freebsd-nq/sys/fs/nfsclient/nfs_clport.c
Rick Macklem 55909abf07 The experimental NFS client was not filling in recovery credentials
for opens done locally in the client when a delegation for the file
was held. This could cause the client to crash in crsetgroups() when
recovering from a server crash/reboot. This patch fills in the
recovery credentials for this case, in order to avoid the client crash.
Also, add KASSERT()s to the credential copy functions, to catch any
other cases where the credentials aren't filled in correctly.

MFC after:	1 week
2010-04-15 22:57:30 +00:00

1279 lines
34 KiB
C

/*-
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* generally, I don't like #includes inside .h files, but it seems to
* be the easiest way to handle the port.
*/
#include <fs/nfs/nfsport.h>
#include <netinet/if_ether.h>
#include <net/if_types.h>
extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
extern struct vop_vector newnfs_vnodeops;
extern struct vop_vector newnfs_fifoops;
extern uma_zone_t newnfsnode_zone;
extern struct buf_ops buf_ops_newnfs;
extern int ncl_pbuf_freecnt;
extern short nfsv4_cbport;
extern int nfscl_enablecallb;
extern int nfs_numnfscbd;
extern int nfscl_inited;
struct mtx nfs_clstate_mutex;
struct mtx ncl_iod_mutex;
NFSDLOCKMUTEX;
extern void (*ncl_call_invalcaches)(struct vnode *);
/*
* Comparison function for vfs_hash functions.
*/
int
newnfs_vncmpf(struct vnode *vp, void *arg)
{
struct nfsfh *nfhp = (struct nfsfh *)arg;
struct nfsnode *np = VTONFS(vp);
if (np->n_fhp->nfh_len != nfhp->nfh_len ||
NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
return (1);
return (0);
}
/*
* Look up a vnode/nfsnode by file handle.
* Callers must check for mount points!!
* In all cases, a pointer to a
* nfsnode structure is returned.
* This variant takes a "struct nfsfh *" as second argument and uses
* that structure up, either by hanging off the nfsnode or FREEing it.
*/
int
nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
struct componentname *cnp, struct thread *td, struct nfsnode **npp,
void *stuff)
{
struct nfsnode *np, *dnp;
struct vnode *vp, *nvp;
struct nfsv4node *newd, *oldd;
int error;
u_int hash;
struct nfsmount *nmp;
nmp = VFSTONFS(mntp);
dnp = VTONFS(dvp);
*npp = NULL;
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
error = vfs_hash_get(mntp, hash, LK_EXCLUSIVE,
td, &nvp, newnfs_vncmpf, nfhp);
if (error == 0 && nvp != NULL) {
/*
* I believe there is a slight chance that vgonel() could
* get called on this vnode between when vn_lock() drops
* the VI_LOCK() and vget() acquires it again, so that it
* hasn't yet had v_usecount incremented. If this were to
* happen, the VI_DOOMED flag would be set, so check for
* that here. Since we now have the v_usecount incremented,
* we should be ok until we vrele() it, if the VI_DOOMED
* flag isn't set now.
*/
VI_LOCK(nvp);
if ((nvp->v_iflag & VI_DOOMED)) {
VI_UNLOCK(nvp);
vrele(nvp);
error = ENOENT;
} else {
VI_UNLOCK(nvp);
}
}
if (error) {
FREE((caddr_t)nfhp, M_NFSFH);
return (error);
}
if (nvp != NULL) {
np = VTONFS(nvp);
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
oldd = newd = NULL;
if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
nvp->v_type == VREG &&
(np->n_v4->n4_namelen != cnp->cn_namelen ||
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
cnp->cn_namelen) ||
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len))) {
MALLOC(newd, struct nfsv4node *,
sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
NFSLOCKNODE(np);
if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
cnp->cn_namelen) ||
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len))) {
oldd = np->n_v4;
np->n_v4 = newd;
newd = NULL;
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
np->n_v4->n4_namelen = cnp->cn_namelen;
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len);
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
cnp->cn_namelen);
}
NFSUNLOCKNODE(np);
}
if (newd != NULL)
FREE((caddr_t)newd, M_NFSV4NODE);
if (oldd != NULL)
FREE((caddr_t)oldd, M_NFSV4NODE);
*npp = np;
FREE((caddr_t)nfhp, M_NFSFH);
return (0);
}
/*
* Allocate before getnewvnode since doing so afterward
* might cause a bogus v_data pointer to get dereferenced
* elsewhere if zalloc should block.
*/
np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
if (error) {
uma_zfree(newnfsnode_zone, np);
FREE((caddr_t)nfhp, M_NFSFH);
return (error);
}
vp = nvp;
vp->v_bufobj.bo_ops = &buf_ops_newnfs;
vp->v_data = np;
np->n_vnode = vp;
/*
* Initialize the mutex even if the vnode is going to be a loser.
* This simplifies the logic in reclaim, which can then unconditionally
* destroy the mutex (in the case of the loser, or if hash_insert
* happened to return an error no special casing is needed).
*/
mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
/*
* Are we getting the root? If so, make sure the vnode flags
* are correct
*/
if ((nfhp->nfh_len == nmp->nm_fhsize) &&
!bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
if (vp->v_type == VNON)
vp->v_type = VDIR;
vp->v_vflag |= VV_ROOT;
}
np->n_fhp = nfhp;
/*
* For NFSv4, we have to attach the directory file handle and
* file name, so that Open Ops can be done later.
*/
if (nmp->nm_flag & NFSMNT_NFSV4) {
MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
+ dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
M_WAITOK);
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
np->n_v4->n4_namelen = cnp->cn_namelen;
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len);
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
cnp->cn_namelen);
} else {
np->n_v4 = NULL;
}
/*
* NFS supports recursive and shared locking.
*/
VN_LOCK_AREC(vp);
VN_LOCK_ASHARE(vp);
lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
error = insmntque(vp, mntp);
if (error != 0) {
*npp = NULL;
mtx_destroy(&np->n_mtx);
FREE((caddr_t)nfhp, M_NFSFH);
if (np->n_v4 != NULL)
FREE((caddr_t)np->n_v4, M_NFSV4NODE);
uma_zfree(newnfsnode_zone, np);
return (error);
}
error = vfs_hash_insert(vp, hash, LK_EXCLUSIVE,
td, &nvp, newnfs_vncmpf, nfhp);
if (error)
return (error);
if (nvp != NULL) {
*npp = VTONFS(nvp);
/* vfs_hash_insert() vput()'s the losing vnode */
return (0);
}
*npp = np;
return (0);
}
/*
* Anothe variant of nfs_nget(). This one is only used by reopen. It
* takes almost the same args as nfs_nget(), but only succeeds if an entry
* exists in the cache. (Since files should already be "open" with a
* vnode ref cnt on the node when reopen calls this, it should always
* succeed.)
* Also, don't get a vnode lock, since it may already be locked by some
* other process that is handling it. This is ok, since all other threads
* on the client are blocked by the nfsc_lock being exclusively held by the
* caller of this function.
*/
int
nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
struct thread *td, struct nfsnode **npp)
{
struct vnode *nvp;
u_int hash;
struct nfsfh *nfhp;
int error;
*npp = NULL;
/* For forced dismounts, just return error. */
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
return (EINTR);
MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
M_NFSFH, M_WAITOK);
bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
nfhp->nfh_len = fhsize;
hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
/*
* First, try to get the vnode locked, but don't block for the lock.
*/
error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
newnfs_vncmpf, nfhp);
if (error == 0 && nvp != NULL) {
VOP_UNLOCK(nvp, 0);
} else if (error == EBUSY) {
/*
* The LK_EXCLOTHER lock type tells nfs_lock1() to not try
* and lock the vnode, but just get a v_usecount on it.
* LK_NOWAIT is set so that when vget() returns ENOENT,
* vfs_hash_get() fails instead of looping.
* If this succeeds, it is safe so long as a vflush() with
* FORCECLOSE has not been done. Since the Renew thread is
* stopped and the MNTK_UNMOUNTF flag is set before doing
* a vflush() with FORCECLOSE, we should be ok here.
*/
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
error = EINTR;
else
error = vfs_hash_get(mntp, hash,
(LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
newnfs_vncmpf, nfhp);
}
FREE(nfhp, M_NFSFH);
if (error)
return (error);
if (nvp != NULL) {
*npp = VTONFS(nvp);
return (0);
}
return (EINVAL);
}
/*
* Load the attribute cache (that lives in the nfsnode entry) with
* the attributes of the second argument and
* Iff vaper not NULL
* copy the attributes to *vaper
* Similar to nfs_loadattrcache(), except the attributes are passed in
* instead of being parsed out of the mbuf list.
*/
int
nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
void *stuff, int writeattr, int dontshrink)
{
struct vnode *vp = *vpp;
struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
struct nfsnode *np;
struct nfsmount *nmp;
struct timespec mtime_save;
struct thread *td = curthread;
/*
* If v_type == VNON it is a new node, so fill in the v_type,
* n_mtime fields. Check to see if it represents a special
* device, and if so, check for a possible alias. Once the
* correct vnode has been obtained, fill in the rest of the
* information.
*/
np = VTONFS(vp);
NFSLOCKNODE(np);
if (vp->v_type != nvap->va_type) {
vp->v_type = nvap->va_type;
if (vp->v_type == VFIFO)
vp->v_op = &newnfs_fifoops;
np->n_mtime = nvap->va_mtime;
}
nmp = VFSTONFS(vp->v_mount);
vap = &np->n_vattr.na_vattr;
mtime_save = vap->va_mtime;
if (writeattr) {
np->n_vattr.na_filerev = nap->na_filerev;
np->n_vattr.na_size = nap->na_size;
np->n_vattr.na_mtime = nap->na_mtime;
np->n_vattr.na_ctime = nap->na_ctime;
np->n_vattr.na_fsid = nap->na_fsid;
} else {
NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
sizeof (struct nfsvattr));
}
/*
* For NFSv4, if the node's fsid is not equal to the mount point's
* fsid, return the low order 32bits of the node's fsid. This
* allows getcwd(3) to work. There is a chance that the fsid might
* be the same as a local fs, but since this is in an NFS mount
* point, I don't think that will cause any problems?
*/
if ((nmp->nm_flag & (NFSMNT_NFSV4 | NFSMNT_HASSETFSID)) ==
(NFSMNT_NFSV4 | NFSMNT_HASSETFSID) &&
(nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
nmp->nm_fsid[1] != np->n_vattr.na_filesid[1]))
vap->va_fsid = np->n_vattr.na_filesid[0];
else
vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
np->n_attrstamp = time_second;
/* Timestamp the NFS otw getattr fetch */
if (td->td_proc) {
np->n_ac_ts_tid = td->td_tid;
np->n_ac_ts_pid = td->td_proc->p_pid;
np->n_ac_ts_syscalls = td->td_syscalls;
} else
bzero(&np->n_ac_ts, sizeof(struct nfs_attrcache_timestamp));
if (vap->va_size != np->n_size) {
if (vap->va_type == VREG) {
if (dontshrink && vap->va_size < np->n_size) {
/*
* We've been told not to shrink the file;
* zero np->n_attrstamp to indicate that
* the attributes are stale.
*/
vap->va_size = np->n_size;
np->n_attrstamp = 0;
} else if (np->n_flag & NMODIFIED) {
/*
* We've modified the file: Use the larger
* of our size, and the server's size.
*/
if (vap->va_size < np->n_size) {
vap->va_size = np->n_size;
} else {
np->n_size = vap->va_size;
np->n_flag |= NSIZECHANGED;
}
} else {
np->n_size = vap->va_size;
np->n_flag |= NSIZECHANGED;
}
vnode_pager_setsize(vp, np->n_size);
} else {
np->n_size = vap->va_size;
}
}
/*
* The following checks are added to prevent a race between (say)
* a READDIR+ and a WRITE.
* READDIR+, WRITE requests sent out.
* READDIR+ resp, WRITE resp received on client.
* However, the WRITE resp was handled before the READDIR+ resp
* causing the post op attrs from the write to be loaded first
* and the attrs from the READDIR+ to be loaded later. If this
* happens, we have stale attrs loaded into the attrcache.
* We detect this by for the mtime moving back. We invalidate the
* attrcache when this happens.
*/
if (timespeccmp(&mtime_save, &vap->va_mtime, >))
/* Size changed or mtime went backwards */
np->n_attrstamp = 0;
if (vaper != NULL) {
NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
if (np->n_flag & NCHG) {
if (np->n_flag & NACC)
vaper->va_atime = np->n_atim;
if (np->n_flag & NUPD)
vaper->va_mtime = np->n_mtim;
}
}
NFSUNLOCKNODE(np);
return (0);
}
/*
* Fill in the client id name. For these bytes:
* 1 - they must be unique
* 2 - they should be persistent across client reboots
* 1 is more critical than 2
* Use the mount point's unique id plus either the uuid or, if that
* isn't set, random junk.
*/
void
nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
{
int uuidlen;
/*
* First, put in the 64bit mount point identifier.
*/
if (idlen >= sizeof (u_int64_t)) {
NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
cp += sizeof (u_int64_t);
idlen -= sizeof (u_int64_t);
}
/*
* If uuid is non-zero length, use it.
*/
uuidlen = strlen(uuid);
if (uuidlen > 0 && idlen >= uuidlen) {
NFSBCOPY(uuid, cp, uuidlen);
cp += uuidlen;
idlen -= uuidlen;
}
/*
* This only normally happens if the uuid isn't set.
*/
while (idlen > 0) {
*cp++ = (u_int8_t)(arc4random() % 256);
idlen--;
}
}
/*
* Fill in a lock owner name. For now, pid + the process's creation time.
*/
void
nfscl_filllockowner(struct thread *td, u_int8_t *cp)
{
union {
u_int32_t lval;
u_int8_t cval[4];
} tl;
struct proc *p;
if (td == NULL) {
printf("NULL td\n");
bzero(cp, 12);
return;
}
p = td->td_proc;
if (p == NULL) {
printf("NULL pid\n");
bzero(cp, 12);
return;
}
tl.lval = p->p_pid;
*cp++ = tl.cval[0];
*cp++ = tl.cval[1];
*cp++ = tl.cval[2];
*cp++ = tl.cval[3];
if (p->p_stats == NULL) {
printf("pstats null\n");
bzero(cp, 8);
return;
}
tl.lval = p->p_stats->p_start.tv_sec;
*cp++ = tl.cval[0];
*cp++ = tl.cval[1];
*cp++ = tl.cval[2];
*cp++ = tl.cval[3];
tl.lval = p->p_stats->p_start.tv_usec;
*cp++ = tl.cval[0];
*cp++ = tl.cval[1];
*cp++ = tl.cval[2];
*cp = tl.cval[3];
}
/*
* Find the parent process for the thread passed in as an argument.
* If none exists, return NULL, otherwise return a thread for the parent.
* (Can be any of the threads, since it is only used for td->td_proc.)
*/
NFSPROC_T *
nfscl_getparent(struct thread *td)
{
struct proc *p;
struct thread *ptd;
if (td == NULL)
return (NULL);
p = td->td_proc;
if (p->p_pid == 0)
return (NULL);
p = p->p_pptr;
if (p == NULL)
return (NULL);
ptd = TAILQ_FIRST(&p->p_threads);
return (ptd);
}
/*
* Start up the renew kernel thread.
*/
static void
start_nfscl(void *arg)
{
struct nfsclclient *clp;
struct thread *td;
clp = (struct nfsclclient *)arg;
td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
nfscl_renewthread(clp, td);
kproc_exit(0);
}
void
nfscl_start_renewthread(struct nfsclclient *clp)
{
kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
"nfscl");
}
/*
* Handle wcc_data.
* For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
* as the first Op after PutFH.
* (For NFSv4, the postop attributes are after the Op, so they can't be
* parsed here. A separate call to nfscl_postop_attr() is required.)
*/
int
nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
{
u_int32_t *tl;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
int error = 0;
if (wccflagp != NULL)
*wccflagp = 0;
if (nd->nd_flag & ND_NFSV3) {
*flagp = 0;
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
if (*tl == newnfs_true) {
NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
if (wccflagp != NULL) {
mtx_lock(&np->n_mtx);
*wccflagp = (np->n_mtime.tv_sec ==
fxdr_unsigned(u_int32_t, *(tl + 2)) &&
np->n_mtime.tv_nsec ==
fxdr_unsigned(u_int32_t, *(tl + 3)));
mtx_unlock(&np->n_mtx);
}
}
error = nfscl_postop_attr(nd, nap, flagp, stuff);
} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
== (ND_NFSV4 | ND_V4WCCATTR)) {
error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
NULL, NULL, NULL, NULL, NULL);
if (error)
return (error);
/*
* Get rid of Op# and status for next op.
*/
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*++tl)
nd->nd_flag |= ND_NOMOREDATA;
if (wccflagp != NULL &&
nfsva.na_vattr.va_mtime.tv_sec != 0) {
mtx_lock(&np->n_mtx);
*wccflagp = (np->n_mtime.tv_sec ==
nfsva.na_vattr.va_mtime.tv_sec &&
np->n_mtime.tv_nsec ==
nfsva.na_vattr.va_mtime.tv_sec);
mtx_unlock(&np->n_mtx);
}
}
nfsmout:
return (error);
}
/*
* Get postop attributes.
*/
int
nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
void *stuff)
{
u_int32_t *tl;
int error = 0;
*retp = 0;
if (nd->nd_flag & ND_NOMOREDATA)
return (error);
if (nd->nd_flag & ND_NFSV3) {
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
*retp = fxdr_unsigned(int, *tl);
} else if (nd->nd_flag & ND_NFSV4) {
/*
* For NFSv4, the postop attr are at the end, so no point
* in looking if nd_repstat != 0.
*/
if (!nd->nd_repstat) {
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*(tl + 1))
/* should never happen since nd_repstat != 0 */
nd->nd_flag |= ND_NOMOREDATA;
else
*retp = 1;
}
} else if (!nd->nd_repstat) {
/* For NFSv2, the attributes are here iff nd_repstat == 0 */
*retp = 1;
}
if (*retp) {
error = nfsm_loadattr(nd, nap);
if (error)
*retp = 0;
}
nfsmout:
return (error);
}
/*
* Fill in the setable attributes. The full argument indicates whether
* to fill in them all or just mode and time.
*/
void
nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
struct vnode *vp, int flags, u_int32_t rdev)
{
u_int32_t *tl;
struct nfsv2_sattr *sp;
nfsattrbit_t attrbits;
struct timeval curtime;
switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
case ND_NFSV2:
NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
if (vap->va_mode == (mode_t)VNOVAL)
sp->sa_mode = newnfs_xdrneg1;
else
sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
if (vap->va_uid == (uid_t)VNOVAL)
sp->sa_uid = newnfs_xdrneg1;
else
sp->sa_uid = txdr_unsigned(vap->va_uid);
if (vap->va_gid == (gid_t)VNOVAL)
sp->sa_gid = newnfs_xdrneg1;
else
sp->sa_gid = txdr_unsigned(vap->va_gid);
if (flags & NFSSATTR_SIZE0)
sp->sa_size = 0;
else if (flags & NFSSATTR_SIZENEG1)
sp->sa_size = newnfs_xdrneg1;
else if (flags & NFSSATTR_SIZERDEV)
sp->sa_size = txdr_unsigned(rdev);
else
sp->sa_size = txdr_unsigned(vap->va_size);
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
break;
case ND_NFSV3:
getmicrotime(&curtime);
if (vap->va_mode != (mode_t)VNOVAL) {
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = newnfs_true;
*tl = txdr_unsigned(vap->va_mode);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = newnfs_false;
}
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = newnfs_true;
*tl = txdr_unsigned(vap->va_uid);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = newnfs_false;
}
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = newnfs_true;
*tl = txdr_unsigned(vap->va_gid);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = newnfs_false;
}
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
*tl++ = newnfs_true;
txdr_hyper(vap->va_size, tl);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = newnfs_false;
}
if (vap->va_atime.tv_sec != VNOVAL) {
if (vap->va_atime.tv_sec != curtime.tv_sec) {
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
txdr_nfsv3time(&vap->va_atime, tl);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
}
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
}
if (vap->va_mtime.tv_sec != VNOVAL) {
if (vap->va_mtime.tv_sec != curtime.tv_sec) {
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
txdr_nfsv3time(&vap->va_mtime, tl);
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
}
} else {
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
}
break;
case ND_NFSV4:
NFSZERO_ATTRBIT(&attrbits);
if (vap->va_mode != (mode_t)VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
if (vap->va_atime.tv_sec != VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
if (vap->va_mtime.tv_sec != VNOVAL)
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
(void) nfsv4_fillattr(nd, vp, NULL, vap, NULL, 0, &attrbits,
NULL, NULL, 0, 0);
break;
};
}
/*
* nfscl_request() - mostly a wrapper for newnfs_request().
*/
int
nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
struct ucred *cred, void *stuff)
{
int ret, vers;
struct nfsmount *nmp;
nmp = VFSTONFS(vp->v_mount);
if (nd->nd_flag & ND_NFSV4)
vers = NFS_VER4;
else if (nd->nd_flag & ND_NFSV3)
vers = NFS_VER3;
else
vers = NFS_VER2;
ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
NFS_PROG, vers, NULL, 1, NULL);
return (ret);
}
/*
* fill in this bsden's variant of statfs using nfsstatfs.
*/
void
nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
{
struct statfs *sbp = (struct statfs *)statfs;
nfsquad_t tquad;
if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
sbp->f_bsize = NFS_FABLKSIZE;
tquad.qval = sfp->sf_tbytes;
sbp->f_blocks = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
tquad.qval = sfp->sf_fbytes;
sbp->f_bfree = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
tquad.qval = sfp->sf_abytes;
sbp->f_bavail = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE));
tquad.qval = sfp->sf_tfiles;
sbp->f_files = (tquad.lval[0] & 0x7fffffff);
tquad.qval = sfp->sf_ffiles;
sbp->f_ffree = (tquad.lval[0] & 0x7fffffff);
} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
sbp->f_bsize = (int32_t)sfp->sf_bsize;
sbp->f_blocks = (int32_t)sfp->sf_blocks;
sbp->f_bfree = (int32_t)sfp->sf_bfree;
sbp->f_bavail = (int32_t)sfp->sf_bavail;
sbp->f_files = 0;
sbp->f_ffree = 0;
}
}
/*
* Use the fsinfo stuff to update the mount point.
*/
void
nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
{
if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
fsp->fs_wtpref >= NFS_FABLKSIZE)
nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
~(NFS_FABLKSIZE - 1);
if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
if (nmp->nm_wsize == 0)
nmp->nm_wsize = fsp->fs_wtmax;
}
if (nmp->nm_wsize < NFS_FABLKSIZE)
nmp->nm_wsize = NFS_FABLKSIZE;
if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
fsp->fs_rtpref >= NFS_FABLKSIZE)
nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
~(NFS_FABLKSIZE - 1);
if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
if (nmp->nm_rsize == 0)
nmp->nm_rsize = fsp->fs_rtmax;
}
if (nmp->nm_rsize < NFS_FABLKSIZE)
nmp->nm_rsize = NFS_FABLKSIZE;
if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
&& fsp->fs_dtpref >= NFS_DIRBLKSIZ)
nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
~(NFS_DIRBLKSIZ - 1);
if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
if (nmp->nm_readdirsize == 0)
nmp->nm_readdirsize = fsp->fs_rtmax;
}
if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
nmp->nm_readdirsize = NFS_DIRBLKSIZ;
if (fsp->fs_maxfilesize > 0 &&
fsp->fs_maxfilesize < nmp->nm_maxfilesize)
nmp->nm_maxfilesize = fsp->fs_maxfilesize;
nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
nmp->nm_state |= NFSSTA_GOTFSINFO;
}
/*
* Get a pointer to my IP addrress and return it.
* Return NULL if you can't find one.
*/
u_int8_t *
nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
{
struct sockaddr_in sad, *sin;
struct rtentry *rt;
u_int8_t *retp = NULL;
static struct in_addr laddr;
*isinet6p = 0;
/*
* Loop up a route for the destination address.
*/
if (nmp->nm_nam->sa_family == AF_INET) {
bzero(&sad, sizeof (sad));
sin = (struct sockaddr_in *)nmp->nm_nam;
sad.sin_family = AF_INET;
sad.sin_len = sizeof (struct sockaddr_in);
sad.sin_addr.s_addr = sin->sin_addr.s_addr;
rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL);
if (rt != NULL) {
if (rt->rt_ifp != NULL &&
rt->rt_ifa != NULL &&
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
sin = (struct sockaddr_in *)
rt->rt_ifa->ifa_addr;
laddr.s_addr = sin->sin_addr.s_addr;
retp = (u_int8_t *)&laddr;
}
RTFREE_LOCKED(rt);
}
#ifdef INET6
} else if (nmp->nm_nam->sa_family == AF_INET6) {
struct sockaddr_in6 sad6, *sin6;
static struct in6_addr laddr6;
bzero(&sad6, sizeof (sad6));
sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
sad6.sin6_family = AF_INET6;
sad6.sin6_len = sizeof (struct sockaddr_in6);
sad6.sin6_addr = sin6->sin6_addr;
rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL);
if (rt != NULL) {
if (rt->rt_ifp != NULL &&
rt->rt_ifa != NULL &&
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)
rt->rt_ifa->ifa_addr;
laddr6 = sin6->sin6_addr;
retp = (u_int8_t *)&laddr6;
*isinet6p = 1;
}
RTFREE_LOCKED(rt);
}
#endif
}
return (retp);
}
/*
* Copy NFS uid, gids from the cred structure.
*/
void
newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
{
int i;
KASSERT(cr->cr_ngroups >= 0,
("newnfs_copyincred: negative cr_ngroups"));
nfscr->nfsc_uid = cr->cr_uid;
nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
for (i = 0; i < nfscr->nfsc_ngroups; i++)
nfscr->nfsc_groups[i] = cr->cr_groups[i];
}
/*
* Do any client specific initialization.
*/
void
nfscl_init(void)
{
static int inited = 0;
if (inited)
return;
inited = 1;
nfscl_inited = 1;
ncl_pbuf_freecnt = nswbuf / 2 + 1;
}
/*
* Check each of the attributes to be set, to ensure they aren't already
* the correct value. Disable setting ones already correct.
*/
int
nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
{
if (vap->va_mode != (mode_t)VNOVAL) {
if (vap->va_mode == nvap->na_mode)
vap->va_mode = (mode_t)VNOVAL;
}
if (vap->va_uid != (uid_t)VNOVAL) {
if (vap->va_uid == nvap->na_uid)
vap->va_uid = (uid_t)VNOVAL;
}
if (vap->va_gid != (gid_t)VNOVAL) {
if (vap->va_gid == nvap->na_gid)
vap->va_gid = (gid_t)VNOVAL;
}
if (vap->va_size != VNOVAL) {
if (vap->va_size == nvap->na_size)
vap->va_size = VNOVAL;
}
/*
* We are normally called with only a partially initialized
* VAP. Since the NFSv3 spec says that server may use the
* file attributes to store the verifier, the spec requires
* us to do a SETATTR RPC. FreeBSD servers store the verifier
* in atime, but we can't really assume that all servers will
* so we ensure that our SETATTR sets both atime and mtime.
*/
if (vap->va_mtime.tv_sec == VNOVAL)
vfs_timestamp(&vap->va_mtime);
if (vap->va_atime.tv_sec == VNOVAL)
vap->va_atime = vap->va_mtime;
return (1);
}
/*
* Map nfsv4 errors to errno.h errors.
* The uid and gid arguments are only used for NFSERR_BADOWNER and that
* error should only be returned for the Open, Create and Setattr Ops.
* As such, most calls can just pass in 0 for those arguments.
*/
APPLESTATIC int
nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
{
struct proc *p;
if (error < 10000)
return (error);
if (td != NULL)
p = td->td_proc;
else
p = NULL;
switch (error) {
case NFSERR_BADOWNER:
tprintf(p, LOG_INFO,
"No name and/or group mapping for uid,gid:(%d,%d)\n",
uid, gid);
return (EPERM);
case NFSERR_STALECLIENTID:
case NFSERR_STALESTATEID:
case NFSERR_EXPIRED:
case NFSERR_BADSTATEID:
printf("nfsv4 recover err returned %d\n", error);
return (EIO);
case NFSERR_BADHANDLE:
case NFSERR_SERVERFAULT:
case NFSERR_BADTYPE:
case NFSERR_FHEXPIRED:
case NFSERR_RESOURCE:
case NFSERR_MOVED:
case NFSERR_NOFILEHANDLE:
case NFSERR_MINORVERMISMATCH:
case NFSERR_OLDSTATEID:
case NFSERR_BADSEQID:
case NFSERR_LEASEMOVED:
case NFSERR_RECLAIMBAD:
case NFSERR_BADXDR:
case NFSERR_BADCHAR:
case NFSERR_BADNAME:
case NFSERR_OPILLEGAL:
printf("nfsv4 client/server protocol prob err=%d\n",
error);
return (EIO);
default:
tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
return (EIO);
};
}
/*
* Locate a process by number; return only "live" processes -- i.e., neither
* zombies nor newly born but incompletely initialized processes. By not
* returning processes in the PRS_NEW state, we allow callers to avoid
* testing for that condition to avoid dereferencing p_ucred, et al.
* Identical to pfind() in kern_proc.c, except it assume the list is
* already locked.
*/
static struct proc *
pfind_locked(pid_t pid)
{
struct proc *p;
LIST_FOREACH(p, PIDHASH(pid), p_hash)
if (p->p_pid == pid) {
if (p->p_state == PRS_NEW) {
p = NULL;
break;
}
PROC_LOCK(p);
break;
}
return (p);
}
/*
* Check to see if the process for this owner exists. Return 1 if it doesn't
* and 0 otherwise.
*/
int
nfscl_procdoesntexist(u_int8_t *own)
{
union {
u_int32_t lval;
u_int8_t cval[4];
} tl;
struct proc *p;
pid_t pid;
int ret = 0;
tl.cval[0] = *own++;
tl.cval[1] = *own++;
tl.cval[2] = *own++;
tl.cval[3] = *own++;
pid = tl.lval;
p = pfind_locked(pid);
if (p == NULL)
return (1);
if (p->p_stats == NULL) {
PROC_UNLOCK(p);
return (0);
}
tl.cval[0] = *own++;
tl.cval[1] = *own++;
tl.cval[2] = *own++;
tl.cval[3] = *own++;
if (tl.lval != p->p_stats->p_start.tv_sec) {
ret = 1;
} else {
tl.cval[0] = *own++;
tl.cval[1] = *own++;
tl.cval[2] = *own++;
tl.cval[3] = *own;
if (tl.lval != p->p_stats->p_start.tv_usec)
ret = 1;
}
PROC_UNLOCK(p);
return (ret);
}
/*
* - nfs pseudo system call for the client
*/
/*
* MPSAFE
*/
static int
nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
{
struct file *fp;
struct nfscbd_args nfscbdarg;
struct nfsd_nfscbd_args nfscbdarg2;
int error;
if (uap->flag & NFSSVC_CBADDSOCK) {
error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
if (error)
return (error);
if ((error = fget(td, nfscbdarg.sock, &fp)) != 0) {
return (error);
}
if (fp->f_type != DTYPE_SOCKET) {
fdrop(fp, td);
return (EPERM);
}
error = nfscbd_addsock(fp);
fdrop(fp, td);
if (!error && nfscl_enablecallb == 0) {
nfsv4_cbport = nfscbdarg.port;
nfscl_enablecallb = 1;
}
} else if (uap->flag & NFSSVC_NFSCBD) {
if (uap->argp == NULL)
return (EINVAL);
error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
sizeof(nfscbdarg2));
if (error)
return (error);
error = nfscbd_nfsd(td, &nfscbdarg2);
} else {
error = EINVAL;
}
return (error);
}
extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
/*
* Called once to initialize data structures...
*/
static int
nfscl_modevent(module_t mod, int type, void *data)
{
int error = 0;
static int loaded = 0;
switch (type) {
case MOD_LOAD:
if (loaded)
return (0);
newnfs_portinit();
mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
MTX_DEF);
mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
nfscl_init();
NFSD_LOCK();
nfsrvd_cbinit(0);
NFSD_UNLOCK();
ncl_call_invalcaches = ncl_invalcaches;
nfsd_call_nfscl = nfssvc_nfscl;
loaded = 1;
break;
case MOD_UNLOAD:
if (nfs_numnfscbd != 0) {
error = EBUSY;
break;
}
/*
* XXX: Unloading of nfscl module is unsupported.
*/
#if 0
ncl_call_invalcaches = NULL;
nfsd_call_nfscl = NULL;
/* and get rid of the mutexes */
mtx_destroy(&nfs_clstate_mutex);
mtx_destroy(&ncl_iod_mutex);
loaded = 0;
break;
#else
/* FALLTHROUGH */
#endif
default:
error = EOPNOTSUPP;
break;
}
return error;
}
static moduledata_t nfscl_mod = {
"nfscl",
nfscl_modevent,
NULL,
};
DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
/* So that loader and kldload(2) can find us, wherever we are.. */
MODULE_VERSION(nfscl, 1);
MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);