7591 lines
280 KiB
C++
7591 lines
280 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace clang;
|
|
|
|
enum TypeDiagSelector {
|
|
TDS_Function,
|
|
TDS_Pointer,
|
|
TDS_ObjCObjOrBlock
|
|
};
|
|
|
|
/// isOmittedBlockReturnType - Return true if this declarator is missing a
|
|
/// return type because this is a omitted return type on a block literal.
|
|
static bool isOmittedBlockReturnType(const Declarator &D) {
|
|
if (D.getContext() != Declarator::BlockLiteralContext ||
|
|
D.getDeclSpec().hasTypeSpecifier())
|
|
return false;
|
|
|
|
if (D.getNumTypeObjects() == 0)
|
|
return true; // ^{ ... }
|
|
|
|
if (D.getNumTypeObjects() == 1 &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
|
|
return true; // ^(int X, float Y) { ... }
|
|
|
|
return false;
|
|
}
|
|
|
|
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
|
|
/// doesn't apply to the given type.
|
|
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
|
|
QualType type) {
|
|
TypeDiagSelector WhichType;
|
|
bool useExpansionLoc = true;
|
|
switch (attr.getKind()) {
|
|
case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
|
|
case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
|
|
default:
|
|
// Assume everything else was a function attribute.
|
|
WhichType = TDS_Function;
|
|
useExpansionLoc = false;
|
|
break;
|
|
}
|
|
|
|
SourceLocation loc = attr.getLoc();
|
|
StringRef name = attr.getName()->getName();
|
|
|
|
// The GC attributes are usually written with macros; special-case them.
|
|
IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
|
|
: nullptr;
|
|
if (useExpansionLoc && loc.isMacroID() && II) {
|
|
if (II->isStr("strong")) {
|
|
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
|
|
} else if (II->isStr("weak")) {
|
|
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
|
|
}
|
|
}
|
|
|
|
S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
|
|
<< type;
|
|
}
|
|
|
|
// objc_gc applies to Objective-C pointers or, otherwise, to the
|
|
// smallest available pointer type (i.e. 'void*' in 'void**').
|
|
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_ObjCGC: \
|
|
case AttributeList::AT_ObjCOwnership
|
|
|
|
// Calling convention attributes.
|
|
#define CALLING_CONV_ATTRS_CASELIST \
|
|
case AttributeList::AT_CDecl: \
|
|
case AttributeList::AT_FastCall: \
|
|
case AttributeList::AT_StdCall: \
|
|
case AttributeList::AT_ThisCall: \
|
|
case AttributeList::AT_RegCall: \
|
|
case AttributeList::AT_Pascal: \
|
|
case AttributeList::AT_SwiftCall: \
|
|
case AttributeList::AT_VectorCall: \
|
|
case AttributeList::AT_MSABI: \
|
|
case AttributeList::AT_SysVABI: \
|
|
case AttributeList::AT_Pcs: \
|
|
case AttributeList::AT_IntelOclBicc: \
|
|
case AttributeList::AT_PreserveMost: \
|
|
case AttributeList::AT_PreserveAll
|
|
|
|
// Function type attributes.
|
|
#define FUNCTION_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_NoReturn: \
|
|
case AttributeList::AT_Regparm: \
|
|
CALLING_CONV_ATTRS_CASELIST
|
|
|
|
// Microsoft-specific type qualifiers.
|
|
#define MS_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_Ptr32: \
|
|
case AttributeList::AT_Ptr64: \
|
|
case AttributeList::AT_SPtr: \
|
|
case AttributeList::AT_UPtr
|
|
|
|
// Nullability qualifiers.
|
|
#define NULLABILITY_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_TypeNonNull: \
|
|
case AttributeList::AT_TypeNullable: \
|
|
case AttributeList::AT_TypeNullUnspecified
|
|
|
|
namespace {
|
|
/// An object which stores processing state for the entire
|
|
/// GetTypeForDeclarator process.
|
|
class TypeProcessingState {
|
|
Sema &sema;
|
|
|
|
/// The declarator being processed.
|
|
Declarator &declarator;
|
|
|
|
/// The index of the declarator chunk we're currently processing.
|
|
/// May be the total number of valid chunks, indicating the
|
|
/// DeclSpec.
|
|
unsigned chunkIndex;
|
|
|
|
/// Whether there are non-trivial modifications to the decl spec.
|
|
bool trivial;
|
|
|
|
/// Whether we saved the attributes in the decl spec.
|
|
bool hasSavedAttrs;
|
|
|
|
/// The original set of attributes on the DeclSpec.
|
|
SmallVector<AttributeList*, 2> savedAttrs;
|
|
|
|
/// A list of attributes to diagnose the uselessness of when the
|
|
/// processing is complete.
|
|
SmallVector<AttributeList*, 2> ignoredTypeAttrs;
|
|
|
|
public:
|
|
TypeProcessingState(Sema &sema, Declarator &declarator)
|
|
: sema(sema), declarator(declarator),
|
|
chunkIndex(declarator.getNumTypeObjects()),
|
|
trivial(true), hasSavedAttrs(false) {}
|
|
|
|
Sema &getSema() const {
|
|
return sema;
|
|
}
|
|
|
|
Declarator &getDeclarator() const {
|
|
return declarator;
|
|
}
|
|
|
|
bool isProcessingDeclSpec() const {
|
|
return chunkIndex == declarator.getNumTypeObjects();
|
|
}
|
|
|
|
unsigned getCurrentChunkIndex() const {
|
|
return chunkIndex;
|
|
}
|
|
|
|
void setCurrentChunkIndex(unsigned idx) {
|
|
assert(idx <= declarator.getNumTypeObjects());
|
|
chunkIndex = idx;
|
|
}
|
|
|
|
AttributeList *&getCurrentAttrListRef() const {
|
|
if (isProcessingDeclSpec())
|
|
return getMutableDeclSpec().getAttributes().getListRef();
|
|
return declarator.getTypeObject(chunkIndex).getAttrListRef();
|
|
}
|
|
|
|
/// Save the current set of attributes on the DeclSpec.
|
|
void saveDeclSpecAttrs() {
|
|
// Don't try to save them multiple times.
|
|
if (hasSavedAttrs) return;
|
|
|
|
DeclSpec &spec = getMutableDeclSpec();
|
|
for (AttributeList *attr = spec.getAttributes().getList(); attr;
|
|
attr = attr->getNext())
|
|
savedAttrs.push_back(attr);
|
|
trivial &= savedAttrs.empty();
|
|
hasSavedAttrs = true;
|
|
}
|
|
|
|
/// Record that we had nowhere to put the given type attribute.
|
|
/// We will diagnose such attributes later.
|
|
void addIgnoredTypeAttr(AttributeList &attr) {
|
|
ignoredTypeAttrs.push_back(&attr);
|
|
}
|
|
|
|
/// Diagnose all the ignored type attributes, given that the
|
|
/// declarator worked out to the given type.
|
|
void diagnoseIgnoredTypeAttrs(QualType type) const {
|
|
for (auto *Attr : ignoredTypeAttrs)
|
|
diagnoseBadTypeAttribute(getSema(), *Attr, type);
|
|
}
|
|
|
|
~TypeProcessingState() {
|
|
if (trivial) return;
|
|
|
|
restoreDeclSpecAttrs();
|
|
}
|
|
|
|
private:
|
|
DeclSpec &getMutableDeclSpec() const {
|
|
return const_cast<DeclSpec&>(declarator.getDeclSpec());
|
|
}
|
|
|
|
void restoreDeclSpecAttrs() {
|
|
assert(hasSavedAttrs);
|
|
|
|
if (savedAttrs.empty()) {
|
|
getMutableDeclSpec().getAttributes().set(nullptr);
|
|
return;
|
|
}
|
|
|
|
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
|
|
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
|
|
savedAttrs[i]->setNext(savedAttrs[i+1]);
|
|
savedAttrs.back()->setNext(nullptr);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
|
|
attr.setNext(head);
|
|
head = &attr;
|
|
}
|
|
|
|
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
|
|
if (head == &attr) {
|
|
head = attr.getNext();
|
|
return;
|
|
}
|
|
|
|
AttributeList *cur = head;
|
|
while (true) {
|
|
assert(cur && cur->getNext() && "ran out of attrs?");
|
|
if (cur->getNext() == &attr) {
|
|
cur->setNext(attr.getNext());
|
|
return;
|
|
}
|
|
cur = cur->getNext();
|
|
}
|
|
}
|
|
|
|
static void moveAttrFromListToList(AttributeList &attr,
|
|
AttributeList *&fromList,
|
|
AttributeList *&toList) {
|
|
spliceAttrOutOfList(attr, fromList);
|
|
spliceAttrIntoList(attr, toList);
|
|
}
|
|
|
|
/// The location of a type attribute.
|
|
enum TypeAttrLocation {
|
|
/// The attribute is in the decl-specifier-seq.
|
|
TAL_DeclSpec,
|
|
/// The attribute is part of a DeclaratorChunk.
|
|
TAL_DeclChunk,
|
|
/// The attribute is immediately after the declaration's name.
|
|
TAL_DeclName
|
|
};
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state,
|
|
QualType &type, TypeAttrLocation TAL,
|
|
AttributeList *attrs);
|
|
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type);
|
|
|
|
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type);
|
|
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type);
|
|
|
|
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type);
|
|
|
|
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type) {
|
|
if (attr.getKind() == AttributeList::AT_ObjCGC)
|
|
return handleObjCGCTypeAttr(state, attr, type);
|
|
assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
|
|
return handleObjCOwnershipTypeAttr(state, attr, type);
|
|
}
|
|
|
|
/// Given the index of a declarator chunk, check whether that chunk
|
|
/// directly specifies the return type of a function and, if so, find
|
|
/// an appropriate place for it.
|
|
///
|
|
/// \param i - a notional index which the search will start
|
|
/// immediately inside
|
|
///
|
|
/// \param onlyBlockPointers Whether we should only look into block
|
|
/// pointer types (vs. all pointer types).
|
|
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
|
|
unsigned i,
|
|
bool onlyBlockPointers) {
|
|
assert(i <= declarator.getNumTypeObjects());
|
|
|
|
DeclaratorChunk *result = nullptr;
|
|
|
|
// First, look inwards past parens for a function declarator.
|
|
for (; i != 0; --i) {
|
|
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
|
|
switch (fnChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
|
|
// If we find anything except a function, bail out.
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
return result;
|
|
|
|
// If we do find a function declarator, scan inwards from that,
|
|
// looking for a (block-)pointer declarator.
|
|
case DeclaratorChunk::Function:
|
|
for (--i; i != 0; --i) {
|
|
DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
|
|
switch (ptrChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pipe:
|
|
continue;
|
|
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pointer:
|
|
if (onlyBlockPointers)
|
|
continue;
|
|
|
|
// fallthrough
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
result = &ptrChunk;
|
|
goto continue_outer;
|
|
}
|
|
llvm_unreachable("bad declarator chunk kind");
|
|
}
|
|
|
|
// If we run out of declarators doing that, we're done.
|
|
return result;
|
|
}
|
|
llvm_unreachable("bad declarator chunk kind");
|
|
|
|
// Okay, reconsider from our new point.
|
|
continue_outer: ;
|
|
}
|
|
|
|
// Ran out of chunks, bail out.
|
|
return result;
|
|
}
|
|
|
|
/// Given that an objc_gc attribute was written somewhere on a
|
|
/// declaration *other* than on the declarator itself (for which, use
|
|
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
|
|
/// didn't apply in whatever position it was written in, try to move
|
|
/// it to a more appropriate position.
|
|
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Move it to the outermost normal or block pointer declarator.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer: {
|
|
// But don't move an ARC ownership attribute to the return type
|
|
// of a block.
|
|
DeclaratorChunk *destChunk = nullptr;
|
|
if (state.isProcessingDeclSpec() &&
|
|
attr.getKind() == AttributeList::AT_ObjCOwnership)
|
|
destChunk = maybeMovePastReturnType(declarator, i - 1,
|
|
/*onlyBlockPointers=*/true);
|
|
if (!destChunk) destChunk = &chunk;
|
|
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
destChunk->getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
// We may be starting at the return type of a block.
|
|
case DeclaratorChunk::Function:
|
|
if (state.isProcessingDeclSpec() &&
|
|
attr.getKind() == AttributeList::AT_ObjCOwnership) {
|
|
if (DeclaratorChunk *dest = maybeMovePastReturnType(
|
|
declarator, i,
|
|
/*onlyBlockPointers=*/true)) {
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
dest->getAttrListRef());
|
|
return;
|
|
}
|
|
}
|
|
goto error;
|
|
|
|
// Don't walk through these.
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
goto error;
|
|
}
|
|
}
|
|
error:
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Distribute an objc_gc type attribute that was written on the
|
|
/// declarator.
|
|
static void
|
|
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// objc_gc goes on the innermost pointer to something that's not a
|
|
// pointer.
|
|
unsigned innermost = -1U;
|
|
bool considerDeclSpec = true;
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
innermost = i;
|
|
continue;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Pipe:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Function:
|
|
considerDeclSpec = false;
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
|
|
// That might actually be the decl spec if we weren't blocked by
|
|
// anything in the declarator.
|
|
if (considerDeclSpec) {
|
|
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
|
|
// Splice the attribute into the decl spec. Prevents the
|
|
// attribute from being applied multiple times and gives
|
|
// the source-location-filler something to work with.
|
|
state.saveDeclSpecAttrs();
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getMutableDeclSpec().getAttributes().getListRef());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, if we found an appropriate chunk, splice the attribute
|
|
// into it.
|
|
if (innermost != -1U) {
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getTypeObject(innermost).getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, diagnose when we're done building the type.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written somewhere in a declaration
|
|
/// *other* than on the declarator itself or in the decl spec. Given
|
|
/// that it didn't apply in whatever position it was written in, try
|
|
/// to move it to a more appropriate position.
|
|
static void distributeFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to push the attribute from the return type of a function to
|
|
// the function itself.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
chunk.getAttrListRef());
|
|
return;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Try to distribute a function type attribute to the innermost
|
|
/// function chunk or type. Returns true if the attribute was
|
|
/// distributed, false if no location was found.
|
|
static bool
|
|
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
AttributeList *&attrList,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Put it on the innermost function chunk, if there is one.
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
if (chunk.Kind != DeclaratorChunk::Function) continue;
|
|
|
|
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
|
|
return true;
|
|
}
|
|
|
|
return handleFunctionTypeAttr(state, attr, declSpecType);
|
|
}
|
|
|
|
/// A function type attribute was written in the decl spec. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
state.saveDeclSpecAttrs();
|
|
|
|
// C++11 attributes before the decl specifiers actually appertain to
|
|
// the declarators. Move them straight there. We don't support the
|
|
// 'put them wherever you like' semantics we allow for GNU attributes.
|
|
if (attr.isCXX11Attribute()) {
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
state.getDeclarator().getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
state.getCurrentAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written on the declarator. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
declarator.getAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// \brief Given that there are attributes written on the declarator
|
|
/// itself, try to distribute any type attributes to the appropriate
|
|
/// declarator chunk.
|
|
///
|
|
/// These are attributes like the following:
|
|
/// int f ATTR;
|
|
/// int (f ATTR)();
|
|
/// but not necessarily this:
|
|
/// int f() ATTR;
|
|
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
|
|
QualType &declSpecType) {
|
|
// Collect all the type attributes from the declarator itself.
|
|
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
|
|
AttributeList *attr = state.getDeclarator().getAttributes();
|
|
AttributeList *next;
|
|
do {
|
|
next = attr->getNext();
|
|
|
|
// Do not distribute C++11 attributes. They have strict rules for what
|
|
// they appertain to.
|
|
if (attr->isCXX11Attribute())
|
|
continue;
|
|
|
|
switch (attr->getKind()) {
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
|
|
break;
|
|
// fallthrough
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
MS_TYPE_ATTRS_CASELIST:
|
|
// Microsoft type attributes cannot go after the declarator-id.
|
|
continue;
|
|
|
|
NULLABILITY_TYPE_ATTRS_CASELIST:
|
|
// Nullability specifiers cannot go after the declarator-id.
|
|
|
|
// Objective-C __kindof does not get distributed.
|
|
case AttributeList::AT_ObjCKindOf:
|
|
continue;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} while ((attr = next));
|
|
}
|
|
|
|
/// Add a synthetic '()' to a block-literal declarator if it is
|
|
/// required, given the return type.
|
|
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
|
|
QualType declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// First, check whether the declarator would produce a function,
|
|
// i.e. whether the innermost semantic chunk is a function.
|
|
if (declarator.isFunctionDeclarator()) {
|
|
// If so, make that declarator a prototyped declarator.
|
|
declarator.getFunctionTypeInfo().hasPrototype = true;
|
|
return;
|
|
}
|
|
|
|
// If there are any type objects, the type as written won't name a
|
|
// function, regardless of the decl spec type. This is because a
|
|
// block signature declarator is always an abstract-declarator, and
|
|
// abstract-declarators can't just be parentheses chunks. Therefore
|
|
// we need to build a function chunk unless there are no type
|
|
// objects and the decl spec type is a function.
|
|
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
|
|
return;
|
|
|
|
// Note that there *are* cases with invalid declarators where
|
|
// declarators consist solely of parentheses. In general, these
|
|
// occur only in failed efforts to make function declarators, so
|
|
// faking up the function chunk is still the right thing to do.
|
|
|
|
// Otherwise, we need to fake up a function declarator.
|
|
SourceLocation loc = declarator.getLocStart();
|
|
|
|
// ...and *prepend* it to the declarator.
|
|
SourceLocation NoLoc;
|
|
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
|
|
/*HasProto=*/true,
|
|
/*IsAmbiguous=*/false,
|
|
/*LParenLoc=*/NoLoc,
|
|
/*ArgInfo=*/nullptr,
|
|
/*NumArgs=*/0,
|
|
/*EllipsisLoc=*/NoLoc,
|
|
/*RParenLoc=*/NoLoc,
|
|
/*TypeQuals=*/0,
|
|
/*RefQualifierIsLvalueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc,
|
|
/*ConstQualifierLoc=*/NoLoc,
|
|
/*VolatileQualifierLoc=*/NoLoc,
|
|
/*RestrictQualifierLoc=*/NoLoc,
|
|
/*MutableLoc=*/NoLoc, EST_None,
|
|
/*ESpecRange=*/SourceRange(),
|
|
/*Exceptions=*/nullptr,
|
|
/*ExceptionRanges=*/nullptr,
|
|
/*NumExceptions=*/0,
|
|
/*NoexceptExpr=*/nullptr,
|
|
/*ExceptionSpecTokens=*/nullptr,
|
|
/*DeclsInPrototype=*/None,
|
|
loc, loc, declarator));
|
|
|
|
// For consistency, make sure the state still has us as processing
|
|
// the decl spec.
|
|
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
|
|
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
|
|
}
|
|
|
|
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
|
|
unsigned &TypeQuals,
|
|
QualType TypeSoFar,
|
|
unsigned RemoveTQs,
|
|
unsigned DiagID) {
|
|
// If this occurs outside a template instantiation, warn the user about
|
|
// it; they probably didn't mean to specify a redundant qualifier.
|
|
typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
|
|
for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
|
|
QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
|
|
QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
|
|
QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
|
|
if (!(RemoveTQs & Qual.first))
|
|
continue;
|
|
|
|
if (S.ActiveTemplateInstantiations.empty()) {
|
|
if (TypeQuals & Qual.first)
|
|
S.Diag(Qual.second, DiagID)
|
|
<< DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
|
|
<< FixItHint::CreateRemoval(Qual.second);
|
|
}
|
|
|
|
TypeQuals &= ~Qual.first;
|
|
}
|
|
}
|
|
|
|
/// Return true if this is omitted block return type. Also check type
|
|
/// attributes and type qualifiers when returning true.
|
|
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
|
|
QualType Result) {
|
|
if (!isOmittedBlockReturnType(declarator))
|
|
return false;
|
|
|
|
// Warn if we see type attributes for omitted return type on a block literal.
|
|
AttributeList *&attrs =
|
|
declarator.getMutableDeclSpec().getAttributes().getListRef();
|
|
AttributeList *prev = nullptr;
|
|
for (AttributeList *cur = attrs; cur; cur = cur->getNext()) {
|
|
AttributeList &attr = *cur;
|
|
// Skip attributes that were marked to be invalid or non-type
|
|
// attributes.
|
|
if (attr.isInvalid() || !attr.isTypeAttr()) {
|
|
prev = cur;
|
|
continue;
|
|
}
|
|
S.Diag(attr.getLoc(),
|
|
diag::warn_block_literal_attributes_on_omitted_return_type)
|
|
<< attr.getName();
|
|
// Remove cur from the list.
|
|
if (prev) {
|
|
prev->setNext(cur->getNext());
|
|
prev = cur;
|
|
} else {
|
|
attrs = cur->getNext();
|
|
}
|
|
}
|
|
|
|
// Warn if we see type qualifiers for omitted return type on a block literal.
|
|
const DeclSpec &DS = declarator.getDeclSpec();
|
|
unsigned TypeQuals = DS.getTypeQualifiers();
|
|
diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
|
|
diag::warn_block_literal_qualifiers_on_omitted_return_type);
|
|
declarator.getMutableDeclSpec().ClearTypeQualifiers();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Apply Objective-C type arguments to the given type.
|
|
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
|
|
ArrayRef<TypeSourceInfo *> typeArgs,
|
|
SourceRange typeArgsRange,
|
|
bool failOnError = false) {
|
|
// We can only apply type arguments to an Objective-C class type.
|
|
const auto *objcObjectType = type->getAs<ObjCObjectType>();
|
|
if (!objcObjectType || !objcObjectType->getInterface()) {
|
|
S.Diag(loc, diag::err_objc_type_args_non_class)
|
|
<< type
|
|
<< typeArgsRange;
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
return type;
|
|
}
|
|
|
|
// The class type must be parameterized.
|
|
ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
|
|
ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
|
|
if (!typeParams) {
|
|
S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
|
|
<< objcClass->getDeclName()
|
|
<< FixItHint::CreateRemoval(typeArgsRange);
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// The type must not already be specialized.
|
|
if (objcObjectType->isSpecialized()) {
|
|
S.Diag(loc, diag::err_objc_type_args_specialized_class)
|
|
<< type
|
|
<< FixItHint::CreateRemoval(typeArgsRange);
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// Check the type arguments.
|
|
SmallVector<QualType, 4> finalTypeArgs;
|
|
unsigned numTypeParams = typeParams->size();
|
|
bool anyPackExpansions = false;
|
|
for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
|
|
TypeSourceInfo *typeArgInfo = typeArgs[i];
|
|
QualType typeArg = typeArgInfo->getType();
|
|
|
|
// Type arguments cannot have explicit qualifiers or nullability.
|
|
// We ignore indirect sources of these, e.g. behind typedefs or
|
|
// template arguments.
|
|
if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
|
|
bool diagnosed = false;
|
|
SourceRange rangeToRemove;
|
|
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
|
|
rangeToRemove = attr.getLocalSourceRange();
|
|
if (attr.getTypePtr()->getImmediateNullability()) {
|
|
typeArg = attr.getTypePtr()->getModifiedType();
|
|
S.Diag(attr.getLocStart(),
|
|
diag::err_objc_type_arg_explicit_nullability)
|
|
<< typeArg << FixItHint::CreateRemoval(rangeToRemove);
|
|
diagnosed = true;
|
|
}
|
|
}
|
|
|
|
if (!diagnosed) {
|
|
S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
|
|
<< typeArg << typeArg.getQualifiers().getAsString()
|
|
<< FixItHint::CreateRemoval(rangeToRemove);
|
|
}
|
|
}
|
|
|
|
// Remove qualifiers even if they're non-local.
|
|
typeArg = typeArg.getUnqualifiedType();
|
|
|
|
finalTypeArgs.push_back(typeArg);
|
|
|
|
if (typeArg->getAs<PackExpansionType>())
|
|
anyPackExpansions = true;
|
|
|
|
// Find the corresponding type parameter, if there is one.
|
|
ObjCTypeParamDecl *typeParam = nullptr;
|
|
if (!anyPackExpansions) {
|
|
if (i < numTypeParams) {
|
|
typeParam = typeParams->begin()[i];
|
|
} else {
|
|
// Too many arguments.
|
|
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
|
|
<< false
|
|
<< objcClass->getDeclName()
|
|
<< (unsigned)typeArgs.size()
|
|
<< numTypeParams;
|
|
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
|
|
<< objcClass;
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
}
|
|
|
|
// Objective-C object pointer types must be substitutable for the bounds.
|
|
if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
|
|
// If we don't have a type parameter to match against, assume
|
|
// everything is fine. There was a prior pack expansion that
|
|
// means we won't be able to match anything.
|
|
if (!typeParam) {
|
|
assert(anyPackExpansions && "Too many arguments?");
|
|
continue;
|
|
}
|
|
|
|
// Retrieve the bound.
|
|
QualType bound = typeParam->getUnderlyingType();
|
|
const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
|
|
|
|
// Determine whether the type argument is substitutable for the bound.
|
|
if (typeArgObjC->isObjCIdType()) {
|
|
// When the type argument is 'id', the only acceptable type
|
|
// parameter bound is 'id'.
|
|
if (boundObjC->isObjCIdType())
|
|
continue;
|
|
} else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
|
|
// Otherwise, we follow the assignability rules.
|
|
continue;
|
|
}
|
|
|
|
// Diagnose the mismatch.
|
|
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
|
|
diag::err_objc_type_arg_does_not_match_bound)
|
|
<< typeArg << bound << typeParam->getDeclName();
|
|
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
|
|
<< typeParam->getDeclName();
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// Block pointer types are permitted for unqualified 'id' bounds.
|
|
if (typeArg->isBlockPointerType()) {
|
|
// If we don't have a type parameter to match against, assume
|
|
// everything is fine. There was a prior pack expansion that
|
|
// means we won't be able to match anything.
|
|
if (!typeParam) {
|
|
assert(anyPackExpansions && "Too many arguments?");
|
|
continue;
|
|
}
|
|
|
|
// Retrieve the bound.
|
|
QualType bound = typeParam->getUnderlyingType();
|
|
if (bound->isBlockCompatibleObjCPointerType(S.Context))
|
|
continue;
|
|
|
|
// Diagnose the mismatch.
|
|
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
|
|
diag::err_objc_type_arg_does_not_match_bound)
|
|
<< typeArg << bound << typeParam->getDeclName();
|
|
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
|
|
<< typeParam->getDeclName();
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// Dependent types will be checked at instantiation time.
|
|
if (typeArg->isDependentType()) {
|
|
continue;
|
|
}
|
|
|
|
// Diagnose non-id-compatible type arguments.
|
|
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
|
|
diag::err_objc_type_arg_not_id_compatible)
|
|
<< typeArg
|
|
<< typeArgInfo->getTypeLoc().getSourceRange();
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// Make sure we didn't have the wrong number of arguments.
|
|
if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
|
|
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
|
|
<< (typeArgs.size() < typeParams->size())
|
|
<< objcClass->getDeclName()
|
|
<< (unsigned)finalTypeArgs.size()
|
|
<< (unsigned)numTypeParams;
|
|
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
|
|
<< objcClass;
|
|
|
|
if (failOnError)
|
|
return QualType();
|
|
|
|
return type;
|
|
}
|
|
|
|
// Success. Form the specialized type.
|
|
return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
|
|
}
|
|
|
|
QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<ObjCProtocolDecl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc,
|
|
bool FailOnError) {
|
|
QualType Result = QualType(Decl->getTypeForDecl(), 0);
|
|
if (!Protocols.empty()) {
|
|
bool HasError;
|
|
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
|
|
HasError);
|
|
if (HasError) {
|
|
Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
|
|
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
|
|
if (FailOnError) Result = QualType();
|
|
}
|
|
if (FailOnError && Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
QualType Sema::BuildObjCObjectType(QualType BaseType,
|
|
SourceLocation Loc,
|
|
SourceLocation TypeArgsLAngleLoc,
|
|
ArrayRef<TypeSourceInfo *> TypeArgs,
|
|
SourceLocation TypeArgsRAngleLoc,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<ObjCProtocolDecl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc,
|
|
bool FailOnError) {
|
|
QualType Result = BaseType;
|
|
if (!TypeArgs.empty()) {
|
|
Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
|
|
SourceRange(TypeArgsLAngleLoc,
|
|
TypeArgsRAngleLoc),
|
|
FailOnError);
|
|
if (FailOnError && Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
if (!Protocols.empty()) {
|
|
bool HasError;
|
|
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
|
|
HasError);
|
|
if (HasError) {
|
|
Diag(Loc, diag::err_invalid_protocol_qualifiers)
|
|
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
|
|
if (FailOnError) Result = QualType();
|
|
}
|
|
if (FailOnError && Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
TypeResult Sema::actOnObjCProtocolQualifierType(
|
|
SourceLocation lAngleLoc,
|
|
ArrayRef<Decl *> protocols,
|
|
ArrayRef<SourceLocation> protocolLocs,
|
|
SourceLocation rAngleLoc) {
|
|
// Form id<protocol-list>.
|
|
QualType Result = Context.getObjCObjectType(
|
|
Context.ObjCBuiltinIdTy, { },
|
|
llvm::makeArrayRef(
|
|
(ObjCProtocolDecl * const *)protocols.data(),
|
|
protocols.size()),
|
|
false);
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
|
|
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
|
|
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
|
|
|
|
auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
|
|
ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
|
|
|
|
auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
|
|
.castAs<ObjCObjectTypeLoc>();
|
|
ObjCObjectTL.setHasBaseTypeAsWritten(false);
|
|
ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
|
|
|
|
// No type arguments.
|
|
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
|
|
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
|
|
|
|
// Fill in protocol qualifiers.
|
|
ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
|
|
ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
|
|
for (unsigned i = 0, n = protocols.size(); i != n; ++i)
|
|
ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
|
|
|
|
// We're done. Return the completed type to the parser.
|
|
return CreateParsedType(Result, ResultTInfo);
|
|
}
|
|
|
|
TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
|
|
Scope *S,
|
|
SourceLocation Loc,
|
|
ParsedType BaseType,
|
|
SourceLocation TypeArgsLAngleLoc,
|
|
ArrayRef<ParsedType> TypeArgs,
|
|
SourceLocation TypeArgsRAngleLoc,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<Decl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc) {
|
|
TypeSourceInfo *BaseTypeInfo = nullptr;
|
|
QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
// Handle missing type-source info.
|
|
if (!BaseTypeInfo)
|
|
BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
|
|
|
|
// Extract type arguments.
|
|
SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
|
|
for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
|
|
TypeSourceInfo *TypeArgInfo = nullptr;
|
|
QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
|
|
if (TypeArg.isNull()) {
|
|
ActualTypeArgInfos.clear();
|
|
break;
|
|
}
|
|
|
|
assert(TypeArgInfo && "No type source info?");
|
|
ActualTypeArgInfos.push_back(TypeArgInfo);
|
|
}
|
|
|
|
// Build the object type.
|
|
QualType Result = BuildObjCObjectType(
|
|
T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
|
|
TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
|
|
ProtocolLAngleLoc,
|
|
llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
|
|
Protocols.size()),
|
|
ProtocolLocs, ProtocolRAngleLoc,
|
|
/*FailOnError=*/false);
|
|
|
|
if (Result == T)
|
|
return BaseType;
|
|
|
|
// Create source information for this type.
|
|
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
|
|
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
|
|
|
|
// For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
|
|
// object pointer type. Fill in source information for it.
|
|
if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
|
|
// The '*' is implicit.
|
|
ObjCObjectPointerTL.setStarLoc(SourceLocation());
|
|
ResultTL = ObjCObjectPointerTL.getPointeeLoc();
|
|
}
|
|
|
|
if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
|
|
// Protocol qualifier information.
|
|
if (OTPTL.getNumProtocols() > 0) {
|
|
assert(OTPTL.getNumProtocols() == Protocols.size());
|
|
OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
|
|
OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
|
|
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
|
|
OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
|
|
}
|
|
|
|
// We're done. Return the completed type to the parser.
|
|
return CreateParsedType(Result, ResultTInfo);
|
|
}
|
|
|
|
auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
|
|
|
|
// Type argument information.
|
|
if (ObjCObjectTL.getNumTypeArgs() > 0) {
|
|
assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
|
|
ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
|
|
ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
|
|
for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
|
|
ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
|
|
} else {
|
|
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
|
|
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
|
|
}
|
|
|
|
// Protocol qualifier information.
|
|
if (ObjCObjectTL.getNumProtocols() > 0) {
|
|
assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
|
|
ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
|
|
ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
|
|
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
|
|
ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
|
|
} else {
|
|
ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
|
|
ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
|
|
}
|
|
|
|
// Base type.
|
|
ObjCObjectTL.setHasBaseTypeAsWritten(true);
|
|
if (ObjCObjectTL.getType() == T)
|
|
ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
|
|
else
|
|
ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
|
|
|
|
// We're done. Return the completed type to the parser.
|
|
return CreateParsedType(Result, ResultTInfo);
|
|
}
|
|
|
|
static OpenCLAccessAttr::Spelling getImageAccess(const AttributeList *Attrs) {
|
|
if (Attrs) {
|
|
const AttributeList *Next = Attrs;
|
|
do {
|
|
const AttributeList &Attr = *Next;
|
|
Next = Attr.getNext();
|
|
if (Attr.getKind() == AttributeList::AT_OpenCLAccess) {
|
|
return static_cast<OpenCLAccessAttr::Spelling>(
|
|
Attr.getSemanticSpelling());
|
|
}
|
|
} while (Next);
|
|
}
|
|
return OpenCLAccessAttr::Keyword_read_only;
|
|
}
|
|
|
|
/// \brief Convert the specified declspec to the appropriate type
|
|
/// object.
|
|
/// \param state Specifies the declarator containing the declaration specifier
|
|
/// to be converted, along with other associated processing state.
|
|
/// \returns The type described by the declaration specifiers. This function
|
|
/// never returns null.
|
|
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
|
|
Sema &S = state.getSema();
|
|
Declarator &declarator = state.getDeclarator();
|
|
const DeclSpec &DS = declarator.getDeclSpec();
|
|
SourceLocation DeclLoc = declarator.getIdentifierLoc();
|
|
if (DeclLoc.isInvalid())
|
|
DeclLoc = DS.getLocStart();
|
|
|
|
ASTContext &Context = S.Context;
|
|
|
|
QualType Result;
|
|
switch (DS.getTypeSpecType()) {
|
|
case DeclSpec::TST_void:
|
|
Result = Context.VoidTy;
|
|
break;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
Result = Context.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
Result = Context.UnsignedCharTy;
|
|
}
|
|
break;
|
|
case DeclSpec::TST_wchar:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.WCharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType(),
|
|
Context.getPrintingPolicy());
|
|
Result = Context.getSignedWCharType();
|
|
} else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType(),
|
|
Context.getPrintingPolicy());
|
|
Result = Context.getUnsignedWCharType();
|
|
}
|
|
break;
|
|
case DeclSpec::TST_char16:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char16Ty;
|
|
break;
|
|
case DeclSpec::TST_char32:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char32Ty;
|
|
break;
|
|
case DeclSpec::TST_unspecified:
|
|
// If this is a missing declspec in a block literal return context, then it
|
|
// is inferred from the return statements inside the block.
|
|
// The declspec is always missing in a lambda expr context; it is either
|
|
// specified with a trailing return type or inferred.
|
|
if (S.getLangOpts().CPlusPlus14 &&
|
|
declarator.getContext() == Declarator::LambdaExprContext) {
|
|
// In C++1y, a lambda's implicit return type is 'auto'.
|
|
Result = Context.getAutoDeductType();
|
|
break;
|
|
} else if (declarator.getContext() == Declarator::LambdaExprContext ||
|
|
checkOmittedBlockReturnType(S, declarator,
|
|
Context.DependentTy)) {
|
|
Result = Context.DependentTy;
|
|
break;
|
|
}
|
|
|
|
// Unspecified typespec defaults to int in C90. However, the C90 grammar
|
|
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
|
|
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
|
|
// Note that the one exception to this is function definitions, which are
|
|
// allowed to be completely missing a declspec. This is handled in the
|
|
// parser already though by it pretending to have seen an 'int' in this
|
|
// case.
|
|
if (S.getLangOpts().ImplicitInt) {
|
|
// In C89 mode, we only warn if there is a completely missing declspec
|
|
// when one is not allowed.
|
|
if (DS.isEmpty()) {
|
|
S.Diag(DeclLoc, diag::ext_missing_declspec)
|
|
<< DS.getSourceRange()
|
|
<< FixItHint::CreateInsertion(DS.getLocStart(), "int");
|
|
}
|
|
} else if (!DS.hasTypeSpecifier()) {
|
|
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
|
|
// "At least one type specifier shall be given in the declaration
|
|
// specifiers in each declaration, and in the specifier-qualifier list in
|
|
// each struct declaration and type name."
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
S.Diag(DeclLoc, diag::err_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
|
|
// When this occurs in C++ code, often something is very broken with the
|
|
// value being declared, poison it as invalid so we don't get chains of
|
|
// errors.
|
|
declarator.setInvalidType(true);
|
|
} else if (S.getLangOpts().OpenCLVersion >= 200 && DS.isTypeSpecPipe()){
|
|
S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
|
|
<< DS.getSourceRange();
|
|
declarator.setInvalidType(true);
|
|
} else {
|
|
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
}
|
|
}
|
|
|
|
// FALL THROUGH.
|
|
case DeclSpec::TST_int: {
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.LongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.LongLongTy;
|
|
|
|
// 'long long' is a C99 or C++11 feature.
|
|
if (!S.getLangOpts().C99) {
|
|
if (S.getLangOpts().CPlusPlus)
|
|
S.Diag(DS.getTypeSpecWidthLoc(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
|
|
else
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.UnsignedLongLongTy;
|
|
|
|
// 'long long' is a C99 or C++11 feature.
|
|
if (!S.getLangOpts().C99) {
|
|
if (S.getLangOpts().CPlusPlus)
|
|
S.Diag(DS.getTypeSpecWidthLoc(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
|
|
else
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_int128:
|
|
if (!S.Context.getTargetInfo().hasInt128Type())
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
|
|
<< "__int128";
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
|
|
Result = Context.UnsignedInt128Ty;
|
|
else
|
|
Result = Context.Int128Ty;
|
|
break;
|
|
case DeclSpec::TST_half: Result = Context.HalfTy; break;
|
|
case DeclSpec::TST_float: Result = Context.FloatTy; break;
|
|
case DeclSpec::TST_double:
|
|
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
|
|
Result = Context.LongDoubleTy;
|
|
else
|
|
Result = Context.DoubleTy;
|
|
break;
|
|
case DeclSpec::TST_float128:
|
|
if (!S.Context.getTargetInfo().hasFloat128Type())
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
|
|
<< "__float128";
|
|
Result = Context.Float128Ty;
|
|
break;
|
|
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
|
|
break;
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
case DeclSpec::TST_class:
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct:
|
|
case DeclSpec::TST_interface: {
|
|
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
|
|
if (!D) {
|
|
// This can happen in C++ with ambiguous lookups.
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// If the type is deprecated or unavailable, diagnose it.
|
|
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
|
|
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
|
|
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeDeclType(D);
|
|
|
|
// In both C and C++, make an ElaboratedType.
|
|
ElaboratedTypeKeyword Keyword
|
|
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typename: {
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
if (Result.isNull()) {
|
|
declarator.setInvalidType(true);
|
|
}
|
|
|
|
// TypeQuals handled by caller.
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typeofType:
|
|
// FIXME: Preserve type source info.
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for typeof?");
|
|
if (!Result->isDependentType())
|
|
if (const TagType *TT = Result->getAs<TagType>())
|
|
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfType(Result);
|
|
break;
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_decltype: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for decltype?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_underlyingType:
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
|
|
Result = S.BuildUnaryTransformType(Result,
|
|
UnaryTransformType::EnumUnderlyingType,
|
|
DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
|
|
case DeclSpec::TST_auto:
|
|
// TypeQuals handled by caller.
|
|
// If auto is mentioned in a lambda parameter context, convert it to a
|
|
// template parameter type immediately, with the appropriate depth and
|
|
// index, and update sema's state (LambdaScopeInfo) for the current lambda
|
|
// being analyzed (which tracks the invented type template parameter).
|
|
if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
|
|
sema::LambdaScopeInfo *LSI = S.getCurLambda();
|
|
assert(LSI && "No LambdaScopeInfo on the stack!");
|
|
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
|
|
const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
|
|
const bool IsParameterPack = declarator.hasEllipsis();
|
|
|
|
// Turns out we must create the TemplateTypeParmDecl here to
|
|
// retrieve the corresponding template parameter type.
|
|
TemplateTypeParmDecl *CorrespondingTemplateParam =
|
|
TemplateTypeParmDecl::Create(Context,
|
|
// Temporarily add to the TranslationUnit DeclContext. When the
|
|
// associated TemplateParameterList is attached to a template
|
|
// declaration (such as FunctionTemplateDecl), the DeclContext
|
|
// for each template parameter gets updated appropriately via
|
|
// a call to AdoptTemplateParameterList.
|
|
Context.getTranslationUnitDecl(),
|
|
/*KeyLoc*/ SourceLocation(),
|
|
/*NameLoc*/ declarator.getLocStart(),
|
|
TemplateParameterDepth,
|
|
AutoParameterPosition, // our template param index
|
|
/* Identifier*/ nullptr, false, IsParameterPack);
|
|
LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
|
|
// Replace the 'auto' in the function parameter with this invented
|
|
// template type parameter.
|
|
Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
|
|
} else {
|
|
Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
|
|
}
|
|
break;
|
|
|
|
case DeclSpec::TST_auto_type:
|
|
Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
|
|
break;
|
|
|
|
case DeclSpec::TST_decltype_auto:
|
|
Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
|
|
/*IsDependent*/ false);
|
|
break;
|
|
|
|
case DeclSpec::TST_unknown_anytype:
|
|
Result = Context.UnknownAnyTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_atomic:
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
|
|
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
|
|
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
|
|
case DeclSpec::TST_##ImgType##_t: \
|
|
switch (getImageAccess(DS.getAttributes().getList())) { \
|
|
case OpenCLAccessAttr::Keyword_write_only: \
|
|
Result = Context.Id##WOTy; break; \
|
|
case OpenCLAccessAttr::Keyword_read_write: \
|
|
Result = Context.Id##RWTy; break; \
|
|
case OpenCLAccessAttr::Keyword_read_only: \
|
|
Result = Context.Id##ROTy; break; \
|
|
} \
|
|
break;
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
|
|
case DeclSpec::TST_error:
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
if (S.getLangOpts().OpenCL &&
|
|
S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
|
|
declarator.setInvalidType(true);
|
|
|
|
// Handle complex types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
|
|
if (S.getLangOpts().Freestanding)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
|
|
Result = Context.getComplexType(Result);
|
|
} else if (DS.isTypeAltiVecVector()) {
|
|
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
|
|
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
|
|
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
|
|
if (DS.isTypeAltiVecPixel())
|
|
VecKind = VectorType::AltiVecPixel;
|
|
else if (DS.isTypeAltiVecBool())
|
|
VecKind = VectorType::AltiVecBool;
|
|
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
|
|
}
|
|
|
|
// FIXME: Imaginary.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
|
|
|
|
// Before we process any type attributes, synthesize a block literal
|
|
// function declarator if necessary.
|
|
if (declarator.getContext() == Declarator::BlockLiteralContext)
|
|
maybeSynthesizeBlockSignature(state, Result);
|
|
|
|
// Apply any type attributes from the decl spec. This may cause the
|
|
// list of type attributes to be temporarily saved while the type
|
|
// attributes are pushed around.
|
|
// pipe attributes will be handled later ( at GetFullTypeForDeclarator )
|
|
if (!DS.isTypeSpecPipe())
|
|
processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes().getList());
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
|
|
// Warn about CV qualifiers on function types.
|
|
// C99 6.7.3p8:
|
|
// If the specification of a function type includes any type qualifiers,
|
|
// the behavior is undefined.
|
|
// C++11 [dcl.fct]p7:
|
|
// The effect of a cv-qualifier-seq in a function declarator is not the
|
|
// same as adding cv-qualification on top of the function type. In the
|
|
// latter case, the cv-qualifiers are ignored.
|
|
if (TypeQuals && Result->isFunctionType()) {
|
|
diagnoseAndRemoveTypeQualifiers(
|
|
S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
|
|
S.getLangOpts().CPlusPlus
|
|
? diag::warn_typecheck_function_qualifiers_ignored
|
|
: diag::warn_typecheck_function_qualifiers_unspecified);
|
|
// No diagnostic for 'restrict' or '_Atomic' applied to a
|
|
// function type; we'll diagnose those later, in BuildQualifiedType.
|
|
}
|
|
|
|
// C++11 [dcl.ref]p1:
|
|
// Cv-qualified references are ill-formed except when the
|
|
// cv-qualifiers are introduced through the use of a typedef-name
|
|
// or decltype-specifier, in which case the cv-qualifiers are ignored.
|
|
//
|
|
// There don't appear to be any other contexts in which a cv-qualified
|
|
// reference type could be formed, so the 'ill-formed' clause here appears
|
|
// to never happen.
|
|
if (TypeQuals && Result->isReferenceType()) {
|
|
diagnoseAndRemoveTypeQualifiers(
|
|
S, DS, TypeQuals, Result,
|
|
DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
|
|
diag::warn_typecheck_reference_qualifiers);
|
|
}
|
|
|
|
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
|
|
// than once in the same specifier-list or qualifier-list, either directly
|
|
// or via one or more typedefs."
|
|
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
|
|
&& TypeQuals & Result.getCVRQualifiers()) {
|
|
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
|
|
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
|
|
<< "const";
|
|
}
|
|
|
|
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
|
|
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
|
|
<< "volatile";
|
|
}
|
|
|
|
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
|
|
// produce a warning in this case.
|
|
}
|
|
|
|
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
|
|
|
|
// If adding qualifiers fails, just use the unqualified type.
|
|
if (Qualified.isNull())
|
|
declarator.setInvalidType(true);
|
|
else
|
|
Result = Qualified;
|
|
}
|
|
|
|
assert(!Result.isNull() && "This function should not return a null type");
|
|
return Result;
|
|
}
|
|
|
|
static std::string getPrintableNameForEntity(DeclarationName Entity) {
|
|
if (Entity)
|
|
return Entity.getAsString();
|
|
|
|
return "type name";
|
|
}
|
|
|
|
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
|
|
Qualifiers Qs, const DeclSpec *DS) {
|
|
if (T.isNull())
|
|
return QualType();
|
|
|
|
// Ignore any attempt to form a cv-qualified reference.
|
|
if (T->isReferenceType()) {
|
|
Qs.removeConst();
|
|
Qs.removeVolatile();
|
|
}
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Qs.hasRestrict()) {
|
|
unsigned DiagID = 0;
|
|
QualType ProblemTy;
|
|
|
|
if (T->isAnyPointerType() || T->isReferenceType() ||
|
|
T->isMemberPointerType()) {
|
|
QualType EltTy;
|
|
if (T->isObjCObjectPointerType())
|
|
EltTy = T;
|
|
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
|
|
EltTy = PTy->getPointeeType();
|
|
else
|
|
EltTy = T->getPointeeType();
|
|
|
|
// If we have a pointer or reference, the pointee must have an object
|
|
// incomplete type.
|
|
if (!EltTy->isIncompleteOrObjectType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = EltTy;
|
|
}
|
|
} else if (!T->isDependentType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
|
|
ProblemTy = T;
|
|
}
|
|
|
|
if (DiagID) {
|
|
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
|
|
Qs.removeRestrict();
|
|
}
|
|
}
|
|
|
|
return Context.getQualifiedType(T, Qs);
|
|
}
|
|
|
|
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
|
|
unsigned CVRAU, const DeclSpec *DS) {
|
|
if (T.isNull())
|
|
return QualType();
|
|
|
|
// Ignore any attempt to form a cv-qualified reference.
|
|
if (T->isReferenceType())
|
|
CVRAU &=
|
|
~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
|
|
|
|
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
|
|
// TQ_unaligned;
|
|
unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
|
|
|
|
// C11 6.7.3/5:
|
|
// If the same qualifier appears more than once in the same
|
|
// specifier-qualifier-list, either directly or via one or more typedefs,
|
|
// the behavior is the same as if it appeared only once.
|
|
//
|
|
// It's not specified what happens when the _Atomic qualifier is applied to
|
|
// a type specified with the _Atomic specifier, but we assume that this
|
|
// should be treated as if the _Atomic qualifier appeared multiple times.
|
|
if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
|
|
// C11 6.7.3/5:
|
|
// If other qualifiers appear along with the _Atomic qualifier in a
|
|
// specifier-qualifier-list, the resulting type is the so-qualified
|
|
// atomic type.
|
|
//
|
|
// Don't need to worry about array types here, since _Atomic can't be
|
|
// applied to such types.
|
|
SplitQualType Split = T.getSplitUnqualifiedType();
|
|
T = BuildAtomicType(QualType(Split.Ty, 0),
|
|
DS ? DS->getAtomicSpecLoc() : Loc);
|
|
if (T.isNull())
|
|
return T;
|
|
Split.Quals.addCVRQualifiers(CVR);
|
|
return BuildQualifiedType(T, Loc, Split.Quals);
|
|
}
|
|
|
|
Qualifiers Q = Qualifiers::fromCVRMask(CVR);
|
|
Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
|
|
return BuildQualifiedType(T, Loc, Q, DS);
|
|
}
|
|
|
|
/// \brief Build a paren type including \p T.
|
|
QualType Sema::BuildParenType(QualType T) {
|
|
return Context.getParenType(T);
|
|
}
|
|
|
|
/// Given that we're building a pointer or reference to the given
|
|
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
|
|
SourceLocation loc,
|
|
bool isReference) {
|
|
// Bail out if retention is unrequired or already specified.
|
|
if (!type->isObjCLifetimeType() ||
|
|
type.getObjCLifetime() != Qualifiers::OCL_None)
|
|
return type;
|
|
|
|
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
|
|
|
|
// If the object type is const-qualified, we can safely use
|
|
// __unsafe_unretained. This is safe (because there are no read
|
|
// barriers), and it'll be safe to coerce anything but __weak* to
|
|
// the resulting type.
|
|
if (type.isConstQualified()) {
|
|
implicitLifetime = Qualifiers::OCL_ExplicitNone;
|
|
|
|
// Otherwise, check whether the static type does not require
|
|
// retaining. This currently only triggers for Class (possibly
|
|
// protocol-qualifed, and arrays thereof).
|
|
} else if (type->isObjCARCImplicitlyUnretainedType()) {
|
|
implicitLifetime = Qualifiers::OCL_ExplicitNone;
|
|
|
|
// If we are in an unevaluated context, like sizeof, skip adding a
|
|
// qualification.
|
|
} else if (S.isUnevaluatedContext()) {
|
|
return type;
|
|
|
|
// If that failed, give an error and recover using __strong. __strong
|
|
// is the option most likely to prevent spurious second-order diagnostics,
|
|
// like when binding a reference to a field.
|
|
} else {
|
|
// These types can show up in private ivars in system headers, so
|
|
// we need this to not be an error in those cases. Instead we
|
|
// want to delay.
|
|
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
|
|
S.DelayedDiagnostics.add(
|
|
sema::DelayedDiagnostic::makeForbiddenType(loc,
|
|
diag::err_arc_indirect_no_ownership, type, isReference));
|
|
} else {
|
|
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
|
|
}
|
|
implicitLifetime = Qualifiers::OCL_Strong;
|
|
}
|
|
assert(implicitLifetime && "didn't infer any lifetime!");
|
|
|
|
Qualifiers qs;
|
|
qs.addObjCLifetime(implicitLifetime);
|
|
return S.Context.getQualifiedType(type, qs);
|
|
}
|
|
|
|
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
|
|
std::string Quals =
|
|
Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
|
|
|
|
switch (FnTy->getRefQualifier()) {
|
|
case RQ_None:
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += '&';
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += "&&";
|
|
break;
|
|
}
|
|
|
|
return Quals;
|
|
}
|
|
|
|
namespace {
|
|
/// Kinds of declarator that cannot contain a qualified function type.
|
|
///
|
|
/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
|
|
/// a function type with a cv-qualifier or a ref-qualifier can only appear
|
|
/// at the topmost level of a type.
|
|
///
|
|
/// Parens and member pointers are permitted. We don't diagnose array and
|
|
/// function declarators, because they don't allow function types at all.
|
|
///
|
|
/// The values of this enum are used in diagnostics.
|
|
enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
|
|
} // end anonymous namespace
|
|
|
|
/// Check whether the type T is a qualified function type, and if it is,
|
|
/// diagnose that it cannot be contained within the given kind of declarator.
|
|
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
|
|
QualifiedFunctionKind QFK) {
|
|
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
|
|
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
|
|
if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
|
|
return false;
|
|
|
|
S.Diag(Loc, diag::err_compound_qualified_function_type)
|
|
<< QFK << isa<FunctionType>(T.IgnoreParens()) << T
|
|
<< getFunctionQualifiersAsString(FPT);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Build a pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a pointer.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// pointer type or, if there is no such entity, the location of the
|
|
/// type that will have pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildPointerType(QualType T,
|
|
SourceLocation Loc, DeclarationName Entity) {
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
|
|
return QualType();
|
|
|
|
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
|
|
|
|
// In ARC, it is forbidden to build pointers to unqualified pointers.
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
|
|
|
|
// Build the pointer type.
|
|
return Context.getPointerType(T);
|
|
}
|
|
|
|
/// \brief Build a reference type.
|
|
///
|
|
/// \param T The type to which we'll be building a reference.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// reference type or, if there is no such entity, the location of the
|
|
/// type that will have reference type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the reference
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable reference type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
|
|
"Unresolved overloaded function type");
|
|
|
|
// C++0x [dcl.ref]p6:
|
|
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
|
|
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
|
|
// type T, an attempt to create the type "lvalue reference to cv TR" creates
|
|
// the type "lvalue reference to T", while an attempt to create the type
|
|
// "rvalue reference to cv TR" creates the type TR.
|
|
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
|
|
|
|
// C++ [dcl.ref]p4: There shall be no references to references.
|
|
//
|
|
// According to C++ DR 106, references to references are only
|
|
// diagnosed when they are written directly (e.g., "int & &"),
|
|
// but not when they happen via a typedef:
|
|
//
|
|
// typedef int& intref;
|
|
// typedef intref& intref2;
|
|
//
|
|
// Parser::ParseDeclaratorInternal diagnoses the case where
|
|
// references are written directly; here, we handle the
|
|
// collapsing of references-to-references as described in C++0x.
|
|
// DR 106 and 540 introduce reference-collapsing into C++98/03.
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// A declarator that specifies the type "reference to cv void"
|
|
// is ill-formed.
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_reference_to_void);
|
|
return QualType();
|
|
}
|
|
|
|
if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
|
|
return QualType();
|
|
|
|
// In ARC, it is forbidden to build references to unqualified pointers.
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
|
|
|
|
// Handle restrict on references.
|
|
if (LValueRef)
|
|
return Context.getLValueReferenceType(T, SpelledAsLValue);
|
|
return Context.getRValueReferenceType(T);
|
|
}
|
|
|
|
/// \brief Build a Read-only Pipe type.
|
|
///
|
|
/// \param T The type to which we'll be building a Pipe.
|
|
///
|
|
/// \param Loc We do not use it for now.
|
|
///
|
|
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
|
|
/// NULL type.
|
|
QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
|
|
return Context.getReadPipeType(T);
|
|
}
|
|
|
|
/// \brief Build a Write-only Pipe type.
|
|
///
|
|
/// \param T The type to which we'll be building a Pipe.
|
|
///
|
|
/// \param Loc We do not use it for now.
|
|
///
|
|
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
|
|
/// NULL type.
|
|
QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
|
|
return Context.getWritePipeType(T);
|
|
}
|
|
|
|
/// Check whether the specified array size makes the array type a VLA. If so,
|
|
/// return true, if not, return the size of the array in SizeVal.
|
|
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
|
|
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
|
|
// (like gnu99, but not c99) accept any evaluatable value as an extension.
|
|
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
|
|
public:
|
|
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
|
|
|
|
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
|
|
}
|
|
|
|
void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
|
|
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
|
|
}
|
|
} Diagnoser;
|
|
|
|
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
|
|
S.LangOpts.GNUMode ||
|
|
S.LangOpts.OpenCL).isInvalid();
|
|
}
|
|
|
|
/// \brief Build an array type.
|
|
///
|
|
/// \param T The type of each element in the array.
|
|
///
|
|
/// \param ASM C99 array size modifier (e.g., '*', 'static').
|
|
///
|
|
/// \param ArraySize Expression describing the size of the array.
|
|
///
|
|
/// \param Brackets The range from the opening '[' to the closing ']'.
|
|
///
|
|
/// \param Entity The name of the entity that involves the array
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable array type, if there are no errors. Otherwise,
|
|
/// returns a NULL type.
|
|
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
|
|
Expr *ArraySize, unsigned Quals,
|
|
SourceRange Brackets, DeclarationName Entity) {
|
|
|
|
SourceLocation Loc = Brackets.getBegin();
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [dcl.array]p1:
|
|
// T is called the array element type; this type shall not be a reference
|
|
// type, the (possibly cv-qualified) type void, a function type or an
|
|
// abstract class type.
|
|
//
|
|
// C++ [dcl.array]p3:
|
|
// When several "array of" specifications are adjacent, [...] only the
|
|
// first of the constant expressions that specify the bounds of the arrays
|
|
// may be omitted.
|
|
//
|
|
// Note: function types are handled in the common path with C.
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_references)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType() || T->isIncompleteArrayType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (RequireNonAbstractType(Brackets.getBegin(), T,
|
|
diag::err_array_of_abstract_type))
|
|
return QualType();
|
|
|
|
// Mentioning a member pointer type for an array type causes us to lock in
|
|
// an inheritance model, even if it's inside an unused typedef.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
|
|
if (!MPTy->getClass()->isDependentType())
|
|
(void)isCompleteType(Loc, T);
|
|
|
|
} else {
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
if (RequireCompleteType(Loc, T,
|
|
diag::err_illegal_decl_array_incomplete_type))
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isFunctionType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_functions)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (const RecordType *EltTy = T->getAs<RecordType>()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, accept it as a GNU extension: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember())
|
|
Diag(Loc, diag::ext_flexible_array_in_array) << T;
|
|
} else if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
|
|
return QualType();
|
|
}
|
|
|
|
// Do placeholder conversions on the array size expression.
|
|
if (ArraySize && ArraySize->hasPlaceholderType()) {
|
|
ExprResult Result = CheckPlaceholderExpr(ArraySize);
|
|
if (Result.isInvalid()) return QualType();
|
|
ArraySize = Result.get();
|
|
}
|
|
|
|
// Do lvalue-to-rvalue conversions on the array size expression.
|
|
if (ArraySize && !ArraySize->isRValue()) {
|
|
ExprResult Result = DefaultLvalueConversion(ArraySize);
|
|
if (Result.isInvalid())
|
|
return QualType();
|
|
|
|
ArraySize = Result.get();
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
// C++11 allows contextual conversions to such types.
|
|
if (!getLangOpts().CPlusPlus11 &&
|
|
ArraySize && !ArraySize->isTypeDependent() &&
|
|
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
|
|
if (!ArraySize) {
|
|
if (ASM == ArrayType::Star)
|
|
T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
|
|
else
|
|
T = Context.getIncompleteArrayType(T, ASM, Quals);
|
|
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
|
|
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
|
|
!T->isConstantSizeType()) ||
|
|
isArraySizeVLA(*this, ArraySize, ConstVal)) {
|
|
// Even in C++11, don't allow contextual conversions in the array bound
|
|
// of a VLA.
|
|
if (getLangOpts().CPlusPlus11 &&
|
|
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// C99: an array with an element type that has a non-constant-size is a VLA.
|
|
// C99: an array with a non-ICE size is a VLA. We accept any expression
|
|
// that we can fold to a non-zero positive value as an extension.
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned() && ConstVal.isNegative()) {
|
|
if (Entity)
|
|
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
|
|
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
|
|
else
|
|
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays. We allow them when
|
|
// we're not in a SFINAE context.
|
|
Diag(ArraySize->getLocStart(),
|
|
isSFINAEContext()? diag::err_typecheck_zero_array_size
|
|
: diag::ext_typecheck_zero_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
|
|
if (ASM == ArrayType::Static) {
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::warn_typecheck_zero_static_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
ASM = ArrayType::Normal;
|
|
}
|
|
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
|
|
!T->isIncompleteType() && !T->isUndeducedType()) {
|
|
// Is the array too large?
|
|
unsigned ActiveSizeBits
|
|
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
|
|
<< ConstVal.toString(10)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
|
|
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
|
|
Diag(Loc, diag::err_opencl_vla);
|
|
return QualType();
|
|
}
|
|
// CUDA device code doesn't support VLAs.
|
|
if (getLangOpts().CUDA && T->isVariableArrayType())
|
|
CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget();
|
|
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOpts().C99) {
|
|
if (T->isVariableArrayType()) {
|
|
// Prohibit the use of VLAs during template argument deduction.
|
|
if (isSFINAEContext()) {
|
|
Diag(Loc, diag::err_vla_in_sfinae);
|
|
return QualType();
|
|
}
|
|
// Just extwarn about VLAs.
|
|
else
|
|
Diag(Loc, diag::ext_vla);
|
|
} else if (ASM != ArrayType::Normal || Quals != 0)
|
|
Diag(Loc,
|
|
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
|
|
: diag::ext_c99_array_usage) << ASM;
|
|
}
|
|
|
|
if (T->isVariableArrayType()) {
|
|
// Warn about VLAs for -Wvla.
|
|
Diag(Loc, diag::warn_vla_used);
|
|
}
|
|
|
|
// OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
|
|
// OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
|
|
// OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
|
|
if (getLangOpts().OpenCL) {
|
|
const QualType ArrType = Context.getBaseElementType(T);
|
|
if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
|
|
ArrType->isSamplerT() || ArrType->isImageType()) {
|
|
Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// \brief Build an ext-vector type.
|
|
///
|
|
/// Run the required checks for the extended vector type.
|
|
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
|
|
SourceLocation AttrLoc) {
|
|
// Unlike gcc's vector_size attribute, we do not allow vectors to be defined
|
|
// in conjunction with complex types (pointers, arrays, functions, etc.).
|
|
//
|
|
// Additionally, OpenCL prohibits vectors of booleans (they're considered a
|
|
// reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
|
|
// on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
|
|
// of bool aren't allowed.
|
|
if ((!T->isDependentType() && !T->isIntegerType() &&
|
|
!T->isRealFloatingType()) ||
|
|
T->isBooleanType()) {
|
|
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
|
|
llvm::APSInt vecSize(32);
|
|
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(AttrLoc, diag::err_attribute_argument_type)
|
|
<< "ext_vector_type" << AANT_ArgumentIntegerConstant
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Unlike gcc's vector_size attribute, the size is specified as the
|
|
// number of elements, not the number of bytes.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
|
|
|
|
if (vectorSize == 0) {
|
|
Diag(AttrLoc, diag::err_attribute_zero_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (VectorType::isVectorSizeTooLarge(vectorSize)) {
|
|
Diag(AttrLoc, diag::err_attribute_size_too_large)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getExtVectorType(T, vectorSize);
|
|
}
|
|
|
|
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
|
|
}
|
|
|
|
bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(Loc, diag::err_func_returning_array_function)
|
|
<< T->isFunctionType() << T;
|
|
return true;
|
|
}
|
|
|
|
// Functions cannot return half FP.
|
|
if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
|
|
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
|
|
FixItHint::CreateInsertion(Loc, "*");
|
|
return true;
|
|
}
|
|
|
|
// Methods cannot return interface types. All ObjC objects are
|
|
// passed by reference.
|
|
if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
|
|
return 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check the extended parameter information. Most of the necessary
|
|
/// checking should occur when applying the parameter attribute; the
|
|
/// only other checks required are positional restrictions.
|
|
static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
|
|
const FunctionProtoType::ExtProtoInfo &EPI,
|
|
llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
|
|
assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
|
|
|
|
bool hasCheckedSwiftCall = false;
|
|
auto checkForSwiftCC = [&](unsigned paramIndex) {
|
|
// Only do this once.
|
|
if (hasCheckedSwiftCall) return;
|
|
hasCheckedSwiftCall = true;
|
|
if (EPI.ExtInfo.getCC() == CC_Swift) return;
|
|
S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
|
|
<< getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
|
|
};
|
|
|
|
for (size_t paramIndex = 0, numParams = paramTypes.size();
|
|
paramIndex != numParams; ++paramIndex) {
|
|
switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
|
|
// Nothing interesting to check for orindary-ABI parameters.
|
|
case ParameterABI::Ordinary:
|
|
continue;
|
|
|
|
// swift_indirect_result parameters must be a prefix of the function
|
|
// arguments.
|
|
case ParameterABI::SwiftIndirectResult:
|
|
checkForSwiftCC(paramIndex);
|
|
if (paramIndex != 0 &&
|
|
EPI.ExtParameterInfos[paramIndex - 1].getABI()
|
|
!= ParameterABI::SwiftIndirectResult) {
|
|
S.Diag(getParamLoc(paramIndex),
|
|
diag::err_swift_indirect_result_not_first);
|
|
}
|
|
continue;
|
|
|
|
case ParameterABI::SwiftContext:
|
|
checkForSwiftCC(paramIndex);
|
|
continue;
|
|
|
|
// swift_error parameters must be preceded by a swift_context parameter.
|
|
case ParameterABI::SwiftErrorResult:
|
|
checkForSwiftCC(paramIndex);
|
|
if (paramIndex == 0 ||
|
|
EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
|
|
ParameterABI::SwiftContext) {
|
|
S.Diag(getParamLoc(paramIndex),
|
|
diag::err_swift_error_result_not_after_swift_context);
|
|
}
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad ABI kind");
|
|
}
|
|
}
|
|
|
|
QualType Sema::BuildFunctionType(QualType T,
|
|
MutableArrayRef<QualType> ParamTypes,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
const FunctionProtoType::ExtProtoInfo &EPI) {
|
|
bool Invalid = false;
|
|
|
|
Invalid |= CheckFunctionReturnType(T, Loc);
|
|
|
|
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
|
|
// FIXME: Loc is too inprecise here, should use proper locations for args.
|
|
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
|
|
if (ParamType->isVoidType()) {
|
|
Diag(Loc, diag::err_param_with_void_type);
|
|
Invalid = true;
|
|
} else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
|
|
// Disallow half FP arguments.
|
|
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
|
|
FixItHint::CreateInsertion(Loc, "*");
|
|
Invalid = true;
|
|
}
|
|
|
|
ParamTypes[Idx] = ParamType;
|
|
}
|
|
|
|
if (EPI.ExtParameterInfos) {
|
|
checkExtParameterInfos(*this, ParamTypes, EPI,
|
|
[=](unsigned i) { return Loc; });
|
|
}
|
|
|
|
if (Invalid)
|
|
return QualType();
|
|
|
|
return Context.getFunctionType(T, ParamTypes, EPI);
|
|
}
|
|
|
|
/// \brief Build a member pointer type \c T Class::*.
|
|
///
|
|
/// \param T the type to which the member pointer refers.
|
|
/// \param Class the class type into which the member pointer points.
|
|
/// \param Loc the location where this type begins
|
|
/// \param Entity the name of the entity that will have this member pointer type
|
|
///
|
|
/// \returns a member pointer type, if successful, or a NULL type if there was
|
|
/// an error.
|
|
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (CheckDistantExceptionSpec(T)) {
|
|
Diag(Loc, diag::err_distant_exception_spec);
|
|
return QualType();
|
|
}
|
|
|
|
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
|
|
// with reference type, or "cv void."
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
|
|
<< getPrintableNameForEntity(Entity);
|
|
return QualType();
|
|
}
|
|
|
|
if (!Class->isDependentType() && !Class->isRecordType()) {
|
|
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
|
|
return QualType();
|
|
}
|
|
|
|
// Adjust the default free function calling convention to the default method
|
|
// calling convention.
|
|
bool IsCtorOrDtor =
|
|
(Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
|
|
(Entity.getNameKind() == DeclarationName::CXXDestructorName);
|
|
if (T->isFunctionType())
|
|
adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
|
|
|
|
return Context.getMemberPointerType(T, Class.getTypePtr());
|
|
}
|
|
|
|
/// \brief Build a block pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a block pointer.
|
|
///
|
|
/// \param Loc The source location, used for diagnostics.
|
|
///
|
|
/// \param Entity The name of the entity that involves the block pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable block pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildBlockPointerType(QualType T,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
if (!T->isFunctionType()) {
|
|
Diag(Loc, diag::err_nonfunction_block_type);
|
|
return QualType();
|
|
}
|
|
|
|
if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
|
|
return QualType();
|
|
|
|
return Context.getBlockPointerType(T);
|
|
}
|
|
|
|
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
|
|
QualType QT = Ty.get();
|
|
if (QT.isNull()) {
|
|
if (TInfo) *TInfo = nullptr;
|
|
return QualType();
|
|
}
|
|
|
|
TypeSourceInfo *DI = nullptr;
|
|
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
|
|
QT = LIT->getType();
|
|
DI = LIT->getTypeSourceInfo();
|
|
}
|
|
|
|
if (TInfo) *TInfo = DI;
|
|
return QT;
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
|
|
Qualifiers::ObjCLifetime ownership,
|
|
unsigned chunkIndex);
|
|
|
|
/// Given that this is the declaration of a parameter under ARC,
|
|
/// attempt to infer attributes and such for pointer-to-whatever
|
|
/// types.
|
|
static void inferARCWriteback(TypeProcessingState &state,
|
|
QualType &declSpecType) {
|
|
Sema &S = state.getSema();
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// TODO: should we care about decl qualifiers?
|
|
|
|
// Check whether the declarator has the expected form. We walk
|
|
// from the inside out in order to make the block logic work.
|
|
unsigned outermostPointerIndex = 0;
|
|
bool isBlockPointer = false;
|
|
unsigned numPointers = 0;
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = i;
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
// Ignore parens.
|
|
break;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pointer:
|
|
// Count the number of pointers. Treat references
|
|
// interchangeably as pointers; if they're mis-ordered, normal
|
|
// type building will discover that.
|
|
outermostPointerIndex = chunkIndex;
|
|
numPointers++;
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If we have a pointer to block pointer, that's an acceptable
|
|
// indirect reference; anything else is not an application of
|
|
// the rules.
|
|
if (numPointers != 1) return;
|
|
numPointers++;
|
|
outermostPointerIndex = chunkIndex;
|
|
isBlockPointer = true;
|
|
|
|
// We don't care about pointer structure in return values here.
|
|
goto done;
|
|
|
|
case DeclaratorChunk::Array: // suppress if written (id[])?
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
return;
|
|
}
|
|
}
|
|
done:
|
|
|
|
// If we have *one* pointer, then we want to throw the qualifier on
|
|
// the declaration-specifiers, which means that it needs to be a
|
|
// retainable object type.
|
|
if (numPointers == 1) {
|
|
// If it's not a retainable object type, the rule doesn't apply.
|
|
if (!declSpecType->isObjCRetainableType()) return;
|
|
|
|
// If it already has lifetime, don't do anything.
|
|
if (declSpecType.getObjCLifetime()) return;
|
|
|
|
// Otherwise, modify the type in-place.
|
|
Qualifiers qs;
|
|
|
|
if (declSpecType->isObjCARCImplicitlyUnretainedType())
|
|
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
|
|
else
|
|
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
|
|
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
|
|
|
|
// If we have *two* pointers, then we want to throw the qualifier on
|
|
// the outermost pointer.
|
|
} else if (numPointers == 2) {
|
|
// If we don't have a block pointer, we need to check whether the
|
|
// declaration-specifiers gave us something that will turn into a
|
|
// retainable object pointer after we slap the first pointer on it.
|
|
if (!isBlockPointer && !declSpecType->isObjCObjectType())
|
|
return;
|
|
|
|
// Look for an explicit lifetime attribute there.
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
|
|
if (chunk.Kind != DeclaratorChunk::Pointer &&
|
|
chunk.Kind != DeclaratorChunk::BlockPointer)
|
|
return;
|
|
for (const AttributeList *attr = chunk.getAttrs(); attr;
|
|
attr = attr->getNext())
|
|
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
|
|
return;
|
|
|
|
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
|
|
outermostPointerIndex);
|
|
|
|
// Any other number of pointers/references does not trigger the rule.
|
|
} else return;
|
|
|
|
// TODO: mark whether we did this inference?
|
|
}
|
|
|
|
void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
|
|
SourceLocation FallbackLoc,
|
|
SourceLocation ConstQualLoc,
|
|
SourceLocation VolatileQualLoc,
|
|
SourceLocation RestrictQualLoc,
|
|
SourceLocation AtomicQualLoc,
|
|
SourceLocation UnalignedQualLoc) {
|
|
if (!Quals)
|
|
return;
|
|
|
|
struct Qual {
|
|
const char *Name;
|
|
unsigned Mask;
|
|
SourceLocation Loc;
|
|
} const QualKinds[5] = {
|
|
{ "const", DeclSpec::TQ_const, ConstQualLoc },
|
|
{ "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
|
|
{ "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
|
|
{ "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
|
|
{ "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
|
|
};
|
|
|
|
SmallString<32> QualStr;
|
|
unsigned NumQuals = 0;
|
|
SourceLocation Loc;
|
|
FixItHint FixIts[5];
|
|
|
|
// Build a string naming the redundant qualifiers.
|
|
for (auto &E : QualKinds) {
|
|
if (Quals & E.Mask) {
|
|
if (!QualStr.empty()) QualStr += ' ';
|
|
QualStr += E.Name;
|
|
|
|
// If we have a location for the qualifier, offer a fixit.
|
|
SourceLocation QualLoc = E.Loc;
|
|
if (QualLoc.isValid()) {
|
|
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
|
|
if (Loc.isInvalid() ||
|
|
getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
|
|
Loc = QualLoc;
|
|
}
|
|
|
|
++NumQuals;
|
|
}
|
|
}
|
|
|
|
Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
|
|
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
|
|
}
|
|
|
|
// Diagnose pointless type qualifiers on the return type of a function.
|
|
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
|
|
Declarator &D,
|
|
unsigned FunctionChunkIndex) {
|
|
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
|
|
// FIXME: TypeSourceInfo doesn't preserve location information for
|
|
// qualifiers.
|
|
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
|
|
RetTy.getLocalCVRQualifiers(),
|
|
D.getIdentifierLoc());
|
|
return;
|
|
}
|
|
|
|
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
|
|
End = D.getNumTypeObjects();
|
|
OuterChunkIndex != End; ++OuterChunkIndex) {
|
|
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
|
|
switch (OuterChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Pointer: {
|
|
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
|
|
S.diagnoseIgnoredQualifiers(
|
|
diag::warn_qual_return_type,
|
|
PTI.TypeQuals,
|
|
SourceLocation(),
|
|
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
|
|
return;
|
|
}
|
|
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
// FIXME: We can't currently provide an accurate source location and a
|
|
// fix-it hint for these.
|
|
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
|
|
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
|
|
RetTy.getCVRQualifiers() | AtomicQual,
|
|
D.getIdentifierLoc());
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unknown declarator chunk kind");
|
|
}
|
|
|
|
// If the qualifiers come from a conversion function type, don't diagnose
|
|
// them -- they're not necessarily redundant, since such a conversion
|
|
// operator can be explicitly called as "x.operator const int()".
|
|
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
|
|
return;
|
|
|
|
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
|
|
// which are present there.
|
|
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
|
|
D.getDeclSpec().getTypeQualifiers(),
|
|
D.getIdentifierLoc(),
|
|
D.getDeclSpec().getConstSpecLoc(),
|
|
D.getDeclSpec().getVolatileSpecLoc(),
|
|
D.getDeclSpec().getRestrictSpecLoc(),
|
|
D.getDeclSpec().getAtomicSpecLoc(),
|
|
D.getDeclSpec().getUnalignedSpecLoc());
|
|
}
|
|
|
|
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
|
|
TypeSourceInfo *&ReturnTypeInfo) {
|
|
Sema &SemaRef = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
QualType T;
|
|
ReturnTypeInfo = nullptr;
|
|
|
|
// The TagDecl owned by the DeclSpec.
|
|
TagDecl *OwnedTagDecl = nullptr;
|
|
|
|
switch (D.getName().getKind()) {
|
|
case UnqualifiedId::IK_ImplicitSelfParam:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_TemplateId:
|
|
T = ConvertDeclSpecToType(state);
|
|
|
|
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
|
|
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
// Owned declaration is embedded in declarator.
|
|
OwnedTagDecl->setEmbeddedInDeclarator(true);
|
|
}
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
case UnqualifiedId::IK_DestructorName:
|
|
// Constructors and destructors don't have return types. Use
|
|
// "void" instead.
|
|
T = SemaRef.Context.VoidTy;
|
|
processTypeAttrs(state, T, TAL_DeclSpec,
|
|
D.getDeclSpec().getAttributes().getList());
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
// The result type of a conversion function is the type that it
|
|
// converts to.
|
|
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
|
|
&ReturnTypeInfo);
|
|
break;
|
|
}
|
|
|
|
if (D.getAttributes())
|
|
distributeTypeAttrsFromDeclarator(state, T);
|
|
|
|
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
|
|
if (D.getDeclSpec().containsPlaceholderType()) {
|
|
int Error = -1;
|
|
|
|
switch (D.getContext()) {
|
|
case Declarator::LambdaExprContext:
|
|
llvm_unreachable("Can't specify a type specifier in lambda grammar");
|
|
case Declarator::ObjCParameterContext:
|
|
case Declarator::ObjCResultContext:
|
|
case Declarator::PrototypeContext:
|
|
Error = 0;
|
|
break;
|
|
case Declarator::LambdaExprParameterContext:
|
|
// In C++14, generic lambdas allow 'auto' in their parameters.
|
|
if (!(SemaRef.getLangOpts().CPlusPlus14
|
|
&& D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
|
|
Error = 16;
|
|
break;
|
|
case Declarator::MemberContext: {
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
|
|
D.isFunctionDeclarator())
|
|
break;
|
|
bool Cxx = SemaRef.getLangOpts().CPlusPlus;
|
|
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
|
|
case TTK_Enum: llvm_unreachable("unhandled tag kind");
|
|
case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
|
|
case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
|
|
case TTK_Class: Error = 5; /* Class member */ break;
|
|
case TTK_Interface: Error = 6; /* Interface member */ break;
|
|
}
|
|
break;
|
|
}
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
Error = 7; // Exception declaration
|
|
break;
|
|
case Declarator::TemplateParamContext:
|
|
if (!SemaRef.getLangOpts().CPlusPlus1z)
|
|
Error = 8; // Template parameter
|
|
break;
|
|
case Declarator::BlockLiteralContext:
|
|
Error = 9; // Block literal
|
|
break;
|
|
case Declarator::TemplateTypeArgContext:
|
|
Error = 10; // Template type argument
|
|
break;
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::AliasTemplateContext:
|
|
Error = 12; // Type alias
|
|
break;
|
|
case Declarator::TrailingReturnContext:
|
|
if (!SemaRef.getLangOpts().CPlusPlus14 ||
|
|
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
|
|
Error = 13; // Function return type
|
|
break;
|
|
case Declarator::ConversionIdContext:
|
|
if (!SemaRef.getLangOpts().CPlusPlus14 ||
|
|
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
|
|
Error = 14; // conversion-type-id
|
|
break;
|
|
case Declarator::TypeNameContext:
|
|
Error = 15; // Generic
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::InitStmtContext:
|
|
case Declarator::ConditionContext:
|
|
break;
|
|
case Declarator::CXXNewContext:
|
|
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
|
|
Error = 17; // 'new' type
|
|
break;
|
|
case Declarator::KNRTypeListContext:
|
|
Error = 18; // K&R function parameter
|
|
break;
|
|
}
|
|
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
Error = 11;
|
|
|
|
// In Objective-C it is an error to use 'auto' on a function declarator
|
|
// (and everywhere for '__auto_type').
|
|
if (D.isFunctionDeclarator() &&
|
|
(!SemaRef.getLangOpts().CPlusPlus11 ||
|
|
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type))
|
|
Error = 13;
|
|
|
|
bool HaveTrailing = false;
|
|
|
|
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
|
|
// contains a trailing return type. That is only legal at the outermost
|
|
// level. Check all declarator chunks (outermost first) anyway, to give
|
|
// better diagnostics.
|
|
// We don't support '__auto_type' with trailing return types.
|
|
if (SemaRef.getLangOpts().CPlusPlus11 &&
|
|
D.getDeclSpec().getTypeSpecType() != DeclSpec::TST_auto_type) {
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
if (DeclType.Kind == DeclaratorChunk::Function) {
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
if (FTI.hasTrailingReturnType()) {
|
|
HaveTrailing = true;
|
|
Error = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
|
|
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
|
|
AutoRange = D.getName().getSourceRange();
|
|
|
|
if (Error != -1) {
|
|
unsigned Keyword;
|
|
switch (D.getDeclSpec().getTypeSpecType()) {
|
|
case DeclSpec::TST_auto: Keyword = 0; break;
|
|
case DeclSpec::TST_decltype_auto: Keyword = 1; break;
|
|
case DeclSpec::TST_auto_type: Keyword = 2; break;
|
|
default: llvm_unreachable("unknown auto TypeSpecType");
|
|
}
|
|
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
|
|
<< Keyword << Error << AutoRange;
|
|
T = SemaRef.Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (!HaveTrailing) {
|
|
// If there was a trailing return type, we already got
|
|
// warn_cxx98_compat_trailing_return_type in the parser.
|
|
SemaRef.Diag(AutoRange.getBegin(),
|
|
diag::warn_cxx98_compat_auto_type_specifier)
|
|
<< AutoRange;
|
|
}
|
|
}
|
|
|
|
if (SemaRef.getLangOpts().CPlusPlus &&
|
|
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
|
|
// Check the contexts where C++ forbids the declaration of a new class
|
|
// or enumeration in a type-specifier-seq.
|
|
unsigned DiagID = 0;
|
|
switch (D.getContext()) {
|
|
case Declarator::TrailingReturnContext:
|
|
// Class and enumeration definitions are syntactically not allowed in
|
|
// trailing return types.
|
|
llvm_unreachable("parser should not have allowed this");
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::MemberContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::InitStmtContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::LambdaExprContext:
|
|
// C++11 [dcl.type]p3:
|
|
// A type-specifier-seq shall not define a class or enumeration unless
|
|
// it appears in the type-id of an alias-declaration (7.1.3) that is not
|
|
// the declaration of a template-declaration.
|
|
case Declarator::AliasDeclContext:
|
|
break;
|
|
case Declarator::AliasTemplateContext:
|
|
DiagID = diag::err_type_defined_in_alias_template;
|
|
break;
|
|
case Declarator::TypeNameContext:
|
|
case Declarator::ConversionIdContext:
|
|
case Declarator::TemplateParamContext:
|
|
case Declarator::CXXNewContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
DiagID = diag::err_type_defined_in_type_specifier;
|
|
break;
|
|
case Declarator::PrototypeContext:
|
|
case Declarator::LambdaExprParameterContext:
|
|
case Declarator::ObjCParameterContext:
|
|
case Declarator::ObjCResultContext:
|
|
case Declarator::KNRTypeListContext:
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
DiagID = diag::err_type_defined_in_param_type;
|
|
break;
|
|
case Declarator::ConditionContext:
|
|
// C++ 6.4p2:
|
|
// The type-specifier-seq shall not contain typedef and shall not declare
|
|
// a new class or enumeration.
|
|
DiagID = diag::err_type_defined_in_condition;
|
|
break;
|
|
}
|
|
|
|
if (DiagID != 0) {
|
|
SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
|
|
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
assert(!T.isNull() && "This function should not return a null type");
|
|
return T;
|
|
}
|
|
|
|
/// Produce an appropriate diagnostic for an ambiguity between a function
|
|
/// declarator and a C++ direct-initializer.
|
|
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
|
|
DeclaratorChunk &DeclType, QualType RT) {
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
|
|
|
|
// If the return type is void there is no ambiguity.
|
|
if (RT->isVoidType())
|
|
return;
|
|
|
|
// An initializer for a non-class type can have at most one argument.
|
|
if (!RT->isRecordType() && FTI.NumParams > 1)
|
|
return;
|
|
|
|
// An initializer for a reference must have exactly one argument.
|
|
if (RT->isReferenceType() && FTI.NumParams != 1)
|
|
return;
|
|
|
|
// Only warn if this declarator is declaring a function at block scope, and
|
|
// doesn't have a storage class (such as 'extern') specified.
|
|
if (!D.isFunctionDeclarator() ||
|
|
D.getFunctionDefinitionKind() != FDK_Declaration ||
|
|
!S.CurContext->isFunctionOrMethod() ||
|
|
D.getDeclSpec().getStorageClassSpec()
|
|
!= DeclSpec::SCS_unspecified)
|
|
return;
|
|
|
|
// Inside a condition, a direct initializer is not permitted. We allow one to
|
|
// be parsed in order to give better diagnostics in condition parsing.
|
|
if (D.getContext() == Declarator::ConditionContext)
|
|
return;
|
|
|
|
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
|
|
|
|
S.Diag(DeclType.Loc,
|
|
FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
|
|
: diag::warn_empty_parens_are_function_decl)
|
|
<< ParenRange;
|
|
|
|
// If the declaration looks like:
|
|
// T var1,
|
|
// f();
|
|
// and name lookup finds a function named 'f', then the ',' was
|
|
// probably intended to be a ';'.
|
|
if (!D.isFirstDeclarator() && D.getIdentifier()) {
|
|
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
|
|
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
|
|
if (Comma.getFileID() != Name.getFileID() ||
|
|
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
|
|
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
|
|
Sema::LookupOrdinaryName);
|
|
if (S.LookupName(Result, S.getCurScope()))
|
|
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
|
|
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
|
|
<< D.getIdentifier();
|
|
}
|
|
}
|
|
|
|
if (FTI.NumParams > 0) {
|
|
// For a declaration with parameters, eg. "T var(T());", suggest adding
|
|
// parens around the first parameter to turn the declaration into a
|
|
// variable declaration.
|
|
SourceRange Range = FTI.Params[0].Param->getSourceRange();
|
|
SourceLocation B = Range.getBegin();
|
|
SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
|
|
// FIXME: Maybe we should suggest adding braces instead of parens
|
|
// in C++11 for classes that don't have an initializer_list constructor.
|
|
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
|
|
<< FixItHint::CreateInsertion(B, "(")
|
|
<< FixItHint::CreateInsertion(E, ")");
|
|
} else {
|
|
// For a declaration without parameters, eg. "T var();", suggest replacing
|
|
// the parens with an initializer to turn the declaration into a variable
|
|
// declaration.
|
|
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
|
|
|
|
// Empty parens mean value-initialization, and no parens mean
|
|
// default initialization. These are equivalent if the default
|
|
// constructor is user-provided or if zero-initialization is a
|
|
// no-op.
|
|
if (RD && RD->hasDefinition() &&
|
|
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
|
|
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
|
|
<< FixItHint::CreateRemoval(ParenRange);
|
|
else {
|
|
std::string Init =
|
|
S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
|
|
if (Init.empty() && S.LangOpts.CPlusPlus11)
|
|
Init = "{}";
|
|
if (!Init.empty())
|
|
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
|
|
<< FixItHint::CreateReplacement(ParenRange, Init);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for figuring out the default CC for a function declarator type. If
|
|
/// this is the outermost chunk, then we can determine the CC from the
|
|
/// declarator context. If not, then this could be either a member function
|
|
/// type or normal function type.
|
|
static CallingConv
|
|
getCCForDeclaratorChunk(Sema &S, Declarator &D,
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI,
|
|
unsigned ChunkIndex) {
|
|
assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
|
|
|
|
// Check for an explicit CC attribute.
|
|
for (auto Attr = FTI.AttrList; Attr; Attr = Attr->getNext()) {
|
|
switch (Attr->getKind()) {
|
|
CALLING_CONV_ATTRS_CASELIST: {
|
|
// Ignore attributes that don't validate or can't apply to the
|
|
// function type. We'll diagnose the failure to apply them in
|
|
// handleFunctionTypeAttr.
|
|
CallingConv CC;
|
|
if (!S.CheckCallingConvAttr(*Attr, CC) &&
|
|
(!FTI.isVariadic || supportsVariadicCall(CC))) {
|
|
return CC;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool IsCXXInstanceMethod = false;
|
|
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
// Look inwards through parentheses to see if this chunk will form a
|
|
// member pointer type or if we're the declarator. Any type attributes
|
|
// between here and there will override the CC we choose here.
|
|
unsigned I = ChunkIndex;
|
|
bool FoundNonParen = false;
|
|
while (I && !FoundNonParen) {
|
|
--I;
|
|
if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
|
|
FoundNonParen = true;
|
|
}
|
|
|
|
if (FoundNonParen) {
|
|
// If we're not the declarator, we're a regular function type unless we're
|
|
// in a member pointer.
|
|
IsCXXInstanceMethod =
|
|
D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
|
|
} else if (D.getContext() == Declarator::LambdaExprContext) {
|
|
// This can only be a call operator for a lambda, which is an instance
|
|
// method.
|
|
IsCXXInstanceMethod = true;
|
|
} else {
|
|
// We're the innermost decl chunk, so must be a function declarator.
|
|
assert(D.isFunctionDeclarator());
|
|
|
|
// If we're inside a record, we're declaring a method, but it could be
|
|
// explicitly or implicitly static.
|
|
IsCXXInstanceMethod =
|
|
D.isFirstDeclarationOfMember() &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
!D.isStaticMember();
|
|
}
|
|
}
|
|
|
|
CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
|
|
IsCXXInstanceMethod);
|
|
|
|
// Attribute AT_OpenCLKernel affects the calling convention for SPIR
|
|
// and AMDGPU targets, hence it cannot be treated as a calling
|
|
// convention attribute. This is the simplest place to infer
|
|
// calling convention for OpenCL kernels.
|
|
if (S.getLangOpts().OpenCL) {
|
|
for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
|
|
Attr; Attr = Attr->getNext()) {
|
|
if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
|
|
llvm::Triple::ArchType arch = S.Context.getTargetInfo().getTriple().getArch();
|
|
if (arch == llvm::Triple::spir || arch == llvm::Triple::spir64 ||
|
|
arch == llvm::Triple::amdgcn || arch == llvm::Triple::r600) {
|
|
CC = CC_OpenCLKernel;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return CC;
|
|
}
|
|
|
|
namespace {
|
|
/// A simple notion of pointer kinds, which matches up with the various
|
|
/// pointer declarators.
|
|
enum class SimplePointerKind {
|
|
Pointer,
|
|
BlockPointer,
|
|
MemberPointer,
|
|
Array,
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
|
|
switch (nullability) {
|
|
case NullabilityKind::NonNull:
|
|
if (!Ident__Nonnull)
|
|
Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
|
|
return Ident__Nonnull;
|
|
|
|
case NullabilityKind::Nullable:
|
|
if (!Ident__Nullable)
|
|
Ident__Nullable = PP.getIdentifierInfo("_Nullable");
|
|
return Ident__Nullable;
|
|
|
|
case NullabilityKind::Unspecified:
|
|
if (!Ident__Null_unspecified)
|
|
Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
|
|
return Ident__Null_unspecified;
|
|
}
|
|
llvm_unreachable("Unknown nullability kind.");
|
|
}
|
|
|
|
/// Retrieve the identifier "NSError".
|
|
IdentifierInfo *Sema::getNSErrorIdent() {
|
|
if (!Ident_NSError)
|
|
Ident_NSError = PP.getIdentifierInfo("NSError");
|
|
|
|
return Ident_NSError;
|
|
}
|
|
|
|
/// Check whether there is a nullability attribute of any kind in the given
|
|
/// attribute list.
|
|
static bool hasNullabilityAttr(const AttributeList *attrs) {
|
|
for (const AttributeList *attr = attrs; attr;
|
|
attr = attr->getNext()) {
|
|
if (attr->getKind() == AttributeList::AT_TypeNonNull ||
|
|
attr->getKind() == AttributeList::AT_TypeNullable ||
|
|
attr->getKind() == AttributeList::AT_TypeNullUnspecified)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// Describes the kind of a pointer a declarator describes.
|
|
enum class PointerDeclaratorKind {
|
|
// Not a pointer.
|
|
NonPointer,
|
|
// Single-level pointer.
|
|
SingleLevelPointer,
|
|
// Multi-level pointer (of any pointer kind).
|
|
MultiLevelPointer,
|
|
// CFFooRef*
|
|
MaybePointerToCFRef,
|
|
// CFErrorRef*
|
|
CFErrorRefPointer,
|
|
// NSError**
|
|
NSErrorPointerPointer,
|
|
};
|
|
|
|
/// Describes a declarator chunk wrapping a pointer that marks inference as
|
|
/// unexpected.
|
|
// These values must be kept in sync with diagnostics.
|
|
enum class PointerWrappingDeclaratorKind {
|
|
/// Pointer is top-level.
|
|
None = -1,
|
|
/// Pointer is an array element.
|
|
Array = 0,
|
|
/// Pointer is the referent type of a C++ reference.
|
|
Reference = 1
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Classify the given declarator, whose type-specified is \c type, based on
|
|
/// what kind of pointer it refers to.
|
|
///
|
|
/// This is used to determine the default nullability.
|
|
static PointerDeclaratorKind
|
|
classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
|
|
PointerWrappingDeclaratorKind &wrappingKind) {
|
|
unsigned numNormalPointers = 0;
|
|
|
|
// For any dependent type, we consider it a non-pointer.
|
|
if (type->isDependentType())
|
|
return PointerDeclaratorKind::NonPointer;
|
|
|
|
// Look through the declarator chunks to identify pointers.
|
|
for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Array:
|
|
if (numNormalPointers == 0)
|
|
wrappingKind = PointerWrappingDeclaratorKind::Array;
|
|
break;
|
|
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Pipe:
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
|
|
: PointerDeclaratorKind::SingleLevelPointer;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
break;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
if (numNormalPointers == 0)
|
|
wrappingKind = PointerWrappingDeclaratorKind::Reference;
|
|
break;
|
|
|
|
case DeclaratorChunk::Pointer:
|
|
++numNormalPointers;
|
|
if (numNormalPointers > 2)
|
|
return PointerDeclaratorKind::MultiLevelPointer;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Then, dig into the type specifier itself.
|
|
unsigned numTypeSpecifierPointers = 0;
|
|
do {
|
|
// Decompose normal pointers.
|
|
if (auto ptrType = type->getAs<PointerType>()) {
|
|
++numNormalPointers;
|
|
|
|
if (numNormalPointers > 2)
|
|
return PointerDeclaratorKind::MultiLevelPointer;
|
|
|
|
type = ptrType->getPointeeType();
|
|
++numTypeSpecifierPointers;
|
|
continue;
|
|
}
|
|
|
|
// Decompose block pointers.
|
|
if (type->getAs<BlockPointerType>()) {
|
|
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
|
|
: PointerDeclaratorKind::SingleLevelPointer;
|
|
}
|
|
|
|
// Decompose member pointers.
|
|
if (type->getAs<MemberPointerType>()) {
|
|
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
|
|
: PointerDeclaratorKind::SingleLevelPointer;
|
|
}
|
|
|
|
// Look at Objective-C object pointers.
|
|
if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
|
|
++numNormalPointers;
|
|
++numTypeSpecifierPointers;
|
|
|
|
// If this is NSError**, report that.
|
|
if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
|
|
if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
|
|
numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
|
|
return PointerDeclaratorKind::NSErrorPointerPointer;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// Look at Objective-C class types.
|
|
if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
|
|
if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
|
|
if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
|
|
return PointerDeclaratorKind::NSErrorPointerPointer;;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// If at this point we haven't seen a pointer, we won't see one.
|
|
if (numNormalPointers == 0)
|
|
return PointerDeclaratorKind::NonPointer;
|
|
|
|
if (auto recordType = type->getAs<RecordType>()) {
|
|
RecordDecl *recordDecl = recordType->getDecl();
|
|
|
|
bool isCFError = false;
|
|
if (S.CFError) {
|
|
// If we already know about CFError, test it directly.
|
|
isCFError = (S.CFError == recordDecl);
|
|
} else {
|
|
// Check whether this is CFError, which we identify based on its bridge
|
|
// to NSError.
|
|
if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
|
|
if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>()) {
|
|
if (bridgeAttr->getBridgedType() == S.getNSErrorIdent()) {
|
|
S.CFError = recordDecl;
|
|
isCFError = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is CFErrorRef*, report it as such.
|
|
if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
|
|
return PointerDeclaratorKind::CFErrorRefPointer;
|
|
}
|
|
break;
|
|
}
|
|
|
|
break;
|
|
} while (true);
|
|
|
|
switch (numNormalPointers) {
|
|
case 0:
|
|
return PointerDeclaratorKind::NonPointer;
|
|
|
|
case 1:
|
|
return PointerDeclaratorKind::SingleLevelPointer;
|
|
|
|
case 2:
|
|
return PointerDeclaratorKind::MaybePointerToCFRef;
|
|
|
|
default:
|
|
return PointerDeclaratorKind::MultiLevelPointer;
|
|
}
|
|
}
|
|
|
|
static FileID getNullabilityCompletenessCheckFileID(Sema &S,
|
|
SourceLocation loc) {
|
|
// If we're anywhere in a function, method, or closure context, don't perform
|
|
// completeness checks.
|
|
for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
|
|
if (ctx->isFunctionOrMethod())
|
|
return FileID();
|
|
|
|
if (ctx->isFileContext())
|
|
break;
|
|
}
|
|
|
|
// We only care about the expansion location.
|
|
loc = S.SourceMgr.getExpansionLoc(loc);
|
|
FileID file = S.SourceMgr.getFileID(loc);
|
|
if (file.isInvalid())
|
|
return FileID();
|
|
|
|
// Retrieve file information.
|
|
bool invalid = false;
|
|
const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
|
|
if (invalid || !sloc.isFile())
|
|
return FileID();
|
|
|
|
// We don't want to perform completeness checks on the main file or in
|
|
// system headers.
|
|
const SrcMgr::FileInfo &fileInfo = sloc.getFile();
|
|
if (fileInfo.getIncludeLoc().isInvalid())
|
|
return FileID();
|
|
if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
|
|
S.Diags.getSuppressSystemWarnings()) {
|
|
return FileID();
|
|
}
|
|
|
|
return file;
|
|
}
|
|
|
|
/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
|
|
/// taking into account whitespace before and after.
|
|
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
|
|
SourceLocation PointerLoc,
|
|
NullabilityKind Nullability) {
|
|
assert(PointerLoc.isValid());
|
|
if (PointerLoc.isMacroID())
|
|
return;
|
|
|
|
SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
|
|
if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
|
|
return;
|
|
|
|
const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
|
|
if (!NextChar)
|
|
return;
|
|
|
|
SmallString<32> InsertionTextBuf{" "};
|
|
InsertionTextBuf += getNullabilitySpelling(Nullability);
|
|
InsertionTextBuf += " ";
|
|
StringRef InsertionText = InsertionTextBuf.str();
|
|
|
|
if (isWhitespace(*NextChar)) {
|
|
InsertionText = InsertionText.drop_back();
|
|
} else if (NextChar[-1] == '[') {
|
|
if (NextChar[0] == ']')
|
|
InsertionText = InsertionText.drop_back().drop_front();
|
|
else
|
|
InsertionText = InsertionText.drop_front();
|
|
} else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
|
|
!isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
|
|
InsertionText = InsertionText.drop_back().drop_front();
|
|
}
|
|
|
|
Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
|
|
}
|
|
|
|
static void emitNullabilityConsistencyWarning(Sema &S,
|
|
SimplePointerKind PointerKind,
|
|
SourceLocation PointerLoc) {
|
|
assert(PointerLoc.isValid());
|
|
|
|
if (PointerKind == SimplePointerKind::Array) {
|
|
S.Diag(PointerLoc, diag::warn_nullability_missing_array);
|
|
} else {
|
|
S.Diag(PointerLoc, diag::warn_nullability_missing)
|
|
<< static_cast<unsigned>(PointerKind);
|
|
}
|
|
|
|
if (PointerLoc.isMacroID())
|
|
return;
|
|
|
|
auto addFixIt = [&](NullabilityKind Nullability) {
|
|
auto Diag = S.Diag(PointerLoc, diag::note_nullability_fix_it);
|
|
Diag << static_cast<unsigned>(Nullability);
|
|
Diag << static_cast<unsigned>(PointerKind);
|
|
fixItNullability(S, Diag, PointerLoc, Nullability);
|
|
};
|
|
addFixIt(NullabilityKind::Nullable);
|
|
addFixIt(NullabilityKind::NonNull);
|
|
}
|
|
|
|
/// Complains about missing nullability if the file containing \p pointerLoc
|
|
/// has other uses of nullability (either the keywords or the \c assume_nonnull
|
|
/// pragma).
|
|
///
|
|
/// If the file has \e not seen other uses of nullability, this particular
|
|
/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
|
|
static void checkNullabilityConsistency(Sema &S,
|
|
SimplePointerKind pointerKind,
|
|
SourceLocation pointerLoc) {
|
|
// Determine which file we're performing consistency checking for.
|
|
FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
|
|
if (file.isInvalid())
|
|
return;
|
|
|
|
// If we haven't seen any type nullability in this file, we won't warn now
|
|
// about anything.
|
|
FileNullability &fileNullability = S.NullabilityMap[file];
|
|
if (!fileNullability.SawTypeNullability) {
|
|
// If this is the first pointer declarator in the file, and the appropriate
|
|
// warning is on, record it in case we need to diagnose it retroactively.
|
|
diag::kind diagKind;
|
|
if (pointerKind == SimplePointerKind::Array)
|
|
diagKind = diag::warn_nullability_missing_array;
|
|
else
|
|
diagKind = diag::warn_nullability_missing;
|
|
|
|
if (fileNullability.PointerLoc.isInvalid() &&
|
|
!S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
|
|
fileNullability.PointerLoc = pointerLoc;
|
|
fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Complain about missing nullability.
|
|
emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc);
|
|
}
|
|
|
|
/// Marks that a nullability feature has been used in the file containing
|
|
/// \p loc.
|
|
///
|
|
/// If this file already had pointer types in it that were missing nullability,
|
|
/// the first such instance is retroactively diagnosed.
|
|
///
|
|
/// \sa checkNullabilityConsistency
|
|
static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
|
|
FileID file = getNullabilityCompletenessCheckFileID(S, loc);
|
|
if (file.isInvalid())
|
|
return;
|
|
|
|
FileNullability &fileNullability = S.NullabilityMap[file];
|
|
if (fileNullability.SawTypeNullability)
|
|
return;
|
|
fileNullability.SawTypeNullability = true;
|
|
|
|
// If we haven't seen any type nullability before, now we have. Retroactively
|
|
// diagnose the first unannotated pointer, if there was one.
|
|
if (fileNullability.PointerLoc.isInvalid())
|
|
return;
|
|
|
|
auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
|
|
emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc);
|
|
}
|
|
|
|
/// Returns true if any of the declarator chunks before \p endIndex include a
|
|
/// level of indirection: array, pointer, reference, or pointer-to-member.
|
|
///
|
|
/// Because declarator chunks are stored in outer-to-inner order, testing
|
|
/// every chunk before \p endIndex is testing all chunks that embed the current
|
|
/// chunk as part of their type.
|
|
///
|
|
/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
|
|
/// end index, in which case all chunks are tested.
|
|
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
|
|
unsigned i = endIndex;
|
|
while (i != 0) {
|
|
// Walk outwards along the declarator chunks.
|
|
--i;
|
|
const DeclaratorChunk &DC = D.getTypeObject(i);
|
|
switch (DC.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
break;
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return true;
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
// These are invalid anyway, so just ignore.
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
|
|
QualType declSpecType,
|
|
TypeSourceInfo *TInfo) {
|
|
// The TypeSourceInfo that this function returns will not be a null type.
|
|
// If there is an error, this function will fill in a dummy type as fallback.
|
|
QualType T = declSpecType;
|
|
Declarator &D = state.getDeclarator();
|
|
Sema &S = state.getSema();
|
|
ASTContext &Context = S.Context;
|
|
const LangOptions &LangOpts = S.getLangOpts();
|
|
|
|
// The name we're declaring, if any.
|
|
DeclarationName Name;
|
|
if (D.getIdentifier())
|
|
Name = D.getIdentifier();
|
|
|
|
// Does this declaration declare a typedef-name?
|
|
bool IsTypedefName =
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
|
|
D.getContext() == Declarator::AliasDeclContext ||
|
|
D.getContext() == Declarator::AliasTemplateContext;
|
|
|
|
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
|
|
bool IsQualifiedFunction = T->isFunctionProtoType() &&
|
|
(T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
|
|
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
|
|
|
|
// If T is 'decltype(auto)', the only declarators we can have are parens
|
|
// and at most one function declarator if this is a function declaration.
|
|
if (const AutoType *AT = T->getAs<AutoType>()) {
|
|
if (AT->isDecltypeAuto()) {
|
|
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
|
|
unsigned Index = E - I - 1;
|
|
DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
|
|
unsigned DiagId = diag::err_decltype_auto_compound_type;
|
|
unsigned DiagKind = 0;
|
|
switch (DeclChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
case DeclaratorChunk::Function: {
|
|
unsigned FnIndex;
|
|
if (D.isFunctionDeclarationContext() &&
|
|
D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
|
|
continue;
|
|
DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::MemberPointer:
|
|
DiagKind = 0;
|
|
break;
|
|
case DeclaratorChunk::Reference:
|
|
DiagKind = 1;
|
|
break;
|
|
case DeclaratorChunk::Array:
|
|
DiagKind = 2;
|
|
break;
|
|
case DeclaratorChunk::Pipe:
|
|
break;
|
|
}
|
|
|
|
S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
|
|
D.setInvalidType(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine whether we should infer _Nonnull on pointer types.
|
|
Optional<NullabilityKind> inferNullability;
|
|
bool inferNullabilityCS = false;
|
|
bool inferNullabilityInnerOnly = false;
|
|
bool inferNullabilityInnerOnlyComplete = false;
|
|
|
|
// Are we in an assume-nonnull region?
|
|
bool inAssumeNonNullRegion = false;
|
|
SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
|
|
if (assumeNonNullLoc.isValid()) {
|
|
inAssumeNonNullRegion = true;
|
|
recordNullabilitySeen(S, assumeNonNullLoc);
|
|
}
|
|
|
|
// Whether to complain about missing nullability specifiers or not.
|
|
enum {
|
|
/// Never complain.
|
|
CAMN_No,
|
|
/// Complain on the inner pointers (but not the outermost
|
|
/// pointer).
|
|
CAMN_InnerPointers,
|
|
/// Complain about any pointers that don't have nullability
|
|
/// specified or inferred.
|
|
CAMN_Yes
|
|
} complainAboutMissingNullability = CAMN_No;
|
|
unsigned NumPointersRemaining = 0;
|
|
auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
|
|
|
|
if (IsTypedefName) {
|
|
// For typedefs, we do not infer any nullability (the default),
|
|
// and we only complain about missing nullability specifiers on
|
|
// inner pointers.
|
|
complainAboutMissingNullability = CAMN_InnerPointers;
|
|
|
|
auto isDependentNonPointerType = [](QualType T) -> bool {
|
|
// Note: This is intended to be the same check as Type::canHaveNullability
|
|
// except with all of the ambiguous cases being treated as 'false' rather
|
|
// than 'true'.
|
|
return T->isDependentType() && !T->isAnyPointerType() &&
|
|
!T->isBlockPointerType() && !T->isMemberPointerType();
|
|
};
|
|
|
|
if (T->canHaveNullability() && !T->getNullability(S.Context) &&
|
|
!isDependentNonPointerType(T)) {
|
|
// Note that we allow but don't require nullability on dependent types.
|
|
++NumPointersRemaining;
|
|
}
|
|
|
|
for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
|
|
DeclaratorChunk &chunk = D.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Pipe:
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::MemberPointer:
|
|
++NumPointersRemaining;
|
|
break;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Reference:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Pointer:
|
|
++NumPointersRemaining;
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
bool isFunctionOrMethod = false;
|
|
switch (auto context = state.getDeclarator().getContext()) {
|
|
case Declarator::ObjCParameterContext:
|
|
case Declarator::ObjCResultContext:
|
|
case Declarator::PrototypeContext:
|
|
case Declarator::TrailingReturnContext:
|
|
isFunctionOrMethod = true;
|
|
// fallthrough
|
|
|
|
case Declarator::MemberContext:
|
|
if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
|
|
complainAboutMissingNullability = CAMN_No;
|
|
break;
|
|
}
|
|
|
|
// Weak properties are inferred to be nullable.
|
|
if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
|
|
inferNullability = NullabilityKind::Nullable;
|
|
break;
|
|
}
|
|
|
|
// fallthrough
|
|
|
|
case Declarator::FileContext:
|
|
case Declarator::KNRTypeListContext: {
|
|
complainAboutMissingNullability = CAMN_Yes;
|
|
|
|
// Nullability inference depends on the type and declarator.
|
|
auto wrappingKind = PointerWrappingDeclaratorKind::None;
|
|
switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
|
|
case PointerDeclaratorKind::NonPointer:
|
|
case PointerDeclaratorKind::MultiLevelPointer:
|
|
// Cannot infer nullability.
|
|
break;
|
|
|
|
case PointerDeclaratorKind::SingleLevelPointer:
|
|
// Infer _Nonnull if we are in an assumes-nonnull region.
|
|
if (inAssumeNonNullRegion) {
|
|
complainAboutInferringWithinChunk = wrappingKind;
|
|
inferNullability = NullabilityKind::NonNull;
|
|
inferNullabilityCS = (context == Declarator::ObjCParameterContext ||
|
|
context == Declarator::ObjCResultContext);
|
|
}
|
|
break;
|
|
|
|
case PointerDeclaratorKind::CFErrorRefPointer:
|
|
case PointerDeclaratorKind::NSErrorPointerPointer:
|
|
// Within a function or method signature, infer _Nullable at both
|
|
// levels.
|
|
if (isFunctionOrMethod && inAssumeNonNullRegion)
|
|
inferNullability = NullabilityKind::Nullable;
|
|
break;
|
|
|
|
case PointerDeclaratorKind::MaybePointerToCFRef:
|
|
if (isFunctionOrMethod) {
|
|
// On pointer-to-pointer parameters marked cf_returns_retained or
|
|
// cf_returns_not_retained, if the outer pointer is explicit then
|
|
// infer the inner pointer as _Nullable.
|
|
auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
|
|
while (NextAttr) {
|
|
if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
|
|
NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
|
|
return true;
|
|
NextAttr = NextAttr->getNext();
|
|
}
|
|
return false;
|
|
};
|
|
if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
|
|
if (hasCFReturnsAttr(D.getAttributes()) ||
|
|
hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
|
|
hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
|
|
inferNullability = NullabilityKind::Nullable;
|
|
inferNullabilityInnerOnly = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Declarator::ConversionIdContext:
|
|
complainAboutMissingNullability = CAMN_Yes;
|
|
break;
|
|
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::AliasTemplateContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::CXXNewContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::InitStmtContext:
|
|
case Declarator::LambdaExprContext:
|
|
case Declarator::LambdaExprParameterContext:
|
|
case Declarator::ObjCCatchContext:
|
|
case Declarator::TemplateParamContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
case Declarator::TypeNameContext:
|
|
// Don't infer in these contexts.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Local function that returns true if its argument looks like a va_list.
|
|
auto isVaList = [&S](QualType T) -> bool {
|
|
auto *typedefTy = T->getAs<TypedefType>();
|
|
if (!typedefTy)
|
|
return false;
|
|
TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
|
|
do {
|
|
if (typedefTy->getDecl() == vaListTypedef)
|
|
return true;
|
|
if (auto *name = typedefTy->getDecl()->getIdentifier())
|
|
if (name->isStr("va_list"))
|
|
return true;
|
|
typedefTy = typedefTy->desugar()->getAs<TypedefType>();
|
|
} while (typedefTy);
|
|
return false;
|
|
};
|
|
|
|
// Local function that checks the nullability for a given pointer declarator.
|
|
// Returns true if _Nonnull was inferred.
|
|
auto inferPointerNullability = [&](SimplePointerKind pointerKind,
|
|
SourceLocation pointerLoc,
|
|
AttributeList *&attrs) -> AttributeList * {
|
|
// We've seen a pointer.
|
|
if (NumPointersRemaining > 0)
|
|
--NumPointersRemaining;
|
|
|
|
// If a nullability attribute is present, there's nothing to do.
|
|
if (hasNullabilityAttr(attrs))
|
|
return nullptr;
|
|
|
|
// If we're supposed to infer nullability, do so now.
|
|
if (inferNullability && !inferNullabilityInnerOnlyComplete) {
|
|
AttributeList::Syntax syntax
|
|
= inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
|
|
: AttributeList::AS_Keyword;
|
|
AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
|
|
.create(
|
|
S.getNullabilityKeyword(
|
|
*inferNullability),
|
|
SourceRange(pointerLoc),
|
|
nullptr, SourceLocation(),
|
|
nullptr, 0, syntax);
|
|
|
|
spliceAttrIntoList(*nullabilityAttr, attrs);
|
|
|
|
if (inferNullabilityCS) {
|
|
state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
|
|
->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
|
|
}
|
|
|
|
if (pointerLoc.isValid() &&
|
|
complainAboutInferringWithinChunk !=
|
|
PointerWrappingDeclaratorKind::None) {
|
|
auto Diag =
|
|
S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
|
|
Diag << static_cast<int>(complainAboutInferringWithinChunk);
|
|
fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
|
|
}
|
|
|
|
if (inferNullabilityInnerOnly)
|
|
inferNullabilityInnerOnlyComplete = true;
|
|
return nullabilityAttr;
|
|
}
|
|
|
|
// If we're supposed to complain about missing nullability, do so
|
|
// now if it's truly missing.
|
|
switch (complainAboutMissingNullability) {
|
|
case CAMN_No:
|
|
break;
|
|
|
|
case CAMN_InnerPointers:
|
|
if (NumPointersRemaining == 0)
|
|
break;
|
|
// Fallthrough.
|
|
|
|
case CAMN_Yes:
|
|
checkNullabilityConsistency(S, pointerKind, pointerLoc);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// If the type itself could have nullability but does not, infer pointer
|
|
// nullability and perform consistency checking.
|
|
if (S.ActiveTemplateInstantiations.empty()) {
|
|
if (T->canHaveNullability() && !T->getNullability(S.Context)) {
|
|
if (isVaList(T)) {
|
|
// Record that we've seen a pointer, but do nothing else.
|
|
if (NumPointersRemaining > 0)
|
|
--NumPointersRemaining;
|
|
} else {
|
|
SimplePointerKind pointerKind = SimplePointerKind::Pointer;
|
|
if (T->isBlockPointerType())
|
|
pointerKind = SimplePointerKind::BlockPointer;
|
|
else if (T->isMemberPointerType())
|
|
pointerKind = SimplePointerKind::MemberPointer;
|
|
|
|
if (auto *attr = inferPointerNullability(
|
|
pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
D.getMutableDeclSpec().getAttributes().getListRef())) {
|
|
T = Context.getAttributedType(
|
|
AttributedType::getNullabilityAttrKind(*inferNullability),T,T);
|
|
attr->setUsedAsTypeAttr();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (complainAboutMissingNullability == CAMN_Yes &&
|
|
T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
|
|
D.isPrototypeContext() &&
|
|
!hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
|
|
checkNullabilityConsistency(S, SimplePointerKind::Array,
|
|
D.getDeclSpec().getTypeSpecTypeLoc());
|
|
}
|
|
}
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go.
|
|
// DeclTypeInfos are ordered from the identifier out, which is
|
|
// opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
|
|
switch (DeclType.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
T = S.BuildParenType(T);
|
|
break;
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
|
|
|
|
// Handle pointer nullability.
|
|
inferPointerNullability(SimplePointerKind::BlockPointer,
|
|
DeclType.Loc, DeclType.getAttrListRef());
|
|
|
|
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
|
|
if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
|
|
// OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
|
|
// qualified with const.
|
|
if (LangOpts.OpenCL)
|
|
DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
|
|
}
|
|
break;
|
|
case DeclaratorChunk::Pointer:
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
|
|
// Handle pointer nullability
|
|
inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
|
|
DeclType.getAttrListRef());
|
|
|
|
if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
|
|
T = Context.getObjCObjectPointerType(T);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
break;
|
|
}
|
|
|
|
// OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
|
|
// OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
|
|
// OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
|
|
if (LangOpts.OpenCL) {
|
|
if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
|
|
T->isBlockPointerType()) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
T = S.BuildPointerType(T, DeclType.Loc, Name);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
break;
|
|
case DeclaratorChunk::Reference: {
|
|
// Verify that we're not building a reference to pointer to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
|
|
|
|
if (DeclType.Ref.HasRestrict)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Array: {
|
|
// Verify that we're not building an array of pointers to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
|
|
// FIXME: This check isn't quite right: it allows star in prototypes
|
|
// for function definitions, and disallows some edge cases detailed
|
|
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
|
|
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
|
|
ASM = ArrayType::Normal;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
|
|
// shall appear only in a declaration of a function parameter with an
|
|
// array type, ...
|
|
if (ASM == ArrayType::Static || ATI.TypeQuals) {
|
|
if (!(D.isPrototypeContext() ||
|
|
D.getContext() == Declarator::KNRTypeListContext)) {
|
|
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
|
|
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
|
|
// Remove the 'static' and the type qualifiers.
|
|
if (ASM == ArrayType::Static)
|
|
ASM = ArrayType::Normal;
|
|
ATI.TypeQuals = 0;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// C99 6.7.5.2p1: ... and then only in the outermost array type
|
|
// derivation.
|
|
if (hasOuterPointerLikeChunk(D, chunkIndex)) {
|
|
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
|
|
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
|
|
if (ASM == ArrayType::Static)
|
|
ASM = ArrayType::Normal;
|
|
ATI.TypeQuals = 0;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
const AutoType *AT = T->getContainedAutoType();
|
|
// Allow arrays of auto if we are a generic lambda parameter.
|
|
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
|
|
if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
|
|
// We've already diagnosed this for decltype(auto).
|
|
if (!AT->isDecltypeAuto())
|
|
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
|
|
<< getPrintableNameForEntity(Name) << T;
|
|
T = QualType();
|
|
break;
|
|
}
|
|
|
|
// Array parameters can be marked nullable as well, although it's not
|
|
// necessary if they're marked 'static'.
|
|
if (complainAboutMissingNullability == CAMN_Yes &&
|
|
!hasNullabilityAttr(DeclType.getAttrs()) &&
|
|
ASM != ArrayType::Static &&
|
|
D.isPrototypeContext() &&
|
|
!hasOuterPointerLikeChunk(D, chunkIndex)) {
|
|
checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
|
|
}
|
|
|
|
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
|
|
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function: {
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
|
|
|
|
// Check for auto functions and trailing return type and adjust the
|
|
// return type accordingly.
|
|
if (!D.isInvalidType()) {
|
|
// trailing-return-type is only required if we're declaring a function,
|
|
// and not, for instance, a pointer to a function.
|
|
if (D.getDeclSpec().containsPlaceholderType() &&
|
|
!FTI.hasTrailingReturnType() && chunkIndex == 0 &&
|
|
!S.getLangOpts().CPlusPlus14) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
|
|
? diag::err_auto_missing_trailing_return
|
|
: diag::err_deduced_return_type);
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (FTI.hasTrailingReturnType()) {
|
|
// T must be exactly 'auto' at this point. See CWG issue 681.
|
|
if (isa<ParenType>(T)) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_in_parens)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
} else if (D.getContext() != Declarator::LambdaExprContext &&
|
|
(T.hasQualifiers() || !isa<AutoType>(T) ||
|
|
cast<AutoType>(T)->getKeyword() != AutoTypeKeyword::Auto)) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_without_auto)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
|
|
if (T.isNull()) {
|
|
// An error occurred parsing the trailing return type.
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C99 6.7.5.3p1: The return type may not be a function or array type.
|
|
// For conversion functions, we'll diagnose this particular error later.
|
|
if ((T->isArrayType() || T->isFunctionType()) &&
|
|
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
|
|
unsigned diagID = diag::err_func_returning_array_function;
|
|
// Last processing chunk in block context means this function chunk
|
|
// represents the block.
|
|
if (chunkIndex == 0 &&
|
|
D.getContext() == Declarator::BlockLiteralContext)
|
|
diagID = diag::err_block_returning_array_function;
|
|
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// Do not allow returning half FP value.
|
|
// FIXME: This really should be in BuildFunctionType.
|
|
if (T->isHalfType()) {
|
|
if (S.getLangOpts().OpenCL) {
|
|
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
|
|
<< T << 0 /*pointer hint*/;
|
|
D.setInvalidType(true);
|
|
}
|
|
} else if (!S.getLangOpts().HalfArgsAndReturns) {
|
|
S.Diag(D.getIdentifierLoc(),
|
|
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
if (LangOpts.OpenCL) {
|
|
// OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
|
|
// function.
|
|
if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
|
|
T->isPipeType()) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
|
|
<< T << 1 /*hint off*/;
|
|
D.setInvalidType(true);
|
|
}
|
|
// OpenCL doesn't support variadic functions and blocks
|
|
// (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
|
|
// We also allow here any toolchain reserved identifiers.
|
|
if (FTI.isVariadic &&
|
|
!(D.getIdentifier() &&
|
|
((D.getIdentifier()->getName() == "printf" &&
|
|
LangOpts.OpenCLVersion >= 120) ||
|
|
D.getIdentifier()->getName().startswith("__")))) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// Methods cannot return interface types. All ObjC objects are
|
|
// passed by reference.
|
|
if (T->isObjCObjectType()) {
|
|
SourceLocation DiagLoc, FixitLoc;
|
|
if (TInfo) {
|
|
DiagLoc = TInfo->getTypeLoc().getLocStart();
|
|
FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
|
|
} else {
|
|
DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
|
|
FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
|
|
}
|
|
S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
|
|
<< 0 << T
|
|
<< FixItHint::CreateInsertion(FixitLoc, "*");
|
|
|
|
T = Context.getObjCObjectPointerType(T);
|
|
if (TInfo) {
|
|
TypeLocBuilder TLB;
|
|
TLB.pushFullCopy(TInfo->getTypeLoc());
|
|
ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
|
|
TLoc.setStarLoc(FixitLoc);
|
|
TInfo = TLB.getTypeSourceInfo(Context, T);
|
|
}
|
|
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// cv-qualifiers on return types are pointless except when the type is a
|
|
// class type in C++.
|
|
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
|
|
!(S.getLangOpts().CPlusPlus &&
|
|
(T->isDependentType() || T->isRecordType()))) {
|
|
if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
|
|
D.getFunctionDefinitionKind() == FDK_Definition) {
|
|
// [6.9.1/3] qualified void return is invalid on a C
|
|
// function definition. Apparently ok on declarations and
|
|
// in C++ though (!)
|
|
S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
|
|
} else
|
|
diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
|
|
}
|
|
|
|
// Objective-C ARC ownership qualifiers are ignored on the function
|
|
// return type (by type canonicalization). Complain if this attribute
|
|
// was written here.
|
|
if (T.getQualifiers().hasObjCLifetime()) {
|
|
SourceLocation AttrLoc;
|
|
if (chunkIndex + 1 < D.getNumTypeObjects()) {
|
|
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
|
|
for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
|
|
Attr; Attr = Attr->getNext()) {
|
|
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
|
|
AttrLoc = Attr->getLoc();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (AttrLoc.isInvalid()) {
|
|
for (const AttributeList *Attr
|
|
= D.getDeclSpec().getAttributes().getList();
|
|
Attr; Attr = Attr->getNext()) {
|
|
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
|
|
AttrLoc = Attr->getLoc();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AttrLoc.isValid()) {
|
|
// The ownership attributes are almost always written via
|
|
// the predefined
|
|
// __strong/__weak/__autoreleasing/__unsafe_unretained.
|
|
if (AttrLoc.isMacroID())
|
|
AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
|
|
|
|
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
|
|
<< T.getQualifiers().getObjCLifetime();
|
|
}
|
|
}
|
|
|
|
if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
|
|
<< Context.getTypeDeclType(Tag);
|
|
}
|
|
|
|
// Exception specs are not allowed in typedefs. Complain, but add it
|
|
// anyway.
|
|
if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus1z)
|
|
S.Diag(FTI.getExceptionSpecLocBeg(),
|
|
diag::err_exception_spec_in_typedef)
|
|
<< (D.getContext() == Declarator::AliasDeclContext ||
|
|
D.getContext() == Declarator::AliasTemplateContext);
|
|
|
|
// If we see "T var();" or "T var(T());" at block scope, it is probably
|
|
// an attempt to initialize a variable, not a function declaration.
|
|
if (FTI.isAmbiguous)
|
|
warnAboutAmbiguousFunction(S, D, DeclType, T);
|
|
|
|
// GNU warning -Wstrict-prototypes
|
|
// Warn if a function declaration is without a prototype.
|
|
// This warning is issued for all kinds of unprototyped function
|
|
// declarations (i.e. function type typedef, function pointer etc.)
|
|
// C99 6.7.5.3p14:
|
|
// The empty list in a function declarator that is not part of a
|
|
// definition of that function specifies that no information
|
|
// about the number or types of the parameters is supplied.
|
|
if (D.getFunctionDefinitionKind() == FDK_Declaration &&
|
|
FTI.NumParams == 0 && !LangOpts.CPlusPlus)
|
|
S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
|
|
<< 0 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
|
|
|
|
FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
|
|
|
|
if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionNoProtoType(T, EI);
|
|
} else {
|
|
// We allow a zero-parameter variadic function in C if the
|
|
// function is marked with the "overloadable" attribute. Scan
|
|
// for this attribute now.
|
|
if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
|
|
bool Overloadable = false;
|
|
for (const AttributeList *Attrs = D.getAttributes();
|
|
Attrs; Attrs = Attrs->getNext()) {
|
|
if (Attrs->getKind() == AttributeList::AT_Overloadable) {
|
|
Overloadable = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Overloadable)
|
|
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
|
|
}
|
|
|
|
if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
|
|
// definition.
|
|
S.Diag(FTI.Params[0].IdentLoc,
|
|
diag::err_ident_list_in_fn_declaration);
|
|
D.setInvalidType(true);
|
|
// Recover by creating a K&R-style function type.
|
|
T = Context.getFunctionNoProtoType(T, EI);
|
|
break;
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = EI;
|
|
EPI.Variadic = FTI.isVariadic;
|
|
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
|
|
EPI.TypeQuals = FTI.TypeQuals;
|
|
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
|
|
: FTI.RefQualifierIsLValueRef? RQ_LValue
|
|
: RQ_RValue;
|
|
|
|
// Otherwise, we have a function with a parameter list that is
|
|
// potentially variadic.
|
|
SmallVector<QualType, 16> ParamTys;
|
|
ParamTys.reserve(FTI.NumParams);
|
|
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 16>
|
|
ExtParameterInfos(FTI.NumParams);
|
|
bool HasAnyInterestingExtParameterInfos = false;
|
|
|
|
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
|
|
QualType ParamTy = Param->getType();
|
|
assert(!ParamTy.isNull() && "Couldn't parse type?");
|
|
|
|
// Look for 'void'. void is allowed only as a single parameter to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionProtoType with an empty parameter list.
|
|
if (ParamTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have parameters of incomplete type.
|
|
if (FTI.NumParams != 1 || FTI.isVariadic) {
|
|
S.Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ParamTy = Context.IntTy;
|
|
Param->setType(ParamTy);
|
|
} else if (FTI.Params[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
|
|
ParamTy = Context.IntTy;
|
|
Param->setType(ParamTy);
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ParamTy.hasQualifiers())
|
|
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the list.
|
|
break;
|
|
}
|
|
} else if (ParamTy->isHalfType()) {
|
|
// Disallow half FP parameters.
|
|
// FIXME: This really should be in BuildFunctionType.
|
|
if (S.getLangOpts().OpenCL) {
|
|
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_opencl_half_param) << ParamTy;
|
|
D.setInvalidType();
|
|
Param->setInvalidDecl();
|
|
}
|
|
} else if (!S.getLangOpts().HalfArgsAndReturns) {
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
|
|
D.setInvalidType();
|
|
}
|
|
} else if (!FTI.hasPrototype) {
|
|
if (ParamTy->isPromotableIntegerType()) {
|
|
ParamTy = Context.getPromotedIntegerType(ParamTy);
|
|
Param->setKNRPromoted(true);
|
|
} else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
|
|
if (BTy->getKind() == BuiltinType::Float) {
|
|
ParamTy = Context.DoubleTy;
|
|
Param->setKNRPromoted(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
|
|
ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
|
|
HasAnyInterestingExtParameterInfos = true;
|
|
}
|
|
|
|
if (auto attr = Param->getAttr<ParameterABIAttr>()) {
|
|
ExtParameterInfos[i] =
|
|
ExtParameterInfos[i].withABI(attr->getABI());
|
|
HasAnyInterestingExtParameterInfos = true;
|
|
}
|
|
|
|
ParamTys.push_back(ParamTy);
|
|
}
|
|
|
|
if (HasAnyInterestingExtParameterInfos) {
|
|
EPI.ExtParameterInfos = ExtParameterInfos.data();
|
|
checkExtParameterInfos(S, ParamTys, EPI,
|
|
[&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
|
|
}
|
|
|
|
SmallVector<QualType, 4> Exceptions;
|
|
SmallVector<ParsedType, 2> DynamicExceptions;
|
|
SmallVector<SourceRange, 2> DynamicExceptionRanges;
|
|
Expr *NoexceptExpr = nullptr;
|
|
|
|
if (FTI.getExceptionSpecType() == EST_Dynamic) {
|
|
// FIXME: It's rather inefficient to have to split into two vectors
|
|
// here.
|
|
unsigned N = FTI.getNumExceptions();
|
|
DynamicExceptions.reserve(N);
|
|
DynamicExceptionRanges.reserve(N);
|
|
for (unsigned I = 0; I != N; ++I) {
|
|
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
|
|
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
|
|
}
|
|
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
|
|
NoexceptExpr = FTI.NoexceptExpr;
|
|
}
|
|
|
|
S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
|
|
FTI.getExceptionSpecType(),
|
|
DynamicExceptions,
|
|
DynamicExceptionRanges,
|
|
NoexceptExpr,
|
|
Exceptions,
|
|
EPI.ExceptionSpec);
|
|
|
|
T = Context.getFunctionType(T, ParamTys, EPI);
|
|
}
|
|
break;
|
|
}
|
|
case DeclaratorChunk::MemberPointer: {
|
|
// The scope spec must refer to a class, or be dependent.
|
|
CXXScopeSpec &SS = DeclType.Mem.Scope();
|
|
QualType ClsType;
|
|
|
|
// Handle pointer nullability.
|
|
inferPointerNullability(SimplePointerKind::MemberPointer,
|
|
DeclType.Loc, DeclType.getAttrListRef());
|
|
|
|
if (SS.isInvalid()) {
|
|
// Avoid emitting extra errors if we already errored on the scope.
|
|
D.setInvalidType(true);
|
|
} else if (S.isDependentScopeSpecifier(SS) ||
|
|
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
|
|
NNS->getAsIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Super:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
ClsType = QualType(NNS->getAsType(), 0);
|
|
// Note: if the NNS has a prefix and ClsType is a nondependent
|
|
// TemplateSpecializationType, then the NNS prefix is NOT included
|
|
// in ClsType; hence we wrap ClsType into an ElaboratedType.
|
|
// NOTE: in particular, no wrap occurs if ClsType already is an
|
|
// Elaborated, DependentName, or DependentTemplateSpecialization.
|
|
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
|
|
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
|
|
break;
|
|
}
|
|
} else {
|
|
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
|
|
diag::err_illegal_decl_mempointer_in_nonclass)
|
|
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
|
|
<< DeclType.Mem.Scope().getRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (!ClsType.isNull())
|
|
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
|
|
D.getIdentifier());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (DeclType.Mem.TypeQuals) {
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DeclaratorChunk::Pipe: {
|
|
T = S.BuildReadPipeType(T, DeclType.Loc);
|
|
processTypeAttrs(state, T, TAL_DeclSpec,
|
|
D.getDeclSpec().getAttributes().getList());
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (T.isNull()) {
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// See if there are any attributes on this declarator chunk.
|
|
processTypeAttrs(state, T, TAL_DeclChunk,
|
|
const_cast<AttributeList *>(DeclType.getAttrs()));
|
|
}
|
|
|
|
assert(!T.isNull() && "T must not be null after this point");
|
|
|
|
if (LangOpts.CPlusPlus && T->isFunctionType()) {
|
|
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
|
|
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
|
|
|
|
// C++ 8.3.5p4:
|
|
// A cv-qualifier-seq shall only be part of the function type
|
|
// for a nonstatic member function, the function type to which a pointer
|
|
// to member refers, or the top-level function type of a function typedef
|
|
// declaration.
|
|
//
|
|
// Core issue 547 also allows cv-qualifiers on function types that are
|
|
// top-level template type arguments.
|
|
bool FreeFunction;
|
|
if (!D.getCXXScopeSpec().isSet()) {
|
|
FreeFunction = ((D.getContext() != Declarator::MemberContext &&
|
|
D.getContext() != Declarator::LambdaExprContext) ||
|
|
D.getDeclSpec().isFriendSpecified());
|
|
} else {
|
|
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
|
|
FreeFunction = (DC && !DC->isRecord());
|
|
}
|
|
|
|
// C++11 [dcl.fct]p6 (w/DR1417):
|
|
// An attempt to specify a function type with a cv-qualifier-seq or a
|
|
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
|
|
// - the function type for a non-static member function,
|
|
// - the function type to which a pointer to member refers,
|
|
// - the top-level function type of a function typedef declaration or
|
|
// alias-declaration,
|
|
// - the type-id in the default argument of a type-parameter, or
|
|
// - the type-id of a template-argument for a type-parameter
|
|
//
|
|
// FIXME: Checking this here is insufficient. We accept-invalid on:
|
|
//
|
|
// template<typename T> struct S { void f(T); };
|
|
// S<int() const> s;
|
|
//
|
|
// ... for instance.
|
|
if (IsQualifiedFunction &&
|
|
!(!FreeFunction &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
|
|
!IsTypedefName &&
|
|
D.getContext() != Declarator::TemplateTypeArgContext) {
|
|
SourceLocation Loc = D.getLocStart();
|
|
SourceRange RemovalRange;
|
|
unsigned I;
|
|
if (D.isFunctionDeclarator(I)) {
|
|
SmallVector<SourceLocation, 4> RemovalLocs;
|
|
const DeclaratorChunk &Chunk = D.getTypeObject(I);
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
if (Chunk.Fun.hasRefQualifier())
|
|
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
|
|
if (Chunk.Fun.TypeQuals & Qualifiers::Const)
|
|
RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
|
|
if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
|
|
RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
|
|
if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
|
|
RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
|
|
if (!RemovalLocs.empty()) {
|
|
std::sort(RemovalLocs.begin(), RemovalLocs.end(),
|
|
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
|
|
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
|
|
Loc = RemovalLocs.front();
|
|
}
|
|
}
|
|
|
|
S.Diag(Loc, diag::err_invalid_qualified_function_type)
|
|
<< FreeFunction << D.isFunctionDeclarator() << T
|
|
<< getFunctionQualifiersAsString(FnTy)
|
|
<< FixItHint::CreateRemoval(RemovalRange);
|
|
|
|
// Strip the cv-qualifiers and ref-qualifiers from the type.
|
|
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
|
|
T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
|
|
EPI);
|
|
// Rebuild any parens around the identifier in the function type.
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
|
|
break;
|
|
T = S.BuildParenType(T);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply any undistributed attributes from the declarator.
|
|
processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
|
|
|
|
// Diagnose any ignored type attributes.
|
|
state.diagnoseIgnoredTypeAttrs(T);
|
|
|
|
// C++0x [dcl.constexpr]p9:
|
|
// A constexpr specifier used in an object declaration declares the object
|
|
// as const.
|
|
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
|
|
T.addConst();
|
|
}
|
|
|
|
// If there was an ellipsis in the declarator, the declaration declares a
|
|
// parameter pack whose type may be a pack expansion type.
|
|
if (D.hasEllipsis()) {
|
|
// C++0x [dcl.fct]p13:
|
|
// A declarator-id or abstract-declarator containing an ellipsis shall
|
|
// only be used in a parameter-declaration. Such a parameter-declaration
|
|
// is a parameter pack (14.5.3). [...]
|
|
switch (D.getContext()) {
|
|
case Declarator::PrototypeContext:
|
|
case Declarator::LambdaExprParameterContext:
|
|
// C++0x [dcl.fct]p13:
|
|
// [...] When it is part of a parameter-declaration-clause, the
|
|
// parameter pack is a function parameter pack (14.5.3). The type T
|
|
// of the declarator-id of the function parameter pack shall contain
|
|
// a template parameter pack; each template parameter pack in T is
|
|
// expanded by the function parameter pack.
|
|
//
|
|
// We represent function parameter packs as function parameters whose
|
|
// type is a pack expansion.
|
|
if (!T->containsUnexpandedParameterPack()) {
|
|
S.Diag(D.getEllipsisLoc(),
|
|
diag::err_function_parameter_pack_without_parameter_packs)
|
|
<< T << D.getSourceRange();
|
|
D.setEllipsisLoc(SourceLocation());
|
|
} else {
|
|
T = Context.getPackExpansionType(T, None);
|
|
}
|
|
break;
|
|
case Declarator::TemplateParamContext:
|
|
// C++0x [temp.param]p15:
|
|
// If a template-parameter is a [...] is a parameter-declaration that
|
|
// declares a parameter pack (8.3.5), then the template-parameter is a
|
|
// template parameter pack (14.5.3).
|
|
//
|
|
// Note: core issue 778 clarifies that, if there are any unexpanded
|
|
// parameter packs in the type of the non-type template parameter, then
|
|
// it expands those parameter packs.
|
|
if (T->containsUnexpandedParameterPack())
|
|
T = Context.getPackExpansionType(T, None);
|
|
else
|
|
S.Diag(D.getEllipsisLoc(),
|
|
LangOpts.CPlusPlus11
|
|
? diag::warn_cxx98_compat_variadic_templates
|
|
: diag::ext_variadic_templates);
|
|
break;
|
|
|
|
case Declarator::FileContext:
|
|
case Declarator::KNRTypeListContext:
|
|
case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
|
|
case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
|
|
case Declarator::TypeNameContext:
|
|
case Declarator::CXXNewContext:
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::AliasTemplateContext:
|
|
case Declarator::MemberContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::InitStmtContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::LambdaExprContext:
|
|
case Declarator::ConversionIdContext:
|
|
case Declarator::TrailingReturnContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
// FIXME: We may want to allow parameter packs in block-literal contexts
|
|
// in the future.
|
|
S.Diag(D.getEllipsisLoc(),
|
|
diag::err_ellipsis_in_declarator_not_parameter);
|
|
D.setEllipsisLoc(SourceLocation());
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(!T.isNull() && "T must not be null at the end of this function");
|
|
if (D.isInvalidType())
|
|
return Context.getTrivialTypeSourceInfo(T);
|
|
|
|
return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified
|
|
/// declarator to Type instances.
|
|
///
|
|
/// The result of this call will never be null, but the associated
|
|
/// type may be a null type if there's an unrecoverable error.
|
|
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
|
|
// Determine the type of the declarator. Not all forms of declarator
|
|
// have a type.
|
|
|
|
TypeProcessingState state(*this, D);
|
|
|
|
TypeSourceInfo *ReturnTypeInfo = nullptr;
|
|
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
|
|
|
|
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
|
|
inferARCWriteback(state, T);
|
|
|
|
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclSpec(Sema &S,
|
|
QualType &declSpecTy,
|
|
Qualifiers::ObjCLifetime ownership) {
|
|
if (declSpecTy->isObjCRetainableType() &&
|
|
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
|
|
Qualifiers qs;
|
|
qs.addObjCLifetime(ownership);
|
|
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
|
|
}
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
|
|
Qualifiers::ObjCLifetime ownership,
|
|
unsigned chunkIndex) {
|
|
Sema &S = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
|
|
// Look for an explicit lifetime attribute.
|
|
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
|
|
for (const AttributeList *attr = chunk.getAttrs(); attr;
|
|
attr = attr->getNext())
|
|
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
|
|
return;
|
|
|
|
const char *attrStr = nullptr;
|
|
switch (ownership) {
|
|
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
|
|
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
|
|
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
|
|
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
|
|
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
|
|
}
|
|
|
|
IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
|
|
Arg->Ident = &S.Context.Idents.get(attrStr);
|
|
Arg->Loc = SourceLocation();
|
|
|
|
ArgsUnion Args(Arg);
|
|
|
|
// If there wasn't one, add one (with an invalid source location
|
|
// so that we don't make an AttributedType for it).
|
|
AttributeList *attr = D.getAttributePool()
|
|
.create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
|
|
/*scope*/ nullptr, SourceLocation(),
|
|
/*args*/ &Args, 1, AttributeList::AS_GNU);
|
|
spliceAttrIntoList(*attr, chunk.getAttrListRef());
|
|
|
|
// TODO: mark whether we did this inference?
|
|
}
|
|
|
|
/// \brief Used for transferring ownership in casts resulting in l-values.
|
|
static void transferARCOwnership(TypeProcessingState &state,
|
|
QualType &declSpecTy,
|
|
Qualifiers::ObjCLifetime ownership) {
|
|
Sema &S = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
|
|
int inner = -1;
|
|
bool hasIndirection = false;
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = D.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
// Ignore parens.
|
|
break;
|
|
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pointer:
|
|
if (inner != -1)
|
|
hasIndirection = true;
|
|
inner = i;
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
if (inner != -1)
|
|
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
|
|
return;
|
|
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Pipe:
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (inner == -1)
|
|
return;
|
|
|
|
DeclaratorChunk &chunk = D.getTypeObject(inner);
|
|
if (chunk.Kind == DeclaratorChunk::Pointer) {
|
|
if (declSpecTy->isObjCRetainableType())
|
|
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
|
|
if (declSpecTy->isObjCObjectType() && hasIndirection)
|
|
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
|
|
} else {
|
|
assert(chunk.Kind == DeclaratorChunk::Array ||
|
|
chunk.Kind == DeclaratorChunk::Reference);
|
|
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
|
|
TypeProcessingState state(*this, D);
|
|
|
|
TypeSourceInfo *ReturnTypeInfo = nullptr;
|
|
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
|
|
|
|
if (getLangOpts().ObjC1) {
|
|
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
|
|
if (ownership != Qualifiers::OCL_None)
|
|
transferARCOwnership(state, declSpecTy, ownership);
|
|
}
|
|
|
|
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
|
|
}
|
|
|
|
/// Map an AttributedType::Kind to an AttributeList::Kind.
|
|
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
|
|
switch (kind) {
|
|
case AttributedType::attr_address_space:
|
|
return AttributeList::AT_AddressSpace;
|
|
case AttributedType::attr_regparm:
|
|
return AttributeList::AT_Regparm;
|
|
case AttributedType::attr_vector_size:
|
|
return AttributeList::AT_VectorSize;
|
|
case AttributedType::attr_neon_vector_type:
|
|
return AttributeList::AT_NeonVectorType;
|
|
case AttributedType::attr_neon_polyvector_type:
|
|
return AttributeList::AT_NeonPolyVectorType;
|
|
case AttributedType::attr_objc_gc:
|
|
return AttributeList::AT_ObjCGC;
|
|
case AttributedType::attr_objc_ownership:
|
|
case AttributedType::attr_objc_inert_unsafe_unretained:
|
|
return AttributeList::AT_ObjCOwnership;
|
|
case AttributedType::attr_noreturn:
|
|
return AttributeList::AT_NoReturn;
|
|
case AttributedType::attr_cdecl:
|
|
return AttributeList::AT_CDecl;
|
|
case AttributedType::attr_fastcall:
|
|
return AttributeList::AT_FastCall;
|
|
case AttributedType::attr_stdcall:
|
|
return AttributeList::AT_StdCall;
|
|
case AttributedType::attr_thiscall:
|
|
return AttributeList::AT_ThisCall;
|
|
case AttributedType::attr_regcall:
|
|
return AttributeList::AT_RegCall;
|
|
case AttributedType::attr_pascal:
|
|
return AttributeList::AT_Pascal;
|
|
case AttributedType::attr_swiftcall:
|
|
return AttributeList::AT_SwiftCall;
|
|
case AttributedType::attr_vectorcall:
|
|
return AttributeList::AT_VectorCall;
|
|
case AttributedType::attr_pcs:
|
|
case AttributedType::attr_pcs_vfp:
|
|
return AttributeList::AT_Pcs;
|
|
case AttributedType::attr_inteloclbicc:
|
|
return AttributeList::AT_IntelOclBicc;
|
|
case AttributedType::attr_ms_abi:
|
|
return AttributeList::AT_MSABI;
|
|
case AttributedType::attr_sysv_abi:
|
|
return AttributeList::AT_SysVABI;
|
|
case AttributedType::attr_preserve_most:
|
|
return AttributeList::AT_PreserveMost;
|
|
case AttributedType::attr_preserve_all:
|
|
return AttributeList::AT_PreserveAll;
|
|
case AttributedType::attr_ptr32:
|
|
return AttributeList::AT_Ptr32;
|
|
case AttributedType::attr_ptr64:
|
|
return AttributeList::AT_Ptr64;
|
|
case AttributedType::attr_sptr:
|
|
return AttributeList::AT_SPtr;
|
|
case AttributedType::attr_uptr:
|
|
return AttributeList::AT_UPtr;
|
|
case AttributedType::attr_nonnull:
|
|
return AttributeList::AT_TypeNonNull;
|
|
case AttributedType::attr_nullable:
|
|
return AttributeList::AT_TypeNullable;
|
|
case AttributedType::attr_null_unspecified:
|
|
return AttributeList::AT_TypeNullUnspecified;
|
|
case AttributedType::attr_objc_kindof:
|
|
return AttributeList::AT_ObjCKindOf;
|
|
}
|
|
llvm_unreachable("unexpected attribute kind!");
|
|
}
|
|
|
|
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
|
|
const AttributeList *attrs,
|
|
const AttributeList *DeclAttrs = nullptr) {
|
|
// DeclAttrs and attrs cannot be both empty.
|
|
assert((attrs || DeclAttrs) &&
|
|
"no type attributes in the expected location!");
|
|
|
|
AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
|
|
// Try to search for an attribute of matching kind in attrs list.
|
|
while (attrs && attrs->getKind() != parsedKind)
|
|
attrs = attrs->getNext();
|
|
if (!attrs) {
|
|
// No matching type attribute in attrs list found.
|
|
// Try searching through C++11 attributes in the declarator attribute list.
|
|
while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
|
|
DeclAttrs->getKind() != parsedKind))
|
|
DeclAttrs = DeclAttrs->getNext();
|
|
attrs = DeclAttrs;
|
|
}
|
|
|
|
assert(attrs && "no matching type attribute in expected location!");
|
|
|
|
TL.setAttrNameLoc(attrs->getLoc());
|
|
if (TL.hasAttrExprOperand()) {
|
|
assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
|
|
TL.setAttrExprOperand(attrs->getArgAsExpr(0));
|
|
} else if (TL.hasAttrEnumOperand()) {
|
|
assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
|
|
"unexpected attribute operand kind");
|
|
if (attrs->isArgIdent(0))
|
|
TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
|
|
else
|
|
TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
|
|
}
|
|
|
|
// FIXME: preserve this information to here.
|
|
if (TL.hasAttrOperand())
|
|
TL.setAttrOperandParensRange(SourceRange());
|
|
}
|
|
|
|
namespace {
|
|
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclSpec &DS;
|
|
|
|
public:
|
|
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
|
|
: Context(Context), DS(DS) {}
|
|
|
|
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
|
|
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
|
|
Visit(TL.getModifiedLoc());
|
|
}
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
Visit(TL.getUnqualifiedLoc());
|
|
}
|
|
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
}
|
|
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
|
|
// addition field. What we have is good enough for dispay of location
|
|
// of 'fixit' on interface name.
|
|
TL.setNameEndLoc(DS.getLocEnd());
|
|
}
|
|
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
|
|
TypeSourceInfo *RepTInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
|
|
TL.copy(RepTInfo->getTypeLoc());
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
TypeSourceInfo *RepTInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
|
|
TL.copy(RepTInfo->getTypeLoc());
|
|
}
|
|
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
|
|
// If we got no declarator info from previous Sema routines,
|
|
// just fill with the typespec loc.
|
|
if (!TInfo) {
|
|
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
|
|
return;
|
|
}
|
|
|
|
TypeLoc OldTL = TInfo->getTypeLoc();
|
|
if (TInfo->getType()->getAs<ElaboratedType>()) {
|
|
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
|
|
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
|
|
.castAs<TemplateSpecializationTypeLoc>();
|
|
TL.copy(NamedTL);
|
|
} else {
|
|
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
|
|
assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
|
|
}
|
|
|
|
}
|
|
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
}
|
|
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
assert(DS.getRepAsType());
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.setUnderlyingTInfo(TInfo);
|
|
}
|
|
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
|
|
// FIXME: This holds only because we only have one unary transform.
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
|
|
TL.setKWLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
assert(DS.getRepAsType());
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.setUnderlyingTInfo(TInfo);
|
|
}
|
|
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
|
|
// By default, use the source location of the type specifier.
|
|
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
|
|
if (TL.needsExtraLocalData()) {
|
|
// Set info for the written builtin specifiers.
|
|
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
|
|
// Try to have a meaningful source location.
|
|
if (TL.getWrittenSignSpec() != TSS_unspecified)
|
|
TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
|
|
if (TL.getWrittenWidthSpec() != TSW_unspecified)
|
|
TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
|
|
}
|
|
}
|
|
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
if (DS.getTypeSpecType() == TST_typename) {
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
if (TInfo) {
|
|
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
|
|
return;
|
|
}
|
|
}
|
|
TL.setElaboratedKeywordLoc(Keyword != ETK_None
|
|
? DS.getTypeSpecTypeLoc()
|
|
: SourceLocation());
|
|
const CXXScopeSpec& SS = DS.getTypeSpecScope();
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
|
|
}
|
|
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == TST_typename);
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
|
|
}
|
|
void VisitDependentTemplateSpecializationTypeLoc(
|
|
DependentTemplateSpecializationTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == TST_typename);
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.copy(
|
|
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
|
|
}
|
|
void VisitTagTypeLoc(TagTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
|
|
}
|
|
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
|
|
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
|
|
// or an _Atomic qualifier.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
|
|
TL.setKWLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
|
|
} else {
|
|
TL.setKWLoc(DS.getAtomicSpecLoc());
|
|
// No parens, to indicate this was spelled as an _Atomic qualifier.
|
|
TL.setParensRange(SourceRange());
|
|
Visit(TL.getValueLoc());
|
|
}
|
|
}
|
|
|
|
void VisitPipeTypeLoc(PipeTypeLoc TL) {
|
|
TL.setKWLoc(DS.getTypeSpecTypeLoc());
|
|
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
// FIXME: add other typespec types and change this to an assert.
|
|
TL.initialize(Context, DS.getTypeSpecTypeLoc());
|
|
}
|
|
};
|
|
|
|
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclaratorChunk &Chunk;
|
|
|
|
public:
|
|
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
|
|
: Context(Context), Chunk(Chunk) {}
|
|
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
llvm_unreachable("qualified type locs not expected here!");
|
|
}
|
|
void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
|
|
llvm_unreachable("decayed type locs not expected here!");
|
|
}
|
|
|
|
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
|
|
fillAttributedTypeLoc(TL, Chunk.getAttrs());
|
|
}
|
|
void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
|
|
// nothing
|
|
}
|
|
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
|
|
TL.setCaretLoc(Chunk.Loc);
|
|
}
|
|
void VisitPointerTypeLoc(PointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
|
|
const CXXScopeSpec& SS = Chunk.Mem.Scope();
|
|
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
|
|
|
|
const Type* ClsTy = TL.getClass();
|
|
QualType ClsQT = QualType(ClsTy, 0);
|
|
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
|
|
// Now copy source location info into the type loc component.
|
|
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
|
|
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
|
|
{
|
|
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
|
|
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
|
|
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
if (isa<ElaboratedType>(ClsTy)) {
|
|
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
|
|
ETLoc.setElaboratedKeywordLoc(SourceLocation());
|
|
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
|
|
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
} else {
|
|
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Super:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
}
|
|
|
|
// Finally fill in MemberPointerLocInfo fields.
|
|
TL.setStarLoc(Chunk.Loc);
|
|
TL.setClassTInfo(ClsTInfo);
|
|
}
|
|
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
// 'Amp' is misleading: this might have been originally
|
|
/// spelled with AmpAmp.
|
|
TL.setAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
assert(!Chunk.Ref.LValueRef);
|
|
TL.setAmpAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Array);
|
|
TL.setLBracketLoc(Chunk.Loc);
|
|
TL.setRBracketLoc(Chunk.EndLoc);
|
|
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
|
|
}
|
|
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
TL.setLocalRangeBegin(Chunk.Loc);
|
|
TL.setLocalRangeEnd(Chunk.EndLoc);
|
|
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
|
|
TL.setLParenLoc(FTI.getLParenLoc());
|
|
TL.setRParenLoc(FTI.getRParenLoc());
|
|
for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
|
|
TL.setParam(tpi++, Param);
|
|
}
|
|
TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
|
|
}
|
|
void VisitParenTypeLoc(ParenTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Paren);
|
|
TL.setLParenLoc(Chunk.Loc);
|
|
TL.setRParenLoc(Chunk.EndLoc);
|
|
}
|
|
void VisitPipeTypeLoc(PipeTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pipe);
|
|
TL.setKWLoc(Chunk.Loc);
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
llvm_unreachable("unsupported TypeLoc kind in declarator!");
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
|
|
SourceLocation Loc;
|
|
switch (Chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Pipe:
|
|
llvm_unreachable("cannot be _Atomic qualified");
|
|
|
|
case DeclaratorChunk::Pointer:
|
|
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
// FIXME: Provide a source location for the _Atomic keyword.
|
|
break;
|
|
}
|
|
|
|
ATL.setKWLoc(Loc);
|
|
ATL.setParensRange(SourceRange());
|
|
}
|
|
|
|
/// \brief Create and instantiate a TypeSourceInfo with type source information.
|
|
///
|
|
/// \param T QualType referring to the type as written in source code.
|
|
///
|
|
/// \param ReturnTypeInfo For declarators whose return type does not show
|
|
/// up in the normal place in the declaration specifiers (such as a C++
|
|
/// conversion function), this pointer will refer to a type source information
|
|
/// for that return type.
|
|
TypeSourceInfo *
|
|
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
|
|
TypeSourceInfo *ReturnTypeInfo) {
|
|
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
|
|
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
|
|
const AttributeList *DeclAttrs = D.getAttributes();
|
|
|
|
// Handle parameter packs whose type is a pack expansion.
|
|
if (isa<PackExpansionType>(T)) {
|
|
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
// An AtomicTypeLoc might be produced by an atomic qualifier in this
|
|
// declarator chunk.
|
|
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
|
|
fillAtomicQualLoc(ATL, D.getTypeObject(i));
|
|
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
|
|
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
|
|
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
// FIXME: Ordering here?
|
|
while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
|
|
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
|
|
|
|
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
// If we have different source information for the return type, use
|
|
// that. This really only applies to C++ conversion functions.
|
|
if (ReturnTypeInfo) {
|
|
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
|
|
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
|
|
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
|
|
} else {
|
|
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
|
|
}
|
|
|
|
return TInfo;
|
|
}
|
|
|
|
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
|
|
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
|
|
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
|
|
// and Sema during declaration parsing. Try deallocating/caching them when
|
|
// it's appropriate, instead of allocating them and keeping them around.
|
|
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
|
|
TypeAlignment);
|
|
new (LocT) LocInfoType(T, TInfo);
|
|
assert(LocT->getTypeClass() != T->getTypeClass() &&
|
|
"LocInfoType's TypeClass conflicts with an existing Type class");
|
|
return ParsedType::make(QualType(LocT, 0));
|
|
}
|
|
|
|
void LocInfoType::getAsStringInternal(std::string &Str,
|
|
const PrintingPolicy &Policy) const {
|
|
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
|
|
" was used directly instead of getting the QualType through"
|
|
" GetTypeFromParser");
|
|
}
|
|
|
|
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == nullptr &&
|
|
"Type name should have no identifier!");
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
if (D.isInvalidType())
|
|
return true;
|
|
|
|
// Make sure there are no unused decl attributes on the declarator.
|
|
// We don't want to do this for ObjC parameters because we're going
|
|
// to apply them to the actual parameter declaration.
|
|
// Likewise, we don't want to do this for alias declarations, because
|
|
// we are actually going to build a declaration from this eventually.
|
|
if (D.getContext() != Declarator::ObjCParameterContext &&
|
|
D.getContext() != Declarator::AliasDeclContext &&
|
|
D.getContext() != Declarator::AliasTemplateContext)
|
|
checkUnusedDeclAttributes(D);
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// Check that there are no default arguments (C++ only).
|
|
CheckExtraCXXDefaultArguments(D);
|
|
}
|
|
|
|
return CreateParsedType(T, TInfo);
|
|
}
|
|
|
|
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
|
|
QualType T = Context.getObjCInstanceType();
|
|
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
|
|
return CreateParsedType(T, TInfo);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Attribute Processing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
|
|
/// specified type. The attribute contains 1 argument, the id of the address
|
|
/// space for the type.
|
|
static void HandleAddressSpaceTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S){
|
|
|
|
// If this type is already address space qualified, reject it.
|
|
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
|
|
// qualifiers for two or more different address spaces."
|
|
if (Type.getAddressSpace()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
|
|
// qualified by an address-space qualifier."
|
|
if (Type->isFunctionType()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
unsigned ASIdx;
|
|
if (Attr.getKind() == AttributeList::AT_AddressSpace) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< Attr.getName() << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
|
|
llvm::APSInt addrSpace(32);
|
|
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
|
|
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
|
|
<< Attr.getName() << AANT_ArgumentIntegerConstant
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Bounds checking.
|
|
if (addrSpace.isSigned()) {
|
|
if (addrSpace.isNegative()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
addrSpace.setIsSigned(false);
|
|
}
|
|
llvm::APSInt max(addrSpace.getBitWidth());
|
|
max = Qualifiers::MaxAddressSpace;
|
|
if (addrSpace > max) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
|
|
<< int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
|
|
} else {
|
|
// The keyword-based type attributes imply which address space to use.
|
|
switch (Attr.getKind()) {
|
|
case AttributeList::AT_OpenCLGlobalAddressSpace:
|
|
ASIdx = LangAS::opencl_global; break;
|
|
case AttributeList::AT_OpenCLLocalAddressSpace:
|
|
ASIdx = LangAS::opencl_local; break;
|
|
case AttributeList::AT_OpenCLConstantAddressSpace:
|
|
ASIdx = LangAS::opencl_constant; break;
|
|
case AttributeList::AT_OpenCLGenericAddressSpace:
|
|
ASIdx = LangAS::opencl_generic; break;
|
|
default:
|
|
assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
|
|
ASIdx = 0; break;
|
|
}
|
|
}
|
|
|
|
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
|
|
}
|
|
|
|
/// Does this type have a "direct" ownership qualifier? That is,
|
|
/// is it written like "__strong id", as opposed to something like
|
|
/// "typeof(foo)", where that happens to be strong?
|
|
static bool hasDirectOwnershipQualifier(QualType type) {
|
|
// Fast path: no qualifier at all.
|
|
assert(type.getQualifiers().hasObjCLifetime());
|
|
|
|
while (true) {
|
|
// __strong id
|
|
if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
|
|
if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
|
|
return true;
|
|
|
|
type = attr->getModifiedType();
|
|
|
|
// X *__strong (...)
|
|
} else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
|
|
type = paren->getInnerType();
|
|
|
|
// That's it for things we want to complain about. In particular,
|
|
// we do not want to look through typedefs, typeof(expr),
|
|
// typeof(type), or any other way that the type is somehow
|
|
// abstracted.
|
|
} else {
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
|
|
/// attribute on the specified type.
|
|
///
|
|
/// Returns 'true' if the attribute was handled.
|
|
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
bool NonObjCPointer = false;
|
|
|
|
if (!type->isDependentType() && !type->isUndeducedType()) {
|
|
if (const PointerType *ptr = type->getAs<PointerType>()) {
|
|
QualType pointee = ptr->getPointeeType();
|
|
if (pointee->isObjCRetainableType() || pointee->isPointerType())
|
|
return false;
|
|
// It is important not to lose the source info that there was an attribute
|
|
// applied to non-objc pointer. We will create an attributed type but
|
|
// its type will be the same as the original type.
|
|
NonObjCPointer = true;
|
|
} else if (!type->isObjCRetainableType()) {
|
|
return false;
|
|
}
|
|
|
|
// Don't accept an ownership attribute in the declspec if it would
|
|
// just be the return type of a block pointer.
|
|
if (state.isProcessingDeclSpec()) {
|
|
Declarator &D = state.getDeclarator();
|
|
if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
|
|
/*onlyBlockPointers=*/true))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Sema &S = state.getSema();
|
|
SourceLocation AttrLoc = attr.getLoc();
|
|
if (AttrLoc.isMacroID())
|
|
AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
|
|
|
|
if (!attr.isArgIdent(0)) {
|
|
S.Diag(AttrLoc, diag::err_attribute_argument_type)
|
|
<< attr.getName() << AANT_ArgumentString;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
|
|
Qualifiers::ObjCLifetime lifetime;
|
|
if (II->isStr("none"))
|
|
lifetime = Qualifiers::OCL_ExplicitNone;
|
|
else if (II->isStr("strong"))
|
|
lifetime = Qualifiers::OCL_Strong;
|
|
else if (II->isStr("weak"))
|
|
lifetime = Qualifiers::OCL_Weak;
|
|
else if (II->isStr("autoreleasing"))
|
|
lifetime = Qualifiers::OCL_Autoreleasing;
|
|
else {
|
|
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
|
|
<< attr.getName() << II;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Just ignore lifetime attributes other than __weak and __unsafe_unretained
|
|
// outside of ARC mode.
|
|
if (!S.getLangOpts().ObjCAutoRefCount &&
|
|
lifetime != Qualifiers::OCL_Weak &&
|
|
lifetime != Qualifiers::OCL_ExplicitNone) {
|
|
return true;
|
|
}
|
|
|
|
SplitQualType underlyingType = type.split();
|
|
|
|
// Check for redundant/conflicting ownership qualifiers.
|
|
if (Qualifiers::ObjCLifetime previousLifetime
|
|
= type.getQualifiers().getObjCLifetime()) {
|
|
// If it's written directly, that's an error.
|
|
if (hasDirectOwnershipQualifier(type)) {
|
|
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
|
|
<< type;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if the qualifiers actually conflict, pull sugar off
|
|
// and remove the ObjCLifetime qualifiers.
|
|
if (previousLifetime != lifetime) {
|
|
// It's possible to have multiple local ObjCLifetime qualifiers. We
|
|
// can't stop after we reach a type that is directly qualified.
|
|
const Type *prevTy = nullptr;
|
|
while (!prevTy || prevTy != underlyingType.Ty) {
|
|
prevTy = underlyingType.Ty;
|
|
underlyingType = underlyingType.getSingleStepDesugaredType();
|
|
}
|
|
underlyingType.Quals.removeObjCLifetime();
|
|
}
|
|
}
|
|
|
|
underlyingType.Quals.addObjCLifetime(lifetime);
|
|
|
|
if (NonObjCPointer) {
|
|
StringRef name = attr.getName()->getName();
|
|
switch (lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
break;
|
|
case Qualifiers::OCL_Strong: name = "__strong"; break;
|
|
case Qualifiers::OCL_Weak: name = "__weak"; break;
|
|
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
|
|
}
|
|
S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
|
|
<< TDS_ObjCObjOrBlock << type;
|
|
}
|
|
|
|
// Don't actually add the __unsafe_unretained qualifier in non-ARC files,
|
|
// because having both 'T' and '__unsafe_unretained T' exist in the type
|
|
// system causes unfortunate widespread consistency problems. (For example,
|
|
// they're not considered compatible types, and we mangle them identicially
|
|
// as template arguments.) These problems are all individually fixable,
|
|
// but it's easier to just not add the qualifier and instead sniff it out
|
|
// in specific places using isObjCInertUnsafeUnretainedType().
|
|
//
|
|
// Doing this does means we miss some trivial consistency checks that
|
|
// would've triggered in ARC, but that's better than trying to solve all
|
|
// the coexistence problems with __unsafe_unretained.
|
|
if (!S.getLangOpts().ObjCAutoRefCount &&
|
|
lifetime == Qualifiers::OCL_ExplicitNone) {
|
|
type = S.Context.getAttributedType(
|
|
AttributedType::attr_objc_inert_unsafe_unretained,
|
|
type, type);
|
|
return true;
|
|
}
|
|
|
|
QualType origType = type;
|
|
if (!NonObjCPointer)
|
|
type = S.Context.getQualifiedType(underlyingType);
|
|
|
|
// If we have a valid source location for the attribute, use an
|
|
// AttributedType instead.
|
|
if (AttrLoc.isValid())
|
|
type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
|
|
origType, type);
|
|
|
|
auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
|
|
unsigned diagnostic, QualType type) {
|
|
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
|
|
S.DelayedDiagnostics.add(
|
|
sema::DelayedDiagnostic::makeForbiddenType(
|
|
S.getSourceManager().getExpansionLoc(loc),
|
|
diagnostic, type, /*ignored*/ 0));
|
|
} else {
|
|
S.Diag(loc, diagnostic);
|
|
}
|
|
};
|
|
|
|
// Sometimes, __weak isn't allowed.
|
|
if (lifetime == Qualifiers::OCL_Weak &&
|
|
!S.getLangOpts().ObjCWeak && !NonObjCPointer) {
|
|
|
|
// Use a specialized diagnostic if the runtime just doesn't support them.
|
|
unsigned diagnostic =
|
|
(S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
|
|
: diag::err_arc_weak_no_runtime);
|
|
|
|
// In any case, delay the diagnostic until we know what we're parsing.
|
|
diagnoseOrDelay(S, AttrLoc, diagnostic, type);
|
|
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Forbid __weak for class objects marked as
|
|
// objc_arc_weak_reference_unavailable
|
|
if (lifetime == Qualifiers::OCL_Weak) {
|
|
if (const ObjCObjectPointerType *ObjT =
|
|
type->getAs<ObjCObjectPointerType>()) {
|
|
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
|
|
if (Class->isArcWeakrefUnavailable()) {
|
|
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
|
|
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
|
|
diag::note_class_declared);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
|
|
/// attribute on the specified type. Returns true to indicate that
|
|
/// the attribute was handled, false to indicate that the type does
|
|
/// not permit the attribute.
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
// Delay if this isn't some kind of pointer.
|
|
if (!type->isPointerType() &&
|
|
!type->isObjCObjectPointerType() &&
|
|
!type->isBlockPointerType())
|
|
return false;
|
|
|
|
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (!attr.isArgIdent(0)) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
|
|
<< attr.getName() << AANT_ArgumentString;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
Qualifiers::GC GCAttr;
|
|
if (attr.getNumArgs() > 1) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< attr.getName() << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
|
|
if (II->isStr("weak"))
|
|
GCAttr = Qualifiers::Weak;
|
|
else if (II->isStr("strong"))
|
|
GCAttr = Qualifiers::Strong;
|
|
else {
|
|
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< attr.getName() << II;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
QualType origType = type;
|
|
type = S.Context.getObjCGCQualType(origType, GCAttr);
|
|
|
|
// Make an attributed type to preserve the source information.
|
|
if (attr.getLoc().isValid())
|
|
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
|
|
origType, type);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// A helper class to unwrap a type down to a function for the
|
|
/// purposes of applying attributes there.
|
|
///
|
|
/// Use:
|
|
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
|
|
/// if (unwrapped.isFunctionType()) {
|
|
/// const FunctionType *fn = unwrapped.get();
|
|
/// // change fn somehow
|
|
/// T = unwrapped.wrap(fn);
|
|
/// }
|
|
struct FunctionTypeUnwrapper {
|
|
enum WrapKind {
|
|
Desugar,
|
|
Attributed,
|
|
Parens,
|
|
Pointer,
|
|
BlockPointer,
|
|
Reference,
|
|
MemberPointer
|
|
};
|
|
|
|
QualType Original;
|
|
const FunctionType *Fn;
|
|
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
|
|
|
|
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
|
|
while (true) {
|
|
const Type *Ty = T.getTypePtr();
|
|
if (isa<FunctionType>(Ty)) {
|
|
Fn = cast<FunctionType>(Ty);
|
|
return;
|
|
} else if (isa<ParenType>(Ty)) {
|
|
T = cast<ParenType>(Ty)->getInnerType();
|
|
Stack.push_back(Parens);
|
|
} else if (isa<PointerType>(Ty)) {
|
|
T = cast<PointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(Pointer);
|
|
} else if (isa<BlockPointerType>(Ty)) {
|
|
T = cast<BlockPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(BlockPointer);
|
|
} else if (isa<MemberPointerType>(Ty)) {
|
|
T = cast<MemberPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(MemberPointer);
|
|
} else if (isa<ReferenceType>(Ty)) {
|
|
T = cast<ReferenceType>(Ty)->getPointeeType();
|
|
Stack.push_back(Reference);
|
|
} else if (isa<AttributedType>(Ty)) {
|
|
T = cast<AttributedType>(Ty)->getEquivalentType();
|
|
Stack.push_back(Attributed);
|
|
} else {
|
|
const Type *DTy = Ty->getUnqualifiedDesugaredType();
|
|
if (Ty == DTy) {
|
|
Fn = nullptr;
|
|
return;
|
|
}
|
|
|
|
T = QualType(DTy, 0);
|
|
Stack.push_back(Desugar);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isFunctionType() const { return (Fn != nullptr); }
|
|
const FunctionType *get() const { return Fn; }
|
|
|
|
QualType wrap(Sema &S, const FunctionType *New) {
|
|
// If T wasn't modified from the unwrapped type, do nothing.
|
|
if (New == get()) return Original;
|
|
|
|
Fn = New;
|
|
return wrap(S.Context, Original, 0);
|
|
}
|
|
|
|
private:
|
|
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
|
|
if (I == Stack.size())
|
|
return C.getQualifiedType(Fn, Old.getQualifiers());
|
|
|
|
// Build up the inner type, applying the qualifiers from the old
|
|
// type to the new type.
|
|
SplitQualType SplitOld = Old.split();
|
|
|
|
// As a special case, tail-recurse if there are no qualifiers.
|
|
if (SplitOld.Quals.empty())
|
|
return wrap(C, SplitOld.Ty, I);
|
|
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
|
|
}
|
|
|
|
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
|
|
if (I == Stack.size()) return QualType(Fn, 0);
|
|
|
|
switch (static_cast<WrapKind>(Stack[I++])) {
|
|
case Desugar:
|
|
// This is the point at which we potentially lose source
|
|
// information.
|
|
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
|
|
|
|
case Attributed:
|
|
return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
|
|
|
|
case Parens: {
|
|
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
|
|
return C.getParenType(New);
|
|
}
|
|
|
|
case Pointer: {
|
|
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
|
|
return C.getPointerType(New);
|
|
}
|
|
|
|
case BlockPointer: {
|
|
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
|
|
return C.getBlockPointerType(New);
|
|
}
|
|
|
|
case MemberPointer: {
|
|
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
|
|
QualType New = wrap(C, OldMPT->getPointeeType(), I);
|
|
return C.getMemberPointerType(New, OldMPT->getClass());
|
|
}
|
|
|
|
case Reference: {
|
|
const ReferenceType *OldRef = cast<ReferenceType>(Old);
|
|
QualType New = wrap(C, OldRef->getPointeeType(), I);
|
|
if (isa<LValueReferenceType>(OldRef))
|
|
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
|
|
else
|
|
return C.getRValueReferenceType(New);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown wrapping kind");
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
|
|
AttributeList &Attr,
|
|
QualType &Type) {
|
|
Sema &S = State.getSema();
|
|
|
|
AttributeList::Kind Kind = Attr.getKind();
|
|
QualType Desugared = Type;
|
|
const AttributedType *AT = dyn_cast<AttributedType>(Type);
|
|
while (AT) {
|
|
AttributedType::Kind CurAttrKind = AT->getAttrKind();
|
|
|
|
// You cannot specify duplicate type attributes, so if the attribute has
|
|
// already been applied, flag it.
|
|
if (getAttrListKind(CurAttrKind) == Kind) {
|
|
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
|
|
<< Attr.getName();
|
|
return true;
|
|
}
|
|
|
|
// You cannot have both __sptr and __uptr on the same type, nor can you
|
|
// have __ptr32 and __ptr64.
|
|
if ((CurAttrKind == AttributedType::attr_ptr32 &&
|
|
Kind == AttributeList::AT_Ptr64) ||
|
|
(CurAttrKind == AttributedType::attr_ptr64 &&
|
|
Kind == AttributeList::AT_Ptr32)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< "'__ptr32'" << "'__ptr64'";
|
|
return true;
|
|
} else if ((CurAttrKind == AttributedType::attr_sptr &&
|
|
Kind == AttributeList::AT_UPtr) ||
|
|
(CurAttrKind == AttributedType::attr_uptr &&
|
|
Kind == AttributeList::AT_SPtr)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< "'__sptr'" << "'__uptr'";
|
|
return true;
|
|
}
|
|
|
|
Desugared = AT->getEquivalentType();
|
|
AT = dyn_cast<AttributedType>(Desugared);
|
|
}
|
|
|
|
// Pointer type qualifiers can only operate on pointer types, but not
|
|
// pointer-to-member types.
|
|
if (!isa<PointerType>(Desugared)) {
|
|
if (Type->isMemberPointerType())
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
|
|
<< Attr.getName();
|
|
else
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
|
|
<< Attr.getName() << 0;
|
|
return true;
|
|
}
|
|
|
|
AttributedType::Kind TAK;
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown attribute kind");
|
|
case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
|
|
case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
|
|
case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
|
|
case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
|
|
}
|
|
|
|
Type = S.Context.getAttributedType(TAK, Type, Type);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::checkNullabilityTypeSpecifier(QualType &type,
|
|
NullabilityKind nullability,
|
|
SourceLocation nullabilityLoc,
|
|
bool isContextSensitive,
|
|
bool allowOnArrayType) {
|
|
recordNullabilitySeen(*this, nullabilityLoc);
|
|
|
|
// Check for existing nullability attributes on the type.
|
|
QualType desugared = type;
|
|
while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
|
|
// Check whether there is already a null
|
|
if (auto existingNullability = attributed->getImmediateNullability()) {
|
|
// Duplicated nullability.
|
|
if (nullability == *existingNullability) {
|
|
Diag(nullabilityLoc, diag::warn_nullability_duplicate)
|
|
<< DiagNullabilityKind(nullability, isContextSensitive)
|
|
<< FixItHint::CreateRemoval(nullabilityLoc);
|
|
|
|
break;
|
|
}
|
|
|
|
// Conflicting nullability.
|
|
Diag(nullabilityLoc, diag::err_nullability_conflicting)
|
|
<< DiagNullabilityKind(nullability, isContextSensitive)
|
|
<< DiagNullabilityKind(*existingNullability, false);
|
|
return true;
|
|
}
|
|
|
|
desugared = attributed->getModifiedType();
|
|
}
|
|
|
|
// If there is already a different nullability specifier, complain.
|
|
// This (unlike the code above) looks through typedefs that might
|
|
// have nullability specifiers on them, which means we cannot
|
|
// provide a useful Fix-It.
|
|
if (auto existingNullability = desugared->getNullability(Context)) {
|
|
if (nullability != *existingNullability) {
|
|
Diag(nullabilityLoc, diag::err_nullability_conflicting)
|
|
<< DiagNullabilityKind(nullability, isContextSensitive)
|
|
<< DiagNullabilityKind(*existingNullability, false);
|
|
|
|
// Try to find the typedef with the existing nullability specifier.
|
|
if (auto typedefType = desugared->getAs<TypedefType>()) {
|
|
TypedefNameDecl *typedefDecl = typedefType->getDecl();
|
|
QualType underlyingType = typedefDecl->getUnderlyingType();
|
|
if (auto typedefNullability
|
|
= AttributedType::stripOuterNullability(underlyingType)) {
|
|
if (*typedefNullability == *existingNullability) {
|
|
Diag(typedefDecl->getLocation(), diag::note_nullability_here)
|
|
<< DiagNullabilityKind(*existingNullability, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this definitely isn't a pointer type, reject the specifier.
|
|
if (!desugared->canHaveNullability() &&
|
|
!(allowOnArrayType && desugared->isArrayType())) {
|
|
Diag(nullabilityLoc, diag::err_nullability_nonpointer)
|
|
<< DiagNullabilityKind(nullability, isContextSensitive) << type;
|
|
return true;
|
|
}
|
|
|
|
// For the context-sensitive keywords/Objective-C property
|
|
// attributes, require that the type be a single-level pointer.
|
|
if (isContextSensitive) {
|
|
// Make sure that the pointee isn't itself a pointer type.
|
|
const Type *pointeeType;
|
|
if (desugared->isArrayType())
|
|
pointeeType = desugared->getArrayElementTypeNoTypeQual();
|
|
else
|
|
pointeeType = desugared->getPointeeType().getTypePtr();
|
|
|
|
if (pointeeType->isAnyPointerType() ||
|
|
pointeeType->isObjCObjectPointerType() ||
|
|
pointeeType->isMemberPointerType()) {
|
|
Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
|
|
<< DiagNullabilityKind(nullability, true)
|
|
<< type;
|
|
Diag(nullabilityLoc, diag::note_nullability_type_specifier)
|
|
<< DiagNullabilityKind(nullability, false)
|
|
<< type
|
|
<< FixItHint::CreateReplacement(nullabilityLoc,
|
|
getNullabilitySpelling(nullability));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Form the attributed type.
|
|
type = Context.getAttributedType(
|
|
AttributedType::getNullabilityAttrKind(nullability), type, type);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::checkObjCKindOfType(QualType &type, SourceLocation loc) {
|
|
if (isa<ObjCTypeParamType>(type)) {
|
|
// Build the attributed type to record where __kindof occurred.
|
|
type = Context.getAttributedType(AttributedType::attr_objc_kindof,
|
|
type, type);
|
|
return false;
|
|
}
|
|
|
|
// Find out if it's an Objective-C object or object pointer type;
|
|
const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
|
|
: type->getAs<ObjCObjectType>();
|
|
|
|
// If not, we can't apply __kindof.
|
|
if (!objType) {
|
|
// FIXME: Handle dependent types that aren't yet object types.
|
|
Diag(loc, diag::err_objc_kindof_nonobject)
|
|
<< type;
|
|
return true;
|
|
}
|
|
|
|
// Rebuild the "equivalent" type, which pushes __kindof down into
|
|
// the object type.
|
|
// There is no need to apply kindof on an unqualified id type.
|
|
QualType equivType = Context.getObjCObjectType(
|
|
objType->getBaseType(), objType->getTypeArgsAsWritten(),
|
|
objType->getProtocols(),
|
|
/*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
|
|
|
|
// If we started with an object pointer type, rebuild it.
|
|
if (ptrType) {
|
|
equivType = Context.getObjCObjectPointerType(equivType);
|
|
if (auto nullability = type->getNullability(Context)) {
|
|
auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
|
|
equivType = Context.getAttributedType(attrKind, equivType, equivType);
|
|
}
|
|
}
|
|
|
|
// Build the attributed type to record where __kindof occurred.
|
|
type = Context.getAttributedType(AttributedType::attr_objc_kindof,
|
|
type,
|
|
equivType);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Map a nullability attribute kind to a nullability kind.
|
|
static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind) {
|
|
switch (kind) {
|
|
case AttributeList::AT_TypeNonNull:
|
|
return NullabilityKind::NonNull;
|
|
|
|
case AttributeList::AT_TypeNullable:
|
|
return NullabilityKind::Nullable;
|
|
|
|
case AttributeList::AT_TypeNullUnspecified:
|
|
return NullabilityKind::Unspecified;
|
|
|
|
default:
|
|
llvm_unreachable("not a nullability attribute kind");
|
|
}
|
|
}
|
|
|
|
/// Distribute a nullability type attribute that cannot be applied to
|
|
/// the type specifier to a pointer, block pointer, or member pointer
|
|
/// declarator, complaining if necessary.
|
|
///
|
|
/// \returns true if the nullability annotation was distributed, false
|
|
/// otherwise.
|
|
static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
|
|
QualType type,
|
|
AttributeList &attr) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
/// Attempt to move the attribute to the specified chunk.
|
|
auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
|
|
// If there is already a nullability attribute there, don't add
|
|
// one.
|
|
if (hasNullabilityAttr(chunk.getAttrListRef()))
|
|
return false;
|
|
|
|
// Complain about the nullability qualifier being in the wrong
|
|
// place.
|
|
enum {
|
|
PK_Pointer,
|
|
PK_BlockPointer,
|
|
PK_MemberPointer,
|
|
PK_FunctionPointer,
|
|
PK_MemberFunctionPointer,
|
|
} pointerKind
|
|
= chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
|
|
: PK_Pointer)
|
|
: chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
|
|
: inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
|
|
|
|
auto diag = state.getSema().Diag(attr.getLoc(),
|
|
diag::warn_nullability_declspec)
|
|
<< DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
|
|
attr.isContextSensitiveKeywordAttribute())
|
|
<< type
|
|
<< static_cast<unsigned>(pointerKind);
|
|
|
|
// FIXME: MemberPointer chunks don't carry the location of the *.
|
|
if (chunk.Kind != DeclaratorChunk::MemberPointer) {
|
|
diag << FixItHint::CreateRemoval(attr.getLoc())
|
|
<< FixItHint::CreateInsertion(
|
|
state.getSema().getPreprocessor()
|
|
.getLocForEndOfToken(chunk.Loc),
|
|
" " + attr.getName()->getName().str() + " ");
|
|
}
|
|
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
chunk.getAttrListRef());
|
|
return true;
|
|
};
|
|
|
|
// Move it to the outermost pointer, member pointer, or block
|
|
// pointer declarator.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return moveToChunk(chunk, false);
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Function:
|
|
// Try to move past the return type to a function/block/member
|
|
// function pointer.
|
|
if (DeclaratorChunk *dest = maybeMovePastReturnType(
|
|
declarator, i,
|
|
/*onlyBlockPointers=*/false)) {
|
|
return moveToChunk(*dest, true);
|
|
}
|
|
|
|
return false;
|
|
|
|
// Don't walk through these.
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pipe:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
|
|
assert(!Attr.isInvalid());
|
|
switch (Attr.getKind()) {
|
|
default:
|
|
llvm_unreachable("not a calling convention attribute");
|
|
case AttributeList::AT_CDecl:
|
|
return AttributedType::attr_cdecl;
|
|
case AttributeList::AT_FastCall:
|
|
return AttributedType::attr_fastcall;
|
|
case AttributeList::AT_StdCall:
|
|
return AttributedType::attr_stdcall;
|
|
case AttributeList::AT_ThisCall:
|
|
return AttributedType::attr_thiscall;
|
|
case AttributeList::AT_RegCall:
|
|
return AttributedType::attr_regcall;
|
|
case AttributeList::AT_Pascal:
|
|
return AttributedType::attr_pascal;
|
|
case AttributeList::AT_SwiftCall:
|
|
return AttributedType::attr_swiftcall;
|
|
case AttributeList::AT_VectorCall:
|
|
return AttributedType::attr_vectorcall;
|
|
case AttributeList::AT_Pcs: {
|
|
// The attribute may have had a fixit applied where we treated an
|
|
// identifier as a string literal. The contents of the string are valid,
|
|
// but the form may not be.
|
|
StringRef Str;
|
|
if (Attr.isArgExpr(0))
|
|
Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
|
|
else
|
|
Str = Attr.getArgAsIdent(0)->Ident->getName();
|
|
return llvm::StringSwitch<AttributedType::Kind>(Str)
|
|
.Case("aapcs", AttributedType::attr_pcs)
|
|
.Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
|
|
}
|
|
case AttributeList::AT_IntelOclBicc:
|
|
return AttributedType::attr_inteloclbicc;
|
|
case AttributeList::AT_MSABI:
|
|
return AttributedType::attr_ms_abi;
|
|
case AttributeList::AT_SysVABI:
|
|
return AttributedType::attr_sysv_abi;
|
|
case AttributeList::AT_PreserveMost:
|
|
return AttributedType::attr_preserve_most;
|
|
case AttributeList::AT_PreserveAll:
|
|
return AttributedType::attr_preserve_all;
|
|
}
|
|
llvm_unreachable("unexpected attribute kind!");
|
|
}
|
|
|
|
/// Process an individual function attribute. Returns true to
|
|
/// indicate that the attribute was handled, false if it wasn't.
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
FunctionTypeUnwrapper unwrapped(S, type);
|
|
|
|
if (attr.getKind() == AttributeList::AT_NoReturn) {
|
|
if (S.CheckNoReturnAttr(attr))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Otherwise we can process right away.
|
|
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
// ns_returns_retained is not always a type attribute, but if we got
|
|
// here, we're treating it as one right now.
|
|
if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
|
|
assert(S.getLangOpts().ObjCAutoRefCount &&
|
|
"ns_returns_retained treated as type attribute in non-ARC");
|
|
if (attr.getNumArgs()) return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
FunctionType::ExtInfo EI
|
|
= unwrapped.get()->getExtInfo().withProducesResult(true);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
if (attr.getKind() == AttributeList::AT_Regparm) {
|
|
unsigned value;
|
|
if (S.CheckRegparmAttr(attr, value))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Diagnose regparm with fastcall.
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CC = fn->getCallConv();
|
|
if (CC == CC_X86FastCall) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< "regparm";
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
FunctionType::ExtInfo EI =
|
|
unwrapped.get()->getExtInfo().withRegParm(value);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
// Delay if the type didn't work out to a function.
|
|
if (!unwrapped.isFunctionType()) return false;
|
|
|
|
// Otherwise, a calling convention.
|
|
CallingConv CC;
|
|
if (S.CheckCallingConvAttr(attr, CC))
|
|
return true;
|
|
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CCOld = fn->getCallConv();
|
|
AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
|
|
|
|
if (CCOld != CC) {
|
|
// Error out on when there's already an attribute on the type
|
|
// and the CCs don't match.
|
|
const AttributedType *AT = S.getCallingConvAttributedType(type);
|
|
if (AT && AT->getAttrKind() != CCAttrKind) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< FunctionType::getNameForCallConv(CCOld);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Diagnose use of variadic functions with calling conventions that
|
|
// don't support them (e.g. because they're callee-cleanup).
|
|
// We delay warning about this on unprototyped function declarations
|
|
// until after redeclaration checking, just in case we pick up a
|
|
// prototype that way. And apparently we also "delay" warning about
|
|
// unprototyped function types in general, despite not necessarily having
|
|
// much ability to diagnose it later.
|
|
if (!supportsVariadicCall(CC)) {
|
|
const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
|
|
if (FnP && FnP->isVariadic()) {
|
|
unsigned DiagID = diag::err_cconv_varargs;
|
|
|
|
// stdcall and fastcall are ignored with a warning for GCC and MS
|
|
// compatibility.
|
|
bool IsInvalid = true;
|
|
if (CC == CC_X86StdCall || CC == CC_X86FastCall) {
|
|
DiagID = diag::warn_cconv_varargs;
|
|
IsInvalid = false;
|
|
}
|
|
|
|
S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
|
|
if (IsInvalid) attr.setInvalid();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Also diagnose fastcall with regparm.
|
|
if (CC == CC_X86FastCall && fn->getHasRegParm()) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Modify the CC from the wrapped function type, wrap it all back, and then
|
|
// wrap the whole thing in an AttributedType as written. The modified type
|
|
// might have a different CC if we ignored the attribute.
|
|
QualType Equivalent;
|
|
if (CCOld == CC) {
|
|
Equivalent = type;
|
|
} else {
|
|
auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
|
|
Equivalent =
|
|
unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
}
|
|
type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
|
|
return true;
|
|
}
|
|
|
|
bool Sema::hasExplicitCallingConv(QualType &T) {
|
|
QualType R = T.IgnoreParens();
|
|
while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
|
|
if (AT->isCallingConv())
|
|
return true;
|
|
R = AT->getModifiedType().IgnoreParens();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
|
|
SourceLocation Loc) {
|
|
FunctionTypeUnwrapper Unwrapped(*this, T);
|
|
const FunctionType *FT = Unwrapped.get();
|
|
bool IsVariadic = (isa<FunctionProtoType>(FT) &&
|
|
cast<FunctionProtoType>(FT)->isVariadic());
|
|
CallingConv CurCC = FT->getCallConv();
|
|
CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
|
|
|
|
if (CurCC == ToCC)
|
|
return;
|
|
|
|
// MS compiler ignores explicit calling convention attributes on structors. We
|
|
// should do the same.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
|
|
// Issue a warning on ignored calling convention -- except of __stdcall.
|
|
// Again, this is what MS compiler does.
|
|
if (CurCC != CC_X86StdCall)
|
|
Diag(Loc, diag::warn_cconv_structors)
|
|
<< FunctionType::getNameForCallConv(CurCC);
|
|
// Default adjustment.
|
|
} else {
|
|
// Only adjust types with the default convention. For example, on Windows
|
|
// we should adjust a __cdecl type to __thiscall for instance methods, and a
|
|
// __thiscall type to __cdecl for static methods.
|
|
CallingConv DefaultCC =
|
|
Context.getDefaultCallingConvention(IsVariadic, IsStatic);
|
|
|
|
if (CurCC != DefaultCC || DefaultCC == ToCC)
|
|
return;
|
|
|
|
if (hasExplicitCallingConv(T))
|
|
return;
|
|
}
|
|
|
|
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
|
|
QualType Wrapped = Unwrapped.wrap(*this, FT);
|
|
T = Context.getAdjustedType(T, Wrapped);
|
|
}
|
|
|
|
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
|
|
/// and float scalars, although arrays, pointers, and function return values are
|
|
/// allowed in conjunction with this construct. Aggregates with this attribute
|
|
/// are invalid, even if they are of the same size as a corresponding scalar.
|
|
/// The raw attribute should contain precisely 1 argument, the vector size for
|
|
/// the variable, measured in bytes. If curType and rawAttr are well formed,
|
|
/// this routine will return a new vector type.
|
|
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
|
|
Sema &S) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< Attr.getName() << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
|
|
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
|
|
<< Attr.getName() << AANT_ArgumentIntegerConstant
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The base type must be integer (not Boolean or enumeration) or float, and
|
|
// can't already be a vector.
|
|
if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
|
|
(!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
// vecSize is specified in bytes - convert to bits.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
|
|
|
|
// the vector size needs to be an integral multiple of the type size.
|
|
if (vectorSize % typeSize) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
if (vectorSize == 0) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Success! Instantiate the vector type, the number of elements is > 0, and
|
|
// not required to be a power of 2, unlike GCC.
|
|
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
|
|
VectorType::GenericVector);
|
|
}
|
|
|
|
/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
|
|
/// a type.
|
|
static void HandleExtVectorTypeAttr(QualType &CurType,
|
|
const AttributeList &Attr,
|
|
Sema &S) {
|
|
// check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< Attr.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
Expr *sizeExpr;
|
|
|
|
// Special case where the argument is a template id.
|
|
if (Attr.isArgIdent(0)) {
|
|
CXXScopeSpec SS;
|
|
SourceLocation TemplateKWLoc;
|
|
UnqualifiedId id;
|
|
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
|
|
|
|
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
|
|
id, false, false);
|
|
if (Size.isInvalid())
|
|
return;
|
|
|
|
sizeExpr = Size.get();
|
|
} else {
|
|
sizeExpr = Attr.getArgAsExpr(0);
|
|
}
|
|
|
|
// Create the vector type.
|
|
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
|
|
if (!T.isNull())
|
|
CurType = T;
|
|
}
|
|
|
|
static bool isPermittedNeonBaseType(QualType &Ty,
|
|
VectorType::VectorKind VecKind, Sema &S) {
|
|
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
|
|
if (!BTy)
|
|
return false;
|
|
|
|
llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
|
|
|
|
// Signed poly is mathematically wrong, but has been baked into some ABIs by
|
|
// now.
|
|
bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
|
|
Triple.getArch() == llvm::Triple::aarch64_be;
|
|
if (VecKind == VectorType::NeonPolyVector) {
|
|
if (IsPolyUnsigned) {
|
|
// AArch64 polynomial vectors are unsigned and support poly64.
|
|
return BTy->getKind() == BuiltinType::UChar ||
|
|
BTy->getKind() == BuiltinType::UShort ||
|
|
BTy->getKind() == BuiltinType::ULong ||
|
|
BTy->getKind() == BuiltinType::ULongLong;
|
|
} else {
|
|
// AArch32 polynomial vector are signed.
|
|
return BTy->getKind() == BuiltinType::SChar ||
|
|
BTy->getKind() == BuiltinType::Short;
|
|
}
|
|
}
|
|
|
|
// Non-polynomial vector types: the usual suspects are allowed, as well as
|
|
// float64_t on AArch64.
|
|
bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
|
|
Triple.getArch() == llvm::Triple::aarch64_be;
|
|
|
|
if (Is64Bit && BTy->getKind() == BuiltinType::Double)
|
|
return true;
|
|
|
|
return BTy->getKind() == BuiltinType::SChar ||
|
|
BTy->getKind() == BuiltinType::UChar ||
|
|
BTy->getKind() == BuiltinType::Short ||
|
|
BTy->getKind() == BuiltinType::UShort ||
|
|
BTy->getKind() == BuiltinType::Int ||
|
|
BTy->getKind() == BuiltinType::UInt ||
|
|
BTy->getKind() == BuiltinType::Long ||
|
|
BTy->getKind() == BuiltinType::ULong ||
|
|
BTy->getKind() == BuiltinType::LongLong ||
|
|
BTy->getKind() == BuiltinType::ULongLong ||
|
|
BTy->getKind() == BuiltinType::Float ||
|
|
BTy->getKind() == BuiltinType::Half;
|
|
}
|
|
|
|
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
|
|
/// "neon_polyvector_type" attributes are used to create vector types that
|
|
/// are mangled according to ARM's ABI. Otherwise, these types are identical
|
|
/// to those created with the "vector_size" attribute. Unlike "vector_size"
|
|
/// the argument to these Neon attributes is the number of vector elements,
|
|
/// not the vector size in bytes. The vector width and element type must
|
|
/// match one of the standard Neon vector types.
|
|
static void HandleNeonVectorTypeAttr(QualType& CurType,
|
|
const AttributeList &Attr, Sema &S,
|
|
VectorType::VectorKind VecKind) {
|
|
// Target must have NEON
|
|
if (!S.Context.getTargetInfo().hasFeature("neon")) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< Attr.getName() << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The number of elements must be an ICE.
|
|
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
|
|
llvm::APSInt numEltsInt(32);
|
|
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
|
|
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
|
|
<< Attr.getName() << AANT_ArgumentIntegerConstant
|
|
<< numEltsExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// Only certain element types are supported for Neon vectors.
|
|
if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// The total size of the vector must be 64 or 128 bits.
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
|
|
unsigned vecSize = typeSize * numElts;
|
|
if (vecSize != 64 && vecSize != 128) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
|
|
}
|
|
|
|
/// Handle OpenCL Access Qualifier Attribute.
|
|
static void HandleOpenCLAccessAttr(QualType &CurType, const AttributeList &Attr,
|
|
Sema &S) {
|
|
// OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
|
|
if (!(CurType->isImageType() || CurType->isPipeType())) {
|
|
S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
|
|
QualType PointeeTy = TypedefTy->desugar();
|
|
S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
|
|
|
|
std::string PrevAccessQual;
|
|
switch (cast<BuiltinType>(PointeeTy.getTypePtr())->getKind()) {
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id: \
|
|
PrevAccessQual = #Access; \
|
|
break;
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
default:
|
|
assert(0 && "Unable to find corresponding image type.");
|
|
}
|
|
|
|
S.Diag(TypedefTy->getDecl()->getLocStart(),
|
|
diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
|
|
} else if (CurType->isPipeType()) {
|
|
if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
|
|
QualType ElemType = CurType->getAs<PipeType>()->getElementType();
|
|
CurType = S.Context.getWritePipeType(ElemType);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
|
|
TypeAttrLocation TAL, AttributeList *attrs) {
|
|
// Scan through and apply attributes to this type where it makes sense. Some
|
|
// attributes (such as __address_space__, __vector_size__, etc) apply to the
|
|
// type, but others can be present in the type specifiers even though they
|
|
// apply to the decl. Here we apply type attributes and ignore the rest.
|
|
|
|
bool hasOpenCLAddressSpace = false;
|
|
while (attrs) {
|
|
AttributeList &attr = *attrs;
|
|
attrs = attr.getNext(); // reset to the next here due to early loop continue
|
|
// stmts
|
|
|
|
// Skip attributes that were marked to be invalid.
|
|
if (attr.isInvalid())
|
|
continue;
|
|
|
|
if (attr.isCXX11Attribute()) {
|
|
// [[gnu::...]] attributes are treated as declaration attributes, so may
|
|
// not appertain to a DeclaratorChunk, even if we handle them as type
|
|
// attributes.
|
|
if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
|
|
if (TAL == TAL_DeclChunk) {
|
|
state.getSema().Diag(attr.getLoc(),
|
|
diag::warn_cxx11_gnu_attribute_on_type)
|
|
<< attr.getName();
|
|
continue;
|
|
}
|
|
} else if (TAL != TAL_DeclChunk) {
|
|
// Otherwise, only consider type processing for a C++11 attribute if
|
|
// it's actually been applied to a type.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is an attribute we can handle, do so now,
|
|
// otherwise, add it to the FnAttrs list for rechaining.
|
|
switch (attr.getKind()) {
|
|
default:
|
|
// A C++11 attribute on a declarator chunk must appertain to a type.
|
|
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
|
|
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
|
|
<< attr.getName();
|
|
attr.setUsedAsTypeAttr();
|
|
}
|
|
break;
|
|
|
|
case AttributeList::UnknownAttribute:
|
|
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
|
|
state.getSema().Diag(attr.getLoc(),
|
|
diag::warn_unknown_attribute_ignored)
|
|
<< attr.getName();
|
|
break;
|
|
|
|
case AttributeList::IgnoredAttribute:
|
|
break;
|
|
|
|
case AttributeList::AT_MayAlias:
|
|
// FIXME: This attribute needs to actually be handled, but if we ignore
|
|
// it it breaks large amounts of Linux software.
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_OpenCLPrivateAddressSpace:
|
|
case AttributeList::AT_OpenCLGlobalAddressSpace:
|
|
case AttributeList::AT_OpenCLLocalAddressSpace:
|
|
case AttributeList::AT_OpenCLConstantAddressSpace:
|
|
case AttributeList::AT_OpenCLGenericAddressSpace:
|
|
case AttributeList::AT_AddressSpace:
|
|
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
hasOpenCLAddressSpace = true;
|
|
break;
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
if (!handleObjCPointerTypeAttr(state, attr, type))
|
|
distributeObjCPointerTypeAttr(state, attr, type);
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_VectorSize:
|
|
HandleVectorSizeAttr(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_ExtVectorType:
|
|
HandleExtVectorTypeAttr(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_NeonVectorType:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonVector);
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_NeonPolyVectorType:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonPolyVector);
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_OpenCLAccess:
|
|
HandleOpenCLAccessAttr(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
|
|
MS_TYPE_ATTRS_CASELIST:
|
|
if (!handleMSPointerTypeQualifierAttr(state, attr, type))
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
|
|
|
|
NULLABILITY_TYPE_ATTRS_CASELIST:
|
|
// Either add nullability here or try to distribute it. We
|
|
// don't want to distribute the nullability specifier past any
|
|
// dependent type, because that complicates the user model.
|
|
if (type->canHaveNullability() || type->isDependentType() ||
|
|
type->isArrayType() ||
|
|
!distributeNullabilityTypeAttr(state, type, attr)) {
|
|
unsigned endIndex;
|
|
if (TAL == TAL_DeclChunk)
|
|
endIndex = state.getCurrentChunkIndex();
|
|
else
|
|
endIndex = state.getDeclarator().getNumTypeObjects();
|
|
bool allowOnArrayType =
|
|
state.getDeclarator().isPrototypeContext() &&
|
|
!hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
|
|
if (state.getSema().checkNullabilityTypeSpecifier(
|
|
type,
|
|
mapNullabilityAttrKind(attr.getKind()),
|
|
attr.getLoc(),
|
|
attr.isContextSensitiveKeywordAttribute(),
|
|
allowOnArrayType)) {
|
|
attr.setInvalid();
|
|
}
|
|
|
|
attr.setUsedAsTypeAttr();
|
|
}
|
|
break;
|
|
|
|
case AttributeList::AT_ObjCKindOf:
|
|
// '__kindof' must be part of the decl-specifiers.
|
|
switch (TAL) {
|
|
case TAL_DeclSpec:
|
|
break;
|
|
|
|
case TAL_DeclChunk:
|
|
case TAL_DeclName:
|
|
state.getSema().Diag(attr.getLoc(),
|
|
diag::err_objc_kindof_wrong_position)
|
|
<< FixItHint::CreateRemoval(attr.getLoc())
|
|
<< FixItHint::CreateInsertion(
|
|
state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
|
|
break;
|
|
}
|
|
|
|
// Apply it regardless.
|
|
if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
|
|
attr.setInvalid();
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
|
|
break;
|
|
// fallthrough into the function attrs
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
attr.setUsedAsTypeAttr();
|
|
|
|
// Never process function type attributes as part of the
|
|
// declaration-specifiers.
|
|
if (TAL == TAL_DeclSpec)
|
|
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
|
|
|
|
// Otherwise, handle the possible delays.
|
|
else if (!handleFunctionTypeAttr(state, attr, type))
|
|
distributeFunctionTypeAttr(state, attr, type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If address space is not set, OpenCL 2.0 defines non private default
|
|
// address spaces for some cases:
|
|
// OpenCL 2.0, section 6.5:
|
|
// The address space for a variable at program scope or a static variable
|
|
// inside a function can either be __global or __constant, but defaults to
|
|
// __global if not specified.
|
|
// (...)
|
|
// Pointers that are declared without pointing to a named address space point
|
|
// to the generic address space.
|
|
if (state.getSema().getLangOpts().OpenCLVersion >= 200 &&
|
|
!hasOpenCLAddressSpace && type.getAddressSpace() == 0 &&
|
|
(TAL == TAL_DeclSpec || TAL == TAL_DeclChunk)) {
|
|
Declarator &D = state.getDeclarator();
|
|
if (state.getCurrentChunkIndex() > 0 &&
|
|
D.getTypeObject(state.getCurrentChunkIndex() - 1).Kind ==
|
|
DeclaratorChunk::Pointer) {
|
|
type = state.getSema().Context.getAddrSpaceQualType(
|
|
type, LangAS::opencl_generic);
|
|
} else if (state.getCurrentChunkIndex() == 0 &&
|
|
D.getContext() == Declarator::FileContext &&
|
|
!D.isFunctionDeclarator() && !D.isFunctionDefinition() &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
!type->isSamplerT())
|
|
type = state.getSema().Context.getAddrSpaceQualType(
|
|
type, LangAS::opencl_global);
|
|
else if (state.getCurrentChunkIndex() == 0 &&
|
|
D.getContext() == Declarator::BlockContext &&
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
|
|
type = state.getSema().Context.getAddrSpaceQualType(
|
|
type, LangAS::opencl_global);
|
|
}
|
|
}
|
|
|
|
void Sema::completeExprArrayBound(Expr *E) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
|
|
SourceLocation PointOfInstantiation = E->getExprLoc();
|
|
|
|
if (MemberSpecializationInfo *MSInfo =
|
|
Var->getMemberSpecializationInfo()) {
|
|
// If we don't already have a point of instantiation, this is it.
|
|
if (MSInfo->getPointOfInstantiation().isInvalid()) {
|
|
MSInfo->setPointOfInstantiation(PointOfInstantiation);
|
|
|
|
// This is a modification of an existing AST node. Notify
|
|
// listeners.
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->StaticDataMemberInstantiated(Var);
|
|
}
|
|
} else {
|
|
VarTemplateSpecializationDecl *VarSpec =
|
|
cast<VarTemplateSpecializationDecl>(Var);
|
|
if (VarSpec->getPointOfInstantiation().isInvalid())
|
|
VarSpec->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
|
|
InstantiateVariableDefinition(PointOfInstantiation, Var);
|
|
|
|
// Update the type to the newly instantiated definition's type both
|
|
// here and within the expression.
|
|
if (VarDecl *Def = Var->getDefinition()) {
|
|
DRE->setDecl(Def);
|
|
QualType T = Def->getType();
|
|
DRE->setType(T);
|
|
// FIXME: Update the type on all intervening expressions.
|
|
E->setType(T);
|
|
}
|
|
|
|
// We still go on to try to complete the type independently, as it
|
|
// may also require instantiations or diagnostics if it remains
|
|
// incomplete.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Ensure that the type of the given expression is complete.
|
|
///
|
|
/// This routine checks whether the expression \p E has a complete type. If the
|
|
/// expression refers to an instantiable construct, that instantiation is
|
|
/// performed as needed to complete its type. Furthermore
|
|
/// Sema::RequireCompleteType is called for the expression's type (or in the
|
|
/// case of a reference type, the referred-to type).
|
|
///
|
|
/// \param E The expression whose type is required to be complete.
|
|
/// \param Diagnoser The object that will emit a diagnostic if the type is
|
|
/// incomplete.
|
|
///
|
|
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
|
|
/// otherwise.
|
|
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
|
|
QualType T = E->getType();
|
|
|
|
// Incomplete array types may be completed by the initializer attached to
|
|
// their definitions. For static data members of class templates and for
|
|
// variable templates, we need to instantiate the definition to get this
|
|
// initializer and complete the type.
|
|
if (T->isIncompleteArrayType()) {
|
|
completeExprArrayBound(E);
|
|
T = E->getType();
|
|
}
|
|
|
|
// FIXME: Are there other cases which require instantiating something other
|
|
// than the type to complete the type of an expression?
|
|
|
|
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
|
|
}
|
|
|
|
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
|
|
BoundTypeDiagnoser<> Diagnoser(DiagID);
|
|
return RequireCompleteExprType(E, Diagnoser);
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a complete type.
|
|
///
|
|
/// This routine checks whether the type @p T is complete in any
|
|
/// context where a complete type is required. If @p T is a complete
|
|
/// type, returns false. If @p T is a class template specialization,
|
|
/// this routine then attempts to perform class template
|
|
/// instantiation. If instantiation fails, or if @p T is incomplete
|
|
/// and cannot be completed, issues the diagnostic @p diag (giving it
|
|
/// the type @p T) and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the incomplete type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for completeness.
|
|
///
|
|
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
|
|
return true;
|
|
if (const TagType *Tag = T->getAs<TagType>()) {
|
|
if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
|
|
Tag->getDecl()->setCompleteDefinitionRequired();
|
|
Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether there is any declaration of \p D that was ever a
|
|
/// definition (perhaps before module merging) and is currently visible.
|
|
/// \param D The definition of the entity.
|
|
/// \param Suggested Filled in with the declaration that should be made visible
|
|
/// in order to provide a definition of this entity.
|
|
/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
|
|
/// not defined. This only matters for enums with a fixed underlying
|
|
/// type, since in all other cases, a type is complete if and only if it
|
|
/// is defined.
|
|
bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
|
|
bool OnlyNeedComplete) {
|
|
// Easy case: if we don't have modules, all declarations are visible.
|
|
if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
|
|
return true;
|
|
|
|
// If this definition was instantiated from a template, map back to the
|
|
// pattern from which it was instantiated.
|
|
if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
|
|
// We're in the middle of defining it; this definition should be treated
|
|
// as visible.
|
|
return true;
|
|
} else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (auto *Pattern = RD->getTemplateInstantiationPattern())
|
|
RD = Pattern;
|
|
D = RD->getDefinition();
|
|
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
if (auto *Pattern = ED->getTemplateInstantiationPattern())
|
|
ED = Pattern;
|
|
if (OnlyNeedComplete && ED->isFixed()) {
|
|
// If the enum has a fixed underlying type, and we're only looking for a
|
|
// complete type (not a definition), any visible declaration of it will
|
|
// do.
|
|
*Suggested = nullptr;
|
|
for (auto *Redecl : ED->redecls()) {
|
|
if (isVisible(Redecl))
|
|
return true;
|
|
if (Redecl->isThisDeclarationADefinition() ||
|
|
(Redecl->isCanonicalDecl() && !*Suggested))
|
|
*Suggested = Redecl;
|
|
}
|
|
return false;
|
|
}
|
|
D = ED->getDefinition();
|
|
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (auto *Pattern = FD->getTemplateInstantiationPattern())
|
|
FD = Pattern;
|
|
D = FD->getDefinition();
|
|
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (auto *Pattern = VD->getTemplateInstantiationPattern())
|
|
VD = Pattern;
|
|
D = VD->getDefinition();
|
|
}
|
|
assert(D && "missing definition for pattern of instantiated definition");
|
|
|
|
*Suggested = D;
|
|
if (isVisible(D))
|
|
return true;
|
|
|
|
// The external source may have additional definitions of this entity that are
|
|
// visible, so complete the redeclaration chain now and ask again.
|
|
if (auto *Source = Context.getExternalSource()) {
|
|
Source->CompleteRedeclChain(D);
|
|
return isVisible(D);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Locks in the inheritance model for the given class and all of its bases.
|
|
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
|
|
RD = RD->getMostRecentDecl();
|
|
if (!RD->hasAttr<MSInheritanceAttr>()) {
|
|
MSInheritanceAttr::Spelling IM;
|
|
|
|
switch (S.MSPointerToMemberRepresentationMethod) {
|
|
case LangOptions::PPTMK_BestCase:
|
|
IM = RD->calculateInheritanceModel();
|
|
break;
|
|
case LangOptions::PPTMK_FullGeneralitySingleInheritance:
|
|
IM = MSInheritanceAttr::Keyword_single_inheritance;
|
|
break;
|
|
case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
|
|
IM = MSInheritanceAttr::Keyword_multiple_inheritance;
|
|
break;
|
|
case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
|
|
IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
|
|
break;
|
|
}
|
|
|
|
RD->addAttr(MSInheritanceAttr::CreateImplicit(
|
|
S.getASTContext(), IM,
|
|
/*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
|
|
LangOptions::PPTMK_BestCase,
|
|
S.ImplicitMSInheritanceAttrLoc.isValid()
|
|
? S.ImplicitMSInheritanceAttrLoc
|
|
: RD->getSourceRange()));
|
|
S.Consumer.AssignInheritanceModel(RD);
|
|
}
|
|
}
|
|
|
|
/// \brief The implementation of RequireCompleteType
|
|
bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser *Diagnoser) {
|
|
// FIXME: Add this assertion to make sure we always get instantiation points.
|
|
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
|
|
// FIXME: Add this assertion to help us flush out problems with
|
|
// checking for dependent types and type-dependent expressions.
|
|
//
|
|
// assert(!T->isDependentType() &&
|
|
// "Can't ask whether a dependent type is complete");
|
|
|
|
// We lock in the inheritance model once somebody has asked us to ensure
|
|
// that a pointer-to-member type is complete.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
|
|
if (!MPTy->getClass()->isDependentType()) {
|
|
(void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
|
|
assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
|
|
}
|
|
}
|
|
}
|
|
|
|
NamedDecl *Def = nullptr;
|
|
bool Incomplete = T->isIncompleteType(&Def);
|
|
|
|
// Check that any necessary explicit specializations are visible. For an
|
|
// enum, we just need the declaration, so don't check this.
|
|
if (Def && !isa<EnumDecl>(Def))
|
|
checkSpecializationVisibility(Loc, Def);
|
|
|
|
// If we have a complete type, we're done.
|
|
if (!Incomplete) {
|
|
// If we know about the definition but it is not visible, complain.
|
|
NamedDecl *SuggestedDef = nullptr;
|
|
if (Def &&
|
|
!hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
|
|
// If the user is going to see an error here, recover by making the
|
|
// definition visible.
|
|
bool TreatAsComplete = Diagnoser && !isSFINAEContext();
|
|
if (Diagnoser)
|
|
diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
|
|
/*Recover*/TreatAsComplete);
|
|
return !TreatAsComplete;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const TagType *Tag = T->getAs<TagType>();
|
|
const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
|
|
|
|
// If there's an unimported definition of this type in a module (for
|
|
// instance, because we forward declared it, then imported the definition),
|
|
// import that definition now.
|
|
//
|
|
// FIXME: What about other cases where an import extends a redeclaration
|
|
// chain for a declaration that can be accessed through a mechanism other
|
|
// than name lookup (eg, referenced in a template, or a variable whose type
|
|
// could be completed by the module)?
|
|
//
|
|
// FIXME: Should we map through to the base array element type before
|
|
// checking for a tag type?
|
|
if (Tag || IFace) {
|
|
NamedDecl *D =
|
|
Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
|
|
|
|
// Avoid diagnosing invalid decls as incomplete.
|
|
if (D->isInvalidDecl())
|
|
return true;
|
|
|
|
// Give the external AST source a chance to complete the type.
|
|
if (auto *Source = Context.getExternalSource()) {
|
|
if (Tag)
|
|
Source->CompleteType(Tag->getDecl());
|
|
else
|
|
Source->CompleteType(IFace->getDecl());
|
|
|
|
// If the external source completed the type, go through the motions
|
|
// again to ensure we're allowed to use the completed type.
|
|
if (!T->isIncompleteType())
|
|
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
|
|
}
|
|
}
|
|
|
|
// If we have a class template specialization or a class member of a
|
|
// class template specialization, or an array with known size of such,
|
|
// try to instantiate it.
|
|
QualType MaybeTemplate = T;
|
|
while (const ConstantArrayType *Array
|
|
= Context.getAsConstantArrayType(MaybeTemplate))
|
|
MaybeTemplate = Array->getElementType();
|
|
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
|
|
bool Instantiated = false;
|
|
bool Diagnosed = false;
|
|
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
|
|
Diagnosed = InstantiateClassTemplateSpecialization(
|
|
Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
|
|
/*Complain=*/Diagnoser);
|
|
Instantiated = true;
|
|
}
|
|
} else if (CXXRecordDecl *Rec
|
|
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
|
|
CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
|
|
if (!Rec->isBeingDefined() && Pattern) {
|
|
MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
|
|
assert(MSI && "Missing member specialization information?");
|
|
// This record was instantiated from a class within a template.
|
|
if (MSI->getTemplateSpecializationKind() !=
|
|
TSK_ExplicitSpecialization) {
|
|
Diagnosed = InstantiateClass(Loc, Rec, Pattern,
|
|
getTemplateInstantiationArgs(Rec),
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/Diagnoser);
|
|
Instantiated = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Instantiated) {
|
|
// Instantiate* might have already complained that the template is not
|
|
// defined, if we asked it to.
|
|
if (Diagnoser && Diagnosed)
|
|
return true;
|
|
// If we instantiated a definition, check that it's usable, even if
|
|
// instantiation produced an error, so that repeated calls to this
|
|
// function give consistent answers.
|
|
if (!T->isIncompleteType())
|
|
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
|
|
}
|
|
}
|
|
|
|
// FIXME: If we didn't instantiate a definition because of an explicit
|
|
// specialization declaration, check that it's visible.
|
|
|
|
if (!Diagnoser)
|
|
return true;
|
|
|
|
Diagnoser->diagnose(*this, Loc, T);
|
|
|
|
// If the type was a forward declaration of a class/struct/union
|
|
// type, produce a note.
|
|
if (Tag && !Tag->getDecl()->isInvalidDecl())
|
|
Diag(Tag->getDecl()->getLocation(),
|
|
Tag->isBeingDefined() ? diag::note_type_being_defined
|
|
: diag::note_forward_declaration)
|
|
<< QualType(Tag, 0);
|
|
|
|
// If the Objective-C class was a forward declaration, produce a note.
|
|
if (IFace && !IFace->getDecl()->isInvalidDecl())
|
|
Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
|
|
|
|
// If we have external information that we can use to suggest a fix,
|
|
// produce a note.
|
|
if (ExternalSource)
|
|
ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
unsigned DiagID) {
|
|
BoundTypeDiagnoser<> Diagnoser(DiagID);
|
|
return RequireCompleteType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
/// \brief Get diagnostic %select index for tag kind for
|
|
/// literal type diagnostic message.
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
///
|
|
/// \returns diagnostic %select index.
|
|
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
|
|
switch (Tag) {
|
|
case TTK_Struct: return 0;
|
|
case TTK_Interface: return 1;
|
|
case TTK_Class: return 2;
|
|
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
|
|
}
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a literal type.
|
|
///
|
|
/// This routine checks whether the type @p T is a literal type. If @p T is an
|
|
/// incomplete type, an attempt is made to complete it. If @p T is a literal
|
|
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
|
|
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
|
|
/// it the type @p T), along with notes explaining why the type is not a
|
|
/// literal type, and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the non-literal type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for literalness.
|
|
///
|
|
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
|
|
///
|
|
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
assert(!T->isDependentType() && "type should not be dependent");
|
|
|
|
QualType ElemType = Context.getBaseElementType(T);
|
|
if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
|
|
T->isLiteralType(Context))
|
|
return false;
|
|
|
|
Diagnoser.diagnose(*this, Loc, T);
|
|
|
|
if (T->isVariableArrayType())
|
|
return true;
|
|
|
|
const RecordType *RT = ElemType->getAs<RecordType>();
|
|
if (!RT)
|
|
return true;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
// A partially-defined class type can't be a literal type, because a literal
|
|
// class type must have a trivial destructor (which can't be checked until
|
|
// the class definition is complete).
|
|
if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
|
|
return true;
|
|
|
|
// If the class has virtual base classes, then it's not an aggregate, and
|
|
// cannot have any constexpr constructors or a trivial default constructor,
|
|
// so is non-literal. This is better to diagnose than the resulting absence
|
|
// of constexpr constructors.
|
|
if (RD->getNumVBases()) {
|
|
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
|
|
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
|
|
for (const auto &I : RD->vbases())
|
|
Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
|
|
<< I.getSourceRange();
|
|
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
|
|
!RD->hasTrivialDefaultConstructor()) {
|
|
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
|
|
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
|
|
for (const auto &I : RD->bases()) {
|
|
if (!I.getType()->isLiteralType(Context)) {
|
|
Diag(I.getLocStart(),
|
|
diag::note_non_literal_base_class)
|
|
<< RD << I.getType() << I.getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
for (const auto *I : RD->fields()) {
|
|
if (!I->getType()->isLiteralType(Context) ||
|
|
I->getType().isVolatileQualified()) {
|
|
Diag(I->getLocation(), diag::note_non_literal_field)
|
|
<< RD << I << I->getType()
|
|
<< I->getType().isVolatileQualified();
|
|
return true;
|
|
}
|
|
}
|
|
} else if (!RD->hasTrivialDestructor()) {
|
|
// All fields and bases are of literal types, so have trivial destructors.
|
|
// If this class's destructor is non-trivial it must be user-declared.
|
|
CXXDestructorDecl *Dtor = RD->getDestructor();
|
|
assert(Dtor && "class has literal fields and bases but no dtor?");
|
|
if (!Dtor)
|
|
return true;
|
|
|
|
Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
|
|
diag::note_non_literal_user_provided_dtor :
|
|
diag::note_non_literal_nontrivial_dtor) << RD;
|
|
if (!Dtor->isUserProvided())
|
|
SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
|
|
BoundTypeDiagnoser<> Diagnoser(DiagID);
|
|
return RequireLiteralType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
|
|
/// and qualified by the nested-name-specifier contained in SS.
|
|
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
const CXXScopeSpec &SS, QualType T) {
|
|
if (T.isNull())
|
|
return T;
|
|
NestedNameSpecifier *NNS;
|
|
if (SS.isValid())
|
|
NNS = SS.getScopeRep();
|
|
else {
|
|
if (Keyword == ETK_None)
|
|
return T;
|
|
NNS = nullptr;
|
|
}
|
|
return Context.getElaboratedType(Keyword, NNS, T);
|
|
}
|
|
|
|
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.get();
|
|
|
|
if (!getLangOpts().CPlusPlus && E->refersToBitField())
|
|
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
|
|
|
|
if (!E->isTypeDependent()) {
|
|
QualType T = E->getType();
|
|
if (const TagType *TT = T->getAs<TagType>())
|
|
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
|
|
}
|
|
return Context.getTypeOfExprType(E);
|
|
}
|
|
|
|
/// getDecltypeForExpr - Given an expr, will return the decltype for
|
|
/// that expression, according to the rules in C++11
|
|
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
|
|
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
|
|
if (E->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
// C++11 [dcl.type.simple]p4:
|
|
// The type denoted by decltype(e) is defined as follows:
|
|
//
|
|
// - if e is an unparenthesized id-expression or an unparenthesized class
|
|
// member access (5.2.5), decltype(e) is the type of the entity named
|
|
// by e. If there is no such entity, or if e names a set of overloaded
|
|
// functions, the program is ill-formed;
|
|
//
|
|
// We apply the same rules for Objective-C ivar and property references.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
|
|
return VD->getType();
|
|
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
|
|
return FD->getType();
|
|
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
|
|
return IR->getDecl()->getType();
|
|
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
|
|
if (PR->isExplicitProperty())
|
|
return PR->getExplicitProperty()->getType();
|
|
} else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
|
|
return PE->getType();
|
|
}
|
|
|
|
// C++11 [expr.lambda.prim]p18:
|
|
// Every occurrence of decltype((x)) where x is a possibly
|
|
// parenthesized id-expression that names an entity of automatic
|
|
// storage duration is treated as if x were transformed into an
|
|
// access to a corresponding data member of the closure type that
|
|
// would have been declared if x were an odr-use of the denoted
|
|
// entity.
|
|
using namespace sema;
|
|
if (S.getCurLambda()) {
|
|
if (isa<ParenExpr>(E)) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
|
|
if (!T.isNull())
|
|
return S.Context.getLValueReferenceType(T);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// C++11 [dcl.type.simple]p4:
|
|
// [...]
|
|
QualType T = E->getType();
|
|
switch (E->getValueKind()) {
|
|
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
|
|
// type of e;
|
|
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
|
|
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
|
|
// type of e;
|
|
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
|
|
// - otherwise, decltype(e) is the type of e.
|
|
case VK_RValue: break;
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
|
|
bool AsUnevaluated) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.get();
|
|
|
|
if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
|
|
E->HasSideEffects(Context, false)) {
|
|
// The expression operand for decltype is in an unevaluated expression
|
|
// context, so side effects could result in unintended consequences.
|
|
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
|
|
}
|
|
|
|
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
|
|
}
|
|
|
|
QualType Sema::BuildUnaryTransformType(QualType BaseType,
|
|
UnaryTransformType::UTTKind UKind,
|
|
SourceLocation Loc) {
|
|
switch (UKind) {
|
|
case UnaryTransformType::EnumUnderlyingType:
|
|
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
|
|
Diag(Loc, diag::err_only_enums_have_underlying_types);
|
|
return QualType();
|
|
} else {
|
|
QualType Underlying = BaseType;
|
|
if (!BaseType->isDependentType()) {
|
|
// The enum could be incomplete if we're parsing its definition or
|
|
// recovering from an error.
|
|
NamedDecl *FwdDecl = nullptr;
|
|
if (BaseType->isIncompleteType(&FwdDecl)) {
|
|
Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
|
|
Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
|
|
return QualType();
|
|
}
|
|
|
|
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
|
|
assert(ED && "EnumType has no EnumDecl");
|
|
|
|
DiagnoseUseOfDecl(ED, Loc);
|
|
|
|
Underlying = ED->getIntegerType();
|
|
assert(!Underlying.isNull());
|
|
}
|
|
return Context.getUnaryTransformType(BaseType, Underlying,
|
|
UnaryTransformType::EnumUnderlyingType);
|
|
}
|
|
}
|
|
llvm_unreachable("unknown unary transform type");
|
|
}
|
|
|
|
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
|
|
if (!T->isDependentType()) {
|
|
// FIXME: It isn't entirely clear whether incomplete atomic types
|
|
// are allowed or not; for simplicity, ban them for the moment.
|
|
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
|
|
return QualType();
|
|
|
|
int DisallowedKind = -1;
|
|
if (T->isArrayType())
|
|
DisallowedKind = 1;
|
|
else if (T->isFunctionType())
|
|
DisallowedKind = 2;
|
|
else if (T->isReferenceType())
|
|
DisallowedKind = 3;
|
|
else if (T->isAtomicType())
|
|
DisallowedKind = 4;
|
|
else if (T.hasQualifiers())
|
|
DisallowedKind = 5;
|
|
else if (!T.isTriviallyCopyableType(Context))
|
|
// Some other non-trivially-copyable type (probably a C++ class)
|
|
DisallowedKind = 6;
|
|
|
|
if (DisallowedKind != -1) {
|
|
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
|
|
return QualType();
|
|
}
|
|
|
|
// FIXME: Do we need any handling for ARC here?
|
|
}
|
|
|
|
// Build the pointer type.
|
|
return Context.getAtomicType(T);
|
|
}
|