661 lines
23 KiB
C
661 lines
23 KiB
C
/******************************************************************************
|
|
*
|
|
* Module Name: tbconvrt - ACPI Table conversion utilities
|
|
* $Revision: 57 $
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* 1. Copyright Notice
|
|
*
|
|
* Some or all of this work - Copyright (c) 1999 - 2004, Intel Corp.
|
|
* All rights reserved.
|
|
*
|
|
* 2. License
|
|
*
|
|
* 2.1. This is your license from Intel Corp. under its intellectual property
|
|
* rights. You may have additional license terms from the party that provided
|
|
* you this software, covering your right to use that party's intellectual
|
|
* property rights.
|
|
*
|
|
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
|
|
* copy of the source code appearing in this file ("Covered Code") an
|
|
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
|
|
* base code distributed originally by Intel ("Original Intel Code") to copy,
|
|
* make derivatives, distribute, use and display any portion of the Covered
|
|
* Code in any form, with the right to sublicense such rights; and
|
|
*
|
|
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
|
|
* license (with the right to sublicense), under only those claims of Intel
|
|
* patents that are infringed by the Original Intel Code, to make, use, sell,
|
|
* offer to sell, and import the Covered Code and derivative works thereof
|
|
* solely to the minimum extent necessary to exercise the above copyright
|
|
* license, and in no event shall the patent license extend to any additions
|
|
* to or modifications of the Original Intel Code. No other license or right
|
|
* is granted directly or by implication, estoppel or otherwise;
|
|
*
|
|
* The above copyright and patent license is granted only if the following
|
|
* conditions are met:
|
|
*
|
|
* 3. Conditions
|
|
*
|
|
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
* Code or modification with rights to further distribute source must include
|
|
* the above Copyright Notice, the above License, this list of Conditions,
|
|
* and the following Disclaimer and Export Compliance provision. In addition,
|
|
* Licensee must cause all Covered Code to which Licensee contributes to
|
|
* contain a file documenting the changes Licensee made to create that Covered
|
|
* Code and the date of any change. Licensee must include in that file the
|
|
* documentation of any changes made by any predecessor Licensee. Licensee
|
|
* must include a prominent statement that the modification is derived,
|
|
* directly or indirectly, from Original Intel Code.
|
|
*
|
|
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
* Code or modification without rights to further distribute source must
|
|
* include the following Disclaimer and Export Compliance provision in the
|
|
* documentation and/or other materials provided with distribution. In
|
|
* addition, Licensee may not authorize further sublicense of source of any
|
|
* portion of the Covered Code, and must include terms to the effect that the
|
|
* license from Licensee to its licensee is limited to the intellectual
|
|
* property embodied in the software Licensee provides to its licensee, and
|
|
* not to intellectual property embodied in modifications its licensee may
|
|
* make.
|
|
*
|
|
* 3.3. Redistribution of Executable. Redistribution in executable form of any
|
|
* substantial portion of the Covered Code or modification must reproduce the
|
|
* above Copyright Notice, and the following Disclaimer and Export Compliance
|
|
* provision in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3.4. Intel retains all right, title, and interest in and to the Original
|
|
* Intel Code.
|
|
*
|
|
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
|
|
* Intel shall be used in advertising or otherwise to promote the sale, use or
|
|
* other dealings in products derived from or relating to the Covered Code
|
|
* without prior written authorization from Intel.
|
|
*
|
|
* 4. Disclaimer and Export Compliance
|
|
*
|
|
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
|
|
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
|
|
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
|
|
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
|
|
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE.
|
|
*
|
|
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
|
|
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
|
|
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
|
|
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
|
|
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
|
|
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
|
|
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
|
* LIMITED REMEDY.
|
|
*
|
|
* 4.3. Licensee shall not export, either directly or indirectly, any of this
|
|
* software or system incorporating such software without first obtaining any
|
|
* required license or other approval from the U. S. Department of Commerce or
|
|
* any other agency or department of the United States Government. In the
|
|
* event Licensee exports any such software from the United States or
|
|
* re-exports any such software from a foreign destination, Licensee shall
|
|
* ensure that the distribution and export/re-export of the software is in
|
|
* compliance with all laws, regulations, orders, or other restrictions of the
|
|
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
|
|
* any of its subsidiaries will export/re-export any technical data, process,
|
|
* software, or service, directly or indirectly, to any country for which the
|
|
* United States government or any agency thereof requires an export license,
|
|
* other governmental approval, or letter of assurance, without first obtaining
|
|
* such license, approval or letter.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define __TBCONVRT_C__
|
|
|
|
#include "acpi.h"
|
|
#include "actables.h"
|
|
|
|
|
|
#define _COMPONENT ACPI_TABLES
|
|
ACPI_MODULE_NAME ("tbconvrt")
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbGetTableCount
|
|
*
|
|
* PARAMETERS: RSDP - Pointer to the RSDP
|
|
* RSDT - Pointer to the RSDT/XSDT
|
|
*
|
|
* RETURN: The number of tables pointed to by the RSDT or XSDT.
|
|
*
|
|
* DESCRIPTION: Calculate the number of tables. Automatically handles either
|
|
* an RSDT or XSDT.
|
|
*
|
|
******************************************************************************/
|
|
|
|
UINT32
|
|
AcpiTbGetTableCount (
|
|
RSDP_DESCRIPTOR *RSDP,
|
|
ACPI_TABLE_HEADER *RSDT)
|
|
{
|
|
UINT32 PointerSize;
|
|
|
|
|
|
ACPI_FUNCTION_ENTRY ();
|
|
|
|
|
|
if (RSDP->Revision < 2)
|
|
{
|
|
PointerSize = sizeof (UINT32);
|
|
}
|
|
else
|
|
{
|
|
PointerSize = sizeof (UINT64);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of tables pointed to by the RSDT/XSDT.
|
|
* This is defined by the ACPI Specification to be the number of
|
|
* pointers contained within the RSDT/XSDT. The size of the pointers
|
|
* is architecture-dependent.
|
|
*/
|
|
return ((RSDT->Length - sizeof (ACPI_TABLE_HEADER)) / PointerSize);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbConvertToXsdt
|
|
*
|
|
* PARAMETERS: TableInfo - Info about the RSDT
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Convert an RSDT to an XSDT (internal common format)
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiTbConvertToXsdt (
|
|
ACPI_TABLE_DESC *TableInfo)
|
|
{
|
|
ACPI_SIZE TableSize;
|
|
UINT32 i;
|
|
XSDT_DESCRIPTOR *NewTable;
|
|
|
|
|
|
ACPI_FUNCTION_ENTRY ();
|
|
|
|
|
|
/* Compute size of the converted XSDT */
|
|
|
|
TableSize = ((ACPI_SIZE) AcpiGbl_RsdtTableCount * sizeof (UINT64)) +
|
|
sizeof (ACPI_TABLE_HEADER);
|
|
|
|
/* Allocate an XSDT */
|
|
|
|
NewTable = ACPI_MEM_CALLOCATE (TableSize);
|
|
if (!NewTable)
|
|
{
|
|
return (AE_NO_MEMORY);
|
|
}
|
|
|
|
/* Copy the header and set the length */
|
|
|
|
ACPI_MEMCPY (NewTable, TableInfo->Pointer, sizeof (ACPI_TABLE_HEADER));
|
|
NewTable->Length = (UINT32) TableSize;
|
|
|
|
/* Copy the table pointers */
|
|
|
|
for (i = 0; i < AcpiGbl_RsdtTableCount; i++)
|
|
{
|
|
if (AcpiGbl_RSDP->Revision < 2)
|
|
{
|
|
ACPI_STORE_ADDRESS (NewTable->TableOffsetEntry[i],
|
|
(ACPI_CAST_PTR (RSDT_DESCRIPTOR_REV1, TableInfo->Pointer))->TableOffsetEntry[i]);
|
|
}
|
|
else
|
|
{
|
|
NewTable->TableOffsetEntry[i] =
|
|
(ACPI_CAST_PTR (XSDT_DESCRIPTOR, TableInfo->Pointer))->TableOffsetEntry[i];
|
|
}
|
|
}
|
|
|
|
/* Delete the original table (either mapped or in a buffer) */
|
|
|
|
AcpiTbDeleteSingleTable (TableInfo);
|
|
|
|
/* Point the table descriptor to the new table */
|
|
|
|
TableInfo->Pointer = ACPI_CAST_PTR (ACPI_TABLE_HEADER, NewTable);
|
|
TableInfo->Length = TableSize;
|
|
TableInfo->Allocation = ACPI_MEM_ALLOCATED;
|
|
|
|
return (AE_OK);
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbInitGenericAddress
|
|
*
|
|
* PARAMETERS: NewGasStruct - GAS struct to be initialized
|
|
* RegisterBitWidth - Width of this register
|
|
* Address - Address of the register
|
|
*
|
|
* RETURN: None
|
|
*
|
|
* DESCRIPTION: Initialize a GAS structure.
|
|
*
|
|
******************************************************************************/
|
|
|
|
static void
|
|
AcpiTbInitGenericAddress (
|
|
ACPI_GENERIC_ADDRESS *NewGasStruct,
|
|
UINT8 RegisterBitWidth,
|
|
ACPI_PHYSICAL_ADDRESS Address)
|
|
{
|
|
|
|
ACPI_STORE_ADDRESS (NewGasStruct->Address, Address);
|
|
|
|
NewGasStruct->AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
|
|
NewGasStruct->RegisterBitWidth = RegisterBitWidth;
|
|
NewGasStruct->RegisterBitOffset = 0;
|
|
NewGasStruct->Reserved = 0;
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbConvertFadt1
|
|
*
|
|
* PARAMETERS: LocalFadt - Pointer to new FADT
|
|
* OriginalFadt - Pointer to old FADT
|
|
*
|
|
* RETURN: Populates LocalFadt
|
|
*
|
|
* DESCRIPTION: Convert an ACPI 1.0 FADT to common internal format
|
|
*
|
|
******************************************************************************/
|
|
|
|
static void
|
|
AcpiTbConvertFadt1 (
|
|
FADT_DESCRIPTOR_REV2 *LocalFadt,
|
|
FADT_DESCRIPTOR_REV1 *OriginalFadt)
|
|
{
|
|
|
|
|
|
/* ACPI 1.0 FACS */
|
|
/* The BIOS stored FADT should agree with Revision 1.0 */
|
|
|
|
/*
|
|
* Copy the table header and the common part of the tables.
|
|
*
|
|
* The 2.0 table is an extension of the 1.0 table, so the entire 1.0
|
|
* table can be copied first, then expand some fields to 64 bits.
|
|
*/
|
|
ACPI_MEMCPY (LocalFadt, OriginalFadt, sizeof (FADT_DESCRIPTOR_REV1));
|
|
|
|
/* Convert table pointers to 64-bit fields */
|
|
|
|
ACPI_STORE_ADDRESS (LocalFadt->XFirmwareCtrl, LocalFadt->V1_FirmwareCtrl);
|
|
ACPI_STORE_ADDRESS (LocalFadt->XDsdt, LocalFadt->V1_Dsdt);
|
|
|
|
/*
|
|
* System Interrupt Model isn't used in ACPI 2.0 (LocalFadt->Reserved1 = 0;)
|
|
*/
|
|
|
|
/*
|
|
* This field is set by the OEM to convey the preferred power management
|
|
* profile to OSPM. It doesn't have any 1.0 equivalence. Since we don't
|
|
* know what kind of 32-bit system this is, we will use "unspecified".
|
|
*/
|
|
LocalFadt->Prefer_PM_Profile = PM_UNSPECIFIED;
|
|
|
|
/*
|
|
* Processor Performance State Control. This is the value OSPM writes to
|
|
* the SMI_CMD register to assume processor performance state control
|
|
* responsibility. There isn't any equivalence in 1.0, leave it zeroed.
|
|
*/
|
|
LocalFadt->PstateCnt = 0;
|
|
|
|
/*
|
|
* Support for the _CST object and C States change notification.
|
|
* This data item hasn't any 1.0 equivalence so leave it zero.
|
|
*/
|
|
LocalFadt->CstCnt = 0;
|
|
|
|
/*
|
|
* FADT Rev 2 was an interim FADT released between ACPI 1.0 and ACPI 2.0.
|
|
* It primarily adds the FADT reset mechanism.
|
|
*/
|
|
if ((OriginalFadt->Revision == 2) &&
|
|
(OriginalFadt->Length == sizeof (FADT_DESCRIPTOR_REV2_MINUS)))
|
|
{
|
|
/*
|
|
* Grab the entire generic address struct, plus the 1-byte reset value
|
|
* that immediately follows.
|
|
*/
|
|
ACPI_MEMCPY (&LocalFadt->ResetRegister,
|
|
&((FADT_DESCRIPTOR_REV2_MINUS *) OriginalFadt)->ResetRegister,
|
|
sizeof (ACPI_GENERIC_ADDRESS) + 1);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Since there isn't any equivalence in 1.0 and since it is highly
|
|
* likely that a 1.0 system has legacy support.
|
|
*/
|
|
LocalFadt->IapcBootArch = BAF_LEGACY_DEVICES;
|
|
}
|
|
|
|
/*
|
|
* Convert the V1.0 block addresses to V2.0 GAS structures
|
|
*/
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1aEvtBlk, LocalFadt->Pm1EvtLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1aEvtBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1bEvtBlk, LocalFadt->Pm1EvtLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1bEvtBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1aCntBlk, LocalFadt->Pm1CntLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1aCntBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1bCntBlk, LocalFadt->Pm1CntLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1bCntBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm2CntBlk, LocalFadt->Pm2CntLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm2CntBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPmTmrBlk, LocalFadt->PmTmLen,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_PmTmrBlk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XGpe0Blk, 0,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Gpe0Blk);
|
|
AcpiTbInitGenericAddress (&LocalFadt->XGpe1Blk, 0,
|
|
(ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Gpe1Blk);
|
|
|
|
/* Create separate GAS structs for the PM1 Enable registers */
|
|
|
|
AcpiTbInitGenericAddress (&AcpiGbl_XPm1aEnable,
|
|
(UINT8) ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen),
|
|
(ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (LocalFadt->XPm1aEvtBlk.Address) +
|
|
ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen)));
|
|
|
|
/* PM1B is optional; leave null if not present */
|
|
|
|
if (ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address))
|
|
{
|
|
AcpiTbInitGenericAddress (&AcpiGbl_XPm1bEnable,
|
|
(UINT8) ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen),
|
|
(ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address) +
|
|
ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen)));
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbConvertFadt2
|
|
*
|
|
* PARAMETERS: LocalFadt - Pointer to new FADT
|
|
* OriginalFadt - Pointer to old FADT
|
|
*
|
|
* RETURN: Populates LocalFadt
|
|
*
|
|
* DESCRIPTION: Convert an ACPI 2.0 FADT to common internal format.
|
|
* Handles optional "X" fields.
|
|
*
|
|
******************************************************************************/
|
|
|
|
static void
|
|
AcpiTbConvertFadt2 (
|
|
FADT_DESCRIPTOR_REV2 *LocalFadt,
|
|
FADT_DESCRIPTOR_REV2 *OriginalFadt)
|
|
{
|
|
|
|
/* We have an ACPI 2.0 FADT but we must copy it to our local buffer */
|
|
|
|
ACPI_MEMCPY (LocalFadt, OriginalFadt, sizeof (FADT_DESCRIPTOR_REV2));
|
|
|
|
/*
|
|
* "X" fields are optional extensions to the original V1.0 fields, so
|
|
* we must selectively expand V1.0 fields if the corresponding X field
|
|
* is zero.
|
|
*/
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XFirmwareCtrl)))
|
|
{
|
|
ACPI_STORE_ADDRESS (LocalFadt->XFirmwareCtrl, LocalFadt->V1_FirmwareCtrl);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XDsdt)))
|
|
{
|
|
ACPI_STORE_ADDRESS (LocalFadt->XDsdt, LocalFadt->V1_Dsdt);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1aEvtBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1aEvtBlk,
|
|
LocalFadt->Pm1EvtLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1aEvtBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1bEvtBlk,
|
|
LocalFadt->Pm1EvtLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1bEvtBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1aCntBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1aCntBlk,
|
|
LocalFadt->Pm1CntLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1aCntBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1bCntBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm1bCntBlk,
|
|
LocalFadt->Pm1CntLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm1bCntBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPm2CntBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPm2CntBlk,
|
|
LocalFadt->Pm2CntLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Pm2CntBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XPmTmrBlk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XPmTmrBlk,
|
|
LocalFadt->PmTmLen, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_PmTmrBlk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XGpe0Blk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XGpe0Blk,
|
|
0, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Gpe0Blk);
|
|
}
|
|
|
|
if (!(ACPI_GET_ADDRESS (LocalFadt->XGpe1Blk.Address)))
|
|
{
|
|
AcpiTbInitGenericAddress (&LocalFadt->XGpe1Blk,
|
|
0, (ACPI_PHYSICAL_ADDRESS) LocalFadt->V1_Gpe1Blk);
|
|
}
|
|
|
|
/* Create separate GAS structs for the PM1 Enable registers */
|
|
|
|
AcpiTbInitGenericAddress (&AcpiGbl_XPm1aEnable,
|
|
(UINT8) ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen),
|
|
(ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (LocalFadt->XPm1aEvtBlk.Address) +
|
|
ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen)));
|
|
AcpiGbl_XPm1aEnable.AddressSpaceId = LocalFadt->XPm1aEvtBlk.AddressSpaceId;
|
|
|
|
/* PM1B is optional; leave null if not present */
|
|
|
|
if (ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address))
|
|
{
|
|
AcpiTbInitGenericAddress (&AcpiGbl_XPm1bEnable,
|
|
(UINT8) ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen),
|
|
(ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address) +
|
|
ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen)));
|
|
AcpiGbl_XPm1bEnable.AddressSpaceId = LocalFadt->XPm1bEvtBlk.AddressSpaceId;
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbConvertTableFadt
|
|
*
|
|
* PARAMETERS: None
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Converts a BIOS supplied ACPI 1.0 FADT to a local
|
|
* ACPI 2.0 FADT. If the BIOS supplied a 2.0 FADT then it is simply
|
|
* copied to the local FADT. The ACPI CA software uses this
|
|
* local FADT. Thus a significant amount of special #ifdef
|
|
* type codeing is saved.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiTbConvertTableFadt (void)
|
|
{
|
|
FADT_DESCRIPTOR_REV2 *LocalFadt;
|
|
ACPI_TABLE_DESC *TableDesc;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE ("TbConvertTableFadt");
|
|
|
|
|
|
/*
|
|
* AcpiGbl_FADT is valid. Validate the FADT length. The table must be
|
|
* at least as long as the version 1.0 FADT
|
|
*/
|
|
if (AcpiGbl_FADT->Length < sizeof (FADT_DESCRIPTOR_REV1))
|
|
{
|
|
ACPI_REPORT_ERROR (("FADT is invalid, too short: 0x%X\n", AcpiGbl_FADT->Length));
|
|
return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
|
|
}
|
|
|
|
/* Allocate buffer for the ACPI 2.0(+) FADT */
|
|
|
|
LocalFadt = ACPI_MEM_CALLOCATE (sizeof (FADT_DESCRIPTOR_REV2));
|
|
if (!LocalFadt)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
if (AcpiGbl_FADT->Revision >= FADT2_REVISION_ID)
|
|
{
|
|
if (AcpiGbl_FADT->Length < sizeof (FADT_DESCRIPTOR_REV2))
|
|
{
|
|
/* Length is too short to be a V2.0 table */
|
|
|
|
ACPI_REPORT_WARNING (("Inconsistent FADT length (0x%X) and revision (0x%X), using FADT V1.0 portion of table\n",
|
|
AcpiGbl_FADT->Length, AcpiGbl_FADT->Revision));
|
|
|
|
AcpiTbConvertFadt1 (LocalFadt, (void *) AcpiGbl_FADT);
|
|
}
|
|
else
|
|
{
|
|
/* Valid V2.0 table */
|
|
|
|
AcpiTbConvertFadt2 (LocalFadt, AcpiGbl_FADT);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Valid V1.0 table */
|
|
|
|
AcpiTbConvertFadt1 (LocalFadt, (void *) AcpiGbl_FADT);
|
|
}
|
|
|
|
/*
|
|
* Global FADT pointer will point to the new common V2.0 FADT
|
|
*/
|
|
AcpiGbl_FADT = LocalFadt;
|
|
AcpiGbl_FADT->Length = sizeof (FADT_DESCRIPTOR);
|
|
|
|
/* Free the original table */
|
|
|
|
TableDesc = AcpiGbl_TableLists[ACPI_TABLE_FADT].Next;
|
|
AcpiTbDeleteSingleTable (TableDesc);
|
|
|
|
/* Install the new table */
|
|
|
|
TableDesc->Pointer = ACPI_CAST_PTR (ACPI_TABLE_HEADER, AcpiGbl_FADT);
|
|
TableDesc->Allocation = ACPI_MEM_ALLOCATED;
|
|
TableDesc->Length = sizeof (FADT_DESCRIPTOR_REV2);
|
|
|
|
/* Dump the entire FADT */
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_TABLES,
|
|
"Hex dump of common internal FADT, size %d (%X)\n",
|
|
AcpiGbl_FADT->Length, AcpiGbl_FADT->Length));
|
|
ACPI_DUMP_BUFFER ((UINT8 *) (AcpiGbl_FADT), AcpiGbl_FADT->Length);
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiTbConvertTableFacs
|
|
*
|
|
* PARAMETERS: TableInfo - Info for currently installad FACS
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Convert ACPI 1.0 and ACPI 2.0 FACS to a common internal
|
|
* table format.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiTbBuildCommonFacs (
|
|
ACPI_TABLE_DESC *TableInfo)
|
|
{
|
|
|
|
ACPI_FUNCTION_TRACE ("TbBuildCommonFacs");
|
|
|
|
|
|
/* Absolute minimum length is 24, but the ACPI spec says 64 */
|
|
|
|
if (AcpiGbl_FACS->Length < 24)
|
|
{
|
|
ACPI_REPORT_ERROR (("Invalid FACS table length: 0x%X\n", AcpiGbl_FACS->Length));
|
|
return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
|
|
}
|
|
|
|
if (AcpiGbl_FACS->Length < 64)
|
|
{
|
|
ACPI_REPORT_WARNING (("FACS is shorter than the ACPI specification allows: 0x%X, using anyway\n",
|
|
AcpiGbl_FACS->Length));
|
|
}
|
|
|
|
/* Copy fields to the new FACS */
|
|
|
|
AcpiGbl_CommonFACS.GlobalLock = &(AcpiGbl_FACS->GlobalLock);
|
|
|
|
if ((AcpiGbl_RSDP->Revision < 2) ||
|
|
(AcpiGbl_FACS->Length < 32) ||
|
|
(!(ACPI_GET_ADDRESS (AcpiGbl_FACS->XFirmwareWakingVector))))
|
|
{
|
|
/* ACPI 1.0 FACS or short table or optional X_ field is zero */
|
|
|
|
AcpiGbl_CommonFACS.FirmwareWakingVector = ACPI_CAST_PTR (UINT64, &(AcpiGbl_FACS->FirmwareWakingVector));
|
|
AcpiGbl_CommonFACS.VectorWidth = 32;
|
|
}
|
|
else
|
|
{
|
|
/* ACPI 2.0 FACS with valid X_ field */
|
|
|
|
AcpiGbl_CommonFACS.FirmwareWakingVector = &AcpiGbl_FACS->XFirmwareWakingVector;
|
|
AcpiGbl_CommonFACS.VectorWidth = 64;
|
|
}
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
|