b249ce48ea
Filesystems which want to use it in limited capacity can employ the VOP_UNLOCK_FLAGS macro. Reviewed by: kib (previous version) Differential Revision: https://reviews.freebsd.org/D21427
1754 lines
43 KiB
C
1754 lines
43 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1986, 1988, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_ekcd.h"
|
|
#include "opt_kdb.h"
|
|
#include "opt_panic.h"
|
|
#include "opt_printf.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_watchdog.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/compressor.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/watchdog.h>
|
|
|
|
#include <crypto/chacha20/chacha.h>
|
|
#include <crypto/rijndael/rijndael-api-fst.h>
|
|
#include <crypto/sha2/sha256.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/dump.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <sys/signalvar.h>
|
|
|
|
static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
|
|
|
|
#ifndef PANIC_REBOOT_WAIT_TIME
|
|
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
|
|
#endif
|
|
static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
|
|
SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
|
|
&panic_reboot_wait_time, 0,
|
|
"Seconds to wait before rebooting after a panic");
|
|
|
|
/*
|
|
* Note that stdarg.h and the ANSI style va_start macro is used for both
|
|
* ANSI and traditional C compilers.
|
|
*/
|
|
#include <machine/stdarg.h>
|
|
|
|
#ifdef KDB
|
|
#ifdef KDB_UNATTENDED
|
|
static int debugger_on_panic = 0;
|
|
#else
|
|
static int debugger_on_panic = 1;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&debugger_on_panic, 0, "Run debugger on kernel panic");
|
|
|
|
int debugger_on_trap = 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&debugger_on_trap, 0, "Run debugger on kernel trap before panic");
|
|
|
|
#ifdef KDB_TRACE
|
|
static int trace_on_panic = 1;
|
|
static bool trace_all_panics = true;
|
|
#else
|
|
static int trace_on_panic = 0;
|
|
static bool trace_all_panics = false;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&trace_on_panic, 0, "Print stack trace on kernel panic");
|
|
SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
|
|
&trace_all_panics, 0, "Print stack traces on secondary kernel panics");
|
|
#endif /* KDB */
|
|
|
|
static int sync_on_panic = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
|
|
&sync_on_panic, 0, "Do a sync before rebooting from a panic");
|
|
|
|
static bool poweroff_on_panic = 0;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
|
|
&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
|
|
|
|
static bool powercycle_on_panic = 0;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
|
|
&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0,
|
|
"Shutdown environment");
|
|
|
|
#ifndef DIAGNOSTIC
|
|
static int show_busybufs;
|
|
#else
|
|
static int show_busybufs = 1;
|
|
#endif
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
|
|
&show_busybufs, 0, "");
|
|
|
|
int suspend_blocked = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
|
|
&suspend_blocked, 0, "Block suspend due to a pending shutdown");
|
|
|
|
#ifdef EKCD
|
|
FEATURE(ekcd, "Encrypted kernel crash dumps support");
|
|
|
|
MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
|
|
|
|
struct kerneldumpcrypto {
|
|
uint8_t kdc_encryption;
|
|
uint8_t kdc_iv[KERNELDUMP_IV_MAX_SIZE];
|
|
union {
|
|
struct {
|
|
keyInstance aes_ki;
|
|
cipherInstance aes_ci;
|
|
} u_aes;
|
|
struct chacha_ctx u_chacha;
|
|
} u;
|
|
#define kdc_ki u.u_aes.aes_ki
|
|
#define kdc_ci u.u_aes.aes_ci
|
|
#define kdc_chacha u.u_chacha
|
|
uint32_t kdc_dumpkeysize;
|
|
struct kerneldumpkey kdc_dumpkey[];
|
|
};
|
|
#endif
|
|
|
|
struct kerneldumpcomp {
|
|
uint8_t kdc_format;
|
|
struct compressor *kdc_stream;
|
|
uint8_t *kdc_buf;
|
|
size_t kdc_resid;
|
|
};
|
|
|
|
static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
|
|
uint8_t compression);
|
|
static void kerneldumpcomp_destroy(struct dumperinfo *di);
|
|
static int kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
|
|
|
|
static int kerneldump_gzlevel = 6;
|
|
SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
|
|
&kerneldump_gzlevel, 0,
|
|
"Kernel crash dump compression level");
|
|
|
|
/*
|
|
* Variable panicstr contains argument to first call to panic; used as flag
|
|
* to indicate that the kernel has already called panic.
|
|
*/
|
|
const char __read_mostly *panicstr;
|
|
|
|
int __read_mostly dumping; /* system is dumping */
|
|
int rebooting; /* system is rebooting */
|
|
/*
|
|
* Used to serialize between sysctl kern.shutdown.dumpdevname and list
|
|
* modifications via ioctl.
|
|
*/
|
|
static struct mtx dumpconf_list_lk;
|
|
MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
|
|
|
|
/* Our selected dumper(s). */
|
|
static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
|
|
TAILQ_HEAD_INITIALIZER(dumper_configs);
|
|
|
|
/* Context information for dump-debuggers. */
|
|
static struct pcb dumppcb; /* Registers. */
|
|
lwpid_t dumptid; /* Thread ID. */
|
|
|
|
static struct cdevsw reroot_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "reroot",
|
|
};
|
|
|
|
static void poweroff_wait(void *, int);
|
|
static void shutdown_halt(void *junk, int howto);
|
|
static void shutdown_panic(void *junk, int howto);
|
|
static void shutdown_reset(void *junk, int howto);
|
|
static int kern_reroot(void);
|
|
|
|
/* register various local shutdown events */
|
|
static void
|
|
shutdown_conf(void *unused)
|
|
{
|
|
|
|
EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
|
|
SHUTDOWN_PRI_LAST + 200);
|
|
}
|
|
|
|
SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
|
|
|
|
/*
|
|
* The only reason this exists is to create the /dev/reroot/ directory,
|
|
* used by reroot code in init(8) as a mountpoint for tmpfs.
|
|
*/
|
|
static void
|
|
reroot_conf(void *unused)
|
|
{
|
|
int error;
|
|
struct cdev *cdev;
|
|
|
|
error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
|
|
&reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
|
|
if (error != 0) {
|
|
printf("%s: failed to create device node, error %d",
|
|
__func__, error);
|
|
}
|
|
}
|
|
|
|
SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
|
|
|
|
/*
|
|
* The system call that results in a reboot.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
sys_reboot(struct thread *td, struct reboot_args *uap)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
#ifdef MAC
|
|
error = mac_system_check_reboot(td->td_ucred, uap->opt);
|
|
#endif
|
|
if (error == 0)
|
|
error = priv_check(td, PRIV_REBOOT);
|
|
if (error == 0) {
|
|
if (uap->opt & RB_REROOT)
|
|
error = kern_reroot();
|
|
else
|
|
kern_reboot(uap->opt);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
shutdown_nice_task_fn(void *arg, int pending __unused)
|
|
{
|
|
int howto;
|
|
|
|
howto = (uintptr_t)arg;
|
|
/* Send a signal to init(8) and have it shutdown the world. */
|
|
PROC_LOCK(initproc);
|
|
if (howto & RB_POWEROFF)
|
|
kern_psignal(initproc, SIGUSR2);
|
|
else if (howto & RB_POWERCYCLE)
|
|
kern_psignal(initproc, SIGWINCH);
|
|
else if (howto & RB_HALT)
|
|
kern_psignal(initproc, SIGUSR1);
|
|
else
|
|
kern_psignal(initproc, SIGINT);
|
|
PROC_UNLOCK(initproc);
|
|
}
|
|
|
|
static struct task shutdown_nice_task = TASK_INITIALIZER(0,
|
|
&shutdown_nice_task_fn, NULL);
|
|
|
|
/*
|
|
* Called by events that want to shut down.. e.g <CTL><ALT><DEL> on a PC
|
|
*/
|
|
void
|
|
shutdown_nice(int howto)
|
|
{
|
|
|
|
if (initproc != NULL && !SCHEDULER_STOPPED()) {
|
|
shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
|
|
taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
|
|
} else {
|
|
/*
|
|
* No init(8) running, or scheduler would not allow it
|
|
* to run, so simply reboot.
|
|
*/
|
|
kern_reboot(howto | RB_NOSYNC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_uptime(void)
|
|
{
|
|
int f;
|
|
struct timespec ts;
|
|
|
|
getnanouptime(&ts);
|
|
printf("Uptime: ");
|
|
f = 0;
|
|
if (ts.tv_sec >= 86400) {
|
|
printf("%ldd", (long)ts.tv_sec / 86400);
|
|
ts.tv_sec %= 86400;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 3600) {
|
|
printf("%ldh", (long)ts.tv_sec / 3600);
|
|
ts.tv_sec %= 3600;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 60) {
|
|
printf("%ldm", (long)ts.tv_sec / 60);
|
|
ts.tv_sec %= 60;
|
|
f = 1;
|
|
}
|
|
printf("%lds\n", (long)ts.tv_sec);
|
|
}
|
|
|
|
int
|
|
doadump(boolean_t textdump)
|
|
{
|
|
boolean_t coredump;
|
|
int error;
|
|
|
|
error = 0;
|
|
if (dumping)
|
|
return (EBUSY);
|
|
if (TAILQ_EMPTY(&dumper_configs))
|
|
return (ENXIO);
|
|
|
|
savectx(&dumppcb);
|
|
dumptid = curthread->td_tid;
|
|
dumping++;
|
|
|
|
coredump = TRUE;
|
|
#ifdef DDB
|
|
if (textdump && textdump_pending) {
|
|
coredump = FALSE;
|
|
textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
|
|
}
|
|
#endif
|
|
if (coredump) {
|
|
struct dumperinfo *di;
|
|
|
|
TAILQ_FOREACH(di, &dumper_configs, di_next) {
|
|
error = dumpsys(di);
|
|
if (error == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
dumping--;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown the system cleanly to prepare for reboot, halt, or power off.
|
|
*/
|
|
void
|
|
kern_reboot(int howto)
|
|
{
|
|
static int once = 0;
|
|
|
|
/*
|
|
* Normal paths here don't hold Giant, but we can wind up here
|
|
* unexpectedly with it held. Drop it now so we don't have to
|
|
* drop and pick it up elsewhere. The paths it is locking will
|
|
* never be returned to, and it is preferable to preclude
|
|
* deadlock than to lock against code that won't ever
|
|
* continue.
|
|
*/
|
|
while (mtx_owned(&Giant))
|
|
mtx_unlock(&Giant);
|
|
|
|
#if defined(SMP)
|
|
/*
|
|
* Bind us to the first CPU so that all shutdown code runs there. Some
|
|
* systems don't shutdown properly (i.e., ACPI power off) if we
|
|
* run on another processor.
|
|
*/
|
|
if (!SCHEDULER_STOPPED()) {
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, CPU_FIRST());
|
|
thread_unlock(curthread);
|
|
KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
|
|
("boot: not running on cpu 0"));
|
|
}
|
|
#endif
|
|
/* We're in the process of rebooting. */
|
|
rebooting = 1;
|
|
|
|
/* We are out of the debugger now. */
|
|
kdb_active = 0;
|
|
|
|
/*
|
|
* Do any callouts that should be done BEFORE syncing the filesystems.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
|
|
|
|
/*
|
|
* Now sync filesystems
|
|
*/
|
|
if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
|
|
once = 1;
|
|
bufshutdown(show_busybufs);
|
|
}
|
|
|
|
print_uptime();
|
|
|
|
cngrab();
|
|
|
|
/*
|
|
* Ok, now do things that assume all filesystem activity has
|
|
* been completed.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
|
|
|
|
if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
|
|
doadump(TRUE);
|
|
|
|
/* Now that we're going to really halt the system... */
|
|
EVENTHANDLER_INVOKE(shutdown_final, howto);
|
|
|
|
for(;;) ; /* safety against shutdown_reset not working */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The system call that results in changing the rootfs.
|
|
*/
|
|
static int
|
|
kern_reroot(void)
|
|
{
|
|
struct vnode *oldrootvnode, *vp;
|
|
struct mount *mp, *devmp;
|
|
int error;
|
|
|
|
if (curproc != initproc)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* Mark the filesystem containing currently-running executable
|
|
* (the temporary copy of init(8)) busy.
|
|
*/
|
|
vp = curproc->p_textvp;
|
|
error = vn_lock(vp, LK_SHARED);
|
|
if (error != 0)
|
|
return (error);
|
|
mp = vp->v_mount;
|
|
error = vfs_busy(mp, MBF_NOWAIT);
|
|
if (error != 0) {
|
|
vfs_ref(mp);
|
|
VOP_UNLOCK(vp);
|
|
error = vfs_busy(mp, 0);
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
vfs_rel(mp);
|
|
if (error != 0) {
|
|
VOP_UNLOCK(vp);
|
|
return (ENOENT);
|
|
}
|
|
if (VN_IS_DOOMED(vp)) {
|
|
VOP_UNLOCK(vp);
|
|
vfs_unbusy(mp);
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
VOP_UNLOCK(vp);
|
|
|
|
/*
|
|
* Remove the filesystem containing currently-running executable
|
|
* from the mount list, to prevent it from being unmounted
|
|
* by vfs_unmountall(), and to avoid confusing vfs_mountroot().
|
|
*
|
|
* Also preserve /dev - forcibly unmounting it could cause driver
|
|
* reinitialization.
|
|
*/
|
|
|
|
vfs_ref(rootdevmp);
|
|
devmp = rootdevmp;
|
|
rootdevmp = NULL;
|
|
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_REMOVE(&mountlist, mp, mnt_list);
|
|
TAILQ_REMOVE(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
|
|
oldrootvnode = rootvnode;
|
|
|
|
/*
|
|
* Unmount everything except for the two filesystems preserved above.
|
|
*/
|
|
vfs_unmountall();
|
|
|
|
/*
|
|
* Add /dev back; vfs_mountroot() will move it into its new place.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
rootdevmp = devmp;
|
|
vfs_rel(rootdevmp);
|
|
|
|
/*
|
|
* Mount the new rootfs.
|
|
*/
|
|
vfs_mountroot();
|
|
|
|
/*
|
|
* Update all references to the old rootvnode.
|
|
*/
|
|
mountcheckdirs(oldrootvnode, rootvnode);
|
|
|
|
/*
|
|
* Add the temporary filesystem back and unbusy it.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
vfs_unbusy(mp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the shutdown was a clean halt, behave accordingly.
|
|
*/
|
|
static void
|
|
shutdown_halt(void *junk, int howto)
|
|
{
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("\n");
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
|
|
wdog_kern_pat(WD_TO_NEVER);
|
|
|
|
switch (cngetc()) {
|
|
case -1: /* No console, just die */
|
|
cpu_halt();
|
|
/* NOTREACHED */
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if the system paniced, pause and then reboot
|
|
* according to the specified delay.
|
|
*/
|
|
static void
|
|
shutdown_panic(void *junk, int howto)
|
|
{
|
|
int loop;
|
|
|
|
if (howto & RB_DUMP) {
|
|
if (panic_reboot_wait_time != 0) {
|
|
if (panic_reboot_wait_time != -1) {
|
|
printf("Automatic reboot in %d seconds - "
|
|
"press a key on the console to abort\n",
|
|
panic_reboot_wait_time);
|
|
for (loop = panic_reboot_wait_time * 10;
|
|
loop > 0; --loop) {
|
|
DELAY(1000 * 100); /* 1/10th second */
|
|
/* Did user type a key? */
|
|
if (cncheckc() != -1)
|
|
break;
|
|
}
|
|
if (!loop)
|
|
return;
|
|
}
|
|
} else { /* zero time specified - reboot NOW */
|
|
return;
|
|
}
|
|
printf("--> Press a key on the console to reboot,\n");
|
|
printf("--> or switch off the system now.\n");
|
|
cngetc();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Everything done, now reset
|
|
*/
|
|
static void
|
|
shutdown_reset(void *junk, int howto)
|
|
{
|
|
|
|
printf("Rebooting...\n");
|
|
DELAY(1000000); /* wait 1 sec for printf's to complete and be read */
|
|
|
|
/*
|
|
* Acquiring smp_ipi_mtx here has a double effect:
|
|
* - it disables interrupts avoiding CPU0 preemption
|
|
* by fast handlers (thus deadlocking against other CPUs)
|
|
* - it avoids deadlocks against smp_rendezvous() or, more
|
|
* generally, threads busy-waiting, with this spinlock held,
|
|
* and waiting for responses by threads on other CPUs
|
|
* (ie. smp_tlb_shootdown()).
|
|
*
|
|
* For the !SMP case it just needs to handle the former problem.
|
|
*/
|
|
#ifdef SMP
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
#else
|
|
spinlock_enter();
|
|
#endif
|
|
|
|
/* cpu_boot(howto); */ /* doesn't do anything at the moment */
|
|
cpu_reset();
|
|
/* NOTREACHED */ /* assuming reset worked */
|
|
}
|
|
|
|
#if defined(WITNESS) || defined(INVARIANT_SUPPORT)
|
|
static int kassert_warn_only = 0;
|
|
#ifdef KDB
|
|
static int kassert_do_kdb = 0;
|
|
#endif
|
|
#ifdef KTR
|
|
static int kassert_do_ktr = 0;
|
|
#endif
|
|
static int kassert_do_log = 1;
|
|
static int kassert_log_pps_limit = 4;
|
|
static int kassert_log_mute_at = 0;
|
|
static int kassert_log_panic_at = 0;
|
|
static int kassert_suppress_in_panic = 0;
|
|
static int kassert_warnings = 0;
|
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW, NULL, "kassert options");
|
|
|
|
#ifdef KASSERT_PANIC_OPTIONAL
|
|
#define KASSERT_RWTUN CTLFLAG_RWTUN
|
|
#else
|
|
#define KASSERT_RWTUN CTLFLAG_RDTUN
|
|
#endif
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
|
|
&kassert_warn_only, 0,
|
|
"KASSERT triggers a panic (0) or just a warning (1)");
|
|
|
|
#ifdef KDB
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
|
|
&kassert_do_kdb, 0, "KASSERT will enter the debugger");
|
|
#endif
|
|
|
|
#ifdef KTR
|
|
SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
|
|
&kassert_do_ktr, 0,
|
|
"KASSERT does a KTR, set this to the KTRMASK you want");
|
|
#endif
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
|
|
&kassert_do_log, 0,
|
|
"If warn_only is enabled, log (1) or do not log (0) assertion violations");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
|
|
&kassert_warnings, 0, "number of KASSERTs that have been triggered");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
|
|
&kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
|
|
&kassert_log_pps_limit, 0, "limit number of log messages per second");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
|
|
&kassert_log_mute_at, 0, "max number of KASSERTS to log");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
|
|
&kassert_suppress_in_panic, 0,
|
|
"KASSERTs will be suppressed while handling a panic");
|
|
#undef KASSERT_RWTUN
|
|
|
|
static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, NULL, 0,
|
|
kassert_sysctl_kassert, "I", "set to trigger a test kassert");
|
|
|
|
static int
|
|
kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
|
|
return (0);
|
|
}
|
|
|
|
#ifdef KASSERT_PANIC_OPTIONAL
|
|
/*
|
|
* Called by KASSERT, this decides if we will panic
|
|
* or if we will log via printf and/or ktr.
|
|
*/
|
|
void
|
|
kassert_panic(const char *fmt, ...)
|
|
{
|
|
static char buf[256];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
va_end(ap);
|
|
|
|
/*
|
|
* If we are suppressing secondary panics, log the warning but do not
|
|
* re-enter panic/kdb.
|
|
*/
|
|
if (panicstr != NULL && kassert_suppress_in_panic) {
|
|
if (kassert_do_log) {
|
|
printf("KASSERT failed: %s\n", buf);
|
|
#ifdef KDB
|
|
if (trace_all_panics && trace_on_panic)
|
|
kdb_backtrace();
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* panic if we're not just warning, or if we've exceeded
|
|
* kassert_log_panic_at warnings.
|
|
*/
|
|
if (!kassert_warn_only ||
|
|
(kassert_log_panic_at > 0 &&
|
|
kassert_warnings >= kassert_log_panic_at)) {
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
/* NORETURN */
|
|
}
|
|
#ifdef KTR
|
|
if (kassert_do_ktr)
|
|
CTR0(ktr_mask, buf);
|
|
#endif /* KTR */
|
|
/*
|
|
* log if we've not yet met the mute limit.
|
|
*/
|
|
if (kassert_do_log &&
|
|
(kassert_log_mute_at == 0 ||
|
|
kassert_warnings < kassert_log_mute_at)) {
|
|
static struct timeval lasterr;
|
|
static int curerr;
|
|
|
|
if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
|
|
printf("KASSERT failed: %s\n", buf);
|
|
kdb_backtrace();
|
|
}
|
|
}
|
|
#ifdef KDB
|
|
if (kassert_do_kdb) {
|
|
kdb_enter(KDB_WHY_KASSERT, buf);
|
|
}
|
|
#endif
|
|
atomic_add_int(&kassert_warnings, 1);
|
|
}
|
|
#endif /* KASSERT_PANIC_OPTIONAL */
|
|
#endif
|
|
|
|
/*
|
|
* Panic is called on unresolvable fatal errors. It prints "panic: mesg",
|
|
* and then reboots. If we are called twice, then we avoid trying to sync
|
|
* the disks as this often leads to recursive panics.
|
|
*/
|
|
void
|
|
panic(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
}
|
|
|
|
void
|
|
vpanic(const char *fmt, va_list ap)
|
|
{
|
|
#ifdef SMP
|
|
cpuset_t other_cpus;
|
|
#endif
|
|
struct thread *td = curthread;
|
|
int bootopt, newpanic;
|
|
static char buf[256];
|
|
|
|
spinlock_enter();
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* stop_cpus_hard(other_cpus) should prevent multiple CPUs from
|
|
* concurrently entering panic. Only the winner will proceed
|
|
* further.
|
|
*/
|
|
if (panicstr == NULL && !kdb_active) {
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
|
|
stop_cpus_hard(other_cpus);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Ensure that the scheduler is stopped while panicking, even if panic
|
|
* has been entered from kdb.
|
|
*/
|
|
td->td_stopsched = 1;
|
|
|
|
bootopt = RB_AUTOBOOT;
|
|
newpanic = 0;
|
|
if (panicstr)
|
|
bootopt |= RB_NOSYNC;
|
|
else {
|
|
bootopt |= RB_DUMP;
|
|
panicstr = fmt;
|
|
newpanic = 1;
|
|
}
|
|
|
|
if (newpanic) {
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
panicstr = buf;
|
|
cngrab();
|
|
printf("panic: %s\n", buf);
|
|
} else {
|
|
printf("panic: ");
|
|
vprintf(fmt, ap);
|
|
printf("\n");
|
|
}
|
|
#ifdef SMP
|
|
printf("cpuid = %d\n", PCPU_GET(cpuid));
|
|
#endif
|
|
printf("time = %jd\n", (intmax_t )time_second);
|
|
#ifdef KDB
|
|
if ((newpanic || trace_all_panics) && trace_on_panic)
|
|
kdb_backtrace();
|
|
if (debugger_on_panic)
|
|
kdb_enter(KDB_WHY_PANIC, "panic");
|
|
#endif
|
|
/*thread_lock(td); */
|
|
td->td_flags |= TDF_INPANIC;
|
|
/* thread_unlock(td); */
|
|
if (!sync_on_panic)
|
|
bootopt |= RB_NOSYNC;
|
|
if (poweroff_on_panic)
|
|
bootopt |= RB_POWEROFF;
|
|
if (powercycle_on_panic)
|
|
bootopt |= RB_POWERCYCLE;
|
|
kern_reboot(bootopt);
|
|
}
|
|
|
|
/*
|
|
* Support for poweroff delay.
|
|
*
|
|
* Please note that setting this delay too short might power off your machine
|
|
* before the write cache on your hard disk has been flushed, leading to
|
|
* soft-updates inconsistencies.
|
|
*/
|
|
#ifndef POWEROFF_DELAY
|
|
# define POWEROFF_DELAY 5000
|
|
#endif
|
|
static int poweroff_delay = POWEROFF_DELAY;
|
|
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
|
|
&poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
|
|
|
|
static void
|
|
poweroff_wait(void *junk, int howto)
|
|
{
|
|
|
|
if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
|
|
return;
|
|
DELAY(poweroff_delay * 1000);
|
|
}
|
|
|
|
/*
|
|
* Some system processes (e.g. syncer) need to be stopped at appropriate
|
|
* points in their main loops prior to a system shutdown, so that they
|
|
* won't interfere with the shutdown process (e.g. by holding a disk buf
|
|
* to cause sync to fail). For each of these system processes, register
|
|
* shutdown_kproc() as a handler for one of shutdown events.
|
|
*/
|
|
static int kproc_shutdown_wait = 60;
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
|
|
&kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
|
|
|
|
void
|
|
kproc_shutdown(void *arg, int howto)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
p = (struct proc *)arg;
|
|
printf("Waiting (max %d seconds) for system process `%s' to stop... ",
|
|
kproc_shutdown_wait, p->p_comm);
|
|
error = kproc_suspend(p, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
void
|
|
kthread_shutdown(void *arg, int howto)
|
|
{
|
|
struct thread *td;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
td = (struct thread *)arg;
|
|
printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
|
|
kproc_shutdown_wait, td->td_name);
|
|
error = kthread_suspend(td, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
static int
|
|
dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[256];
|
|
struct dumperinfo *di;
|
|
struct sbuf sb;
|
|
int error;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
|
|
|
|
mtx_lock(&dumpconf_list_lk);
|
|
TAILQ_FOREACH(di, &dumper_configs, di_next) {
|
|
if (di != TAILQ_FIRST(&dumper_configs))
|
|
sbuf_putc(&sb, ',');
|
|
sbuf_cat(&sb, di->di_devname);
|
|
}
|
|
mtx_unlock(&dumpconf_list_lk);
|
|
|
|
error = sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname, CTLTYPE_STRING | CTLFLAG_RD,
|
|
&dumper_configs, 0, dumpdevname_sysctl_handler, "A",
|
|
"Device(s) for kernel dumps");
|
|
|
|
static int _dump_append(struct dumperinfo *di, void *virtual,
|
|
vm_offset_t physical, size_t length);
|
|
|
|
#ifdef EKCD
|
|
static struct kerneldumpcrypto *
|
|
kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
|
|
const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
|
|
{
|
|
struct kerneldumpcrypto *kdc;
|
|
struct kerneldumpkey *kdk;
|
|
uint32_t dumpkeysize;
|
|
|
|
dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
|
|
kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
|
|
|
|
arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
|
|
|
|
kdc->kdc_encryption = encryption;
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
|
|
goto failed;
|
|
break;
|
|
case KERNELDUMP_ENC_CHACHA20:
|
|
chacha_keysetup(&kdc->kdc_chacha, key, 256);
|
|
break;
|
|
default:
|
|
goto failed;
|
|
}
|
|
|
|
kdc->kdc_dumpkeysize = dumpkeysize;
|
|
kdk = kdc->kdc_dumpkey;
|
|
kdk->kdk_encryption = kdc->kdc_encryption;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
|
|
memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
|
|
|
|
return (kdc);
|
|
failed:
|
|
explicit_bzero(kdc, sizeof(*kdc) + dumpkeysize);
|
|
free(kdc, M_EKCD);
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
|
|
{
|
|
uint8_t hash[SHA256_DIGEST_LENGTH];
|
|
SHA256_CTX ctx;
|
|
struct kerneldumpkey *kdk;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* When a user enters ddb it can write a crash dump multiple times.
|
|
* Each time it should be encrypted using a different IV.
|
|
*/
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
SHA256_Final(hash, &ctx);
|
|
bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
kdc->kdc_iv) <= 0) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case KERNELDUMP_ENC_CHACHA20:
|
|
chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
kdk = kdc->kdc_dumpkey;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
out:
|
|
explicit_bzero(hash, sizeof(hash));
|
|
return (error);
|
|
}
|
|
|
|
static uint32_t
|
|
kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
|
|
{
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
return (kdc->kdc_dumpkeysize);
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
static struct kerneldumpcomp *
|
|
kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
|
|
{
|
|
struct kerneldumpcomp *kdcomp;
|
|
int format;
|
|
|
|
switch (compression) {
|
|
case KERNELDUMP_COMP_GZIP:
|
|
format = COMPRESS_GZIP;
|
|
break;
|
|
case KERNELDUMP_COMP_ZSTD:
|
|
format = COMPRESS_ZSTD;
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
|
|
kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
|
|
kdcomp->kdc_format = compression;
|
|
kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
|
|
format, di->maxiosize, kerneldump_gzlevel, di);
|
|
if (kdcomp->kdc_stream == NULL) {
|
|
free(kdcomp, M_DUMPER);
|
|
return (NULL);
|
|
}
|
|
kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
|
|
return (kdcomp);
|
|
}
|
|
|
|
static void
|
|
kerneldumpcomp_destroy(struct dumperinfo *di)
|
|
{
|
|
struct kerneldumpcomp *kdcomp;
|
|
|
|
kdcomp = di->kdcomp;
|
|
if (kdcomp == NULL)
|
|
return;
|
|
compressor_fini(kdcomp->kdc_stream);
|
|
explicit_bzero(kdcomp->kdc_buf, di->maxiosize);
|
|
free(kdcomp->kdc_buf, M_DUMPER);
|
|
free(kdcomp, M_DUMPER);
|
|
}
|
|
|
|
/*
|
|
* Must not be present on global list.
|
|
*/
|
|
static void
|
|
free_single_dumper(struct dumperinfo *di)
|
|
{
|
|
|
|
if (di == NULL)
|
|
return;
|
|
|
|
if (di->blockbuf != NULL) {
|
|
explicit_bzero(di->blockbuf, di->blocksize);
|
|
free(di->blockbuf, M_DUMPER);
|
|
}
|
|
|
|
kerneldumpcomp_destroy(di);
|
|
|
|
#ifdef EKCD
|
|
if (di->kdcrypto != NULL) {
|
|
explicit_bzero(di->kdcrypto, sizeof(*di->kdcrypto) +
|
|
di->kdcrypto->kdc_dumpkeysize);
|
|
free(di->kdcrypto, M_EKCD);
|
|
}
|
|
#endif
|
|
|
|
explicit_bzero(di, sizeof(*di));
|
|
free(di, M_DUMPER);
|
|
}
|
|
|
|
/* Registration of dumpers */
|
|
int
|
|
dumper_insert(const struct dumperinfo *di_template, const char *devname,
|
|
const struct diocskerneldump_arg *kda)
|
|
{
|
|
struct dumperinfo *newdi, *listdi;
|
|
bool inserted;
|
|
uint8_t index;
|
|
int error;
|
|
|
|
index = kda->kda_index;
|
|
MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
|
|
index != KDA_REMOVE_ALL);
|
|
|
|
error = priv_check(curthread, PRIV_SETDUMPER);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER, M_WAITOK
|
|
| M_ZERO);
|
|
memcpy(newdi, di_template, sizeof(*newdi));
|
|
newdi->blockbuf = NULL;
|
|
newdi->kdcrypto = NULL;
|
|
newdi->kdcomp = NULL;
|
|
strcpy(newdi->di_devname, devname);
|
|
|
|
if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
|
|
#ifdef EKCD
|
|
newdi->kdcrypto = kerneldumpcrypto_create(di_template->blocksize,
|
|
kda->kda_encryption, kda->kda_key,
|
|
kda->kda_encryptedkeysize, kda->kda_encryptedkey);
|
|
if (newdi->kdcrypto == NULL) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
goto cleanup;
|
|
#endif
|
|
}
|
|
if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
|
|
/*
|
|
* We can't support simultaneous unpadded block cipher
|
|
* encryption and compression because there is no guarantee the
|
|
* length of the compressed result is exactly a multiple of the
|
|
* cipher block size.
|
|
*/
|
|
if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
|
|
error = EOPNOTSUPP;
|
|
goto cleanup;
|
|
}
|
|
newdi->kdcomp = kerneldumpcomp_create(newdi,
|
|
kda->kda_compression);
|
|
if (newdi->kdcomp == NULL) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
|
|
|
|
/* Add the new configuration to the queue */
|
|
mtx_lock(&dumpconf_list_lk);
|
|
inserted = false;
|
|
TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
|
|
if (index == 0) {
|
|
TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
|
|
inserted = true;
|
|
break;
|
|
}
|
|
index--;
|
|
}
|
|
if (!inserted)
|
|
TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
|
|
mtx_unlock(&dumpconf_list_lk);
|
|
|
|
return (0);
|
|
|
|
cleanup:
|
|
free_single_dumper(newdi);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef DDB
|
|
void
|
|
dumper_ddb_insert(struct dumperinfo *newdi)
|
|
{
|
|
TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
|
|
}
|
|
|
|
void
|
|
dumper_ddb_remove(struct dumperinfo *di)
|
|
{
|
|
TAILQ_REMOVE(&dumper_configs, di, di_next);
|
|
}
|
|
#endif
|
|
|
|
static bool
|
|
dumper_config_match(const struct dumperinfo *di, const char *devname,
|
|
const struct diocskerneldump_arg *kda)
|
|
{
|
|
if (kda->kda_index == KDA_REMOVE_ALL)
|
|
return (true);
|
|
|
|
if (strcmp(di->di_devname, devname) != 0)
|
|
return (false);
|
|
|
|
/*
|
|
* Allow wildcard removal of configs matching a device on g_dev_orphan.
|
|
*/
|
|
if (kda->kda_index == KDA_REMOVE_DEV)
|
|
return (true);
|
|
|
|
if (di->kdcomp != NULL) {
|
|
if (di->kdcomp->kdc_format != kda->kda_compression)
|
|
return (false);
|
|
} else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
|
|
return (false);
|
|
#ifdef EKCD
|
|
if (di->kdcrypto != NULL) {
|
|
if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
|
|
return (false);
|
|
/*
|
|
* Do we care to verify keys match to delete? It seems weird
|
|
* to expect multiple fallback dump configurations on the same
|
|
* device that only differ in crypto key.
|
|
*/
|
|
} else
|
|
#endif
|
|
if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
|
|
return (false);
|
|
|
|
return (true);
|
|
}
|
|
|
|
int
|
|
dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
|
|
{
|
|
struct dumperinfo *di, *sdi;
|
|
bool found;
|
|
int error;
|
|
|
|
error = priv_check(curthread, PRIV_SETDUMPER);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Try to find a matching configuration, and kill it.
|
|
*
|
|
* NULL 'kda' indicates remove any configuration matching 'devname',
|
|
* which may remove multiple configurations in atypical configurations.
|
|
*/
|
|
found = false;
|
|
mtx_lock(&dumpconf_list_lk);
|
|
TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
|
|
if (dumper_config_match(di, devname, kda)) {
|
|
found = true;
|
|
TAILQ_REMOVE(&dumper_configs, di, di_next);
|
|
free_single_dumper(di);
|
|
}
|
|
}
|
|
mtx_unlock(&dumpconf_list_lk);
|
|
|
|
/* Only produce ENOENT if a more targeted match didn't match. */
|
|
if (!found && kda->kda_index == KDA_REMOVE)
|
|
return (ENOENT);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
|
|
{
|
|
|
|
if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
|
|
offset - di->mediaoffset + length > di->mediasize)) {
|
|
if (di->kdcomp != NULL && offset >= di->mediaoffset) {
|
|
printf(
|
|
"Compressed dump failed to fit in device boundaries.\n");
|
|
return (E2BIG);
|
|
}
|
|
|
|
printf("Attempt to write outside dump device boundaries.\n"
|
|
"offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
|
|
(intmax_t)offset, (intmax_t)di->mediaoffset,
|
|
(uintmax_t)length, (intmax_t)di->mediasize);
|
|
return (ENOSPC);
|
|
}
|
|
if (length % di->blocksize != 0) {
|
|
printf("Attempt to write partial block of length %ju.\n",
|
|
(uintmax_t)length);
|
|
return (EINVAL);
|
|
}
|
|
if (offset % di->blocksize != 0) {
|
|
printf("Attempt to write at unaligned offset %jd.\n",
|
|
(intmax_t)offset);
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef EKCD
|
|
static int
|
|
dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
|
|
{
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
|
|
8 * size, buf) <= 0) {
|
|
return (EIO);
|
|
}
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
|
|
return (EIO);
|
|
}
|
|
break;
|
|
case KERNELDUMP_ENC_CHACHA20:
|
|
chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Encrypt data and call dumper. */
|
|
static int
|
|
dump_encrypted_write(struct dumperinfo *di, void *virtual,
|
|
vm_offset_t physical, off_t offset, size_t length)
|
|
{
|
|
static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
|
|
struct kerneldumpcrypto *kdc;
|
|
int error;
|
|
size_t nbytes;
|
|
|
|
kdc = di->kdcrypto;
|
|
|
|
while (length > 0) {
|
|
nbytes = MIN(length, sizeof(buf));
|
|
bcopy(virtual, buf, nbytes);
|
|
|
|
if (dump_encrypt(kdc, buf, nbytes) != 0)
|
|
return (EIO);
|
|
|
|
error = dump_write(di, buf, physical, offset, nbytes);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
offset += nbytes;
|
|
virtual = (void *)((uint8_t *)virtual + nbytes);
|
|
length -= nbytes;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
static int
|
|
kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
|
|
{
|
|
struct dumperinfo *di;
|
|
size_t resid, rlength;
|
|
int error;
|
|
|
|
di = arg;
|
|
|
|
if (length % di->blocksize != 0) {
|
|
/*
|
|
* This must be the final write after flushing the compression
|
|
* stream. Write as many full blocks as possible and stash the
|
|
* residual data in the dumper's block buffer. It will be
|
|
* padded and written in dump_finish().
|
|
*/
|
|
rlength = rounddown(length, di->blocksize);
|
|
if (rlength != 0) {
|
|
error = _dump_append(di, base, 0, rlength);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
resid = length - rlength;
|
|
memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
|
|
di->kdcomp->kdc_resid = resid;
|
|
return (EAGAIN);
|
|
}
|
|
return (_dump_append(di, base, 0, length));
|
|
}
|
|
|
|
/*
|
|
* Write kernel dump headers at the beginning and end of the dump extent.
|
|
* Write the kernel dump encryption key after the leading header if we were
|
|
* configured to do so.
|
|
*/
|
|
static int
|
|
dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
#ifdef EKCD
|
|
struct kerneldumpcrypto *kdc;
|
|
#endif
|
|
void *buf, *key;
|
|
size_t hdrsz;
|
|
uint64_t extent;
|
|
uint32_t keysize;
|
|
int error;
|
|
|
|
hdrsz = sizeof(*kdh);
|
|
if (hdrsz > di->blocksize)
|
|
return (ENOMEM);
|
|
|
|
#ifdef EKCD
|
|
kdc = di->kdcrypto;
|
|
key = kdc->kdc_dumpkey;
|
|
keysize = kerneldumpcrypto_dumpkeysize(kdc);
|
|
#else
|
|
key = NULL;
|
|
keysize = 0;
|
|
#endif
|
|
|
|
/*
|
|
* If the dump device has special handling for headers, let it take care
|
|
* of writing them out.
|
|
*/
|
|
if (di->dumper_hdr != NULL)
|
|
return (di->dumper_hdr(di, kdh, key, keysize));
|
|
|
|
if (hdrsz == di->blocksize)
|
|
buf = kdh;
|
|
else {
|
|
buf = di->blockbuf;
|
|
memset(buf, 0, di->blocksize);
|
|
memcpy(buf, kdh, hdrsz);
|
|
}
|
|
|
|
extent = dtoh64(kdh->dumpextent);
|
|
#ifdef EKCD
|
|
if (kdc != NULL) {
|
|
error = dump_write(di, kdc->kdc_dumpkey, 0,
|
|
di->mediaoffset + di->mediasize - di->blocksize - extent -
|
|
keysize, keysize);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
error = dump_write(di, buf, 0,
|
|
di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
|
|
keysize, di->blocksize);
|
|
if (error == 0)
|
|
error = dump_write(di, buf, 0, di->mediaoffset + di->mediasize -
|
|
di->blocksize, di->blocksize);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Don't touch the first SIZEOF_METADATA bytes on the dump device. This is to
|
|
* protect us from metadata and metadata from us.
|
|
*/
|
|
#define SIZEOF_METADATA (64 * 1024)
|
|
|
|
/*
|
|
* Do some preliminary setup for a kernel dump: initialize state for encryption,
|
|
* if requested, and make sure that we have enough space on the dump device.
|
|
*
|
|
* We set things up so that the dump ends before the last sector of the dump
|
|
* device, at which the trailing header is written.
|
|
*
|
|
* +-----------+------+-----+----------------------------+------+
|
|
* | | lhdr | key | ... kernel dump ... | thdr |
|
|
* +-----------+------+-----+----------------------------+------+
|
|
* 1 blk opt <------- dump extent --------> 1 blk
|
|
*
|
|
* Dumps written using dump_append() start at the beginning of the extent.
|
|
* Uncompressed dumps will use the entire extent, but compressed dumps typically
|
|
* will not. The true length of the dump is recorded in the leading and trailing
|
|
* headers once the dump has been completed.
|
|
*
|
|
* The dump device may provide a callback, in which case it will initialize
|
|
* dumpoff and take care of laying out the headers.
|
|
*/
|
|
int
|
|
dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
uint64_t dumpextent, span;
|
|
uint32_t keysize;
|
|
int error;
|
|
|
|
#ifdef EKCD
|
|
error = kerneldumpcrypto_init(di->kdcrypto);
|
|
if (error != 0)
|
|
return (error);
|
|
keysize = kerneldumpcrypto_dumpkeysize(di->kdcrypto);
|
|
#else
|
|
error = 0;
|
|
keysize = 0;
|
|
#endif
|
|
|
|
if (di->dumper_start != NULL) {
|
|
error = di->dumper_start(di);
|
|
} else {
|
|
dumpextent = dtoh64(kdh->dumpextent);
|
|
span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
|
|
keysize;
|
|
if (di->mediasize < span) {
|
|
if (di->kdcomp == NULL)
|
|
return (E2BIG);
|
|
|
|
/*
|
|
* We don't yet know how much space the compressed dump
|
|
* will occupy, so try to use the whole swap partition
|
|
* (minus the first 64KB) in the hope that the
|
|
* compressed dump will fit. If that doesn't turn out to
|
|
* be enough, the bounds checking in dump_write()
|
|
* will catch us and cause the dump to fail.
|
|
*/
|
|
dumpextent = di->mediasize - span + dumpextent;
|
|
kdh->dumpextent = htod64(dumpextent);
|
|
}
|
|
|
|
/*
|
|
* The offset at which to begin writing the dump.
|
|
*/
|
|
di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
|
|
dumpextent;
|
|
}
|
|
di->origdumpoff = di->dumpoff;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
_dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
size_t length)
|
|
{
|
|
int error;
|
|
|
|
#ifdef EKCD
|
|
if (di->kdcrypto != NULL)
|
|
error = dump_encrypted_write(di, virtual, physical, di->dumpoff,
|
|
length);
|
|
else
|
|
#endif
|
|
error = dump_write(di, virtual, physical, di->dumpoff, length);
|
|
if (error == 0)
|
|
di->dumpoff += length;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Write to the dump device starting at dumpoff. When compression is enabled,
|
|
* writes to the device will be performed using a callback that gets invoked
|
|
* when the compression stream's output buffer is full.
|
|
*/
|
|
int
|
|
dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
size_t length)
|
|
{
|
|
void *buf;
|
|
|
|
if (di->kdcomp != NULL) {
|
|
/* Bounce through a buffer to avoid CRC errors. */
|
|
if (length > di->maxiosize)
|
|
return (EINVAL);
|
|
buf = di->kdcomp->kdc_buf;
|
|
memmove(buf, virtual, length);
|
|
return (compressor_write(di->kdcomp->kdc_stream, buf, length));
|
|
}
|
|
return (_dump_append(di, virtual, physical, length));
|
|
}
|
|
|
|
/*
|
|
* Write to the dump device at the specified offset.
|
|
*/
|
|
int
|
|
dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
off_t offset, size_t length)
|
|
{
|
|
int error;
|
|
|
|
error = dump_check_bounds(di, offset, length);
|
|
if (error != 0)
|
|
return (error);
|
|
return (di->dumper(di->priv, virtual, physical, offset, length));
|
|
}
|
|
|
|
/*
|
|
* Perform kernel dump finalization: flush the compression stream, if necessary,
|
|
* write the leading and trailing kernel dump headers now that we know the true
|
|
* length of the dump, and optionally write the encryption key following the
|
|
* leading header.
|
|
*/
|
|
int
|
|
dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
int error;
|
|
|
|
if (di->kdcomp != NULL) {
|
|
error = compressor_flush(di->kdcomp->kdc_stream);
|
|
if (error == EAGAIN) {
|
|
/* We have residual data in di->blockbuf. */
|
|
error = dump_write(di, di->blockbuf, 0, di->dumpoff,
|
|
di->blocksize);
|
|
di->dumpoff += di->kdcomp->kdc_resid;
|
|
di->kdcomp->kdc_resid = 0;
|
|
}
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* We now know the size of the compressed dump, so update the
|
|
* header accordingly and recompute parity.
|
|
*/
|
|
kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
|
|
kdh->parity = 0;
|
|
kdh->parity = kerneldump_parity(kdh);
|
|
|
|
compressor_reset(di->kdcomp->kdc_stream);
|
|
}
|
|
|
|
error = dump_write_headers(di, kdh);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
(void)dump_write(di, NULL, 0, 0, 0);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
|
|
char *magic, uint32_t archver, uint64_t dumplen)
|
|
{
|
|
size_t dstsize;
|
|
|
|
bzero(kdh, sizeof(*kdh));
|
|
strlcpy(kdh->magic, magic, sizeof(kdh->magic));
|
|
strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
|
|
kdh->version = htod32(KERNELDUMPVERSION);
|
|
kdh->architectureversion = htod32(archver);
|
|
kdh->dumplength = htod64(dumplen);
|
|
kdh->dumpextent = kdh->dumplength;
|
|
kdh->dumptime = htod64(time_second);
|
|
#ifdef EKCD
|
|
kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
|
|
#else
|
|
kdh->dumpkeysize = 0;
|
|
#endif
|
|
kdh->blocksize = htod32(di->blocksize);
|
|
strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
|
|
dstsize = sizeof(kdh->versionstring);
|
|
if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
|
|
kdh->versionstring[dstsize - 2] = '\n';
|
|
if (panicstr != NULL)
|
|
strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
|
|
if (di->kdcomp != NULL)
|
|
kdh->compression = di->kdcomp->kdc_format;
|
|
kdh->parity = kerneldump_parity(kdh);
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(panic, db_show_panic)
|
|
{
|
|
|
|
if (panicstr == NULL)
|
|
db_printf("panicstr not set\n");
|
|
else
|
|
db_printf("panic: %s\n", panicstr);
|
|
}
|
|
#endif
|