;
case CTL_ACTION_ERROR:
default:
mtx_unlock(&lun->lun_lock);
ctl_set_internal_failure(ctsio,
/*sks_valid*/ 0,
/*retry_count*/ 0);
ctl_done((union ctl_io *)ctsio);
break;
}
return (retval);
}
const struct ctl_cmd_entry *
ctl_get_cmd_entry(struct ctl_scsiio *ctsio, int *sa)
{
const struct ctl_cmd_entry *entry;
int service_action;
entry = &ctl_cmd_table[ctsio->cdb[0]];
if (sa)
*sa = ((entry->flags & CTL_CMD_FLAG_SA5) != 0);
if (entry->flags & CTL_CMD_FLAG_SA5) {
service_action = ctsio->cdb[1] & SERVICE_ACTION_MASK;
entry = &((const struct ctl_cmd_entry *)
entry->execute)[service_action];
}
return (entry);
}
const struct ctl_cmd_entry *
ctl_validate_command(struct ctl_scsiio *ctsio)
{
const struct ctl_cmd_entry *entry;
int i, sa;
uint8_t diff;
entry = ctl_get_cmd_entry(ctsio, &sa);
if (entry->execute == NULL) {
if (sa)
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
else
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (NULL);
}
KASSERT(entry->length > 0,
("Not defined length for command 0x%02x/0x%02x",
ctsio->cdb[0], ctsio->cdb[1]));
for (i = 1; i < entry->length; i++) {
diff = ctsio->cdb[i] & ~entry->usage[i - 1];
if (diff == 0)
continue;
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ i,
/*bit_valid*/ 1,
/*bit*/ fls(diff) - 1);
ctl_done((union ctl_io *)ctsio);
return (NULL);
}
return (entry);
}
static int
ctl_cmd_applicable(uint8_t lun_type, const struct ctl_cmd_entry *entry)
{
switch (lun_type) {
case T_DIRECT:
if ((entry->flags & CTL_CMD_FLAG_OK_ON_DIRECT) == 0)
return (0);
break;
case T_PROCESSOR:
if ((entry->flags & CTL_CMD_FLAG_OK_ON_PROC) == 0)
return (0);
break;
case T_CDROM:
if ((entry->flags & CTL_CMD_FLAG_OK_ON_CDROM) == 0)
return (0);
break;
default:
return (0);
}
return (1);
}
static int
ctl_scsiio(struct ctl_scsiio *ctsio)
{
int retval;
const struct ctl_cmd_entry *entry;
retval = CTL_RETVAL_COMPLETE;
CTL_DEBUG_PRINT(("ctl_scsiio cdb[0]=%02X\n", ctsio->cdb[0]));
entry = ctl_get_cmd_entry(ctsio, NULL);
/*
* If this I/O has been aborted, just send it straight to
* ctl_done() without executing it.
*/
if (ctsio->io_hdr.flags & CTL_FLAG_ABORT) {
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* All the checks should have been handled by ctl_scsiio_precheck().
* We should be clear now to just execute the I/O.
*/
retval = entry->execute(ctsio);
bailout:
return (retval);
}
static int
ctl_target_reset(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_port *port = CTL_PORT(io);
struct ctl_lun *lun;
uint32_t initidx;
ctl_ua_type ua_type;
if (!(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg_info;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action = io->taskio.task_action;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.task), M_WAITOK);
}
initidx = ctl_get_initindex(&io->io_hdr.nexus);
if (io->taskio.task_action == CTL_TASK_TARGET_RESET)
ua_type = CTL_UA_TARG_RESET;
else
ua_type = CTL_UA_BUS_RESET;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if (port != NULL &&
ctl_lun_map_to_port(port, lun->lun) == UINT32_MAX)
continue;
ctl_do_lun_reset(lun, initidx, ua_type);
}
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
/*
* The LUN should always be set. The I/O is optional, and is used to
* distinguish between I/Os sent by this initiator, and by other
* initiators. We set unit attention for initiators other than this one.
* SAM-3 is vague on this point. It does say that a unit attention should
* be established for other initiators when a LUN is reset (see section
* 5.7.3), but it doesn't specifically say that the unit attention should
* be established for this particular initiator when a LUN is reset. Here
* is the relevant text, from SAM-3 rev 8:
*
* 5.7.2 When a SCSI initiator port aborts its own tasks
*
* When a SCSI initiator port causes its own task(s) to be aborted, no
* notification that the task(s) have been aborted shall be returned to
* the SCSI initiator port other than the completion response for the
* command or task management function action that caused the task(s) to
* be aborted and notification(s) associated with related effects of the
* action (e.g., a reset unit attention condition).
*
* XXX KDM for now, we're setting unit attention for all initiators.
*/
static void
ctl_do_lun_reset(struct ctl_lun *lun, uint32_t initidx, ctl_ua_type ua_type)
{
union ctl_io *xio;
int i;
mtx_lock(&lun->lun_lock);
/* Abort tasks. */
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
xio->io_hdr.flags |= CTL_FLAG_ABORT | CTL_FLAG_ABORT_STATUS;
}
/* Clear CA. */
for (i = 0; i < CTL_MAX_PORTS; i++) {
free(lun->pending_sense[i], M_CTL);
lun->pending_sense[i] = NULL;
}
/* Clear reservation. */
lun->flags &= ~CTL_LUN_RESERVED;
/* Clear prevent media removal. */
if (lun->prevent) {
for (i = 0; i < CTL_MAX_INITIATORS; i++)
ctl_clear_mask(lun->prevent, i);
lun->prevent_count = 0;
}
/* Clear TPC status */
ctl_tpc_lun_clear(lun, -1);
/* Establish UA. */
#if 0
ctl_est_ua_all(lun, initidx, ua_type);
#else
ctl_est_ua_all(lun, -1, ua_type);
#endif
mtx_unlock(&lun->lun_lock);
}
static int
ctl_lun_reset(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_lun *lun;
uint32_t targ_lun, initidx;
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
initidx = ctl_get_initindex(&io->io_hdr.nexus);
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_LUN_DOES_NOT_EXIST;
return (1);
}
ctl_do_lun_reset(lun, initidx, CTL_UA_LUN_RESET);
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
if ((io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) == 0) {
union ctl_ha_msg msg_info;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action = CTL_TASK_LUN_RESET;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.task), M_WAITOK);
}
return (0);
}
static void
ctl_abort_tasks_lun(struct ctl_lun *lun, uint32_t targ_port, uint32_t init_id,
int other_sc)
{
union ctl_io *xio;
mtx_assert(&lun->lun_lock, MA_OWNED);
/*
* Run through the OOA queue and attempt to find the given I/O.
* The target port, initiator ID, tag type and tag number have to
* match the values that we got from the initiator. If we have an
* untagged command to abort, simply abort the first untagged command
* we come to. We only allow one untagged command at a time of course.
*/
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
if ((targ_port == UINT32_MAX ||
targ_port == xio->io_hdr.nexus.targ_port) &&
(init_id == UINT32_MAX ||
init_id == xio->io_hdr.nexus.initid)) {
if (targ_port != xio->io_hdr.nexus.targ_port ||
init_id != xio->io_hdr.nexus.initid)
xio->io_hdr.flags |= CTL_FLAG_ABORT_STATUS;
xio->io_hdr.flags |= CTL_FLAG_ABORT;
if (!other_sc && !(lun->flags & CTL_LUN_PRIMARY_SC)) {
union ctl_ha_msg msg_info;
msg_info.hdr.nexus = xio->io_hdr.nexus;
msg_info.task.task_action = CTL_TASK_ABORT_TASK;
msg_info.task.tag_num = xio->scsiio.tag_num;
msg_info.task.tag_type = xio->scsiio.tag_type;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.task), M_NOWAIT);
}
}
}
}
static int
ctl_abort_task_set(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_lun *lun;
uint32_t targ_lun;
/*
* Look up the LUN.
*/
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_LUN_DOES_NOT_EXIST;
return (1);
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
if (io->taskio.task_action == CTL_TASK_ABORT_TASK_SET) {
ctl_abort_tasks_lun(lun, io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.initid,
(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) != 0);
} else { /* CTL_TASK_CLEAR_TASK_SET */
ctl_abort_tasks_lun(lun, UINT32_MAX, UINT32_MAX,
(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) != 0);
}
mtx_unlock(&lun->lun_lock);
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
static void
ctl_i_t_nexus_loss(struct ctl_softc *softc, uint32_t initidx,
ctl_ua_type ua_type)
{
struct ctl_lun *lun;
struct scsi_sense_data *ps;
uint32_t p, i;
p = initidx / CTL_MAX_INIT_PER_PORT;
i = initidx % CTL_MAX_INIT_PER_PORT;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
mtx_lock(&lun->lun_lock);
/* Abort tasks. */
ctl_abort_tasks_lun(lun, p, i, 1);
/* Clear CA. */
ps = lun->pending_sense[p];
if (ps != NULL)
ps[i].error_code = 0;
/* Clear reservation. */
if ((lun->flags & CTL_LUN_RESERVED) && (lun->res_idx == initidx))
lun->flags &= ~CTL_LUN_RESERVED;
/* Clear prevent media removal. */
if (lun->prevent && ctl_is_set(lun->prevent, initidx)) {
ctl_clear_mask(lun->prevent, initidx);
lun->prevent_count--;
}
/* Clear TPC status */
ctl_tpc_lun_clear(lun, initidx);
/* Establish UA. */
ctl_est_ua(lun, initidx, ua_type);
mtx_unlock(&lun->lun_lock);
}
mtx_unlock(&softc->ctl_lock);
}
static int
ctl_i_t_nexus_reset(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
uint32_t initidx;
if (!(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg_info;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action = CTL_TASK_I_T_NEXUS_RESET;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.task), M_WAITOK);
}
initidx = ctl_get_initindex(&io->io_hdr.nexus);
ctl_i_t_nexus_loss(softc, initidx, CTL_UA_I_T_NEXUS_LOSS);
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
static int
ctl_abort_task(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
union ctl_io *xio;
struct ctl_lun *lun;
#if 0
struct sbuf sb;
char printbuf[128];
#endif
int found;
uint32_t targ_lun;
found = 0;
/*
* Look up the LUN.
*/
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_LUN_DOES_NOT_EXIST;
return (1);
}
#if 0
printf("ctl_abort_task: called for lun %lld, tag %d type %d\n",
lun->lun, io->taskio.tag_num, io->taskio.tag_type);
#endif
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
/*
* Run through the OOA queue and attempt to find the given I/O.
* The target port, initiator ID, tag type and tag number have to
* match the values that we got from the initiator. If we have an
* untagged command to abort, simply abort the first untagged command
* we come to. We only allow one untagged command at a time of course.
*/
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
#if 0
sbuf_new(&sb, printbuf, sizeof(printbuf), SBUF_FIXEDLEN);
sbuf_printf(&sb, "LUN %lld tag %d type %d%s%s%s%s: ",
lun->lun, xio->scsiio.tag_num,
xio->scsiio.tag_type,
(xio->io_hdr.blocked_links.tqe_prev
== NULL) ? "" : " BLOCKED",
(xio->io_hdr.flags &
CTL_FLAG_DMA_INPROG) ? " DMA" : "",
(xio->io_hdr.flags &
CTL_FLAG_ABORT) ? " ABORT" : "",
(xio->io_hdr.flags &
CTL_FLAG_IS_WAS_ON_RTR ? " RTR" : ""));
ctl_scsi_command_string(&xio->scsiio, NULL, &sb);
sbuf_finish(&sb);
printf("%s\n", sbuf_data(&sb));
#endif
if ((xio->io_hdr.nexus.targ_port != io->io_hdr.nexus.targ_port)
|| (xio->io_hdr.nexus.initid != io->io_hdr.nexus.initid)
|| (xio->io_hdr.flags & CTL_FLAG_ABORT))
continue;
/*
* If the abort says that the task is untagged, the
* task in the queue must be untagged. Otherwise,
* we just check to see whether the tag numbers
* match. This is because the QLogic firmware
* doesn't pass back the tag type in an abort
* request.
*/
#if 0
if (((xio->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& (io->taskio.tag_type == CTL_TAG_UNTAGGED))
|| (xio->scsiio.tag_num == io->taskio.tag_num))
#endif
/*
* XXX KDM we've got problems with FC, because it
* doesn't send down a tag type with aborts. So we
* can only really go by the tag number...
* This may cause problems with parallel SCSI.
* Need to figure that out!!
*/
if (xio->scsiio.tag_num == io->taskio.tag_num) {
xio->io_hdr.flags |= CTL_FLAG_ABORT;
found = 1;
if ((io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) == 0 &&
!(lun->flags & CTL_LUN_PRIMARY_SC)) {
union ctl_ha_msg msg_info;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action = CTL_TASK_ABORT_TASK;
msg_info.task.tag_num = io->taskio.tag_num;
msg_info.task.tag_type = io->taskio.tag_type;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
#if 0
printf("Sent Abort to other side\n");
#endif
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info.task), M_NOWAIT);
}
#if 0
printf("ctl_abort_task: found I/O to abort\n");
#endif
}
}
mtx_unlock(&lun->lun_lock);
if (found == 0) {
/*
* This isn't really an error. It's entirely possible for
* the abort and command completion to cross on the wire.
* This is more of an informative/diagnostic error.
*/
#if 0
printf("ctl_abort_task: ABORT sent for nonexistent I/O: "
"%u:%u:%u tag %d type %d\n",
io->io_hdr.nexus.initid,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_lun, io->taskio.tag_num,
io->taskio.tag_type);
#endif
}
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
static int
ctl_query_task(union ctl_io *io, int task_set)
{
struct ctl_softc *softc = CTL_SOFTC(io);
union ctl_io *xio;
struct ctl_lun *lun;
int found = 0;
uint32_t targ_lun;
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_LUN_DOES_NOT_EXIST;
return (1);
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
if ((xio->io_hdr.nexus.targ_port != io->io_hdr.nexus.targ_port)
|| (xio->io_hdr.nexus.initid != io->io_hdr.nexus.initid)
|| (xio->io_hdr.flags & CTL_FLAG_ABORT))
continue;
if (task_set || xio->scsiio.tag_num == io->taskio.tag_num) {
found = 1;
break;
}
}
mtx_unlock(&lun->lun_lock);
if (found)
io->taskio.task_status = CTL_TASK_FUNCTION_SUCCEEDED;
else
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
static int
ctl_query_async_event(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_lun *lun;
ctl_ua_type ua;
uint32_t targ_lun, initidx;
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
io->taskio.task_status = CTL_TASK_LUN_DOES_NOT_EXIST;
return (1);
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
initidx = ctl_get_initindex(&io->io_hdr.nexus);
ua = ctl_build_qae(lun, initidx, io->taskio.task_resp);
mtx_unlock(&lun->lun_lock);
if (ua != CTL_UA_NONE)
io->taskio.task_status = CTL_TASK_FUNCTION_SUCCEEDED;
else
io->taskio.task_status = CTL_TASK_FUNCTION_COMPLETE;
return (0);
}
static void
ctl_run_task(union ctl_io *io)
{
int retval = 1;
CTL_DEBUG_PRINT(("ctl_run_task\n"));
KASSERT(io->io_hdr.io_type == CTL_IO_TASK,
("ctl_run_task: Unextected io_type %d\n", io->io_hdr.io_type));
io->taskio.task_status = CTL_TASK_FUNCTION_NOT_SUPPORTED;
bzero(io->taskio.task_resp, sizeof(io->taskio.task_resp));
switch (io->taskio.task_action) {
case CTL_TASK_ABORT_TASK:
retval = ctl_abort_task(io);
break;
case CTL_TASK_ABORT_TASK_SET:
case CTL_TASK_CLEAR_TASK_SET:
retval = ctl_abort_task_set(io);
break;
case CTL_TASK_CLEAR_ACA:
break;
case CTL_TASK_I_T_NEXUS_RESET:
retval = ctl_i_t_nexus_reset(io);
break;
case CTL_TASK_LUN_RESET:
retval = ctl_lun_reset(io);
break;
case CTL_TASK_TARGET_RESET:
case CTL_TASK_BUS_RESET:
retval = ctl_target_reset(io);
break;
case CTL_TASK_PORT_LOGIN:
break;
case CTL_TASK_PORT_LOGOUT:
break;
case CTL_TASK_QUERY_TASK:
retval = ctl_query_task(io, 0);
break;
case CTL_TASK_QUERY_TASK_SET:
retval = ctl_query_task(io, 1);
break;
case CTL_TASK_QUERY_ASYNC_EVENT:
retval = ctl_query_async_event(io);
break;
default:
printf("%s: got unknown task management event %d\n",
__func__, io->taskio.task_action);
break;
}
if (retval == 0)
io->io_hdr.status = CTL_SUCCESS;
else
io->io_hdr.status = CTL_ERROR;
ctl_done(io);
}
/*
* For HA operation. Handle commands that come in from the other
* controller.
*/
static void
ctl_handle_isc(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_lun *lun;
const struct ctl_cmd_entry *entry;
uint32_t targ_lun;
targ_lun = io->io_hdr.nexus.targ_mapped_lun;
switch (io->io_hdr.msg_type) {
case CTL_MSG_SERIALIZE:
ctl_serialize_other_sc_cmd(&io->scsiio);
break;
case CTL_MSG_R2R: /* Only used in SER_ONLY mode. */
entry = ctl_get_cmd_entry(&io->scsiio, NULL);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
ctl_done(io);
break;
}
mtx_lock(&lun->lun_lock);
if (ctl_scsiio_lun_check(lun, entry, &io->scsiio) != 0) {
mtx_unlock(&lun->lun_lock);
ctl_done(io);
break;
}
io->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
mtx_unlock(&lun->lun_lock);
ctl_enqueue_rtr(io);
break;
case CTL_MSG_FINISH_IO:
if (softc->ha_mode == CTL_HA_MODE_XFER) {
ctl_done(io);
break;
}
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
ctl_free_io(io);
break;
}
mtx_lock(&lun->lun_lock);
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
ctl_check_blocked(lun);
mtx_unlock(&lun->lun_lock);
ctl_free_io(io);
break;
case CTL_MSG_PERS_ACTION:
ctl_hndl_per_res_out_on_other_sc(io);
ctl_free_io(io);
break;
case CTL_MSG_BAD_JUJU:
ctl_done(io);
break;
case CTL_MSG_DATAMOVE: /* Only used in XFER mode */
ctl_datamove_remote(io);
break;
case CTL_MSG_DATAMOVE_DONE: /* Only used in XFER mode */
io->scsiio.be_move_done(io);
break;
case CTL_MSG_FAILOVER:
ctl_failover_lun(io);
ctl_free_io(io);
break;
default:
printf("%s: Invalid message type %d\n",
__func__, io->io_hdr.msg_type);
ctl_free_io(io);
break;
}
}
/*
* Returns the match type in the case of a match, or CTL_LUN_PAT_NONE if
* there is no match.
*/
static ctl_lun_error_pattern
ctl_cmd_pattern_match(struct ctl_scsiio *ctsio, struct ctl_error_desc *desc)
{
const struct ctl_cmd_entry *entry;
ctl_lun_error_pattern filtered_pattern, pattern;
pattern = desc->error_pattern;
/*
* XXX KDM we need more data passed into this function to match a
* custom pattern, and we actually need to implement custom pattern
* matching.
*/
if (pattern & CTL_LUN_PAT_CMD)
return (CTL_LUN_PAT_CMD);
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_ANY)
return (CTL_LUN_PAT_ANY);
entry = ctl_get_cmd_entry(ctsio, NULL);
filtered_pattern = entry->pattern & pattern;
/*
* If the user requested specific flags in the pattern (e.g.
* CTL_LUN_PAT_RANGE), make sure the command supports all of those
* flags.
*
* If the user did not specify any flags, it doesn't matter whether
* or not the command supports the flags.
*/
if ((filtered_pattern & ~CTL_LUN_PAT_MASK) !=
(pattern & ~CTL_LUN_PAT_MASK))
return (CTL_LUN_PAT_NONE);
/*
* If the user asked for a range check, see if the requested LBA
* range overlaps with this command's LBA range.
*/
if (filtered_pattern & CTL_LUN_PAT_RANGE) {
uint64_t lba1;
uint64_t len1;
ctl_action action;
int retval;
retval = ctl_get_lba_len((union ctl_io *)ctsio, &lba1, &len1);
if (retval != 0)
return (CTL_LUN_PAT_NONE);
action = ctl_extent_check_lba(lba1, len1, desc->lba_range.lba,
desc->lba_range.len, FALSE);
/*
* A "pass" means that the LBA ranges don't overlap, so
* this doesn't match the user's range criteria.
*/
if (action == CTL_ACTION_PASS)
return (CTL_LUN_PAT_NONE);
}
return (filtered_pattern);
}
static void
ctl_inject_error(struct ctl_lun *lun, union ctl_io *io)
{
struct ctl_error_desc *desc, *desc2;
mtx_assert(&lun->lun_lock, MA_OWNED);
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
ctl_lun_error_pattern pattern;
/*
* Check to see whether this particular command matches
* the pattern in the descriptor.
*/
pattern = ctl_cmd_pattern_match(&io->scsiio, desc);
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_NONE)
continue;
switch (desc->lun_error & CTL_LUN_INJ_TYPE) {
case CTL_LUN_INJ_ABORTED:
ctl_set_aborted(&io->scsiio);
break;
case CTL_LUN_INJ_MEDIUM_ERR:
ctl_set_medium_error(&io->scsiio,
(io->io_hdr.flags & CTL_FLAG_DATA_MASK) !=
CTL_FLAG_DATA_OUT);
break;
case CTL_LUN_INJ_UA:
/* 29h/00h POWER ON, RESET, OR BUS DEVICE RESET
* OCCURRED */
ctl_set_ua(&io->scsiio, 0x29, 0x00);
break;
case CTL_LUN_INJ_CUSTOM:
/*
* We're assuming the user knows what he is doing.
* Just copy the sense information without doing
* checks.
*/
bcopy(&desc->custom_sense, &io->scsiio.sense_data,
MIN(sizeof(desc->custom_sense),
sizeof(io->scsiio.sense_data)));
io->scsiio.scsi_status = SCSI_STATUS_CHECK_COND;
io->scsiio.sense_len = SSD_FULL_SIZE;
io->io_hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
break;
case CTL_LUN_INJ_NONE:
default:
/*
* If this is an error injection type we don't know
* about, clear the continuous flag (if it is set)
* so it will get deleted below.
*/
desc->lun_error &= ~CTL_LUN_INJ_CONTINUOUS;
break;
}
/*
* By default, each error injection action is a one-shot
*/
if (desc->lun_error & CTL_LUN_INJ_CONTINUOUS)
continue;
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc, links);
free(desc, M_CTL);
}
}
#ifdef CTL_IO_DELAY
static void
ctl_datamove_timer_wakeup(void *arg)
{
union ctl_io *io;
io = (union ctl_io *)arg;
ctl_datamove(io);
}
#endif /* CTL_IO_DELAY */
void
ctl_datamove(union ctl_io *io)
{
void (*fe_datamove)(union ctl_io *io);
mtx_assert(&((struct ctl_softc *)CTL_SOFTC(io))->ctl_lock, MA_NOTOWNED);
CTL_DEBUG_PRINT(("ctl_datamove\n"));
/* No data transferred yet. Frontend must update this when done. */
io->scsiio.kern_data_resid = io->scsiio.kern_data_len;
#ifdef CTL_TIME_IO
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
char str[256];
char path_str[64];
struct sbuf sb;
ctl_scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
break;
case CTL_IO_TASK:
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
"Tag Type: %d\n", io->taskio.task_action,
io->taskio.tag_num, io->taskio.tag_type);
break;
default:
panic("%s: Invalid CTL I/O type %d\n",
__func__, io->io_hdr.io_type);
}
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "ctl_datamove: %jd seconds\n",
(intmax_t)time_uptime - io->io_hdr.start_time);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
}
#endif /* CTL_TIME_IO */
#ifdef CTL_IO_DELAY
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
} else {
struct ctl_lun *lun;
lun = CTL_LUN(io);
if ((lun != NULL)
&& (lun->delay_info.datamove_delay > 0)) {
callout_init(&io->io_hdr.delay_callout, /*mpsafe*/ 1);
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
callout_reset(&io->io_hdr.delay_callout,
lun->delay_info.datamove_delay * hz,
ctl_datamove_timer_wakeup, io);
if (lun->delay_info.datamove_type ==
CTL_DELAY_TYPE_ONESHOT)
lun->delay_info.datamove_delay = 0;
return;
}
}
#endif
/*
* This command has been aborted. Set the port status, so we fail
* the data move.
*/
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
printf("ctl_datamove: tag 0x%04x on (%u:%u:%u) aborted\n",
io->scsiio.tag_num, io->io_hdr.nexus.initid,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_lun);
io->io_hdr.port_status = 31337;
/*
* Note that the backend, in this case, will get the
* callback in its context. In other cases it may get
* called in the frontend's interrupt thread context.
*/
io->scsiio.be_move_done(io);
return;
}
/* Don't confuse frontend with zero length data move. */
if (io->scsiio.kern_data_len == 0) {
io->scsiio.be_move_done(io);
return;
}
fe_datamove = CTL_PORT(io)->fe_datamove;
fe_datamove(io);
}
static void
ctl_send_datamove_done(union ctl_io *io, int have_lock)
{
union ctl_ha_msg msg;
#ifdef CTL_TIME_IO
struct bintime cur_bt;
#endif
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
msg.hdr.original_sc = io;
msg.hdr.serializing_sc = io->io_hdr.serializing_sc;
msg.hdr.nexus = io->io_hdr.nexus;
msg.hdr.status = io->io_hdr.status;
msg.scsi.kern_data_resid = io->scsiio.kern_data_resid;
msg.scsi.tag_num = io->scsiio.tag_num;
msg.scsi.tag_type = io->scsiio.tag_type;
msg.scsi.scsi_status = io->scsiio.scsi_status;
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
io->scsiio.sense_len);
msg.scsi.sense_len = io->scsiio.sense_len;
msg.scsi.port_status = io->io_hdr.port_status;
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
ctl_failover_io(io, /*have_lock*/ have_lock);
return;
}
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg.scsi) - sizeof(msg.scsi.sense_data) +
msg.scsi.sense_len, M_WAITOK);
#ifdef CTL_TIME_IO
getbinuptime(&cur_bt);
bintime_sub(&cur_bt, &io->io_hdr.dma_start_bt);
bintime_add(&io->io_hdr.dma_bt, &cur_bt);
#endif
io->io_hdr.num_dmas++;
}
/*
* The DMA to the remote side is done, now we need to tell the other side
* we're done so it can continue with its data movement.
*/
static void
ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq)
{
union ctl_io *io;
uint32_t i;
io = rq->context;
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
printf("%s: ISC DMA write failed with error %d", __func__,
rq->ret);
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/ rq->ret);
}
ctl_dt_req_free(rq);
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
free(io->io_hdr.remote_sglist, M_CTL);
io->io_hdr.remote_sglist = NULL;
io->io_hdr.local_sglist = NULL;
/*
* The data is in local and remote memory, so now we need to send
* status (good or back) back to the other side.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
}
/*
* We've moved the data from the host/controller into local memory. Now we
* need to push it over to the remote controller's memory.
*/
static int
ctl_datamove_remote_dm_write_cb(union ctl_io *io)
{
int retval;
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_WRITE,
ctl_datamove_remote_write_cb);
return (retval);
}
static void
ctl_datamove_remote_write(union ctl_io *io)
{
int retval;
void (*fe_datamove)(union ctl_io *io);
/*
* - Get the data from the host/HBA into local memory.
* - DMA memory from the local controller to the remote controller.
* - Send status back to the remote controller.
*/
retval = ctl_datamove_remote_sgl_setup(io);
if (retval != 0)
return;
/* Switch the pointer over so the FETD knows what to do */
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
/*
* Use a custom move done callback, since we need to send completion
* back to the other controller, not to the backend on this side.
*/
io->scsiio.be_move_done = ctl_datamove_remote_dm_write_cb;
fe_datamove = CTL_PORT(io)->fe_datamove;
fe_datamove(io);
}
static int
ctl_datamove_remote_dm_read_cb(union ctl_io *io)
{
#if 0
char str[256];
char path_str[64];
struct sbuf sb;
#endif
uint32_t i;
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
free(io->io_hdr.remote_sglist, M_CTL);
io->io_hdr.remote_sglist = NULL;
io->io_hdr.local_sglist = NULL;
#if 0
scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "%s: flags %#x, status %#x\n", __func__,
io->io_hdr.flags, io->io_hdr.status);
sbuf_finish(&sb);
printk("%s", sbuf_data(&sb));
#endif
/*
* The read is done, now we need to send status (good or bad) back
* to the other side.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
return (0);
}
static void
ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq)
{
union ctl_io *io;
void (*fe_datamove)(union ctl_io *io);
io = rq->context;
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
printf("%s: ISC DMA read failed with error %d\n", __func__,
rq->ret);
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/ rq->ret);
}
ctl_dt_req_free(rq);
/* Switch the pointer over so the FETD knows what to do */
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
/*
* Use a custom move done callback, since we need to send completion
* back to the other controller, not to the backend on this side.
*/
io->scsiio.be_move_done = ctl_datamove_remote_dm_read_cb;
/* XXX KDM add checks like the ones in ctl_datamove? */
fe_datamove = CTL_PORT(io)->fe_datamove;
fe_datamove(io);
}
static int
ctl_datamove_remote_sgl_setup(union ctl_io *io)
{
struct ctl_sg_entry *local_sglist;
uint32_t len_to_go;
int retval;
int i;
retval = 0;
local_sglist = io->io_hdr.local_sglist;
len_to_go = io->scsiio.kern_data_len;
/*
* The difficult thing here is that the size of the various
* S/G segments may be different than the size from the
* remote controller. That'll make it harder when DMAing
* the data back to the other side.
*/
for (i = 0; len_to_go > 0; i++) {
local_sglist[i].len = MIN(len_to_go, CTL_HA_DATAMOVE_SEGMENT);
local_sglist[i].addr =
malloc(local_sglist[i].len, M_CTL, M_WAITOK);
len_to_go -= local_sglist[i].len;
}
/*
* Reset the number of S/G entries accordingly. The original
* number of S/G entries is available in rem_sg_entries.
*/
io->scsiio.kern_sg_entries = i;
#if 0
printf("%s: kern_sg_entries = %d\n", __func__,
io->scsiio.kern_sg_entries);
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
printf("%s: sg[%d] = %p, %lu\n", __func__, i,
local_sglist[i].addr, local_sglist[i].len);
#endif
return (retval);
}
static int
ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
ctl_ha_dt_cb callback)
{
struct ctl_ha_dt_req *rq;
struct ctl_sg_entry *remote_sglist, *local_sglist;
uint32_t local_used, remote_used, total_used;
int i, j, isc_ret;
rq = ctl_dt_req_alloc();
/*
* If we failed to allocate the request, and if the DMA didn't fail
* anyway, set busy status. This is just a resource allocation
* failure.
*/
if ((rq == NULL)
&& ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE &&
(io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS))
ctl_set_busy(&io->scsiio);
if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE &&
(io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS) {
if (rq != NULL)
ctl_dt_req_free(rq);
/*
* The data move failed. We need to return status back
* to the other controller. No point in trying to DMA
* data to the remote controller.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
return (1);
}
local_sglist = io->io_hdr.local_sglist;
remote_sglist = io->io_hdr.remote_sglist;
local_used = 0;
remote_used = 0;
total_used = 0;
/*
* Pull/push the data over the wire from/to the other controller.
* This takes into account the possibility that the local and
* remote sglists may not be identical in terms of the size of
* the elements and the number of elements.
*
* One fundamental assumption here is that the length allocated for
* both the local and remote sglists is identical. Otherwise, we've
* essentially got a coding error of some sort.
*/
isc_ret = CTL_HA_STATUS_SUCCESS;
for (i = 0, j = 0; total_used < io->scsiio.kern_data_len; ) {
uint32_t cur_len;
uint8_t *tmp_ptr;
rq->command = command;
rq->context = io;
/*
* Both pointers should be aligned. But it is possible
* that the allocation length is not. They should both
* also have enough slack left over at the end, though,
* to round up to the next 8 byte boundary.
*/
cur_len = MIN(local_sglist[i].len - local_used,
remote_sglist[j].len - remote_used);
rq->size = cur_len;
tmp_ptr = (uint8_t *)local_sglist[i].addr;
tmp_ptr += local_used;
#if 0
/* Use physical addresses when talking to ISC hardware */
if ((io->io_hdr.flags & CTL_FLAG_BUS_ADDR) == 0) {
/* XXX KDM use busdma */
rq->local = vtophys(tmp_ptr);
} else
rq->local = tmp_ptr;
#else
KASSERT((io->io_hdr.flags & CTL_FLAG_BUS_ADDR) == 0,
("HA does not support BUS_ADDR"));
rq->local = tmp_ptr;
#endif
tmp_ptr = (uint8_t *)remote_sglist[j].addr;
tmp_ptr += remote_used;
rq->remote = tmp_ptr;
rq->callback = NULL;
local_used += cur_len;
if (local_used >= local_sglist[i].len) {
i++;
local_used = 0;
}
remote_used += cur_len;
if (remote_used >= remote_sglist[j].len) {
j++;
remote_used = 0;
}
total_used += cur_len;
if (total_used >= io->scsiio.kern_data_len)
rq->callback = callback;
#if 0
printf("%s: %s: local %p remote %p size %d\n", __func__,
(command == CTL_HA_DT_CMD_WRITE) ? "WRITE" : "READ",
rq->local, rq->remote, rq->size);
#endif
isc_ret = ctl_dt_single(rq);
if (isc_ret > CTL_HA_STATUS_SUCCESS)
break;
}
if (isc_ret != CTL_HA_STATUS_WAIT) {
rq->ret = isc_ret;
callback(rq);
}
return (0);
}
static void
ctl_datamove_remote_read(union ctl_io *io)
{
int retval;
uint32_t i;
/*
* This will send an error to the other controller in the case of a
* failure.
*/
retval = ctl_datamove_remote_sgl_setup(io);
if (retval != 0)
return;
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_READ,
ctl_datamove_remote_read_cb);
if (retval != 0) {
/*
* Make sure we free memory if there was an error.. The
* ctl_datamove_remote_xfer() function will send the
* datamove done message, or call the callback with an
* error if there is a problem.
*/
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
free(io->io_hdr.remote_sglist, M_CTL);
io->io_hdr.remote_sglist = NULL;
io->io_hdr.local_sglist = NULL;
}
}
/*
* Process a datamove request from the other controller. This is used for
* XFER mode only, not SER_ONLY mode. For writes, we DMA into local memory
* first. Once that is complete, the data gets DMAed into the remote
* controller's memory. For reads, we DMA from the remote controller's
* memory into our memory first, and then move it out to the FETD.
*/
static void
ctl_datamove_remote(union ctl_io *io)
{
mtx_assert(&((struct ctl_softc *)CTL_SOFTC(io))->ctl_lock, MA_NOTOWNED);
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
ctl_failover_io(io, /*have_lock*/ 0);
return;
}
/*
* Note that we look for an aborted I/O here, but don't do some of
* the other checks that ctl_datamove() normally does.
* We don't need to run the datamove delay code, since that should
* have been done if need be on the other controller.
*/
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
printf("%s: tag 0x%04x on (%u:%u:%u) aborted\n", __func__,
io->scsiio.tag_num, io->io_hdr.nexus.initid,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_lun);
io->io_hdr.port_status = 31338;
ctl_send_datamove_done(io, /*have_lock*/ 0);
return;
}
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT)
ctl_datamove_remote_write(io);
else if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN)
ctl_datamove_remote_read(io);
else {
io->io_hdr.port_status = 31339;
ctl_send_datamove_done(io, /*have_lock*/ 0);
}
}
static void
ctl_process_done(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_port *port = CTL_PORT(io);
struct ctl_lun *lun = CTL_LUN(io);
void (*fe_done)(union ctl_io *io);
union ctl_ha_msg msg;
CTL_DEBUG_PRINT(("ctl_process_done\n"));
fe_done = port->fe_done;
#ifdef CTL_TIME_IO
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
char str[256];
char path_str[64];
struct sbuf sb;
ctl_scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
break;
case CTL_IO_TASK:
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
"Tag Type: %d\n", io->taskio.task_action,
io->taskio.tag_num, io->taskio.tag_type);
break;
default:
panic("%s: Invalid CTL I/O type %d\n",
__func__, io->io_hdr.io_type);
}
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "ctl_process_done: %jd seconds\n",
(intmax_t)time_uptime - io->io_hdr.start_time);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
}
#endif /* CTL_TIME_IO */
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
break;
case CTL_IO_TASK:
if (ctl_debug & CTL_DEBUG_INFO)
ctl_io_error_print(io, NULL);
fe_done(io);
return;
default:
panic("%s: Invalid CTL I/O type %d\n",
__func__, io->io_hdr.io_type);
}
if (lun == NULL) {
CTL_DEBUG_PRINT(("NULL LUN for lun %d\n",
io->io_hdr.nexus.targ_mapped_lun));
goto bailout;
}
mtx_lock(&lun->lun_lock);
/*
* Check to see if we have any informational exception and status
* of this command can be modified to report it in form of either
* RECOVERED ERROR or NO SENSE, depending on MRIE mode page field.
*/
if (lun->ie_reported == 0 && lun->ie_asc != 0 &&
io->io_hdr.status == CTL_SUCCESS &&
(io->io_hdr.flags & CTL_FLAG_STATUS_SENT) == 0) {
uint8_t mrie = lun->MODE_IE.mrie;
uint8_t per = ((lun->MODE_RWER.byte3 & SMS_RWER_PER) ||
(lun->MODE_VER.byte3 & SMS_VER_PER));
if (((mrie == SIEP_MRIE_REC_COND && per) ||
mrie == SIEP_MRIE_REC_UNCOND ||
mrie == SIEP_MRIE_NO_SENSE) &&
(ctl_get_cmd_entry(&io->scsiio, NULL)->flags &
CTL_CMD_FLAG_NO_SENSE) == 0) {
ctl_set_sense(&io->scsiio,
/*current_error*/ 1,
/*sense_key*/ (mrie == SIEP_MRIE_NO_SENSE) ?
SSD_KEY_NO_SENSE : SSD_KEY_RECOVERED_ERROR,
/*asc*/ lun->ie_asc,
/*ascq*/ lun->ie_ascq,
SSD_ELEM_NONE);
lun->ie_reported = 1;
}
} else if (lun->ie_reported < 0)
lun->ie_reported = 0;
/*
* Check to see if we have any errors to inject here. We only
* inject errors for commands that don't already have errors set.
*/
if (!STAILQ_EMPTY(&lun->error_list) &&
((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) &&
((io->io_hdr.flags & CTL_FLAG_STATUS_SENT) == 0))
ctl_inject_error(lun, io);
/*
* XXX KDM how do we treat commands that aren't completed
* successfully?
*
* XXX KDM should we also track I/O latency?
*/
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS &&
io->io_hdr.io_type == CTL_IO_SCSI) {
int type;
#ifdef CTL_TIME_IO
struct bintime bt;
getbinuptime(&bt);
bintime_sub(&bt, &io->io_hdr.start_bt);
#endif
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
CTL_FLAG_DATA_IN)
type = CTL_STATS_READ;
else if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
CTL_FLAG_DATA_OUT)
type = CTL_STATS_WRITE;
else
type = CTL_STATS_NO_IO;
#ifdef CTL_LEGACY_STATS
uint32_t targ_port = port->targ_port;
lun->legacy_stats.ports[targ_port].bytes[type] +=
io->scsiio.kern_total_len;
lun->legacy_stats.ports[targ_port].operations[type] ++;
lun->legacy_stats.ports[targ_port].num_dmas[type] +=
io->io_hdr.num_dmas;
#ifdef CTL_TIME_IO
bintime_add(&lun->legacy_stats.ports[targ_port].dma_time[type],
&io->io_hdr.dma_bt);
bintime_add(&lun->legacy_stats.ports[targ_port].time[type],
&bt);
#endif
#endif /* CTL_LEGACY_STATS */
lun->stats.bytes[type] += io->scsiio.kern_total_len;
lun->stats.operations[type] ++;
lun->stats.dmas[type] += io->io_hdr.num_dmas;
#ifdef CTL_TIME_IO
bintime_add(&lun->stats.dma_time[type], &io->io_hdr.dma_bt);
bintime_add(&lun->stats.time[type], &bt);
#endif
mtx_lock(&port->port_lock);
port->stats.bytes[type] += io->scsiio.kern_total_len;
port->stats.operations[type] ++;
port->stats.dmas[type] += io->io_hdr.num_dmas;
#ifdef CTL_TIME_IO
bintime_add(&port->stats.dma_time[type], &io->io_hdr.dma_bt);
bintime_add(&port->stats.time[type], &bt);
#endif
mtx_unlock(&port->port_lock);
}
/*
* Remove this from the OOA queue.
*/
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
#ifdef CTL_TIME_IO
if (TAILQ_EMPTY(&lun->ooa_queue))
lun->last_busy = getsbinuptime();
#endif
/*
* Run through the blocked queue on this LUN and see if anything
* has become unblocked, now that this transaction is done.
*/
ctl_check_blocked(lun);
/*
* If the LUN has been invalidated, free it if there is nothing
* left on its OOA queue.
*/
if ((lun->flags & CTL_LUN_INVALID)
&& TAILQ_EMPTY(&lun->ooa_queue)) {
mtx_unlock(&lun->lun_lock);
mtx_lock(&softc->ctl_lock);
ctl_free_lun(lun);
mtx_unlock(&softc->ctl_lock);
} else
mtx_unlock(&lun->lun_lock);
bailout:
/*
* If this command has been aborted, make sure we set the status
* properly. The FETD is responsible for freeing the I/O and doing
* whatever it needs to do to clean up its state.
*/
if (io->io_hdr.flags & CTL_FLAG_ABORT)
ctl_set_task_aborted(&io->scsiio);
/*
* If enabled, print command error status.
*/
if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS &&
(ctl_debug & CTL_DEBUG_INFO) != 0)
ctl_io_error_print(io, NULL);
/*
* Tell the FETD or the other shelf controller we're done with this
* command. Note that only SCSI commands get to this point. Task
* management commands are completed above.
*/
if ((softc->ha_mode != CTL_HA_MODE_XFER) &&
(io->io_hdr.flags & CTL_FLAG_SENT_2OTHER_SC)) {
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_FINISH_IO;
msg.hdr.serializing_sc = io->io_hdr.serializing_sc;
msg.hdr.nexus = io->io_hdr.nexus;
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg.scsi) - sizeof(msg.scsi.sense_data),
M_WAITOK);
}
fe_done(io);
}
/*
* Front end should call this if it doesn't do autosense. When the request
* sense comes back in from the initiator, we'll dequeue this and send it.
*/
int
ctl_queue_sense(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_port *port = CTL_PORT(io);
struct ctl_lun *lun;
struct scsi_sense_data *ps;
uint32_t initidx, p, targ_lun;
CTL_DEBUG_PRINT(("ctl_queue_sense\n"));
targ_lun = ctl_lun_map_from_port(port, io->io_hdr.nexus.targ_lun);
/*
* LUN lookup will likely move to the ctl_work_thread() once we
* have our new queueing infrastructure (that doesn't put things on
* a per-LUN queue initially). That is so that we can handle
* things like an INQUIRY to a LUN that we don't have enabled. We
* can't deal with that right now.
* If we don't have a LUN for this, just toss the sense information.
*/
mtx_lock(&softc->ctl_lock);
if (targ_lun >= CTL_MAX_LUNS ||
(lun = softc->ctl_luns[targ_lun]) == NULL) {
mtx_unlock(&softc->ctl_lock);
goto bailout;
}
mtx_lock(&lun->lun_lock);
mtx_unlock(&softc->ctl_lock);
initidx = ctl_get_initindex(&io->io_hdr.nexus);
p = initidx / CTL_MAX_INIT_PER_PORT;
if (lun->pending_sense[p] == NULL) {
lun->pending_sense[p] = malloc(sizeof(*ps) * CTL_MAX_INIT_PER_PORT,
M_CTL, M_NOWAIT | M_ZERO);
}
if ((ps = lun->pending_sense[p]) != NULL) {
ps += initidx % CTL_MAX_INIT_PER_PORT;
memset(ps, 0, sizeof(*ps));
memcpy(ps, &io->scsiio.sense_data, io->scsiio.sense_len);
}
mtx_unlock(&lun->lun_lock);
bailout:
ctl_free_io(io);
return (CTL_RETVAL_COMPLETE);
}
/*
* Primary command inlet from frontend ports. All SCSI and task I/O
* requests must go through this function.
*/
int
ctl_queue(union ctl_io *io)
{
struct ctl_port *port = CTL_PORT(io);
CTL_DEBUG_PRINT(("ctl_queue cdb[0]=%02X\n", io->scsiio.cdb[0]));
#ifdef CTL_TIME_IO
io->io_hdr.start_time = time_uptime;
getbinuptime(&io->io_hdr.start_bt);
#endif /* CTL_TIME_IO */
/* Map FE-specific LUN ID into global one. */
io->io_hdr.nexus.targ_mapped_lun =
ctl_lun_map_from_port(port, io->io_hdr.nexus.targ_lun);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
case CTL_IO_TASK:
if (ctl_debug & CTL_DEBUG_CDB)
ctl_io_print(io);
ctl_enqueue_incoming(io);
break;
default:
printf("ctl_queue: unknown I/O type %d\n", io->io_hdr.io_type);
return (EINVAL);
}
return (CTL_RETVAL_COMPLETE);
}
#ifdef CTL_IO_DELAY
static void
ctl_done_timer_wakeup(void *arg)
{
union ctl_io *io;
io = (union ctl_io *)arg;
ctl_done(io);
}
#endif /* CTL_IO_DELAY */
void
ctl_serseq_done(union ctl_io *io)
{
struct ctl_lun *lun = CTL_LUN(io);;
if (lun->be_lun == NULL ||
lun->be_lun->serseq == CTL_LUN_SERSEQ_OFF)
return;
mtx_lock(&lun->lun_lock);
io->io_hdr.flags |= CTL_FLAG_SERSEQ_DONE;
ctl_check_blocked(lun);
mtx_unlock(&lun->lun_lock);
}
void
ctl_done(union ctl_io *io)
{
/*
* Enable this to catch duplicate completion issues.
*/
#if 0
if (io->io_hdr.flags & CTL_FLAG_ALREADY_DONE) {
printf("%s: type %d msg %d cdb %x iptl: "
"%u:%u:%u tag 0x%04x "
"flag %#x status %x\n",
__func__,
io->io_hdr.io_type,
io->io_hdr.msg_type,
io->scsiio.cdb[0],
io->io_hdr.nexus.initid,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_lun,
(io->io_hdr.io_type ==
CTL_IO_TASK) ?
io->taskio.tag_num :
io->scsiio.tag_num,
io->io_hdr.flags,
io->io_hdr.status);
} else
io->io_hdr.flags |= CTL_FLAG_ALREADY_DONE;
#endif
/*
* This is an internal copy of an I/O, and should not go through
* the normal done processing logic.
*/
if (io->io_hdr.flags & CTL_FLAG_INT_COPY)
return;
#ifdef CTL_IO_DELAY
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
} else {
struct ctl_lun *lun = CTL_LUN(io);
if ((lun != NULL)
&& (lun->delay_info.done_delay > 0)) {
callout_init(&io->io_hdr.delay_callout, /*mpsafe*/ 1);
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
callout_reset(&io->io_hdr.delay_callout,
lun->delay_info.done_delay * hz,
ctl_done_timer_wakeup, io);
if (lun->delay_info.done_type == CTL_DELAY_TYPE_ONESHOT)
lun->delay_info.done_delay = 0;
return;
}
}
#endif /* CTL_IO_DELAY */
ctl_enqueue_done(io);
}
static void
ctl_work_thread(void *arg)
{
struct ctl_thread *thr = (struct ctl_thread *)arg;
struct ctl_softc *softc = thr->ctl_softc;
union ctl_io *io;
int retval;
CTL_DEBUG_PRINT(("ctl_work_thread starting\n"));
while (!softc->shutdown) {
/*
* We handle the queues in this order:
* - ISC
* - done queue (to free up resources, unblock other commands)
* - RtR queue
* - incoming queue
*
* If those queues are empty, we break out of the loop and
* go to sleep.
*/
mtx_lock(&thr->queue_lock);
io = (union ctl_io *)STAILQ_FIRST(&thr->isc_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&thr->isc_queue, links);
mtx_unlock(&thr->queue_lock);
ctl_handle_isc(io);
continue;
}
io = (union ctl_io *)STAILQ_FIRST(&thr->done_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&thr->done_queue, links);
/* clear any blocked commands, call fe_done */
mtx_unlock(&thr->queue_lock);
ctl_process_done(io);
continue;
}
io = (union ctl_io *)STAILQ_FIRST(&thr->incoming_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&thr->incoming_queue, links);
mtx_unlock(&thr->queue_lock);
if (io->io_hdr.io_type == CTL_IO_TASK)
ctl_run_task(io);
else
ctl_scsiio_precheck(softc, &io->scsiio);
continue;
}
io = (union ctl_io *)STAILQ_FIRST(&thr->rtr_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&thr->rtr_queue, links);
mtx_unlock(&thr->queue_lock);
retval = ctl_scsiio(&io->scsiio);
if (retval != CTL_RETVAL_COMPLETE)
CTL_DEBUG_PRINT(("ctl_scsiio failed\n"));
continue;
}
/* Sleep until we have something to do. */
mtx_sleep(thr, &thr->queue_lock, PDROP | PRIBIO, "-", 0);
}
thr->thread = NULL;
kthread_exit();
}
static void
ctl_lun_thread(void *arg)
{
struct ctl_softc *softc = (struct ctl_softc *)arg;
struct ctl_be_lun *be_lun;
CTL_DEBUG_PRINT(("ctl_lun_thread starting\n"));
while (!softc->shutdown) {
mtx_lock(&softc->ctl_lock);
be_lun = STAILQ_FIRST(&softc->pending_lun_queue);
if (be_lun != NULL) {
STAILQ_REMOVE_HEAD(&softc->pending_lun_queue, links);
mtx_unlock(&softc->ctl_lock);
ctl_create_lun(be_lun);
continue;
}
/* Sleep until we have something to do. */
mtx_sleep(&softc->pending_lun_queue, &softc->ctl_lock,
PDROP | PRIBIO, "-", 0);
}
softc->lun_thread = NULL;
kthread_exit();
}
static void
ctl_thresh_thread(void *arg)
{
struct ctl_softc *softc = (struct ctl_softc *)arg;
struct ctl_lun *lun;
struct ctl_logical_block_provisioning_page *page;
const char *attr;
union ctl_ha_msg msg;
uint64_t thres, val;
int i, e, set;
CTL_DEBUG_PRINT(("ctl_thresh_thread starting\n"));
while (!softc->shutdown) {
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
if ((lun->flags & CTL_LUN_DISABLED) ||
(lun->flags & CTL_LUN_NO_MEDIA) ||
lun->backend->lun_attr == NULL)
continue;
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0 &&
softc->ha_mode == CTL_HA_MODE_XFER)
continue;
if ((lun->MODE_RWER.byte8 & SMS_RWER_LBPERE) == 0)
continue;
e = 0;
page = &lun->MODE_LBP;
for (i = 0; i < CTL_NUM_LBP_THRESH; i++) {
if ((page->descr[i].flags & SLBPPD_ENABLED) == 0)
continue;
thres = scsi_4btoul(page->descr[i].count);
thres <<= CTL_LBP_EXPONENT;
switch (page->descr[i].resource) {
case 0x01:
attr = "blocksavail";
break;
case 0x02:
attr = "blocksused";
break;
case 0xf1:
attr = "poolblocksavail";
break;
case 0xf2:
attr = "poolblocksused";
break;
default:
continue;
}
mtx_unlock(&softc->ctl_lock); // XXX
val = lun->backend->lun_attr(
lun->be_lun->be_lun, attr);
mtx_lock(&softc->ctl_lock);
if (val == UINT64_MAX)
continue;
if ((page->descr[i].flags & SLBPPD_ARMING_MASK)
== SLBPPD_ARMING_INC)
e = (val >= thres);
else
e = (val <= thres);
if (e)
break;
}
mtx_lock(&lun->lun_lock);
if (e) {
scsi_u64to8b((uint8_t *)&page->descr[i] -
(uint8_t *)page, lun->ua_tpt_info);
if (lun->lasttpt == 0 ||
time_uptime - lun->lasttpt >= CTL_LBP_UA_PERIOD) {
lun->lasttpt = time_uptime;
ctl_est_ua_all(lun, -1, CTL_UA_THIN_PROV_THRES);
set = 1;
} else
set = 0;
} else {
lun->lasttpt = 0;
ctl_clr_ua_all(lun, -1, CTL_UA_THIN_PROV_THRES);
set = -1;
}
mtx_unlock(&lun->lun_lock);
if (set != 0 &&
lun->ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
/* Send msg to other side. */
bzero(&msg.ua, sizeof(msg.ua));
msg.hdr.msg_type = CTL_MSG_UA;
msg.hdr.nexus.initid = -1;
msg.hdr.nexus.targ_port = -1;
msg.hdr.nexus.targ_lun = lun->lun;
msg.hdr.nexus.targ_mapped_lun = lun->lun;
msg.ua.ua_all = 1;
msg.ua.ua_set = (set > 0);
msg.ua.ua_type = CTL_UA_THIN_PROV_THRES;
memcpy(msg.ua.ua_info, lun->ua_tpt_info, 8);
mtx_unlock(&softc->ctl_lock); // XXX
ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg.ua), M_WAITOK);
mtx_lock(&softc->ctl_lock);
}
}
mtx_sleep(&softc->thresh_thread, &softc->ctl_lock,
PDROP | PRIBIO, "-", CTL_LBP_PERIOD * hz);
}
softc->thresh_thread = NULL;
kthread_exit();
}
static void
ctl_enqueue_incoming(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_thread *thr;
u_int idx;
idx = (io->io_hdr.nexus.targ_port * 127 +
io->io_hdr.nexus.initid) % worker_threads;
thr = &softc->threads[idx];
mtx_lock(&thr->queue_lock);
STAILQ_INSERT_TAIL(&thr->incoming_queue, &io->io_hdr, links);
mtx_unlock(&thr->queue_lock);
wakeup(thr);
}
static void
ctl_enqueue_rtr(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_thread *thr;
thr = &softc->threads[io->io_hdr.nexus.targ_mapped_lun % worker_threads];
mtx_lock(&thr->queue_lock);
STAILQ_INSERT_TAIL(&thr->rtr_queue, &io->io_hdr, links);
mtx_unlock(&thr->queue_lock);
wakeup(thr);
}
static void
ctl_enqueue_done(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_thread *thr;
thr = &softc->threads[io->io_hdr.nexus.targ_mapped_lun % worker_threads];
mtx_lock(&thr->queue_lock);
STAILQ_INSERT_TAIL(&thr->done_queue, &io->io_hdr, links);
mtx_unlock(&thr->queue_lock);
wakeup(thr);
}
static void
ctl_enqueue_isc(union ctl_io *io)
{
struct ctl_softc *softc = CTL_SOFTC(io);
struct ctl_thread *thr;
thr = &softc->threads[io->io_hdr.nexus.targ_mapped_lun % worker_threads];
mtx_lock(&thr->queue_lock);
STAILQ_INSERT_TAIL(&thr->isc_queue, &io->io_hdr, links);
mtx_unlock(&thr->queue_lock);
wakeup(thr);
}
/*
* vim: ts=8
*/