Bjoern A. Zeeb dc3c09c89f Bring over the change switching from using sequential to random
ephemeral port allocation as implemented in netinet/in_pcb.c rev. 1.143
(initially from OpenBSD) and follow-up commits during the last four and
a half years including rev. 1.157, 1.162 and 1.199.
This now is relying on the same infrastructure as has been implemented
in in_pcb.c since rev. 1.199.

Reviewed by:	silby, rpaulo, mlaier
MFC after:	2 months
2008-10-20 18:43:59 +00:00

497 lines
18 KiB
C

/*-
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.h 8.1 (Berkeley) 6/10/93
* $FreeBSD$
*/
#ifndef _NETINET_IN_PCB_H_
#define _NETINET_IN_PCB_H_
#include <sys/queue.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <sys/_rwlock.h>
#include <net/route.h>
#ifdef _KERNEL
#include <sys/rwlock.h>
#endif
#define in6pcb inpcb /* for KAME src sync over BSD*'s */
#define in6p_sp inp_sp /* for KAME src sync over BSD*'s */
struct inpcbpolicy;
/*
* struct inpcb is the common protocol control block structure used in most
* IP transport protocols.
*
* Pointers to local and foreign host table entries, local and foreign socket
* numbers, and pointers up (to a socket structure) and down (to a
* protocol-specific control block) are stored here.
*/
LIST_HEAD(inpcbhead, inpcb);
LIST_HEAD(inpcbporthead, inpcbport);
typedef u_quad_t inp_gen_t;
/*
* PCB with AF_INET6 null bind'ed laddr can receive AF_INET input packet.
* So, AF_INET6 null laddr is also used as AF_INET null laddr, by utilizing
* the following structure.
*/
struct in_addr_4in6 {
u_int32_t ia46_pad32[3];
struct in_addr ia46_addr4;
};
/*
* NOTE: ipv6 addrs should be 64-bit aligned, per RFC 2553. in_conninfo has
* some extra padding to accomplish this.
*/
struct in_endpoints {
u_int16_t ie_fport; /* foreign port */
u_int16_t ie_lport; /* local port */
/* protocol dependent part, local and foreign addr */
union {
/* foreign host table entry */
struct in_addr_4in6 ie46_foreign;
struct in6_addr ie6_foreign;
} ie_dependfaddr;
union {
/* local host table entry */
struct in_addr_4in6 ie46_local;
struct in6_addr ie6_local;
} ie_dependladdr;
#define ie_faddr ie_dependfaddr.ie46_foreign.ia46_addr4
#define ie_laddr ie_dependladdr.ie46_local.ia46_addr4
#define ie6_faddr ie_dependfaddr.ie6_foreign
#define ie6_laddr ie_dependladdr.ie6_local
};
/*
* XXX The defines for inc_* are hacks and should be changed to direct
* references.
*/
struct in_conninfo {
u_int8_t inc_flags;
u_int8_t inc_len;
u_int16_t inc_fibnum; /* XXX was pad, 16 bits is plenty */
/* protocol dependent part */
struct in_endpoints inc_ie;
};
#define inc_isipv6 inc_flags /* temp compatability */
#define inc_fport inc_ie.ie_fport
#define inc_lport inc_ie.ie_lport
#define inc_faddr inc_ie.ie_faddr
#define inc_laddr inc_ie.ie_laddr
#define inc6_faddr inc_ie.ie6_faddr
#define inc6_laddr inc_ie.ie6_laddr
struct icmp6_filter;
/*-
* struct inpcb captures the network layer state for TCP, UDP, and raw IPv4
* and IPv6 sockets. In the case of TCP, further per-connection state is
* hung off of inp_ppcb most of the time. Almost all fields of struct inpcb
* are static after creation or protected by a per-inpcb rwlock, inp_lock. A
* few fields also require the global pcbinfo lock for the inpcb to be held,
* when modified, such as the global connection lists and hashes, as well as
* binding information (which affects which hash a connection is on). This
* model means that connections can be looked up without holding the
* per-connection lock, which is important for performance when attempting to
* find the connection for a packet given its IP and port tuple. Writing to
* these fields that write locks be held on both the inpcb and global locks.
*
* Key:
* (c) - Constant after initialization
* (i) - Protected by the inpcb lock
* (p) - Protected by the pcbinfo lock for the inpcb
* (s) - Protected by another subsystem's locks
* (x) - Undefined locking
*
* A few other notes:
*
* When a read lock is held, stability of the field is guaranteed; to write
* to a field, a write lock must generally be held.
*
* netinet/netinet6-layer code should not assume that the inp_socket pointer
* is safe to dereference without inp_lock being held, even for protocols
* other than TCP (where the inpcb persists during TIMEWAIT even after the
* socket has been freed), or there may be close(2)-related races.
*
* The inp_vflag field is overloaded, and would otherwise ideally be (c).
*/
struct inpcb {
LIST_ENTRY(inpcb) inp_hash; /* (i/p) hash list */
LIST_ENTRY(inpcb) inp_list; /* (i/p) list for all PCBs for proto */
void *inp_ppcb; /* (i) pointer to per-protocol pcb */
struct inpcbinfo *inp_pcbinfo; /* (c) PCB list info */
struct socket *inp_socket; /* (i) back pointer to socket */
struct ucred *inp_cred; /* (c) cache of socket cred */
u_int32_t inp_flow; /* (i) IPv6 flow information */
int inp_flags; /* (i) generic IP/datagram flags */
u_char inp_vflag; /* (i) IP version flag (v4/v6) */
#define INP_IPV4 0x1
#define INP_IPV6 0x2
#define INP_IPV6PROTO 0x4 /* opened under IPv6 protocol */
#define INP_TIMEWAIT 0x8 /* .. probably doesn't go here */
#define INP_ONESBCAST 0x10 /* send all-ones broadcast */
#define INP_DROPPED 0x20 /* protocol drop flag */
#define INP_SOCKREF 0x40 /* strong socket reference */
u_char inp_ip_ttl; /* (i) time to live proto */
u_char inp_ip_p; /* (c) protocol proto */
u_char inp_ip_minttl; /* (i) minimum TTL or drop */
uint32_t inp_ispare1; /* (x) connection id / queue id */
void *inp_pspare[2]; /* (x) rtentry / general use */
/* Local and foreign ports, local and foreign addr. */
struct in_conninfo inp_inc;
/* (i/p) list for PCB's local port */
struct label *inp_label; /* (i) MAC label */
struct inpcbpolicy *inp_sp; /* (s) for IPSEC */
/* Protocol-dependent part; options. */
struct {
u_char inp4_ip_tos; /* (i) type of service proto */
struct mbuf *inp4_options; /* (i) IP options */
struct ip_moptions *inp4_moptions; /* (i) IP multicast options */
} inp_depend4;
#define inp_fport inp_inc.inc_fport
#define inp_lport inp_inc.inc_lport
#define inp_faddr inp_inc.inc_faddr
#define inp_laddr inp_inc.inc_laddr
#define inp_ip_tos inp_depend4.inp4_ip_tos
#define inp_options inp_depend4.inp4_options
#define inp_moptions inp_depend4.inp4_moptions
struct {
/* (i) IP options */
struct mbuf *inp6_options;
/* (i) IP6 options for outgoing packets */
struct ip6_pktopts *inp6_outputopts;
/* (i) IP multicast options */
struct ip6_moptions *inp6_moptions;
/* (i) ICMPv6 code type filter */
struct icmp6_filter *inp6_icmp6filt;
/* (i) IPV6_CHECKSUM setsockopt */
int inp6_cksum;
short inp6_hops;
} inp_depend6;
LIST_ENTRY(inpcb) inp_portlist; /* (i/p) */
struct inpcbport *inp_phd; /* (i/p) head of this list */
#define inp_zero_size offsetof(struct inpcb, inp_gencnt)
inp_gen_t inp_gencnt; /* (c) generation count of this instance */
struct rwlock inp_lock;
#define in6p_faddr inp_inc.inc6_faddr
#define in6p_laddr inp_inc.inc6_laddr
#define in6p_hops inp_depend6.inp6_hops /* default hop limit */
#define in6p_ip6_nxt inp_ip_p
#define in6p_flowinfo inp_flow
#define in6p_vflag inp_vflag
#define in6p_options inp_depend6.inp6_options
#define in6p_outputopts inp_depend6.inp6_outputopts
#define in6p_moptions inp_depend6.inp6_moptions
#define in6p_icmp6filt inp_depend6.inp6_icmp6filt
#define in6p_cksum inp_depend6.inp6_cksum
#define in6p_flags inp_flags /* for KAME src sync over BSD*'s */
#define in6p_socket inp_socket /* for KAME src sync over BSD*'s */
#define in6p_lport inp_lport /* for KAME src sync over BSD*'s */
#define in6p_fport inp_fport /* for KAME src sync over BSD*'s */
#define in6p_ppcb inp_ppcb /* for KAME src sync over BSD*'s */
};
/*
* The range of the generation count, as used in this implementation, is 9e19.
* We would have to create 300 billion connections per second for this number
* to roll over in a year. This seems sufficiently unlikely that we simply
* don't concern ourselves with that possibility.
*/
/*
* Interface exported to userland by various protocols which use inpcbs. Hack
* alert -- only define if struct xsocket is in scope.
*/
#ifdef _SYS_SOCKETVAR_H_
struct xinpcb {
size_t xi_len; /* length of this structure */
struct inpcb xi_inp;
struct xsocket xi_socket;
u_quad_t xi_alignment_hack;
};
struct xinpgen {
size_t xig_len; /* length of this structure */
u_int xig_count; /* number of PCBs at this time */
inp_gen_t xig_gen; /* generation count at this time */
so_gen_t xig_sogen; /* socket generation count at this time */
};
#endif /* _SYS_SOCKETVAR_H_ */
struct inpcbport {
LIST_ENTRY(inpcbport) phd_hash;
struct inpcbhead phd_pcblist;
u_short phd_port;
};
/*
* Global data structure for each high-level protocol (UDP, TCP, ...) in both
* IPv4 and IPv6. Holds inpcb lists and information for managing them.
*/
struct inpcbinfo {
/*
* Global list of inpcbs on the protocol.
*/
struct inpcbhead *ipi_listhead;
u_int ipi_count;
/*
* Global hash of inpcbs, hashed by local and foreign addresses and
* port numbers.
*/
struct inpcbhead *ipi_hashbase;
u_long ipi_hashmask;
/*
* Global hash of inpcbs, hashed by only local port number.
*/
struct inpcbporthead *ipi_porthashbase;
u_long ipi_porthashmask;
/*
* Fields associated with port lookup and allocation.
*/
u_short ipi_lastport;
u_short ipi_lastlow;
u_short ipi_lasthi;
/*
* UMA zone from which inpcbs are allocated for this protocol.
*/
struct uma_zone *ipi_zone;
/*
* Generation count--incremented each time a connection is allocated
* or freed.
*/
u_quad_t ipi_gencnt;
struct rwlock ipi_lock;
/*
* vimage 1
* general use 1
*/
void *ipi_pspare[2];
};
#define INP_LOCK_INIT(inp, d, t) \
rw_init_flags(&(inp)->inp_lock, (t), RW_RECURSE | RW_DUPOK)
#define INP_LOCK_DESTROY(inp) rw_destroy(&(inp)->inp_lock)
#define INP_RLOCK(inp) rw_rlock(&(inp)->inp_lock)
#define INP_WLOCK(inp) rw_wlock(&(inp)->inp_lock)
#define INP_TRY_RLOCK(inp) rw_try_rlock(&(inp)->inp_lock)
#define INP_TRY_WLOCK(inp) rw_try_wlock(&(inp)->inp_lock)
#define INP_RUNLOCK(inp) rw_runlock(&(inp)->inp_lock)
#define INP_WUNLOCK(inp) rw_wunlock(&(inp)->inp_lock)
#define INP_LOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_LOCKED)
#define INP_RLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_RLOCKED)
#define INP_WLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_WLOCKED)
#define INP_UNLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_UNLOCKED)
#ifdef _KERNEL
/*
* These locking functions are for inpcb consumers outside of sys/netinet,
* more specifically, they were added for the benefit of TOE drivers. The
* macros are reserved for use by the stack.
*/
void inp_wlock(struct inpcb *);
void inp_wunlock(struct inpcb *);
void inp_rlock(struct inpcb *);
void inp_runlock(struct inpcb *);
#ifdef INVARIANTS
void inp_lock_assert(struct inpcb *);
void inp_unlock_assert(struct inpcb *);
#else
static __inline void
inp_lock_assert(struct inpcb *inp __unused)
{
}
static __inline void
inp_unlock_assert(struct inpcb *inp __unused)
{
}
#endif
void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg);
int inp_ip_tos_get(const struct inpcb *inp);
void inp_ip_tos_set(struct inpcb *inp, int val);
struct socket *
inp_inpcbtosocket(struct inpcb *inp);
struct tcpcb *
inp_inpcbtotcpcb(struct inpcb *inp);
void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
uint32_t *faddr, uint16_t *fp);
#endif /* _KERNEL */
#define INP_INFO_LOCK_INIT(ipi, d) \
rw_init_flags(&(ipi)->ipi_lock, (d), RW_RECURSE)
#define INP_INFO_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_lock)
#define INP_INFO_RLOCK(ipi) rw_rlock(&(ipi)->ipi_lock)
#define INP_INFO_WLOCK(ipi) rw_wlock(&(ipi)->ipi_lock)
#define INP_INFO_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_lock)
#define INP_INFO_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_lock)
#define INP_INFO_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_lock)
#define INP_INFO_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_lock)
#define INP_INFO_LOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_LOCKED)
#define INP_INFO_RLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_RLOCKED)
#define INP_INFO_WLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_WLOCKED)
#define INP_INFO_UNLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_UNLOCKED)
#define INP_PCBHASH(faddr, lport, fport, mask) \
(((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) & (mask))
#define INP_PCBPORTHASH(lport, mask) \
(ntohs((lport)) & (mask))
/* flags in inp_flags: */
#define INP_RECVOPTS 0x01 /* receive incoming IP options */
#define INP_RECVRETOPTS 0x02 /* receive IP options for reply */
#define INP_RECVDSTADDR 0x04 /* receive IP dst address */
#define INP_HDRINCL 0x08 /* user supplies entire IP header */
#define INP_HIGHPORT 0x10 /* user wants "high" port binding */
#define INP_LOWPORT 0x20 /* user wants "low" port binding */
#define INP_ANONPORT 0x40 /* port chosen for user */
#define INP_RECVIF 0x80 /* receive incoming interface */
#define INP_MTUDISC 0x100 /* user can do MTU discovery */
#define INP_FAITH 0x200 /* accept FAITH'ed connections */
#define INP_RECVTTL 0x400 /* receive incoming IP TTL */
#define INP_DONTFRAG 0x800 /* don't fragment packet */
#define IN6P_IPV6_V6ONLY 0x008000 /* restrict AF_INET6 socket for v6 */
#define IN6P_PKTINFO 0x010000 /* receive IP6 dst and I/F */
#define IN6P_HOPLIMIT 0x020000 /* receive hoplimit */
#define IN6P_HOPOPTS 0x040000 /* receive hop-by-hop options */
#define IN6P_DSTOPTS 0x080000 /* receive dst options after rthdr */
#define IN6P_RTHDR 0x100000 /* receive routing header */
#define IN6P_RTHDRDSTOPTS 0x200000 /* receive dstoptions before rthdr */
#define IN6P_TCLASS 0x400000 /* receive traffic class value */
#define IN6P_AUTOFLOWLABEL 0x800000 /* attach flowlabel automatically */
#define IN6P_RFC2292 0x40000000 /* used RFC2292 API on the socket */
#define IN6P_MTU 0x80000000 /* receive path MTU */
#define INP_CONTROLOPTS (INP_RECVOPTS|INP_RECVRETOPTS|INP_RECVDSTADDR|\
INP_RECVIF|INP_RECVTTL|\
IN6P_PKTINFO|IN6P_HOPLIMIT|IN6P_HOPOPTS|\
IN6P_DSTOPTS|IN6P_RTHDR|IN6P_RTHDRDSTOPTS|\
IN6P_TCLASS|IN6P_AUTOFLOWLABEL|IN6P_RFC2292|\
IN6P_MTU)
#define INP_UNMAPPABLEOPTS (IN6P_HOPOPTS|IN6P_DSTOPTS|IN6P_RTHDR|\
IN6P_TCLASS|IN6P_AUTOFLOWLABEL)
/* for KAME src sync over BSD*'s */
#define IN6P_HIGHPORT INP_HIGHPORT
#define IN6P_LOWPORT INP_LOWPORT
#define IN6P_ANONPORT INP_ANONPORT
#define IN6P_RECVIF INP_RECVIF
#define IN6P_MTUDISC INP_MTUDISC
#define IN6P_FAITH INP_FAITH
#define IN6P_CONTROLOPTS INP_CONTROLOPTS
/*
* socket AF version is {newer than,or include}
* actual datagram AF version
*/
#define INPLOOKUP_WILDCARD 1
#define sotoinpcb(so) ((struct inpcb *)(so)->so_pcb)
#define sotoin6pcb(so) sotoinpcb(so) /* for KAME src sync over BSD*'s */
#define INP_SOCKAF(so) so->so_proto->pr_domain->dom_family
#define INP_CHECK_SOCKAF(so, af) (INP_SOCKAF(so) == af)
#ifdef _KERNEL
extern int ipport_reservedhigh;
extern int ipport_reservedlow;
extern int ipport_lowfirstauto;
extern int ipport_lowlastauto;
extern int ipport_firstauto;
extern int ipport_lastauto;
extern int ipport_hifirstauto;
extern int ipport_hilastauto;
extern int ipport_randomized;
extern int ipport_stoprandom;
extern int ipport_tcpallocs;
extern struct callout ipport_tick_callout;
void in_pcbpurgeif0(struct inpcbinfo *, struct ifnet *);
int in_pcballoc(struct socket *, struct inpcbinfo *);
int in_pcbbind(struct inpcb *, struct sockaddr *, struct ucred *);
int in_pcbbind_setup(struct inpcb *, struct sockaddr *, in_addr_t *,
u_short *, struct ucred *);
int in_pcbconnect(struct inpcb *, struct sockaddr *, struct ucred *);
int in_pcbconnect_setup(struct inpcb *, struct sockaddr *, in_addr_t *,
u_short *, in_addr_t *, u_short *, struct inpcb **,
struct ucred *);
void in_pcbdetach(struct inpcb *);
void in_pcbdisconnect(struct inpcb *);
void in_pcbdrop(struct inpcb *);
void in_pcbfree(struct inpcb *);
int in_pcbinshash(struct inpcb *);
struct inpcb *
in_pcblookup_local(struct inpcbinfo *,
struct in_addr, u_short, int, struct ucred *);
struct inpcb *
in_pcblookup_hash(struct inpcbinfo *, struct in_addr, u_int,
struct in_addr, u_int, int, struct ifnet *);
void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr,
int, struct inpcb *(*)(struct inpcb *, int));
void in_pcbrehash(struct inpcb *);
void in_pcbsetsolabel(struct socket *so);
int in_getpeeraddr(struct socket *so, struct sockaddr **nam);
int in_getsockaddr(struct socket *so, struct sockaddr **nam);
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr);
void in_pcbsosetlabel(struct socket *so);
void in_pcbremlists(struct inpcb *inp);
void ipport_tick(void *xtp);
/*
* Debugging routines compiled in when DDB is present.
*/
void db_print_inpcb(struct inpcb *inp, const char *name, int indent);
#endif /* _KERNEL */
#endif /* !_NETINET_IN_PCB_H_ */