freebsd-nq/sys/dev/isp/isp_sbus.c
Scott Long f6b1c44d1f Mega busdma API commit.
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma.  At the moment, this is used for the
asynchronous busdma_swi and callback mechanism.  Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg.  dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create().  The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.

sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms.  The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.

If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.

Reviewed by:	tmm, gibbs
2003-07-01 15:52:06 +00:00

855 lines
22 KiB
C

/* $FreeBSD$ */
/*
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
* FreeBSD Version.
*
* Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/resource.h>
#include <machine/bus.h>
#include <machine/ofw_machdep.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <ofw/openfirm.h>
#include <sparc64/sbus/sbusvar.h>
#include <dev/isp/isp_freebsd.h>
static u_int16_t isp_sbus_rd_reg(struct ispsoftc *, int);
static void isp_sbus_wr_reg(struct ispsoftc *, int, u_int16_t);
static int
isp_sbus_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
static int isp_sbus_mbxdma(struct ispsoftc *);
static int
isp_sbus_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
static void
isp_sbus_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
static void isp_sbus_reset1(struct ispsoftc *);
static void isp_sbus_dumpregs(struct ispsoftc *, const char *);
static struct ispmdvec mdvec = {
isp_sbus_rd_isr,
isp_sbus_rd_reg,
isp_sbus_wr_reg,
isp_sbus_mbxdma,
isp_sbus_dmasetup,
isp_sbus_dmateardown,
NULL,
isp_sbus_reset1,
isp_sbus_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static int isp_sbus_probe (device_t);
static int isp_sbus_attach (device_t);
struct isp_sbussoftc {
struct ispsoftc sbus_isp;
device_t sbus_dev;
struct resource * sbus_reg;
bus_space_tag_t sbus_st;
bus_space_handle_t sbus_sh;
void * ih;
int16_t sbus_poff[_NREG_BLKS];
bus_dma_tag_t dmat;
bus_dmamap_t *dmaps;
sdparam sbus_param;
struct ispmdvec sbus_mdvec;
struct resource * sbus_ires;
};
extern ispfwfunc *isp_get_firmware_p;
static device_method_t isp_sbus_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isp_sbus_probe),
DEVMETHOD(device_attach, isp_sbus_attach),
{ 0, 0 }
};
static void isp_sbus_intr(void *);
static driver_t isp_sbus_driver = {
"isp", isp_sbus_methods, sizeof (struct isp_sbussoftc)
};
static devclass_t isp_devclass;
DRIVER_MODULE(isp, sbus, isp_sbus_driver, isp_devclass, 0, 0);
static int
isp_sbus_probe(device_t dev)
{
int found = 0;
char *name = sbus_get_name(dev);
if (strcmp(name, "SUNW,isp") == 0 ||
strcmp(name, "QLGC,isp") == 0 ||
strcmp(name, "ptisp") == 0 ||
strcmp(name, "PTI,ptisp") == 0) {
found++;
}
if (!found)
return (ENXIO);
if (isp_announced == 0 && bootverbose) {
printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
"Core Version %d.%d\n",
ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
isp_announced++;
}
return (0);
}
static int
isp_sbus_attach(device_t dev)
{
struct resource *regs;
int tval, iqd, isp_debug, role, rid, ispburst, freq;
struct isp_sbussoftc *sbs;
struct ispsoftc *isp = NULL;
int locksetup = 0;
/*
* Figure out if we're supposed to skip this one.
* If we are, we actually go to ISP_ROLE_NONE.
*/
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"disable", &tval) == 0 && tval) {
device_printf(dev, "device is disabled\n");
/* but return 0 so the !$)$)*!$*) unit isn't reused */
return (0);
}
role = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"role", &role) == 0 &&
((role & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) == 0)) {
device_printf(dev, "setting role to 0x%x\n", role);
} else {
#ifdef ISP_TARGET_MODE
role = ISP_ROLE_INITIATOR|ISP_ROLE_TARGET;
#else
role = ISP_DEFAULT_ROLES;
#endif
}
sbs = malloc(sizeof (*sbs), M_DEVBUF, M_NOWAIT | M_ZERO);
if (sbs == NULL) {
device_printf(dev, "cannot allocate softc\n");
return (ENOMEM);
}
regs = NULL;
iqd = 0;
rid = 0;
regs =
bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE);
if (regs == 0) {
device_printf(dev, "unable to map registers\n");
goto bad;
}
sbs->sbus_dev = dev;
sbs->sbus_reg = regs;
sbs->sbus_st = rman_get_bustag(regs);
sbs->sbus_sh = rman_get_bushandle(regs);
sbs->sbus_mdvec = mdvec;
sbs->sbus_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
sbs->sbus_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = SBUS_MBOX_REGS_OFF;
sbs->sbus_poff[SXP_BLOCK >> _BLK_REG_SHFT] = SBUS_SXP_REGS_OFF;
sbs->sbus_poff[RISC_BLOCK >> _BLK_REG_SHFT] = SBUS_RISC_REGS_OFF;
sbs->sbus_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
isp = &sbs->sbus_isp;
isp->isp_mdvec = &sbs->sbus_mdvec;
isp->isp_bustype = ISP_BT_SBUS;
isp->isp_type = ISP_HA_SCSI_UNKNOWN;
isp->isp_param = &sbs->sbus_param;
isp->isp_revision = 0; /* XXX */
isp->isp_role = role;
isp->isp_dev = dev;
freq = sbus_get_clockfreq(dev);
if (freq) {
/*
* Convert from HZ to MHz, rounding up.
*/
freq = (freq + 500000)/1000000;
} else {
freq = 25;
}
sbs->sbus_mdvec.dv_clock = freq << 8;
/*
* Now figure out what the proper burst sizes, etc., to use.
* Unfortunately, there is no ddi_dma_burstsizes here which
* walks up the tree finding the limiting burst size node (if
* any). We just use what's here for isp.
*/
ispburst = sbus_get_burstsz(dev);
if (ispburst == 0) {
ispburst = SBUS_BURST_32 - 1;
}
sbs->sbus_mdvec.dv_conf1 = 0;
if (ispburst & (1 << 5)) {
sbs->sbus_mdvec.dv_conf1 = BIU_SBUS_CONF1_FIFO_32;
} else if (ispburst & (1 << 4)) {
sbs->sbus_mdvec.dv_conf1 = BIU_SBUS_CONF1_FIFO_16;
} else if (ispburst & (1 << 3)) {
sbs->sbus_mdvec.dv_conf1 =
BIU_SBUS_CONF1_BURST8 | BIU_SBUS_CONF1_FIFO_8;
}
if (sbs->sbus_mdvec.dv_conf1) {
sbs->sbus_mdvec.dv_conf1 |= BIU_BURST_ENABLE;
}
/*
* Some early versions of the PTI SBus adapter
* would fail in trying to download (via poking)
* FW. We give up on them.
*/
if (strcmp("PTI,ptisp", sbus_get_name(dev)) == 0 ||
strcmp("ptisp", sbus_get_name(dev)) == 0) {
isp->isp_confopts |= ISP_CFG_NORELOAD;
}
/*
* We don't trust NVRAM on SBus cards
*/
isp->isp_confopts |= ISP_CFG_NONVRAM;
/*
* Try and find firmware for this device.
*/
if (isp_get_firmware_p) {
(*isp_get_firmware_p)(0, 0, 0x1000, &sbs->sbus_mdvec.dv_ispfw);
}
iqd = 0;
sbs->sbus_ires = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
1, RF_ACTIVE | RF_SHAREABLE);
if (sbs->sbus_ires == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto bad;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"fwload_disable", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_NORELOAD;
}
isp->isp_osinfo.default_id = -1;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"iid", &tval) == 0) {
isp->isp_osinfo.default_id = tval;
isp->isp_confopts |= ISP_CFG_OWNLOOPID;
}
if (isp->isp_osinfo.default_id == -1) {
/*
* XXX: should be a way to get properties w/o having
* XXX: to call OF_xxx functions
*/
isp->isp_osinfo.default_id = 7;
}
isp_debug = 0;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
"debug", &isp_debug);
/* Make sure the lock is set up. */
mtx_init(&isp->isp_osinfo.lock, "isp", NULL, MTX_DEF);
locksetup++;
if (bus_setup_intr(dev, sbs->sbus_ires, ISP_IFLAGS,
isp_sbus_intr, isp, &sbs->ih)) {
device_printf(dev, "could not setup interrupt\n");
goto bad;
}
/*
* Set up logging levels.
*/
if (isp_debug) {
isp->isp_dblev = isp_debug;
} else {
isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
}
if (bootverbose)
isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
/*
* Make sure we're in reset state.
*/
ISP_LOCK(isp);
isp_reset(isp);
if (isp->isp_state != ISP_RESETSTATE) {
ISP_UNLOCK(isp);
goto bad;
}
isp_init(isp);
if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) {
isp_uninit(isp);
ISP_UNLOCK(isp);
goto bad;
}
isp_attach(isp);
if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) {
isp_uninit(isp);
ISP_UNLOCK(isp);
goto bad;
}
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
ISP_UNLOCK(isp);
return (0);
bad:
if (sbs && sbs->ih) {
(void) bus_teardown_intr(dev, sbs->sbus_ires, sbs->ih);
}
if (locksetup && isp) {
mtx_destroy(&isp->isp_osinfo.lock);
}
if (sbs && sbs->sbus_ires) {
bus_release_resource(dev, SYS_RES_IRQ, iqd, sbs->sbus_ires);
}
if (regs) {
(void) bus_release_resource(dev, 0, 0, regs);
}
if (sbs) {
if (sbs->sbus_isp.isp_param)
free(sbs->sbus_isp.isp_param, M_DEVBUF);
free(sbs, M_DEVBUF);
}
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
return (ENXIO);
}
static void
isp_sbus_intr(void *arg)
{
struct ispsoftc *isp = arg;
u_int16_t isr, sema, mbox;
ISP_LOCK(isp);
isp->isp_intcnt++;
if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
isp->isp_intbogus++;
} else {
int iok = isp->isp_osinfo.intsok;
isp->isp_osinfo.intsok = 0;
isp_intr(isp, isr, sema, mbox);
isp->isp_osinfo.intsok = iok;
}
ISP_UNLOCK(isp);
}
#define IspVirt2Off(a, x) \
(((struct isp_sbussoftc *)a)->sbus_poff[((x) & _BLK_REG_MASK) >> \
_BLK_REG_SHFT] + ((x) & 0xff))
#define BXR2(sbc, off) \
bus_space_read_2(sbc->sbus_st, sbc->sbus_sh, off)
static int
isp_sbus_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
u_int16_t *semap, u_int16_t *mbp)
{
struct isp_sbussoftc *sbc = (struct isp_sbussoftc *) isp;
u_int16_t isr, sema;
isr = BXR2(sbc, IspVirt2Off(isp, BIU_ISR));
sema = BXR2(sbc, IspVirt2Off(isp, BIU_SEMA));
isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
isr &= INT_PENDING_MASK(isp);
sema &= BIU_SEMA_LOCK;
if (isr == 0 && sema == 0) {
return (0);
}
*isrp = isr;
if ((*semap = sema) != 0) {
*mbp = BXR2(sbc, IspVirt2Off(isp, OUTMAILBOX0));
}
return (1);
}
static u_int16_t
isp_sbus_rd_reg(struct ispsoftc *isp, int regoff)
{
u_int16_t rval;
struct isp_sbussoftc *sbs = (struct isp_sbussoftc *) isp;
int offset = sbs->sbus_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
rval = bus_space_read_2(sbs->sbus_st, sbs->sbus_sh, offset);
isp_prt(isp, ISP_LOGDEBUG3,
"isp_sbus_rd_reg(off %x) = %x", regoff, rval);
return (rval);
}
static void
isp_sbus_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
{
struct isp_sbussoftc *sbs = (struct isp_sbussoftc *) isp;
int offset = sbs->sbus_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
isp_prt(isp, ISP_LOGDEBUG3,
"isp_sbus_wr_reg(off %x) = %x", regoff, val);
bus_space_write_2(sbs->sbus_st, sbs->sbus_sh, offset, val);
}
struct imush {
struct ispsoftc *isp;
int error;
};
static void imc(void *, bus_dma_segment_t *, int, int);
static void
imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
struct ispsoftc *isp =imushp->isp;
bus_addr_t addr = segs->ds_addr;
isp->isp_rquest_dma = addr;
addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
isp->isp_result_dma = addr;
}
}
/*
* Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
*/
#define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
static int
isp_sbus_mbxdma(struct ispsoftc *isp)
{
struct isp_sbussoftc *sbs = (struct isp_sbussoftc *)isp;
caddr_t base;
u_int32_t len;
int i, error, ns;
struct imush im;
/*
* Already been here? If so, leave...
*/
if (isp->isp_rquest) {
return (0);
}
ISP_UNLOCK(isp);
if (bus_dma_tag_create(NULL, 1, BUS_SPACE_MAXADDR_24BIT-1,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR_32BIT,
NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, ISP_NSEGS,
BUS_SPACE_MAXADDR_24BIT, 0, busdma_lock_mutex, &Giant,
&sbs->dmat)) {
isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
ISP_LOCK(isp);
return(1);
}
len = sizeof (XS_T **) * isp->isp_maxcmds;
isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
if (isp->isp_xflist == NULL) {
isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
ISP_LOCK(isp);
return (1);
}
len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
sbs->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK);
if (sbs->dmaps == NULL) {
isp_prt(isp, ISP_LOGERR, "can't alloc dma map storage");
free(isp->isp_xflist, M_DEVBUF);
ISP_LOCK(isp);
return (1);
}
/*
* Allocate and map the request, result queues, plus FC scratch area.
*/
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
ns = (len / PAGE_SIZE) + 1;
if (bus_dma_tag_create(sbs->dmat, QENTRY_LEN, BUS_SPACE_MAXADDR_24BIT-1,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR_32BIT, NULL, NULL,
len, ns, BUS_SPACE_MAXADDR_24BIT, 0, busdma_lock_mutex, &Giant,
&isp->isp_cdmat)) {
isp_prt(isp, ISP_LOGERR,
"cannot create a dma tag for control spaces");
free(sbs->dmaps, M_DEVBUF);
free(isp->isp_xflist, M_DEVBUF);
ISP_LOCK(isp);
return (1);
}
if (bus_dmamem_alloc(isp->isp_cdmat, (void **)&base, BUS_DMA_NOWAIT,
&isp->isp_cdmap) != 0) {
isp_prt(isp, ISP_LOGERR,
"cannot allocate %d bytes of CCB memory", len);
bus_dma_tag_destroy(isp->isp_cdmat);
free(isp->isp_xflist, M_DEVBUF);
free(sbs->dmaps, M_DEVBUF);
ISP_LOCK(isp);
return (1);
}
for (i = 0; i < isp->isp_maxcmds; i++) {
error = bus_dmamap_create(sbs->dmat, 0, &sbs->dmaps[i]);
if (error) {
isp_prt(isp, ISP_LOGERR,
"error %d creating per-cmd DMA maps", error);
while (--i >= 0) {
bus_dmamap_destroy(sbs->dmat, sbs->dmaps[i]);
}
goto bad;
}
}
im.isp = isp;
im.error = 0;
bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
if (im.error) {
isp_prt(isp, ISP_LOGERR,
"error %d loading dma map for control areas", im.error);
goto bad;
}
isp->isp_rquest = base;
base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
ISP_LOCK(isp);
isp->isp_result = base;
return (0);
bad:
bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
bus_dma_tag_destroy(isp->isp_cdmat);
free(isp->isp_xflist, M_DEVBUF);
free(sbs->dmaps, M_DEVBUF);
ISP_LOCK(isp);
isp->isp_rquest = NULL;
return (1);
}
typedef struct {
struct ispsoftc *isp;
void *cmd_token;
void *rq;
u_int16_t *nxtip;
u_int16_t optr;
u_int error;
} mush_t;
#define MUSHERR_NOQENTRIES -2
static void dma2(void *, bus_dma_segment_t *, int, int);
static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ispsoftc *isp;
struct ccb_scsiio *csio;
struct isp_sbussoftc *sbs;
bus_dmamap_t *dp;
bus_dma_segment_t *eseg;
ispreq_t *rq;
int seglim, datalen;
u_int16_t nxti;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
isp = mp->isp;
rq = mp->rq;
sbs = (struct isp_sbussoftc *)mp->isp;
dp = &sbs->dmaps[isp_handle_index(rq->req_handle)];
nxti = *mp->nxtip;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(sbs->dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(sbs->dmat, *dp, BUS_DMASYNC_PREWRITE);
}
datalen = XS_XFRLEN(csio);
/*
* We're passed an initial partially filled in entry that
* has most fields filled in except for data transfer
* related values.
*
* Our job is to fill in the initial request queue entry and
* then to start allocating and filling in continuation entries
* until we've covered the entire transfer.
*/
if (csio->cdb_len > 12) {
seglim = 0;
} else {
seglim = ISP_RQDSEG;
}
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
rq->req_flags |= REQFLAG_DATA_IN;
} else {
rq->req_flags |= REQFLAG_DATA_OUT;
}
eseg = dm_segs + nseg;
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
rq->req_dataseg[rq->req_seg_count].ds_base = dm_segs->ds_addr;
rq->req_dataseg[rq->req_seg_count].ds_count = dm_segs->ds_len;
datalen -= dm_segs->ds_len;
rq->req_seg_count++;
dm_segs++;
}
while (datalen > 0 && dm_segs != eseg) {
u_int16_t onxti;
ispcontreq_t local, *crq = &local, *cqe;
cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
onxti = nxti;
nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
if (nxti == mp->optr) {
isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
mp->error = MUSHERR_NOQENTRIES;
return;
}
rq->req_header.rqs_entry_count++;
MEMZERO((void *)crq, sizeof (*crq));
crq->req_header.rqs_entry_count = 1;
crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
seglim = 0;
while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
crq->req_dataseg[seglim].ds_base =
dm_segs->ds_addr;
crq->req_dataseg[seglim].ds_count =
dm_segs->ds_len;
rq->req_seg_count++;
dm_segs++;
seglim++;
datalen -= dm_segs->ds_len;
}
isp_put_cont_req(isp, crq, cqe);
MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
}
*mp->nxtip = nxti;
}
static int
isp_sbus_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
u_int16_t *nxtip, u_int16_t optr)
{
struct isp_sbussoftc *sbs = (struct isp_sbussoftc *)isp;
ispreq_t *qep;
bus_dmamap_t *dp = NULL;
mush_t mush, *mp;
void (*eptr)(void *, bus_dma_segment_t *, int, int);
qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
eptr = dma2;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
(csio->dxfer_len == 0)) {
rq->req_seg_count = 1;
goto mbxsync;
}
/*
* Do a virtual grapevine step to collect info for
* the callback dma allocation that we have to use...
*/
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = rq;
mp->nxtip = nxtip;
mp->optr = optr;
mp->error = 0;
if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error, s;
dp = &sbs->dmaps[isp_handle_index(rq->req_handle)];
s = splsoftvm();
error = bus_dmamap_load(sbs->dmat, *dp,
csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
if (error == EINPROGRESS) {
bus_dmamap_unload(sbs->dmat, *dp);
mp->error = EINVAL;
isp_prt(isp, ISP_LOGERR,
"deferred dma allocation not supported");
} else if (error && mp->error == 0) {
#ifdef DIAGNOSTIC
isp_prt(isp, ISP_LOGERR,
"error %d in dma mapping code", error);
#endif
mp->error = error;
}
splx(s);
} else {
/* Pointer to physical buffer */
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*eptr)(mp, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
isp_prt(isp, ISP_LOGERR,
"Physical segment pointers unsupported");
mp->error = EINVAL;
} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
isp_prt(isp, ISP_LOGERR,
"Virtual segment addresses unsupported");
mp->error = EINVAL;
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *) csio->data_ptr;
(*eptr)(mp, segs, csio->sglist_cnt, 0);
}
}
if (mp->error) {
int retval = CMD_COMPLETE;
if (mp->error == MUSHERR_NOQENTRIES) {
retval = CMD_EAGAIN;
} else if (mp->error == EFBIG) {
XS_SETERR(csio, CAM_REQ_TOO_BIG);
} else if (mp->error == EINVAL) {
XS_SETERR(csio, CAM_REQ_INVALID);
} else {
XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
}
return (retval);
}
mbxsync:
switch (rq->req_header.rqs_entry_type) {
case RQSTYPE_REQUEST:
isp_put_request(isp, rq, qep);
break;
case RQSTYPE_CMDONLY:
isp_put_extended_request(isp, (ispextreq_t *)rq,
(ispextreq_t *)qep);
break;
}
return (CMD_QUEUED);
}
static void
isp_sbus_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
{
struct isp_sbussoftc *sbs = (struct isp_sbussoftc *)isp;
bus_dmamap_t *dp = &sbs->dmaps[isp_handle_index(handle)];
if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(sbs->dmat, *dp, BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(sbs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(sbs->dmat, *dp);
}
static void
isp_sbus_reset1(struct ispsoftc *isp)
{
/* enable interrupts */
ENABLE_INTS(isp);
}
static void
isp_sbus_dumpregs(struct ispsoftc *isp, const char *msg)
{
if (msg)
printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
else
printf("%s:\n", device_get_nameunit(isp->isp_dev));
printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
ISP_READ(isp, CDMA_FIFO_STS));
printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
ISP_READ(isp, DDMA_FIFO_STS));
printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
ISP_READ(isp, SXP_INTERRUPT),
ISP_READ(isp, SXP_GROSS_ERR),
ISP_READ(isp, SXP_PINS_CTRL));
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
printf(" mbox regs: %x %x %x %x %x\n",
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
ISP_READ(isp, OUTMAILBOX4));
}