Ian Lepore db63d25160 Use the new FDTCOMPAT_PNP_INFO() macro to define SPIBUS_FDT_PNP_INFO().
Also rename SPIBUS_PNP_INFO -> SPIBUS_FDT_PNP_INFO because there could be
other kinds of pnpinfo for other (non-fdt) bus attachments.
2019-05-23 15:59:50 +00:00

691 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 M. Warner Losh.
* Copyright (c) 2009 Oleksandr Tymoshenko. All rights reserved.
* Copyright (c) 2018 Ian Lepore. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <geom/geom_disk.h>
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#endif
#include <dev/spibus/spi.h>
#include "spibus_if.h"
#include <dev/flash/mx25lreg.h>
#define FL_NONE 0x00
#define FL_ERASE_4K 0x01
#define FL_ERASE_32K 0x02
#define FL_ENABLE_4B_ADDR 0x04
#define FL_DISABLE_4B_ADDR 0x08
/*
* Define the sectorsize to be a smaller size rather than the flash
* sector size. Trying to run FFS off of a 64k flash sector size
* results in a completely un-usable system.
*/
#define MX25L_SECTORSIZE 512
struct mx25l_flash_ident
{
const char *name;
uint8_t manufacturer_id;
uint16_t device_id;
unsigned int sectorsize;
unsigned int sectorcount;
unsigned int flags;
};
struct mx25l_softc
{
device_t sc_dev;
device_t sc_parent;
uint8_t sc_manufacturer_id;
uint16_t sc_device_id;
unsigned int sc_erasesize;
struct mtx sc_mtx;
struct disk *sc_disk;
struct proc *sc_p;
struct bio_queue_head sc_bio_queue;
unsigned int sc_flags;
unsigned int sc_taskstate;
uint8_t sc_dummybuf[FLASH_PAGE_SIZE];
};
#define TSTATE_STOPPED 0
#define TSTATE_STOPPING 1
#define TSTATE_RUNNING 2
#define M25PXX_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define M25PXX_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define M25PXX_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \
"mx25l", MTX_DEF)
#define M25PXX_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define M25PXX_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define M25PXX_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
/* disk routines */
static int mx25l_open(struct disk *dp);
static int mx25l_close(struct disk *dp);
static int mx25l_ioctl(struct disk *, u_long, void *, int, struct thread *);
static void mx25l_strategy(struct bio *bp);
static int mx25l_getattr(struct bio *bp);
static void mx25l_task(void *arg);
static struct mx25l_flash_ident flash_devices[] = {
{ "en25f32", 0x1c, 0x3116, 64 * 1024, 64, FL_NONE },
{ "en25p32", 0x1c, 0x2016, 64 * 1024, 64, FL_NONE },
{ "en25p64", 0x1c, 0x2017, 64 * 1024, 128, FL_NONE },
{ "en25q32", 0x1c, 0x3016, 64 * 1024, 64, FL_NONE },
{ "en25q64", 0x1c, 0x3017, 64 * 1024, 128, FL_ERASE_4K },
{ "m25p32", 0x20, 0x2016, 64 * 1024, 64, FL_NONE },
{ "m25p64", 0x20, 0x2017, 64 * 1024, 128, FL_NONE },
{ "mx25l1606e", 0xc2, 0x2015, 64 * 1024, 32, FL_ERASE_4K},
{ "mx25ll32", 0xc2, 0x2016, 64 * 1024, 64, FL_NONE },
{ "mx25ll64", 0xc2, 0x2017, 64 * 1024, 128, FL_NONE },
{ "mx25ll128", 0xc2, 0x2018, 64 * 1024, 256, FL_ERASE_4K | FL_ERASE_32K },
{ "mx25ll256", 0xc2, 0x2019, 64 * 1024, 512, FL_ERASE_4K | FL_ERASE_32K | FL_ENABLE_4B_ADDR },
{ "s25fl032", 0x01, 0x0215, 64 * 1024, 64, FL_NONE },
{ "s25fl064", 0x01, 0x0216, 64 * 1024, 128, FL_NONE },
{ "s25fl128", 0x01, 0x2018, 64 * 1024, 256, FL_NONE },
{ "s25fl256s", 0x01, 0x0219, 64 * 1024, 512, FL_NONE },
{ "SST25VF010A", 0xbf, 0x2549, 4 * 1024, 32, FL_ERASE_4K | FL_ERASE_32K },
{ "SST25VF032B", 0xbf, 0x254a, 64 * 1024, 64, FL_ERASE_4K | FL_ERASE_32K },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x32", 0xef, 0x3016, 64 * 1024, 64, FL_ERASE_4K },
{ "w25x64", 0xef, 0x3017, 64 * 1024, 128, FL_ERASE_4K },
{ "w25q32", 0xef, 0x4016, 64 * 1024, 64, FL_ERASE_4K },
{ "w25q64", 0xef, 0x4017, 64 * 1024, 128, FL_ERASE_4K },
{ "w25q64bv", 0xef, 0x4017, 64 * 1024, 128, FL_ERASE_4K },
{ "w25q128", 0xef, 0x4018, 64 * 1024, 256, FL_ERASE_4K },
{ "w25q256", 0xef, 0x4019, 64 * 1024, 512, FL_ERASE_4K },
/* Atmel */
{ "at25df641", 0x1f, 0x4800, 64 * 1024, 128, FL_ERASE_4K },
/* GigaDevice */
{ "gd25q64", 0xc8, 0x4017, 64 * 1024, 128, FL_ERASE_4K },
};
static int
mx25l_wait_for_device_ready(struct mx25l_softc *sc)
{
uint8_t txBuf[2], rxBuf[2];
struct spi_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
do {
txBuf[0] = CMD_READ_STATUS;
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
cmd.rx_cmd_sz = 2;
cmd.tx_cmd_sz = 2;
err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd);
} while (err == 0 && (rxBuf[1] & STATUS_WIP));
return (err);
}
static struct mx25l_flash_ident*
mx25l_get_device_ident(struct mx25l_softc *sc)
{
uint8_t txBuf[8], rxBuf[8];
struct spi_command cmd;
uint8_t manufacturer_id;
uint16_t dev_id;
int err, i;
memset(&cmd, 0, sizeof(cmd));
memset(txBuf, 0, sizeof(txBuf));
memset(rxBuf, 0, sizeof(rxBuf));
txBuf[0] = CMD_READ_IDENT;
cmd.tx_cmd = &txBuf;
cmd.rx_cmd = &rxBuf;
/*
* Some compatible devices has extended two-bytes ID
* We'll use only manufacturer/deviceid atm
*/
cmd.tx_cmd_sz = 4;
cmd.rx_cmd_sz = 4;
err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd);
if (err)
return (NULL);
manufacturer_id = rxBuf[1];
dev_id = (rxBuf[2] << 8) | (rxBuf[3]);
for (i = 0; i < nitems(flash_devices); i++) {
if ((flash_devices[i].manufacturer_id == manufacturer_id) &&
(flash_devices[i].device_id == dev_id))
return &flash_devices[i];
}
device_printf(sc->sc_dev,
"Unknown SPI flash device. Vendor: %02x, device id: %04x\n",
manufacturer_id, dev_id);
return (NULL);
}
static int
mx25l_set_writable(struct mx25l_softc *sc, int writable)
{
uint8_t txBuf[1], rxBuf[1];
struct spi_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
memset(txBuf, 0, sizeof(txBuf));
memset(rxBuf, 0, sizeof(rxBuf));
txBuf[0] = writable ? CMD_WRITE_ENABLE : CMD_WRITE_DISABLE;
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
cmd.rx_cmd_sz = 1;
cmd.tx_cmd_sz = 1;
err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd);
return (err);
}
static int
mx25l_erase_cmd(struct mx25l_softc *sc, off_t sector)
{
uint8_t txBuf[5], rxBuf[5];
struct spi_command cmd;
int err;
if ((err = mx25l_set_writable(sc, 1)) != 0)
return (err);
memset(&cmd, 0, sizeof(cmd));
memset(txBuf, 0, sizeof(txBuf));
memset(rxBuf, 0, sizeof(rxBuf));
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
if (sc->sc_flags & FL_ERASE_4K)
txBuf[0] = CMD_BLOCK_4K_ERASE;
else if (sc->sc_flags & FL_ERASE_32K)
txBuf[0] = CMD_BLOCK_32K_ERASE;
else
txBuf[0] = CMD_SECTOR_ERASE;
if (sc->sc_flags & FL_ENABLE_4B_ADDR) {
cmd.rx_cmd_sz = 5;
cmd.tx_cmd_sz = 5;
txBuf[1] = ((sector >> 24) & 0xff);
txBuf[2] = ((sector >> 16) & 0xff);
txBuf[3] = ((sector >> 8) & 0xff);
txBuf[4] = (sector & 0xff);
} else {
cmd.rx_cmd_sz = 4;
cmd.tx_cmd_sz = 4;
txBuf[1] = ((sector >> 16) & 0xff);
txBuf[2] = ((sector >> 8) & 0xff);
txBuf[3] = (sector & 0xff);
}
if ((err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd)) != 0)
return (err);
err = mx25l_wait_for_device_ready(sc);
return (err);
}
static int
mx25l_write(struct mx25l_softc *sc, off_t offset, caddr_t data, off_t count)
{
uint8_t txBuf[8], rxBuf[8];
struct spi_command cmd;
off_t bytes_to_write;
int err = 0;
if (sc->sc_flags & FL_ENABLE_4B_ADDR) {
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
} else {
cmd.tx_cmd_sz = 4;
cmd.rx_cmd_sz = 4;
}
/*
* Writes must be aligned to the erase sectorsize, since blocks are
* fully erased before they're written to.
*/
if (count % sc->sc_erasesize != 0 || offset % sc->sc_erasesize != 0)
return (EIO);
/*
* Maximum write size for CMD_PAGE_PROGRAM is FLASH_PAGE_SIZE, so loop
* to write chunks of FLASH_PAGE_SIZE bytes each.
*/
while (count != 0) {
/* If we crossed a sector boundary, erase the next sector. */
if (((offset) % sc->sc_erasesize) == 0) {
err = mx25l_erase_cmd(sc, offset);
if (err)
break;
}
txBuf[0] = CMD_PAGE_PROGRAM;
if (sc->sc_flags & FL_ENABLE_4B_ADDR) {
txBuf[1] = (offset >> 24) & 0xff;
txBuf[2] = (offset >> 16) & 0xff;
txBuf[3] = (offset >> 8) & 0xff;
txBuf[4] = offset & 0xff;
} else {
txBuf[1] = (offset >> 16) & 0xff;
txBuf[2] = (offset >> 8) & 0xff;
txBuf[3] = offset & 0xff;
}
bytes_to_write = MIN(FLASH_PAGE_SIZE, count);
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
cmd.tx_data = data;
cmd.rx_data = sc->sc_dummybuf;
cmd.tx_data_sz = (uint32_t)bytes_to_write;
cmd.rx_data_sz = (uint32_t)bytes_to_write;
/*
* Each completed write operation resets WEL (write enable
* latch) to disabled state, so we re-enable it here.
*/
if ((err = mx25l_wait_for_device_ready(sc)) != 0)
break;
if ((err = mx25l_set_writable(sc, 1)) != 0)
break;
err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd);
if (err != 0)
break;
err = mx25l_wait_for_device_ready(sc);
if (err)
break;
data += bytes_to_write;
offset += bytes_to_write;
count -= bytes_to_write;
}
return (err);
}
static int
mx25l_read(struct mx25l_softc *sc, off_t offset, caddr_t data, off_t count)
{
uint8_t txBuf[8], rxBuf[8];
struct spi_command cmd;
int err = 0;
/*
* Enforce that reads are aligned to the disk sectorsize, not the
* erase sectorsize. In this way, smaller read IO is possible,
* dramatically speeding up filesystem/geom_compress access.
*/
if (count % sc->sc_disk->d_sectorsize != 0 ||
offset % sc->sc_disk->d_sectorsize != 0)
return (EIO);
txBuf[0] = CMD_FAST_READ;
if (sc->sc_flags & FL_ENABLE_4B_ADDR) {
cmd.tx_cmd_sz = 6;
cmd.rx_cmd_sz = 6;
txBuf[1] = (offset >> 24) & 0xff;
txBuf[2] = (offset >> 16) & 0xff;
txBuf[3] = (offset >> 8) & 0xff;
txBuf[4] = offset & 0xff;
/* Dummy byte */
txBuf[5] = 0;
} else {
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
txBuf[1] = (offset >> 16) & 0xff;
txBuf[2] = (offset >> 8) & 0xff;
txBuf[3] = offset & 0xff;
/* Dummy byte */
txBuf[4] = 0;
}
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
cmd.tx_data = data;
cmd.rx_data = data;
cmd.tx_data_sz = count;
cmd.rx_data_sz = count;
err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd);
return (err);
}
static int
mx25l_set_4b_mode(struct mx25l_softc *sc, uint8_t command)
{
uint8_t txBuf[1], rxBuf[1];
struct spi_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
memset(txBuf, 0, sizeof(txBuf));
memset(rxBuf, 0, sizeof(rxBuf));
cmd.tx_cmd_sz = cmd.rx_cmd_sz = 1;
cmd.tx_cmd = txBuf;
cmd.rx_cmd = rxBuf;
txBuf[0] = command;
if ((err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd)) == 0)
err = mx25l_wait_for_device_ready(sc);
return (err);
}
#ifdef FDT
static struct ofw_compat_data compat_data[] = {
{ "st,m25p", 1 },
{ "jedec,spi-nor", 1 },
{ NULL, 0 },
};
#endif
static int
mx25l_probe(device_t dev)
{
#ifdef FDT
int i;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
/* First try to match the compatible property to the compat_data */
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 1)
goto found;
/*
* Next, try to find a compatible device using the names in the
* flash_devices structure
*/
for (i = 0; i < nitems(flash_devices); i++)
if (ofw_bus_is_compatible(dev, flash_devices[i].name))
goto found;
return (ENXIO);
found:
#endif
device_set_desc(dev, "M25Pxx Flash Family");
return (0);
}
static int
mx25l_attach(device_t dev)
{
struct mx25l_softc *sc;
struct mx25l_flash_ident *ident;
int err;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_parent = device_get_parent(sc->sc_dev);
M25PXX_LOCK_INIT(sc);
ident = mx25l_get_device_ident(sc);
if (ident == NULL)
return (ENXIO);
if ((err = mx25l_wait_for_device_ready(sc)) != 0)
return (err);
sc->sc_flags = ident->flags;
if (sc->sc_flags & FL_ERASE_4K)
sc->sc_erasesize = 4 * 1024;
else if (sc->sc_flags & FL_ERASE_32K)
sc->sc_erasesize = 32 * 1024;
else
sc->sc_erasesize = ident->sectorsize;
if (sc->sc_flags & FL_ENABLE_4B_ADDR) {
if ((err = mx25l_set_4b_mode(sc, CMD_ENTER_4B_MODE)) != 0)
return (err);
} else if (sc->sc_flags & FL_DISABLE_4B_ADDR) {
if ((err = mx25l_set_4b_mode(sc, CMD_EXIT_4B_MODE)) != 0)
return (err);
}
sc->sc_disk = disk_alloc();
sc->sc_disk->d_open = mx25l_open;
sc->sc_disk->d_close = mx25l_close;
sc->sc_disk->d_strategy = mx25l_strategy;
sc->sc_disk->d_getattr = mx25l_getattr;
sc->sc_disk->d_ioctl = mx25l_ioctl;
sc->sc_disk->d_name = "flash/spi";
sc->sc_disk->d_drv1 = sc;
sc->sc_disk->d_maxsize = DFLTPHYS;
sc->sc_disk->d_sectorsize = MX25L_SECTORSIZE;
sc->sc_disk->d_mediasize = ident->sectorsize * ident->sectorcount;
sc->sc_disk->d_stripesize = sc->sc_erasesize;
sc->sc_disk->d_unit = device_get_unit(sc->sc_dev);
sc->sc_disk->d_dump = NULL; /* NB: no dumps */
strlcpy(sc->sc_disk->d_descr, ident->name,
sizeof(sc->sc_disk->d_descr));
disk_create(sc->sc_disk, DISK_VERSION);
bioq_init(&sc->sc_bio_queue);
kproc_create(&mx25l_task, sc, &sc->sc_p, 0, 0, "task: mx25l flash");
sc->sc_taskstate = TSTATE_RUNNING;
device_printf(sc->sc_dev,
"device type %s, size %dK in %d sectors of %dK, erase size %dK\n",
ident->name,
ident->sectorcount * ident->sectorsize / 1024,
ident->sectorcount, ident->sectorsize / 1024,
sc->sc_erasesize / 1024);
return (0);
}
static int
mx25l_detach(device_t dev)
{
struct mx25l_softc *sc;
int err;
sc = device_get_softc(dev);
err = 0;
M25PXX_LOCK(sc);
if (sc->sc_taskstate == TSTATE_RUNNING) {
sc->sc_taskstate = TSTATE_STOPPING;
wakeup(sc);
while (err == 0 && sc->sc_taskstate != TSTATE_STOPPED) {
err = msleep(sc, &sc->sc_mtx, 0, "mx25dt", hz * 3);
if (err != 0) {
sc->sc_taskstate = TSTATE_RUNNING;
device_printf(sc->sc_dev,
"Failed to stop queue task\n");
}
}
}
M25PXX_UNLOCK(sc);
if (err == 0 && sc->sc_taskstate == TSTATE_STOPPED) {
disk_destroy(sc->sc_disk);
bioq_flush(&sc->sc_bio_queue, NULL, ENXIO);
M25PXX_LOCK_DESTROY(sc);
}
return (err);
}
static int
mx25l_open(struct disk *dp)
{
return (0);
}
static int
mx25l_close(struct disk *dp)
{
return (0);
}
static int
mx25l_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
struct thread *td)
{
return (EINVAL);
}
static void
mx25l_strategy(struct bio *bp)
{
struct mx25l_softc *sc;
sc = (struct mx25l_softc *)bp->bio_disk->d_drv1;
M25PXX_LOCK(sc);
bioq_disksort(&sc->sc_bio_queue, bp);
wakeup(sc);
M25PXX_UNLOCK(sc);
}
static int
mx25l_getattr(struct bio *bp)
{
struct mx25l_softc *sc;
device_t dev;
if (bp->bio_disk == NULL || bp->bio_disk->d_drv1 == NULL)
return (ENXIO);
sc = bp->bio_disk->d_drv1;
dev = sc->sc_dev;
if (strcmp(bp->bio_attribute, "SPI::device") == 0) {
if (bp->bio_length != sizeof(dev))
return (EFAULT);
bcopy(&dev, bp->bio_data, sizeof(dev));
} else
return (-1);
return (0);
}
static void
mx25l_task(void *arg)
{
struct mx25l_softc *sc = (struct mx25l_softc*)arg;
struct bio *bp;
device_t dev;
for (;;) {
dev = sc->sc_dev;
M25PXX_LOCK(sc);
do {
if (sc->sc_taskstate == TSTATE_STOPPING) {
sc->sc_taskstate = TSTATE_STOPPED;
M25PXX_UNLOCK(sc);
wakeup(sc);
kproc_exit(0);
}
bp = bioq_first(&sc->sc_bio_queue);
if (bp == NULL)
msleep(sc, &sc->sc_mtx, PRIBIO, "mx25jq", 0);
} while (bp == NULL);
bioq_remove(&sc->sc_bio_queue, bp);
M25PXX_UNLOCK(sc);
switch (bp->bio_cmd) {
case BIO_READ:
bp->bio_error = mx25l_read(sc, bp->bio_offset,
bp->bio_data, bp->bio_bcount);
break;
case BIO_WRITE:
bp->bio_error = mx25l_write(sc, bp->bio_offset,
bp->bio_data, bp->bio_bcount);
break;
default:
bp->bio_error = EINVAL;
}
biodone(bp);
}
}
static devclass_t mx25l_devclass;
static device_method_t mx25l_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mx25l_probe),
DEVMETHOD(device_attach, mx25l_attach),
DEVMETHOD(device_detach, mx25l_detach),
{ 0, 0 }
};
static driver_t mx25l_driver = {
"mx25l",
mx25l_methods,
sizeof(struct mx25l_softc),
};
DRIVER_MODULE(mx25l, spibus, mx25l_driver, mx25l_devclass, 0, 0);
MODULE_DEPEND(mx25l, spibus, 1, 1, 1);
#ifdef FDT
MODULE_DEPEND(mx25l, fdt_slicer, 1, 1, 1);
SPIBUS_FDT_PNP_INFO(compat_data);
#endif