e9666bf645
Right now we only need to pad when writing kernel dump headers, so flatten three related subroutines into one. The encrypted kernel dump code already writes out its key in a dumper.blocksize-sized block. No functional change intended. Reviewed by: cem, def Sponsored by: Dell EMC Isilon Differential Revision: https://reviews.freebsd.org/D11647
1279 lines
30 KiB
C
1279 lines
30 KiB
C
/*-
|
|
* Copyright (c) 1986, 1988, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_ekcd.h"
|
|
#include "opt_kdb.h"
|
|
#include "opt_panic.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_watchdog.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/watchdog.h>
|
|
|
|
#include <crypto/rijndael/rijndael-api-fst.h>
|
|
#include <crypto/sha2/sha256.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/dump.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <sys/signalvar.h>
|
|
|
|
static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
|
|
|
|
#ifndef PANIC_REBOOT_WAIT_TIME
|
|
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
|
|
#endif
|
|
static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
|
|
SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
|
|
&panic_reboot_wait_time, 0,
|
|
"Seconds to wait before rebooting after a panic");
|
|
|
|
/*
|
|
* Note that stdarg.h and the ANSI style va_start macro is used for both
|
|
* ANSI and traditional C compilers.
|
|
*/
|
|
#include <machine/stdarg.h>
|
|
|
|
#ifdef KDB
|
|
#ifdef KDB_UNATTENDED
|
|
int debugger_on_panic = 0;
|
|
#else
|
|
int debugger_on_panic = 1;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&debugger_on_panic, 0, "Run debugger on kernel panic");
|
|
|
|
#ifdef KDB_TRACE
|
|
static int trace_on_panic = 1;
|
|
#else
|
|
static int trace_on_panic = 0;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&trace_on_panic, 0, "Print stack trace on kernel panic");
|
|
#endif /* KDB */
|
|
|
|
static int sync_on_panic = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
|
|
&sync_on_panic, 0, "Do a sync before rebooting from a panic");
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0,
|
|
"Shutdown environment");
|
|
|
|
#ifndef DIAGNOSTIC
|
|
static int show_busybufs;
|
|
#else
|
|
static int show_busybufs = 1;
|
|
#endif
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
|
|
&show_busybufs, 0, "");
|
|
|
|
int suspend_blocked = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
|
|
&suspend_blocked, 0, "Block suspend due to a pending shutdown");
|
|
|
|
#ifdef EKCD
|
|
FEATURE(ekcd, "Encrypted kernel crash dumps support");
|
|
|
|
MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
|
|
|
|
struct kerneldumpcrypto {
|
|
uint8_t kdc_encryption;
|
|
uint8_t kdc_iv[KERNELDUMP_IV_MAX_SIZE];
|
|
keyInstance kdc_ki;
|
|
cipherInstance kdc_ci;
|
|
off_t kdc_nextoffset;
|
|
uint32_t kdc_dumpkeysize;
|
|
struct kerneldumpkey kdc_dumpkey[];
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Variable panicstr contains argument to first call to panic; used as flag
|
|
* to indicate that the kernel has already called panic.
|
|
*/
|
|
const char *panicstr;
|
|
|
|
int dumping; /* system is dumping */
|
|
int rebooting; /* system is rebooting */
|
|
static struct dumperinfo dumper; /* our selected dumper */
|
|
|
|
/* Context information for dump-debuggers. */
|
|
static struct pcb dumppcb; /* Registers. */
|
|
lwpid_t dumptid; /* Thread ID. */
|
|
|
|
static struct cdevsw reroot_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "reroot",
|
|
};
|
|
|
|
static void poweroff_wait(void *, int);
|
|
static void shutdown_halt(void *junk, int howto);
|
|
static void shutdown_panic(void *junk, int howto);
|
|
static void shutdown_reset(void *junk, int howto);
|
|
static int kern_reroot(void);
|
|
|
|
/* register various local shutdown events */
|
|
static void
|
|
shutdown_conf(void *unused)
|
|
{
|
|
|
|
EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
|
|
SHUTDOWN_PRI_LAST + 200);
|
|
}
|
|
|
|
SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
|
|
|
|
/*
|
|
* The only reason this exists is to create the /dev/reroot/ directory,
|
|
* used by reroot code in init(8) as a mountpoint for tmpfs.
|
|
*/
|
|
static void
|
|
reroot_conf(void *unused)
|
|
{
|
|
int error;
|
|
struct cdev *cdev;
|
|
|
|
error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
|
|
&reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
|
|
if (error != 0) {
|
|
printf("%s: failed to create device node, error %d",
|
|
__func__, error);
|
|
}
|
|
}
|
|
|
|
SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
|
|
|
|
/*
|
|
* The system call that results in a reboot.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
sys_reboot(struct thread *td, struct reboot_args *uap)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
#ifdef MAC
|
|
error = mac_system_check_reboot(td->td_ucred, uap->opt);
|
|
#endif
|
|
if (error == 0)
|
|
error = priv_check(td, PRIV_REBOOT);
|
|
if (error == 0) {
|
|
if (uap->opt & RB_REROOT) {
|
|
error = kern_reroot();
|
|
} else {
|
|
mtx_lock(&Giant);
|
|
kern_reboot(uap->opt);
|
|
mtx_unlock(&Giant);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Called by events that want to shut down.. e.g <CTL><ALT><DEL> on a PC
|
|
*/
|
|
void
|
|
shutdown_nice(int howto)
|
|
{
|
|
|
|
if (initproc != NULL) {
|
|
/* Send a signal to init(8) and have it shutdown the world. */
|
|
PROC_LOCK(initproc);
|
|
if (howto & RB_POWEROFF)
|
|
kern_psignal(initproc, SIGUSR2);
|
|
else if (howto & RB_HALT)
|
|
kern_psignal(initproc, SIGUSR1);
|
|
else
|
|
kern_psignal(initproc, SIGINT);
|
|
PROC_UNLOCK(initproc);
|
|
} else {
|
|
/* No init(8) running, so simply reboot. */
|
|
kern_reboot(howto | RB_NOSYNC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_uptime(void)
|
|
{
|
|
int f;
|
|
struct timespec ts;
|
|
|
|
getnanouptime(&ts);
|
|
printf("Uptime: ");
|
|
f = 0;
|
|
if (ts.tv_sec >= 86400) {
|
|
printf("%ldd", (long)ts.tv_sec / 86400);
|
|
ts.tv_sec %= 86400;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 3600) {
|
|
printf("%ldh", (long)ts.tv_sec / 3600);
|
|
ts.tv_sec %= 3600;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 60) {
|
|
printf("%ldm", (long)ts.tv_sec / 60);
|
|
ts.tv_sec %= 60;
|
|
f = 1;
|
|
}
|
|
printf("%lds\n", (long)ts.tv_sec);
|
|
}
|
|
|
|
int
|
|
doadump(boolean_t textdump)
|
|
{
|
|
boolean_t coredump;
|
|
int error;
|
|
|
|
error = 0;
|
|
if (dumping)
|
|
return (EBUSY);
|
|
if (dumper.dumper == NULL)
|
|
return (ENXIO);
|
|
|
|
savectx(&dumppcb);
|
|
dumptid = curthread->td_tid;
|
|
dumping++;
|
|
|
|
coredump = TRUE;
|
|
#ifdef DDB
|
|
if (textdump && textdump_pending) {
|
|
coredump = FALSE;
|
|
textdump_dumpsys(&dumper);
|
|
}
|
|
#endif
|
|
if (coredump)
|
|
error = dumpsys(&dumper);
|
|
|
|
dumping--;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown the system cleanly to prepare for reboot, halt, or power off.
|
|
*/
|
|
void
|
|
kern_reboot(int howto)
|
|
{
|
|
static int once = 0;
|
|
|
|
#if defined(SMP)
|
|
/*
|
|
* Bind us to CPU 0 so that all shutdown code runs there. Some
|
|
* systems don't shutdown properly (i.e., ACPI power off) if we
|
|
* run on another processor.
|
|
*/
|
|
if (!SCHEDULER_STOPPED()) {
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, 0);
|
|
thread_unlock(curthread);
|
|
KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0"));
|
|
}
|
|
#endif
|
|
/* We're in the process of rebooting. */
|
|
rebooting = 1;
|
|
|
|
/* We are out of the debugger now. */
|
|
kdb_active = 0;
|
|
|
|
/*
|
|
* Do any callouts that should be done BEFORE syncing the filesystems.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
|
|
|
|
/*
|
|
* Now sync filesystems
|
|
*/
|
|
if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
|
|
once = 1;
|
|
bufshutdown(show_busybufs);
|
|
}
|
|
|
|
print_uptime();
|
|
|
|
cngrab();
|
|
|
|
/*
|
|
* Ok, now do things that assume all filesystem activity has
|
|
* been completed.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
|
|
|
|
if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
|
|
doadump(TRUE);
|
|
|
|
/* Now that we're going to really halt the system... */
|
|
EVENTHANDLER_INVOKE(shutdown_final, howto);
|
|
|
|
for(;;) ; /* safety against shutdown_reset not working */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The system call that results in changing the rootfs.
|
|
*/
|
|
static int
|
|
kern_reroot(void)
|
|
{
|
|
struct vnode *oldrootvnode, *vp;
|
|
struct mount *mp, *devmp;
|
|
int error;
|
|
|
|
if (curproc != initproc)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* Mark the filesystem containing currently-running executable
|
|
* (the temporary copy of init(8)) busy.
|
|
*/
|
|
vp = curproc->p_textvp;
|
|
error = vn_lock(vp, LK_SHARED);
|
|
if (error != 0)
|
|
return (error);
|
|
mp = vp->v_mount;
|
|
error = vfs_busy(mp, MBF_NOWAIT);
|
|
if (error != 0) {
|
|
vfs_ref(mp);
|
|
VOP_UNLOCK(vp, 0);
|
|
error = vfs_busy(mp, 0);
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
vfs_rel(mp);
|
|
if (error != 0) {
|
|
VOP_UNLOCK(vp, 0);
|
|
return (ENOENT);
|
|
}
|
|
if (vp->v_iflag & VI_DOOMED) {
|
|
VOP_UNLOCK(vp, 0);
|
|
vfs_unbusy(mp);
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
VOP_UNLOCK(vp, 0);
|
|
|
|
/*
|
|
* Remove the filesystem containing currently-running executable
|
|
* from the mount list, to prevent it from being unmounted
|
|
* by vfs_unmountall(), and to avoid confusing vfs_mountroot().
|
|
*
|
|
* Also preserve /dev - forcibly unmounting it could cause driver
|
|
* reinitialization.
|
|
*/
|
|
|
|
vfs_ref(rootdevmp);
|
|
devmp = rootdevmp;
|
|
rootdevmp = NULL;
|
|
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_REMOVE(&mountlist, mp, mnt_list);
|
|
TAILQ_REMOVE(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
|
|
oldrootvnode = rootvnode;
|
|
|
|
/*
|
|
* Unmount everything except for the two filesystems preserved above.
|
|
*/
|
|
vfs_unmountall();
|
|
|
|
/*
|
|
* Add /dev back; vfs_mountroot() will move it into its new place.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
rootdevmp = devmp;
|
|
vfs_rel(rootdevmp);
|
|
|
|
/*
|
|
* Mount the new rootfs.
|
|
*/
|
|
vfs_mountroot();
|
|
|
|
/*
|
|
* Update all references to the old rootvnode.
|
|
*/
|
|
mountcheckdirs(oldrootvnode, rootvnode);
|
|
|
|
/*
|
|
* Add the temporary filesystem back and unbusy it.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
vfs_unbusy(mp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the shutdown was a clean halt, behave accordingly.
|
|
*/
|
|
static void
|
|
shutdown_halt(void *junk, int howto)
|
|
{
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("\n");
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
switch (cngetc()) {
|
|
case -1: /* No console, just die */
|
|
cpu_halt();
|
|
/* NOTREACHED */
|
|
default:
|
|
howto &= ~RB_HALT;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if the system paniced, pause and then reboot
|
|
* according to the specified delay.
|
|
*/
|
|
static void
|
|
shutdown_panic(void *junk, int howto)
|
|
{
|
|
int loop;
|
|
|
|
if (howto & RB_DUMP) {
|
|
if (panic_reboot_wait_time != 0) {
|
|
if (panic_reboot_wait_time != -1) {
|
|
printf("Automatic reboot in %d seconds - "
|
|
"press a key on the console to abort\n",
|
|
panic_reboot_wait_time);
|
|
for (loop = panic_reboot_wait_time * 10;
|
|
loop > 0; --loop) {
|
|
DELAY(1000 * 100); /* 1/10th second */
|
|
/* Did user type a key? */
|
|
if (cncheckc() != -1)
|
|
break;
|
|
}
|
|
if (!loop)
|
|
return;
|
|
}
|
|
} else { /* zero time specified - reboot NOW */
|
|
return;
|
|
}
|
|
printf("--> Press a key on the console to reboot,\n");
|
|
printf("--> or switch off the system now.\n");
|
|
cngetc();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Everything done, now reset
|
|
*/
|
|
static void
|
|
shutdown_reset(void *junk, int howto)
|
|
{
|
|
|
|
printf("Rebooting...\n");
|
|
DELAY(1000000); /* wait 1 sec for printf's to complete and be read */
|
|
|
|
/*
|
|
* Acquiring smp_ipi_mtx here has a double effect:
|
|
* - it disables interrupts avoiding CPU0 preemption
|
|
* by fast handlers (thus deadlocking against other CPUs)
|
|
* - it avoids deadlocks against smp_rendezvous() or, more
|
|
* generally, threads busy-waiting, with this spinlock held,
|
|
* and waiting for responses by threads on other CPUs
|
|
* (ie. smp_tlb_shootdown()).
|
|
*
|
|
* For the !SMP case it just needs to handle the former problem.
|
|
*/
|
|
#ifdef SMP
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
#else
|
|
spinlock_enter();
|
|
#endif
|
|
|
|
/* cpu_boot(howto); */ /* doesn't do anything at the moment */
|
|
cpu_reset();
|
|
/* NOTREACHED */ /* assuming reset worked */
|
|
}
|
|
|
|
#if defined(WITNESS) || defined(INVARIANT_SUPPORT)
|
|
static int kassert_warn_only = 0;
|
|
#ifdef KDB
|
|
static int kassert_do_kdb = 0;
|
|
#endif
|
|
#ifdef KTR
|
|
static int kassert_do_ktr = 0;
|
|
#endif
|
|
static int kassert_do_log = 1;
|
|
static int kassert_log_pps_limit = 4;
|
|
static int kassert_log_mute_at = 0;
|
|
static int kassert_log_panic_at = 0;
|
|
static int kassert_warnings = 0;
|
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW, NULL, "kassert options");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, CTLFLAG_RWTUN,
|
|
&kassert_warn_only, 0,
|
|
"KASSERT triggers a panic (1) or just a warning (0)");
|
|
|
|
#ifdef KDB
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, CTLFLAG_RWTUN,
|
|
&kassert_do_kdb, 0, "KASSERT will enter the debugger");
|
|
#endif
|
|
|
|
#ifdef KTR
|
|
SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, CTLFLAG_RWTUN,
|
|
&kassert_do_ktr, 0,
|
|
"KASSERT does a KTR, set this to the KTRMASK you want");
|
|
#endif
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, CTLFLAG_RWTUN,
|
|
&kassert_do_log, 0, "KASSERT triggers a panic (1) or just a warning (0)");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RWTUN,
|
|
&kassert_warnings, 0, "number of KASSERTs that have been triggered");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, CTLFLAG_RWTUN,
|
|
&kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, CTLFLAG_RWTUN,
|
|
&kassert_log_pps_limit, 0, "limit number of log messages per second");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, CTLFLAG_RWTUN,
|
|
&kassert_log_mute_at, 0, "max number of KASSERTS to log");
|
|
|
|
static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, NULL, 0,
|
|
kassert_sysctl_kassert, "I", "set to trigger a test kassert");
|
|
|
|
static int
|
|
kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called by KASSERT, this decides if we will panic
|
|
* or if we will log via printf and/or ktr.
|
|
*/
|
|
void
|
|
kassert_panic(const char *fmt, ...)
|
|
{
|
|
static char buf[256];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
va_end(ap);
|
|
|
|
/*
|
|
* panic if we're not just warning, or if we've exceeded
|
|
* kassert_log_panic_at warnings.
|
|
*/
|
|
if (!kassert_warn_only ||
|
|
(kassert_log_panic_at > 0 &&
|
|
kassert_warnings >= kassert_log_panic_at)) {
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
/* NORETURN */
|
|
}
|
|
#ifdef KTR
|
|
if (kassert_do_ktr)
|
|
CTR0(ktr_mask, buf);
|
|
#endif /* KTR */
|
|
/*
|
|
* log if we've not yet met the mute limit.
|
|
*/
|
|
if (kassert_do_log &&
|
|
(kassert_log_mute_at == 0 ||
|
|
kassert_warnings < kassert_log_mute_at)) {
|
|
static struct timeval lasterr;
|
|
static int curerr;
|
|
|
|
if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
|
|
printf("KASSERT failed: %s\n", buf);
|
|
kdb_backtrace();
|
|
}
|
|
}
|
|
#ifdef KDB
|
|
if (kassert_do_kdb) {
|
|
kdb_enter(KDB_WHY_KASSERT, buf);
|
|
}
|
|
#endif
|
|
atomic_add_int(&kassert_warnings, 1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Panic is called on unresolvable fatal errors. It prints "panic: mesg",
|
|
* and then reboots. If we are called twice, then we avoid trying to sync
|
|
* the disks as this often leads to recursive panics.
|
|
*/
|
|
void
|
|
panic(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
}
|
|
|
|
void
|
|
vpanic(const char *fmt, va_list ap)
|
|
{
|
|
#ifdef SMP
|
|
cpuset_t other_cpus;
|
|
#endif
|
|
struct thread *td = curthread;
|
|
int bootopt, newpanic;
|
|
static char buf[256];
|
|
|
|
spinlock_enter();
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* stop_cpus_hard(other_cpus) should prevent multiple CPUs from
|
|
* concurrently entering panic. Only the winner will proceed
|
|
* further.
|
|
*/
|
|
if (panicstr == NULL && !kdb_active) {
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
|
|
stop_cpus_hard(other_cpus);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Ensure that the scheduler is stopped while panicking, even if panic
|
|
* has been entered from kdb.
|
|
*/
|
|
td->td_stopsched = 1;
|
|
|
|
bootopt = RB_AUTOBOOT;
|
|
newpanic = 0;
|
|
if (panicstr)
|
|
bootopt |= RB_NOSYNC;
|
|
else {
|
|
bootopt |= RB_DUMP;
|
|
panicstr = fmt;
|
|
newpanic = 1;
|
|
}
|
|
|
|
if (newpanic) {
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
panicstr = buf;
|
|
cngrab();
|
|
printf("panic: %s\n", buf);
|
|
} else {
|
|
printf("panic: ");
|
|
vprintf(fmt, ap);
|
|
printf("\n");
|
|
}
|
|
#ifdef SMP
|
|
printf("cpuid = %d\n", PCPU_GET(cpuid));
|
|
#endif
|
|
printf("time = %jd\n", (intmax_t )time_second);
|
|
#ifdef KDB
|
|
if (newpanic && trace_on_panic)
|
|
kdb_backtrace();
|
|
if (debugger_on_panic)
|
|
kdb_enter(KDB_WHY_PANIC, "panic");
|
|
#endif
|
|
/*thread_lock(td); */
|
|
td->td_flags |= TDF_INPANIC;
|
|
/* thread_unlock(td); */
|
|
if (!sync_on_panic)
|
|
bootopt |= RB_NOSYNC;
|
|
kern_reboot(bootopt);
|
|
}
|
|
|
|
/*
|
|
* Support for poweroff delay.
|
|
*
|
|
* Please note that setting this delay too short might power off your machine
|
|
* before the write cache on your hard disk has been flushed, leading to
|
|
* soft-updates inconsistencies.
|
|
*/
|
|
#ifndef POWEROFF_DELAY
|
|
# define POWEROFF_DELAY 5000
|
|
#endif
|
|
static int poweroff_delay = POWEROFF_DELAY;
|
|
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
|
|
&poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
|
|
|
|
static void
|
|
poweroff_wait(void *junk, int howto)
|
|
{
|
|
|
|
if (!(howto & RB_POWEROFF) || poweroff_delay <= 0)
|
|
return;
|
|
DELAY(poweroff_delay * 1000);
|
|
}
|
|
|
|
/*
|
|
* Some system processes (e.g. syncer) need to be stopped at appropriate
|
|
* points in their main loops prior to a system shutdown, so that they
|
|
* won't interfere with the shutdown process (e.g. by holding a disk buf
|
|
* to cause sync to fail). For each of these system processes, register
|
|
* shutdown_kproc() as a handler for one of shutdown events.
|
|
*/
|
|
static int kproc_shutdown_wait = 60;
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
|
|
&kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
|
|
|
|
void
|
|
kproc_shutdown(void *arg, int howto)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
p = (struct proc *)arg;
|
|
printf("Waiting (max %d seconds) for system process `%s' to stop... ",
|
|
kproc_shutdown_wait, p->p_comm);
|
|
error = kproc_suspend(p, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
void
|
|
kthread_shutdown(void *arg, int howto)
|
|
{
|
|
struct thread *td;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
td = (struct thread *)arg;
|
|
printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
|
|
kproc_shutdown_wait, td->td_name);
|
|
error = kthread_suspend(td, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
static char dumpdevname[sizeof(((struct cdev*)NULL)->si_name)];
|
|
SYSCTL_STRING(_kern_shutdown, OID_AUTO, dumpdevname, CTLFLAG_RD,
|
|
dumpdevname, 0, "Device for kernel dumps");
|
|
|
|
#ifdef EKCD
|
|
static struct kerneldumpcrypto *
|
|
kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
|
|
const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
|
|
{
|
|
struct kerneldumpcrypto *kdc;
|
|
struct kerneldumpkey *kdk;
|
|
uint32_t dumpkeysize;
|
|
|
|
dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
|
|
kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
|
|
|
|
arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
|
|
|
|
kdc->kdc_encryption = encryption;
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
|
|
goto failed;
|
|
break;
|
|
default:
|
|
goto failed;
|
|
}
|
|
|
|
kdc->kdc_dumpkeysize = dumpkeysize;
|
|
kdk = kdc->kdc_dumpkey;
|
|
kdk->kdk_encryption = kdc->kdc_encryption;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
|
|
memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
|
|
|
|
return (kdc);
|
|
failed:
|
|
explicit_bzero(kdc, sizeof(*kdc) + dumpkeysize);
|
|
free(kdc, M_EKCD);
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
|
|
{
|
|
uint8_t hash[SHA256_DIGEST_LENGTH];
|
|
SHA256_CTX ctx;
|
|
struct kerneldumpkey *kdk;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* When a user enters ddb it can write a crash dump multiple times.
|
|
* Each time it should be encrypted using a different IV.
|
|
*/
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
SHA256_Final(hash, &ctx);
|
|
bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
kdc->kdc_iv) <= 0) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
kdc->kdc_nextoffset = 0;
|
|
|
|
kdk = kdc->kdc_dumpkey;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
out:
|
|
explicit_bzero(hash, sizeof(hash));
|
|
return (error);
|
|
}
|
|
|
|
static uint32_t
|
|
kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
|
|
{
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
return (kdc->kdc_dumpkeysize);
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
/* Registration of dumpers */
|
|
int
|
|
set_dumper(struct dumperinfo *di, const char *devname, struct thread *td,
|
|
uint8_t encryption, const uint8_t *key, uint32_t encryptedkeysize,
|
|
const uint8_t *encryptedkey)
|
|
{
|
|
size_t wantcopy;
|
|
int error;
|
|
|
|
error = priv_check(td, PRIV_SETDUMPER);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (di == NULL) {
|
|
error = 0;
|
|
goto cleanup;
|
|
}
|
|
if (dumper.dumper != NULL)
|
|
return (EBUSY);
|
|
dumper = *di;
|
|
dumper.blockbuf = NULL;
|
|
dumper.kdc = NULL;
|
|
|
|
if (encryption != KERNELDUMP_ENC_NONE) {
|
|
#ifdef EKCD
|
|
dumper.kdc = kerneldumpcrypto_create(di->blocksize, encryption,
|
|
key, encryptedkeysize, encryptedkey);
|
|
if (dumper.kdc == NULL) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
goto cleanup;
|
|
#endif
|
|
}
|
|
|
|
wantcopy = strlcpy(dumpdevname, devname, sizeof(dumpdevname));
|
|
if (wantcopy >= sizeof(dumpdevname)) {
|
|
printf("set_dumper: device name truncated from '%s' -> '%s'\n",
|
|
devname, dumpdevname);
|
|
}
|
|
|
|
dumper.blockbuf = malloc(di->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
|
|
return (0);
|
|
cleanup:
|
|
#ifdef EKCD
|
|
if (dumper.kdc != NULL) {
|
|
explicit_bzero(dumper.kdc, sizeof(*dumper.kdc) +
|
|
dumper.kdc->kdc_dumpkeysize);
|
|
free(dumper.kdc, M_EKCD);
|
|
}
|
|
#endif
|
|
if (dumper.blockbuf != NULL) {
|
|
explicit_bzero(dumper.blockbuf, dumper.blocksize);
|
|
free(dumper.blockbuf, M_DUMPER);
|
|
}
|
|
explicit_bzero(&dumper, sizeof(dumper));
|
|
dumpdevname[0] = '\0';
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
|
|
{
|
|
|
|
if (length != 0 && (offset < di->mediaoffset ||
|
|
offset - di->mediaoffset + length > di->mediasize)) {
|
|
printf("Attempt to write outside dump device boundaries.\n"
|
|
"offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
|
|
(intmax_t)offset, (intmax_t)di->mediaoffset,
|
|
(uintmax_t)length, (intmax_t)di->mediasize);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Call dumper with bounds checking. */
|
|
static int
|
|
dump_raw_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
off_t offset, size_t length)
|
|
{
|
|
int error;
|
|
|
|
error = dump_check_bounds(di, offset, length);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
return (di->dumper(di->priv, virtual, physical, offset, length));
|
|
}
|
|
|
|
#ifdef EKCD
|
|
static int
|
|
dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
|
|
{
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
|
|
8 * size, buf) <= 0) {
|
|
return (EIO);
|
|
}
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
|
|
return (EIO);
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Encrypt data and call dumper. */
|
|
static int
|
|
dump_encrypted_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
off_t offset, size_t length)
|
|
{
|
|
static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
|
|
struct kerneldumpcrypto *kdc;
|
|
int error;
|
|
size_t nbytes;
|
|
off_t nextoffset;
|
|
|
|
kdc = di->kdc;
|
|
|
|
error = dump_check_bounds(di, offset, length);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Signal completion. */
|
|
if (virtual == NULL && physical == 0 && offset == 0 && length == 0) {
|
|
return (di->dumper(di->priv, virtual, physical, offset,
|
|
length));
|
|
}
|
|
|
|
/* Data have to be aligned to block size. */
|
|
if ((length % di->blocksize) != 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Data have to be written continuously becase we're encrypting using
|
|
* CBC mode which has this assumption.
|
|
*/
|
|
if (kdc->kdc_nextoffset != 0 && kdc->kdc_nextoffset != offset)
|
|
return (EINVAL);
|
|
|
|
nextoffset = offset + (off_t)length;
|
|
|
|
while (length > 0) {
|
|
nbytes = MIN(length, sizeof(buf));
|
|
bcopy(virtual, buf, nbytes);
|
|
|
|
if (dump_encrypt(kdc, buf, nbytes) != 0)
|
|
return (EIO);
|
|
|
|
error = di->dumper(di->priv, buf, physical, offset, nbytes);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
offset += nbytes;
|
|
virtual = (void *)((uint8_t *)virtual + nbytes);
|
|
length -= nbytes;
|
|
}
|
|
|
|
kdc->kdc_nextoffset = nextoffset;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_write_key(struct dumperinfo *di, vm_offset_t physical, off_t offset)
|
|
{
|
|
struct kerneldumpcrypto *kdc;
|
|
|
|
kdc = di->kdc;
|
|
if (kdc == NULL)
|
|
return (0);
|
|
|
|
return (dump_raw_write(di, kdc->kdc_dumpkey, physical, offset,
|
|
kdc->kdc_dumpkeysize));
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
int
|
|
dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
off_t offset, size_t length)
|
|
{
|
|
|
|
#ifdef EKCD
|
|
if (di->kdc != NULL) {
|
|
return (dump_encrypted_write(di, virtual, physical, offset,
|
|
length));
|
|
}
|
|
#endif
|
|
|
|
return (dump_raw_write(di, virtual, physical, offset, length));
|
|
}
|
|
|
|
static int
|
|
dump_write_header(struct dumperinfo *di, struct kerneldumpheader *kdh,
|
|
vm_offset_t physical, off_t offset)
|
|
{
|
|
void *buf;
|
|
size_t hdrsz;
|
|
|
|
hdrsz = sizeof(*kdh);
|
|
if (hdrsz > di->blocksize)
|
|
return (ENOMEM);
|
|
|
|
if (hdrsz == di->blocksize)
|
|
buf = kdh;
|
|
else {
|
|
buf = di->blockbuf;
|
|
memset(buf, 0, di->blocksize);
|
|
memcpy(buf, kdh, hdrsz);
|
|
}
|
|
|
|
return (dump_raw_write(di, buf, physical, offset, di->blocksize));
|
|
}
|
|
|
|
/*
|
|
* Don't touch the first SIZEOF_METADATA bytes on the dump device. This is to
|
|
* protect us from metadata and metadata from us.
|
|
*/
|
|
#define SIZEOF_METADATA (64 * 1024)
|
|
|
|
/*
|
|
* Do some preliminary setup for a kernel dump: verify that we have enough space
|
|
* on the dump device, write the leading header, and optionally write the crypto
|
|
* key.
|
|
*/
|
|
int
|
|
dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh, off_t *dumplop)
|
|
{
|
|
uint64_t dumpsize;
|
|
uint32_t keysize;
|
|
int error;
|
|
|
|
#ifdef EKCD
|
|
error = kerneldumpcrypto_init(di->kdc);
|
|
if (error != 0)
|
|
return (error);
|
|
keysize = kerneldumpcrypto_dumpkeysize(di->kdc);
|
|
#else
|
|
keysize = 0;
|
|
#endif
|
|
|
|
dumpsize = dtoh64(kdh->dumplength) + 2 * di->blocksize + keysize;
|
|
if (di->mediasize < SIZEOF_METADATA + dumpsize)
|
|
return (E2BIG);
|
|
|
|
*dumplop = di->mediaoffset + di->mediasize - dumpsize;
|
|
|
|
error = dump_write_header(di, kdh, 0, *dumplop);
|
|
if (error != 0)
|
|
return (error);
|
|
*dumplop += di->blocksize;
|
|
|
|
#ifdef EKCD
|
|
error = dump_write_key(di, 0, *dumplop);
|
|
if (error != 0)
|
|
return (error);
|
|
*dumplop += keysize;
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write the trailing kernel dump header and signal to the lower layers that the
|
|
* dump has completed.
|
|
*/
|
|
int
|
|
dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh, off_t dumplo)
|
|
{
|
|
int error;
|
|
|
|
error = dump_write_header(di, kdh, 0, dumplo);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
(void)dump_write(di, NULL, 0, 0, 0);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
|
|
char *magic, uint32_t archver, uint64_t dumplen)
|
|
{
|
|
size_t dstsize;
|
|
|
|
bzero(kdh, sizeof(*kdh));
|
|
strlcpy(kdh->magic, magic, sizeof(kdh->magic));
|
|
strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
|
|
kdh->version = htod32(KERNELDUMPVERSION);
|
|
kdh->architectureversion = htod32(archver);
|
|
kdh->dumplength = htod64(dumplen);
|
|
kdh->dumptime = htod64(time_second);
|
|
#ifdef EKCD
|
|
kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdc));
|
|
#else
|
|
kdh->dumpkeysize = 0;
|
|
#endif
|
|
kdh->blocksize = htod32(di->blocksize);
|
|
strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
|
|
dstsize = sizeof(kdh->versionstring);
|
|
if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
|
|
kdh->versionstring[dstsize - 2] = '\n';
|
|
if (panicstr != NULL)
|
|
strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
|
|
kdh->parity = kerneldump_parity(kdh);
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(panic, db_show_panic)
|
|
{
|
|
|
|
if (panicstr == NULL)
|
|
db_printf("panicstr not set\n");
|
|
else
|
|
db_printf("panic: %s\n", panicstr);
|
|
}
|
|
#endif
|