b6c8c7b99a
Reviewed by: kp Sponsored by: Rubicon Communications, LLC ("Netgate") Differential Revision: https://reviews.freebsd.org/D33131
7403 lines
189 KiB
C
7403 lines
189 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2001 Daniel Hartmeier
|
|
* Copyright (c) 2002 - 2008 Henning Brauer
|
|
* Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Effort sponsored in part by the Defense Advanced Research Projects
|
|
* Agency (DARPA) and Air Force Research Laboratory, Air Force
|
|
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
|
|
*
|
|
* $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_bpf.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_pf.h"
|
|
#include "opt_sctp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/gsb_crc32.h>
|
|
#include <sys/hash.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/md5.h>
|
|
#include <sys/random.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/ucred.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/route.h>
|
|
#include <net/route/nhop.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <net/pfil.h>
|
|
#include <net/pfvar.h>
|
|
#include <net/if_pflog.h>
|
|
#include <net/if_pfsync.h>
|
|
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_fib.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/icmp_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
|
|
/* dummynet */
|
|
#include <netinet/ip_dummynet.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netpfil/ipfw/dn_heap.h>
|
|
#include <netpfil/ipfw/ip_fw_private.h>
|
|
#include <netpfil/ipfw/ip_dn_private.h>
|
|
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/in6_fib.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#endif /* INET6 */
|
|
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
#include <netinet/sctp_crc32.h>
|
|
#endif
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
|
|
|
|
SDT_PROVIDER_DEFINE(pf);
|
|
SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
|
|
"struct pf_kstate *");
|
|
SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *",
|
|
"struct pf_kstate *");
|
|
SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
|
|
"struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
|
|
"struct pf_kstate *");
|
|
|
|
/*
|
|
* Global variables
|
|
*/
|
|
|
|
/* state tables */
|
|
VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
|
|
VNET_DEFINE(struct pf_kpalist, pf_pabuf);
|
|
VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
|
|
VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
|
|
VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
|
|
VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
|
|
VNET_DEFINE(struct pf_kstatus, pf_status);
|
|
|
|
VNET_DEFINE(u_int32_t, ticket_altqs_active);
|
|
VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
|
|
VNET_DEFINE(int, altqs_inactive_open);
|
|
VNET_DEFINE(u_int32_t, ticket_pabuf);
|
|
|
|
VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx);
|
|
#define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
|
|
VNET_DEFINE(u_char, pf_tcp_secret[16]);
|
|
#define V_pf_tcp_secret VNET(pf_tcp_secret)
|
|
VNET_DEFINE(int, pf_tcp_secret_init);
|
|
#define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
|
|
VNET_DEFINE(int, pf_tcp_iss_off);
|
|
#define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
|
|
VNET_DECLARE(int, pf_vnet_active);
|
|
#define V_pf_vnet_active VNET(pf_vnet_active)
|
|
|
|
VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
|
|
#define V_pf_purge_idx VNET(pf_purge_idx)
|
|
|
|
#ifdef PF_WANT_32_TO_64_COUNTER
|
|
VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
|
|
#define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
|
|
|
|
VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
|
|
VNET_DEFINE(size_t, pf_allrulecount);
|
|
VNET_DEFINE(struct pf_krule *, pf_rulemarker);
|
|
#endif
|
|
|
|
/*
|
|
* Queue for pf_intr() sends.
|
|
*/
|
|
static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
|
|
struct pf_send_entry {
|
|
STAILQ_ENTRY(pf_send_entry) pfse_next;
|
|
struct mbuf *pfse_m;
|
|
enum {
|
|
PFSE_IP,
|
|
PFSE_IP6,
|
|
PFSE_ICMP,
|
|
PFSE_ICMP6,
|
|
} pfse_type;
|
|
struct {
|
|
int type;
|
|
int code;
|
|
int mtu;
|
|
} icmpopts;
|
|
};
|
|
|
|
STAILQ_HEAD(pf_send_head, pf_send_entry);
|
|
VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
|
|
#define V_pf_sendqueue VNET(pf_sendqueue)
|
|
|
|
static struct mtx_padalign pf_sendqueue_mtx;
|
|
MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
|
|
#define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
|
|
#define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
|
|
|
|
/*
|
|
* Queue for pf_overload_task() tasks.
|
|
*/
|
|
struct pf_overload_entry {
|
|
SLIST_ENTRY(pf_overload_entry) next;
|
|
struct pf_addr addr;
|
|
sa_family_t af;
|
|
uint8_t dir;
|
|
struct pf_krule *rule;
|
|
};
|
|
|
|
SLIST_HEAD(pf_overload_head, pf_overload_entry);
|
|
VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
|
|
#define V_pf_overloadqueue VNET(pf_overloadqueue)
|
|
VNET_DEFINE_STATIC(struct task, pf_overloadtask);
|
|
#define V_pf_overloadtask VNET(pf_overloadtask)
|
|
|
|
static struct mtx_padalign pf_overloadqueue_mtx;
|
|
MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
|
|
"pf overload/flush queue", MTX_DEF);
|
|
#define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
|
|
#define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
|
|
|
|
VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
|
|
struct mtx_padalign pf_unlnkdrules_mtx;
|
|
MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
|
|
MTX_DEF);
|
|
|
|
struct mtx_padalign pf_table_stats_lock;
|
|
MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
|
|
MTX_DEF);
|
|
|
|
VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
|
|
#define V_pf_sources_z VNET(pf_sources_z)
|
|
uma_zone_t pf_mtag_z;
|
|
VNET_DEFINE(uma_zone_t, pf_state_z);
|
|
VNET_DEFINE(uma_zone_t, pf_state_key_z);
|
|
|
|
VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]);
|
|
#define PFID_CPUBITS 8
|
|
#define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS)
|
|
#define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT)
|
|
#define PFID_MAXID (~PFID_CPUMASK)
|
|
CTASSERT((1 << PFID_CPUBITS) >= MAXCPU);
|
|
|
|
static void pf_src_tree_remove_state(struct pf_kstate *);
|
|
static void pf_init_threshold(struct pf_threshold *, u_int32_t,
|
|
u_int32_t);
|
|
static void pf_add_threshold(struct pf_threshold *);
|
|
static int pf_check_threshold(struct pf_threshold *);
|
|
|
|
static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
|
|
u_int16_t *, u_int16_t *, struct pf_addr *,
|
|
u_int16_t, u_int8_t, sa_family_t);
|
|
static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *,
|
|
struct tcphdr *, struct pf_state_peer *);
|
|
static void pf_change_icmp(struct pf_addr *, u_int16_t *,
|
|
struct pf_addr *, struct pf_addr *, u_int16_t,
|
|
u_int16_t *, u_int16_t *, u_int16_t *,
|
|
u_int16_t *, u_int8_t, sa_family_t);
|
|
static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
|
|
sa_family_t, struct pf_krule *);
|
|
static void pf_detach_state(struct pf_kstate *);
|
|
static int pf_state_key_attach(struct pf_state_key *,
|
|
struct pf_state_key *, struct pf_kstate *);
|
|
static void pf_state_key_detach(struct pf_kstate *, int);
|
|
static int pf_state_key_ctor(void *, int, void *, int);
|
|
static u_int32_t pf_tcp_iss(struct pf_pdesc *);
|
|
void pf_rule_to_actions(struct pf_krule *,
|
|
struct pf_rule_actions *);
|
|
static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
|
|
int, struct pfi_kkif *, struct mbuf *, int,
|
|
struct pf_pdesc *, struct pf_krule **,
|
|
struct pf_kruleset **, struct inpcb *);
|
|
static int pf_create_state(struct pf_krule *, struct pf_krule *,
|
|
struct pf_krule *, struct pf_pdesc *,
|
|
struct pf_ksrc_node *, struct pf_state_key *,
|
|
struct pf_state_key *, struct mbuf *, int,
|
|
u_int16_t, u_int16_t, int *, struct pfi_kkif *,
|
|
struct pf_kstate **, int, u_int16_t, u_int16_t,
|
|
int);
|
|
static int pf_test_fragment(struct pf_krule **, int,
|
|
struct pfi_kkif *, struct mbuf *, void *,
|
|
struct pf_pdesc *, struct pf_krule **,
|
|
struct pf_kruleset **);
|
|
static int pf_tcp_track_full(struct pf_kstate **,
|
|
struct pfi_kkif *, struct mbuf *, int,
|
|
struct pf_pdesc *, u_short *, int *);
|
|
static int pf_tcp_track_sloppy(struct pf_kstate **,
|
|
struct pf_pdesc *, u_short *);
|
|
static int pf_test_state_tcp(struct pf_kstate **, int,
|
|
struct pfi_kkif *, struct mbuf *, int,
|
|
void *, struct pf_pdesc *, u_short *);
|
|
static int pf_test_state_udp(struct pf_kstate **, int,
|
|
struct pfi_kkif *, struct mbuf *, int,
|
|
void *, struct pf_pdesc *);
|
|
static int pf_test_state_icmp(struct pf_kstate **, int,
|
|
struct pfi_kkif *, struct mbuf *, int,
|
|
void *, struct pf_pdesc *, u_short *);
|
|
static int pf_test_state_other(struct pf_kstate **, int,
|
|
struct pfi_kkif *, struct mbuf *, struct pf_pdesc *);
|
|
static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
|
|
int, u_int16_t);
|
|
static int pf_check_proto_cksum(struct mbuf *, int, int,
|
|
u_int8_t, sa_family_t);
|
|
static void pf_print_state_parts(struct pf_kstate *,
|
|
struct pf_state_key *, struct pf_state_key *);
|
|
static int pf_addr_wrap_neq(struct pf_addr_wrap *,
|
|
struct pf_addr_wrap *);
|
|
static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
|
|
bool, u_int8_t);
|
|
static struct pf_kstate *pf_find_state(struct pfi_kkif *,
|
|
struct pf_state_key_cmp *, u_int);
|
|
static int pf_src_connlimit(struct pf_kstate **);
|
|
static void pf_overload_task(void *v, int pending);
|
|
static int pf_insert_src_node(struct pf_ksrc_node **,
|
|
struct pf_krule *, struct pf_addr *, sa_family_t);
|
|
static u_int pf_purge_expired_states(u_int, int);
|
|
static void pf_purge_unlinked_rules(void);
|
|
static int pf_mtag_uminit(void *, int, int);
|
|
static void pf_mtag_free(struct m_tag *);
|
|
static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
|
|
int, struct pf_state_key *);
|
|
#ifdef INET
|
|
static void pf_route(struct mbuf **, struct pf_krule *, int,
|
|
struct ifnet *, struct pf_kstate *,
|
|
struct pf_pdesc *, struct inpcb *);
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
static void pf_change_a6(struct pf_addr *, u_int16_t *,
|
|
struct pf_addr *, u_int8_t);
|
|
static void pf_route6(struct mbuf **, struct pf_krule *, int,
|
|
struct ifnet *, struct pf_kstate *,
|
|
struct pf_pdesc *, struct inpcb *);
|
|
#endif /* INET6 */
|
|
static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
|
|
|
|
int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
|
|
|
|
extern int pf_end_threads;
|
|
extern struct proc *pf_purge_proc;
|
|
|
|
VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
|
|
|
|
#define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \
|
|
do { \
|
|
struct pf_state_key *nk; \
|
|
if ((_dir) == PF_OUT) \
|
|
nk = (_s)->key[PF_SK_STACK]; \
|
|
else \
|
|
nk = (_s)->key[PF_SK_WIRE]; \
|
|
pf_packet_rework_nat(_m, _pd, _off, nk); \
|
|
} while (0)
|
|
|
|
#define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
|
|
(pd)->pf_mtag->flags & PF_PACKET_LOOPED)
|
|
|
|
#define STATE_LOOKUP(i, k, d, s, pd) \
|
|
do { \
|
|
(s) = pf_find_state((i), (k), (d)); \
|
|
SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \
|
|
if ((s) == NULL) \
|
|
return (PF_DROP); \
|
|
if (PACKET_LOOPED(pd)) \
|
|
return (PF_PASS); \
|
|
} while (0)
|
|
|
|
#define BOUND_IFACE(r, k) \
|
|
((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all
|
|
|
|
#define STATE_INC_COUNTERS(s) \
|
|
do { \
|
|
counter_u64_add(s->rule.ptr->states_cur, 1); \
|
|
counter_u64_add(s->rule.ptr->states_tot, 1); \
|
|
if (s->anchor.ptr != NULL) { \
|
|
counter_u64_add(s->anchor.ptr->states_cur, 1); \
|
|
counter_u64_add(s->anchor.ptr->states_tot, 1); \
|
|
} \
|
|
if (s->nat_rule.ptr != NULL) { \
|
|
counter_u64_add(s->nat_rule.ptr->states_cur, 1);\
|
|
counter_u64_add(s->nat_rule.ptr->states_tot, 1);\
|
|
} \
|
|
} while (0)
|
|
|
|
#define STATE_DEC_COUNTERS(s) \
|
|
do { \
|
|
if (s->nat_rule.ptr != NULL) \
|
|
counter_u64_add(s->nat_rule.ptr->states_cur, -1);\
|
|
if (s->anchor.ptr != NULL) \
|
|
counter_u64_add(s->anchor.ptr->states_cur, -1); \
|
|
counter_u64_add(s->rule.ptr->states_cur, -1); \
|
|
} while (0)
|
|
|
|
MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
|
|
VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
|
|
VNET_DEFINE(struct pf_idhash *, pf_idhash);
|
|
VNET_DEFINE(struct pf_srchash *, pf_srchash);
|
|
|
|
SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"pf(4)");
|
|
|
|
u_long pf_hashmask;
|
|
u_long pf_srchashmask;
|
|
static u_long pf_hashsize;
|
|
static u_long pf_srchashsize;
|
|
u_long pf_ioctl_maxcount = 65535;
|
|
|
|
SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN,
|
|
&pf_hashsize, 0, "Size of pf(4) states hashtable");
|
|
SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN,
|
|
&pf_srchashsize, 0, "Size of pf(4) source nodes hashtable");
|
|
SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
|
|
&pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
|
|
|
|
VNET_DEFINE(void *, pf_swi_cookie);
|
|
VNET_DEFINE(struct intr_event *, pf_swi_ie);
|
|
|
|
VNET_DEFINE(uint32_t, pf_hashseed);
|
|
#define V_pf_hashseed VNET(pf_hashseed)
|
|
|
|
#ifdef __LP64__
|
|
static int
|
|
pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig)
|
|
{
|
|
unsigned long *k1 = (unsigned long *)k1_orig;
|
|
unsigned long *k2 = (unsigned long *)k2_orig;
|
|
|
|
if (k1[0] != k2[0])
|
|
return (1);
|
|
|
|
if (k1[1] != k2[1])
|
|
return (1);
|
|
|
|
if (k1[2] != k2[2])
|
|
return (1);
|
|
|
|
if (k1[3] != k2[3])
|
|
return (1);
|
|
|
|
if (k1[4] != k2[4])
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
_Static_assert(sizeof(struct pf_state_key_cmp) == 40, "bad size of pf_state_key_cmp");
|
|
#else
|
|
static inline int
|
|
pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig)
|
|
{
|
|
|
|
return (bcmp(k1_orig, k2_orig, sizeof(struct pf_state_key_cmp)));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
|
|
{
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (a->addr32[0] > b->addr32[0])
|
|
return (1);
|
|
if (a->addr32[0] < b->addr32[0])
|
|
return (-1);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (a->addr32[3] > b->addr32[3])
|
|
return (1);
|
|
if (a->addr32[3] < b->addr32[3])
|
|
return (-1);
|
|
if (a->addr32[2] > b->addr32[2])
|
|
return (1);
|
|
if (a->addr32[2] < b->addr32[2])
|
|
return (-1);
|
|
if (a->addr32[1] > b->addr32[1])
|
|
return (1);
|
|
if (a->addr32[1] < b->addr32[1])
|
|
return (-1);
|
|
if (a->addr32[0] > b->addr32[0])
|
|
return (1);
|
|
if (a->addr32[0] < b->addr32[0])
|
|
return (-1);
|
|
break;
|
|
#endif /* INET6 */
|
|
default:
|
|
panic("%s: unknown address family %u", __func__, af);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
|
|
struct pf_state_key *nk)
|
|
{
|
|
|
|
switch (pd->proto) {
|
|
case IPPROTO_TCP: {
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
|
|
pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
|
|
&th->th_sum, &nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 0, pd->af);
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
|
|
pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
|
|
&th->th_sum, &nk->addr[pd->didx],
|
|
nk->port[pd->didx], 0, pd->af);
|
|
m_copyback(m, off, sizeof(*th), (caddr_t)th);
|
|
break;
|
|
}
|
|
case IPPROTO_UDP: {
|
|
struct udphdr *uh = &pd->hdr.udp;
|
|
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
|
|
pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
|
|
&uh->uh_sum, &nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 1, pd->af);
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
|
|
pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
|
|
&uh->uh_sum, &nk->addr[pd->didx],
|
|
nk->port[pd->didx], 1, pd->af);
|
|
m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
|
|
break;
|
|
}
|
|
case IPPROTO_ICMP: {
|
|
struct icmp *ih = &pd->hdr.icmp;
|
|
|
|
if (nk->port[pd->sidx] != ih->icmp_id) {
|
|
pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
|
|
ih->icmp_cksum, ih->icmp_id,
|
|
nk->port[pd->sidx], 0);
|
|
ih->icmp_id = nk->port[pd->sidx];
|
|
pd->sport = &ih->icmp_id;
|
|
|
|
m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
|
|
}
|
|
/* FALLTHROUGH */
|
|
}
|
|
default:
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
|
|
switch (pd->af) {
|
|
case AF_INET:
|
|
pf_change_a(&pd->src->v4.s_addr,
|
|
pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
|
|
0);
|
|
break;
|
|
case AF_INET6:
|
|
PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
|
|
break;
|
|
}
|
|
}
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
|
|
switch (pd->af) {
|
|
case AF_INET:
|
|
pf_change_a(&pd->dst->v4.s_addr,
|
|
pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
|
|
0);
|
|
break;
|
|
case AF_INET6:
|
|
PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __inline uint32_t
|
|
pf_hashkey(struct pf_state_key *sk)
|
|
{
|
|
uint32_t h;
|
|
|
|
h = murmur3_32_hash32((uint32_t *)sk,
|
|
sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
|
|
V_pf_hashseed);
|
|
|
|
return (h & pf_hashmask);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
pf_hashsrc(struct pf_addr *addr, sa_family_t af)
|
|
{
|
|
uint32_t h;
|
|
|
|
switch (af) {
|
|
case AF_INET:
|
|
h = murmur3_32_hash32((uint32_t *)&addr->v4,
|
|
sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
|
|
break;
|
|
case AF_INET6:
|
|
h = murmur3_32_hash32((uint32_t *)&addr->v6,
|
|
sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
|
|
break;
|
|
default:
|
|
panic("%s: unknown address family %u", __func__, af);
|
|
}
|
|
|
|
return (h & pf_srchashmask);
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
static int
|
|
pf_state_hash(struct pf_kstate *s)
|
|
{
|
|
u_int32_t hv = (intptr_t)s / sizeof(*s);
|
|
|
|
hv ^= crc32(&s->src, sizeof(s->src));
|
|
hv ^= crc32(&s->dst, sizeof(s->dst));
|
|
if (hv == 0)
|
|
hv = 1;
|
|
return (hv);
|
|
}
|
|
#endif
|
|
|
|
static __inline void
|
|
pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
|
|
{
|
|
if (which == PF_PEER_DST || which == PF_PEER_BOTH)
|
|
s->dst.state = newstate;
|
|
if (which == PF_PEER_DST)
|
|
return;
|
|
if (s->src.state == newstate)
|
|
return;
|
|
if (s->creatorid == V_pf_status.hostid &&
|
|
s->key[PF_SK_STACK] != NULL &&
|
|
s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
|
|
!(TCPS_HAVEESTABLISHED(s->src.state) ||
|
|
s->src.state == TCPS_CLOSED) &&
|
|
(TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
|
|
atomic_add_32(&V_pf_status.states_halfopen, -1);
|
|
|
|
s->src.state = newstate;
|
|
}
|
|
|
|
#ifdef INET6
|
|
void
|
|
pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
dst->addr32[0] = src->addr32[0];
|
|
break;
|
|
#endif /* INET */
|
|
case AF_INET6:
|
|
dst->addr32[0] = src->addr32[0];
|
|
dst->addr32[1] = src->addr32[1];
|
|
dst->addr32[2] = src->addr32[2];
|
|
dst->addr32[3] = src->addr32[3];
|
|
break;
|
|
}
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
static void
|
|
pf_init_threshold(struct pf_threshold *threshold,
|
|
u_int32_t limit, u_int32_t seconds)
|
|
{
|
|
threshold->limit = limit * PF_THRESHOLD_MULT;
|
|
threshold->seconds = seconds;
|
|
threshold->count = 0;
|
|
threshold->last = time_uptime;
|
|
}
|
|
|
|
static void
|
|
pf_add_threshold(struct pf_threshold *threshold)
|
|
{
|
|
u_int32_t t = time_uptime, diff = t - threshold->last;
|
|
|
|
if (diff >= threshold->seconds)
|
|
threshold->count = 0;
|
|
else
|
|
threshold->count -= threshold->count * diff /
|
|
threshold->seconds;
|
|
threshold->count += PF_THRESHOLD_MULT;
|
|
threshold->last = t;
|
|
}
|
|
|
|
static int
|
|
pf_check_threshold(struct pf_threshold *threshold)
|
|
{
|
|
return (threshold->count > threshold->limit);
|
|
}
|
|
|
|
static int
|
|
pf_src_connlimit(struct pf_kstate **state)
|
|
{
|
|
struct pf_overload_entry *pfoe;
|
|
int bad = 0;
|
|
|
|
PF_STATE_LOCK_ASSERT(*state);
|
|
|
|
(*state)->src_node->conn++;
|
|
(*state)->src.tcp_est = 1;
|
|
pf_add_threshold(&(*state)->src_node->conn_rate);
|
|
|
|
if ((*state)->rule.ptr->max_src_conn &&
|
|
(*state)->rule.ptr->max_src_conn <
|
|
(*state)->src_node->conn) {
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
|
|
bad++;
|
|
}
|
|
|
|
if ((*state)->rule.ptr->max_src_conn_rate.limit &&
|
|
pf_check_threshold(&(*state)->src_node->conn_rate)) {
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
|
|
bad++;
|
|
}
|
|
|
|
if (!bad)
|
|
return (0);
|
|
|
|
/* Kill this state. */
|
|
(*state)->timeout = PFTM_PURGE;
|
|
pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
|
|
|
|
if ((*state)->rule.ptr->overload_tbl == NULL)
|
|
return (1);
|
|
|
|
/* Schedule overloading and flushing task. */
|
|
pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
|
|
if (pfoe == NULL)
|
|
return (1); /* too bad :( */
|
|
|
|
bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
|
|
pfoe->af = (*state)->key[PF_SK_WIRE]->af;
|
|
pfoe->rule = (*state)->rule.ptr;
|
|
pfoe->dir = (*state)->direction;
|
|
PF_OVERLOADQ_LOCK();
|
|
SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
|
|
PF_OVERLOADQ_UNLOCK();
|
|
taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
pf_overload_task(void *v, int pending)
|
|
{
|
|
struct pf_overload_head queue;
|
|
struct pfr_addr p;
|
|
struct pf_overload_entry *pfoe, *pfoe1;
|
|
uint32_t killed = 0;
|
|
|
|
CURVNET_SET((struct vnet *)v);
|
|
|
|
PF_OVERLOADQ_LOCK();
|
|
queue = V_pf_overloadqueue;
|
|
SLIST_INIT(&V_pf_overloadqueue);
|
|
PF_OVERLOADQ_UNLOCK();
|
|
|
|
bzero(&p, sizeof(p));
|
|
SLIST_FOREACH(pfoe, &queue, next) {
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("%s: blocking address ", __func__);
|
|
pf_print_host(&pfoe->addr, 0, pfoe->af);
|
|
printf("\n");
|
|
}
|
|
|
|
p.pfra_af = pfoe->af;
|
|
switch (pfoe->af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
p.pfra_net = 32;
|
|
p.pfra_ip4addr = pfoe->addr.v4;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
p.pfra_net = 128;
|
|
p.pfra_ip6addr = pfoe->addr.v6;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
PF_RULES_WLOCK();
|
|
pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
|
|
PF_RULES_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Remove those entries, that don't need flushing.
|
|
*/
|
|
SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
|
|
if (pfoe->rule->flush == 0) {
|
|
SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
|
|
free(pfoe, M_PFTEMP);
|
|
} else
|
|
counter_u64_add(
|
|
V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
|
|
|
|
/* If nothing to flush, return. */
|
|
if (SLIST_EMPTY(&queue)) {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i <= pf_hashmask; i++) {
|
|
struct pf_idhash *ih = &V_pf_idhash[i];
|
|
struct pf_state_key *sk;
|
|
struct pf_kstate *s;
|
|
|
|
PF_HASHROW_LOCK(ih);
|
|
LIST_FOREACH(s, &ih->states, entry) {
|
|
sk = s->key[PF_SK_WIRE];
|
|
SLIST_FOREACH(pfoe, &queue, next)
|
|
if (sk->af == pfoe->af &&
|
|
((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
|
|
pfoe->rule == s->rule.ptr) &&
|
|
((pfoe->dir == PF_OUT &&
|
|
PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
|
|
(pfoe->dir == PF_IN &&
|
|
PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
|
|
s->timeout = PFTM_PURGE;
|
|
pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
|
|
killed++;
|
|
}
|
|
}
|
|
PF_HASHROW_UNLOCK(ih);
|
|
}
|
|
SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
|
|
free(pfoe, M_PFTEMP);
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC)
|
|
printf("%s: %u states killed", __func__, killed);
|
|
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Can return locked on failure, so that we can consistently
|
|
* allocate and insert a new one.
|
|
*/
|
|
struct pf_ksrc_node *
|
|
pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
|
|
int returnlocked)
|
|
{
|
|
struct pf_srchash *sh;
|
|
struct pf_ksrc_node *n;
|
|
|
|
counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
|
|
|
|
sh = &V_pf_srchash[pf_hashsrc(src, af)];
|
|
PF_HASHROW_LOCK(sh);
|
|
LIST_FOREACH(n, &sh->nodes, entry)
|
|
if (n->rule.ptr == rule && n->af == af &&
|
|
((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
|
|
(af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
|
|
break;
|
|
if (n != NULL) {
|
|
n->states++;
|
|
PF_HASHROW_UNLOCK(sh);
|
|
} else if (returnlocked == 0)
|
|
PF_HASHROW_UNLOCK(sh);
|
|
|
|
return (n);
|
|
}
|
|
|
|
static void
|
|
pf_free_src_node(struct pf_ksrc_node *sn)
|
|
{
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
counter_u64_free(sn->bytes[i]);
|
|
counter_u64_free(sn->packets[i]);
|
|
}
|
|
uma_zfree(V_pf_sources_z, sn);
|
|
}
|
|
|
|
static int
|
|
pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule,
|
|
struct pf_addr *src, sa_family_t af)
|
|
{
|
|
|
|
KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
|
|
rule->rpool.opts & PF_POOL_STICKYADDR),
|
|
("%s for non-tracking rule %p", __func__, rule));
|
|
|
|
if (*sn == NULL)
|
|
*sn = pf_find_src_node(src, rule, af, 1);
|
|
|
|
if (*sn == NULL) {
|
|
struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)];
|
|
|
|
PF_HASHROW_ASSERT(sh);
|
|
|
|
if (!rule->max_src_nodes ||
|
|
counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes)
|
|
(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
|
|
else
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES],
|
|
1);
|
|
if ((*sn) == NULL) {
|
|
PF_HASHROW_UNLOCK(sh);
|
|
return (-1);
|
|
}
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
|
|
(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
|
|
|
|
if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
|
|
pf_free_src_node(*sn);
|
|
PF_HASHROW_UNLOCK(sh);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
pf_init_threshold(&(*sn)->conn_rate,
|
|
rule->max_src_conn_rate.limit,
|
|
rule->max_src_conn_rate.seconds);
|
|
|
|
(*sn)->af = af;
|
|
(*sn)->rule.ptr = rule;
|
|
PF_ACPY(&(*sn)->addr, src, af);
|
|
LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
|
|
(*sn)->creation = time_uptime;
|
|
(*sn)->ruletype = rule->action;
|
|
(*sn)->states = 1;
|
|
if ((*sn)->rule.ptr != NULL)
|
|
counter_u64_add((*sn)->rule.ptr->src_nodes, 1);
|
|
PF_HASHROW_UNLOCK(sh);
|
|
counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
|
|
} else {
|
|
if (rule->max_src_states &&
|
|
(*sn)->states >= rule->max_src_states) {
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
|
|
1);
|
|
return (-1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pf_unlink_src_node(struct pf_ksrc_node *src)
|
|
{
|
|
|
|
PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]);
|
|
LIST_REMOVE(src, entry);
|
|
if (src->rule.ptr)
|
|
counter_u64_add(src->rule.ptr->src_nodes, -1);
|
|
}
|
|
|
|
u_int
|
|
pf_free_src_nodes(struct pf_ksrc_node_list *head)
|
|
{
|
|
struct pf_ksrc_node *sn, *tmp;
|
|
u_int count = 0;
|
|
|
|
LIST_FOREACH_SAFE(sn, head, entry, tmp) {
|
|
pf_free_src_node(sn);
|
|
count++;
|
|
}
|
|
|
|
counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
|
|
|
|
return (count);
|
|
}
|
|
|
|
void
|
|
pf_mtag_initialize()
|
|
{
|
|
|
|
pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
|
|
sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
}
|
|
|
|
/* Per-vnet data storage structures initialization. */
|
|
void
|
|
pf_initialize()
|
|
{
|
|
struct pf_keyhash *kh;
|
|
struct pf_idhash *ih;
|
|
struct pf_srchash *sh;
|
|
u_int i;
|
|
|
|
if (pf_hashsize == 0 || !powerof2(pf_hashsize))
|
|
pf_hashsize = PF_HASHSIZ;
|
|
if (pf_srchashsize == 0 || !powerof2(pf_srchashsize))
|
|
pf_srchashsize = PF_SRCHASHSIZ;
|
|
|
|
V_pf_hashseed = arc4random();
|
|
|
|
/* States and state keys storage. */
|
|
V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
|
|
uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
|
|
uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
|
|
|
|
V_pf_state_key_z = uma_zcreate("pf state keys",
|
|
sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
|
|
V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash),
|
|
M_PFHASH, M_NOWAIT | M_ZERO);
|
|
V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash),
|
|
M_PFHASH, M_NOWAIT | M_ZERO);
|
|
if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
|
|
printf("pf: Unable to allocate memory for "
|
|
"state_hashsize %lu.\n", pf_hashsize);
|
|
|
|
free(V_pf_keyhash, M_PFHASH);
|
|
free(V_pf_idhash, M_PFHASH);
|
|
|
|
pf_hashsize = PF_HASHSIZ;
|
|
V_pf_keyhash = mallocarray(pf_hashsize,
|
|
sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
|
|
V_pf_idhash = mallocarray(pf_hashsize,
|
|
sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
|
|
}
|
|
|
|
pf_hashmask = pf_hashsize - 1;
|
|
for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
|
|
i++, kh++, ih++) {
|
|
mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
|
|
mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
|
|
}
|
|
|
|
/* Source nodes. */
|
|
V_pf_sources_z = uma_zcreate("pf source nodes",
|
|
sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
0);
|
|
V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
|
|
uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
|
|
uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
|
|
|
|
V_pf_srchash = mallocarray(pf_srchashsize,
|
|
sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
|
|
if (V_pf_srchash == NULL) {
|
|
printf("pf: Unable to allocate memory for "
|
|
"source_hashsize %lu.\n", pf_srchashsize);
|
|
|
|
pf_srchashsize = PF_SRCHASHSIZ;
|
|
V_pf_srchash = mallocarray(pf_srchashsize,
|
|
sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
|
|
}
|
|
|
|
pf_srchashmask = pf_srchashsize - 1;
|
|
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++)
|
|
mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
|
|
|
|
/* ALTQ */
|
|
TAILQ_INIT(&V_pf_altqs[0]);
|
|
TAILQ_INIT(&V_pf_altqs[1]);
|
|
TAILQ_INIT(&V_pf_altqs[2]);
|
|
TAILQ_INIT(&V_pf_altqs[3]);
|
|
TAILQ_INIT(&V_pf_pabuf);
|
|
V_pf_altqs_active = &V_pf_altqs[0];
|
|
V_pf_altq_ifs_active = &V_pf_altqs[1];
|
|
V_pf_altqs_inactive = &V_pf_altqs[2];
|
|
V_pf_altq_ifs_inactive = &V_pf_altqs[3];
|
|
|
|
/* Send & overload+flush queues. */
|
|
STAILQ_INIT(&V_pf_sendqueue);
|
|
SLIST_INIT(&V_pf_overloadqueue);
|
|
TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
|
|
|
|
/* Unlinked, but may be referenced rules. */
|
|
TAILQ_INIT(&V_pf_unlinked_rules);
|
|
}
|
|
|
|
void
|
|
pf_mtag_cleanup()
|
|
{
|
|
|
|
uma_zdestroy(pf_mtag_z);
|
|
}
|
|
|
|
void
|
|
pf_cleanup()
|
|
{
|
|
struct pf_keyhash *kh;
|
|
struct pf_idhash *ih;
|
|
struct pf_srchash *sh;
|
|
struct pf_send_entry *pfse, *next;
|
|
u_int i;
|
|
|
|
for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
|
|
i++, kh++, ih++) {
|
|
KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
|
|
__func__));
|
|
KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
|
|
__func__));
|
|
mtx_destroy(&kh->lock);
|
|
mtx_destroy(&ih->lock);
|
|
}
|
|
free(V_pf_keyhash, M_PFHASH);
|
|
free(V_pf_idhash, M_PFHASH);
|
|
|
|
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
|
|
KASSERT(LIST_EMPTY(&sh->nodes),
|
|
("%s: source node hash not empty", __func__));
|
|
mtx_destroy(&sh->lock);
|
|
}
|
|
free(V_pf_srchash, M_PFHASH);
|
|
|
|
STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
|
|
m_freem(pfse->pfse_m);
|
|
free(pfse, M_PFTEMP);
|
|
}
|
|
|
|
uma_zdestroy(V_pf_sources_z);
|
|
uma_zdestroy(V_pf_state_z);
|
|
uma_zdestroy(V_pf_state_key_z);
|
|
}
|
|
|
|
static int
|
|
pf_mtag_uminit(void *mem, int size, int how)
|
|
{
|
|
struct m_tag *t;
|
|
|
|
t = (struct m_tag *)mem;
|
|
t->m_tag_cookie = MTAG_ABI_COMPAT;
|
|
t->m_tag_id = PACKET_TAG_PF;
|
|
t->m_tag_len = sizeof(struct pf_mtag);
|
|
t->m_tag_free = pf_mtag_free;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pf_mtag_free(struct m_tag *t)
|
|
{
|
|
|
|
uma_zfree(pf_mtag_z, t);
|
|
}
|
|
|
|
struct pf_mtag *
|
|
pf_get_mtag(struct mbuf *m)
|
|
{
|
|
struct m_tag *mtag;
|
|
|
|
if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
|
|
return ((struct pf_mtag *)(mtag + 1));
|
|
|
|
mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
|
|
if (mtag == NULL)
|
|
return (NULL);
|
|
bzero(mtag + 1, sizeof(struct pf_mtag));
|
|
m_tag_prepend(m, mtag);
|
|
|
|
return ((struct pf_mtag *)(mtag + 1));
|
|
}
|
|
|
|
static int
|
|
pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
|
|
struct pf_kstate *s)
|
|
{
|
|
struct pf_keyhash *khs, *khw, *kh;
|
|
struct pf_state_key *sk, *cur;
|
|
struct pf_kstate *si, *olds = NULL;
|
|
int idx;
|
|
|
|
KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
|
|
KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
|
|
KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
|
|
|
|
/*
|
|
* We need to lock hash slots of both keys. To avoid deadlock
|
|
* we always lock the slot with lower address first. Unlock order
|
|
* isn't important.
|
|
*
|
|
* We also need to lock ID hash slot before dropping key
|
|
* locks. On success we return with ID hash slot locked.
|
|
*/
|
|
|
|
if (skw == sks) {
|
|
khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
|
|
PF_HASHROW_LOCK(khs);
|
|
} else {
|
|
khs = &V_pf_keyhash[pf_hashkey(sks)];
|
|
khw = &V_pf_keyhash[pf_hashkey(skw)];
|
|
if (khs == khw) {
|
|
PF_HASHROW_LOCK(khs);
|
|
} else if (khs < khw) {
|
|
PF_HASHROW_LOCK(khs);
|
|
PF_HASHROW_LOCK(khw);
|
|
} else {
|
|
PF_HASHROW_LOCK(khw);
|
|
PF_HASHROW_LOCK(khs);
|
|
}
|
|
}
|
|
|
|
#define KEYS_UNLOCK() do { \
|
|
if (khs != khw) { \
|
|
PF_HASHROW_UNLOCK(khs); \
|
|
PF_HASHROW_UNLOCK(khw); \
|
|
} else \
|
|
PF_HASHROW_UNLOCK(khs); \
|
|
} while (0)
|
|
|
|
/*
|
|
* First run: start with wire key.
|
|
*/
|
|
sk = skw;
|
|
kh = khw;
|
|
idx = PF_SK_WIRE;
|
|
|
|
MPASS(s->lock == NULL);
|
|
s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
|
|
|
|
keyattach:
|
|
LIST_FOREACH(cur, &kh->keys, entry)
|
|
if (pf_bcmp_state_key(cur, (struct pf_state_key_cmp *)sk) == 0)
|
|
break;
|
|
|
|
if (cur != NULL) {
|
|
/* Key exists. Check for same kif, if none, add to key. */
|
|
TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
|
|
struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
|
|
|
|
PF_HASHROW_LOCK(ih);
|
|
if (si->kif == s->kif &&
|
|
si->direction == s->direction) {
|
|
if (sk->proto == IPPROTO_TCP &&
|
|
si->src.state >= TCPS_FIN_WAIT_2 &&
|
|
si->dst.state >= TCPS_FIN_WAIT_2) {
|
|
/*
|
|
* New state matches an old >FIN_WAIT_2
|
|
* state. We can't drop key hash locks,
|
|
* thus we can't unlink it properly.
|
|
*
|
|
* As a workaround we drop it into
|
|
* TCPS_CLOSED state, schedule purge
|
|
* ASAP and push it into the very end
|
|
* of the slot TAILQ, so that it won't
|
|
* conflict with our new state.
|
|
*/
|
|
pf_set_protostate(si, PF_PEER_BOTH,
|
|
TCPS_CLOSED);
|
|
si->timeout = PFTM_PURGE;
|
|
olds = si;
|
|
} else {
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: %s key attach "
|
|
"failed on %s: ",
|
|
(idx == PF_SK_WIRE) ?
|
|
"wire" : "stack",
|
|
s->kif->pfik_name);
|
|
pf_print_state_parts(s,
|
|
(idx == PF_SK_WIRE) ?
|
|
sk : NULL,
|
|
(idx == PF_SK_STACK) ?
|
|
sk : NULL);
|
|
printf(", existing: ");
|
|
pf_print_state_parts(si,
|
|
(idx == PF_SK_WIRE) ?
|
|
sk : NULL,
|
|
(idx == PF_SK_STACK) ?
|
|
sk : NULL);
|
|
printf("\n");
|
|
}
|
|
PF_HASHROW_UNLOCK(ih);
|
|
KEYS_UNLOCK();
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
if (idx == PF_SK_STACK)
|
|
pf_detach_state(s);
|
|
return (EEXIST); /* collision! */
|
|
}
|
|
}
|
|
PF_HASHROW_UNLOCK(ih);
|
|
}
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
s->key[idx] = cur;
|
|
} else {
|
|
LIST_INSERT_HEAD(&kh->keys, sk, entry);
|
|
s->key[idx] = sk;
|
|
}
|
|
|
|
stateattach:
|
|
/* List is sorted, if-bound states before floating. */
|
|
if (s->kif == V_pfi_all)
|
|
TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
|
|
else
|
|
TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
|
|
|
|
if (olds) {
|
|
TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
|
|
TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
|
|
key_list[idx]);
|
|
olds = NULL;
|
|
}
|
|
|
|
/*
|
|
* Attach done. See how should we (or should not?)
|
|
* attach a second key.
|
|
*/
|
|
if (sks == skw) {
|
|
s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
|
|
idx = PF_SK_STACK;
|
|
sks = NULL;
|
|
goto stateattach;
|
|
} else if (sks != NULL) {
|
|
/*
|
|
* Continue attaching with stack key.
|
|
*/
|
|
sk = sks;
|
|
kh = khs;
|
|
idx = PF_SK_STACK;
|
|
sks = NULL;
|
|
goto keyattach;
|
|
}
|
|
|
|
PF_STATE_LOCK(s);
|
|
KEYS_UNLOCK();
|
|
|
|
KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
|
|
("%s failure", __func__));
|
|
|
|
return (0);
|
|
#undef KEYS_UNLOCK
|
|
}
|
|
|
|
static void
|
|
pf_detach_state(struct pf_kstate *s)
|
|
{
|
|
struct pf_state_key *sks = s->key[PF_SK_STACK];
|
|
struct pf_keyhash *kh;
|
|
|
|
if (sks != NULL) {
|
|
kh = &V_pf_keyhash[pf_hashkey(sks)];
|
|
PF_HASHROW_LOCK(kh);
|
|
if (s->key[PF_SK_STACK] != NULL)
|
|
pf_state_key_detach(s, PF_SK_STACK);
|
|
/*
|
|
* If both point to same key, then we are done.
|
|
*/
|
|
if (sks == s->key[PF_SK_WIRE]) {
|
|
pf_state_key_detach(s, PF_SK_WIRE);
|
|
PF_HASHROW_UNLOCK(kh);
|
|
return;
|
|
}
|
|
PF_HASHROW_UNLOCK(kh);
|
|
}
|
|
|
|
if (s->key[PF_SK_WIRE] != NULL) {
|
|
kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
|
|
PF_HASHROW_LOCK(kh);
|
|
if (s->key[PF_SK_WIRE] != NULL)
|
|
pf_state_key_detach(s, PF_SK_WIRE);
|
|
PF_HASHROW_UNLOCK(kh);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pf_state_key_detach(struct pf_kstate *s, int idx)
|
|
{
|
|
struct pf_state_key *sk = s->key[idx];
|
|
#ifdef INVARIANTS
|
|
struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
|
|
|
|
PF_HASHROW_ASSERT(kh);
|
|
#endif
|
|
TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
|
|
s->key[idx] = NULL;
|
|
|
|
if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
|
|
LIST_REMOVE(sk, entry);
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
}
|
|
}
|
|
|
|
static int
|
|
pf_state_key_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct pf_state_key *sk = mem;
|
|
|
|
bzero(sk, sizeof(struct pf_state_key_cmp));
|
|
TAILQ_INIT(&sk->states[PF_SK_WIRE]);
|
|
TAILQ_INIT(&sk->states[PF_SK_STACK]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct pf_state_key *
|
|
pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr,
|
|
struct pf_addr *daddr, u_int16_t sport, u_int16_t dport)
|
|
{
|
|
struct pf_state_key *sk;
|
|
|
|
sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
|
|
if (sk == NULL)
|
|
return (NULL);
|
|
|
|
PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af);
|
|
PF_ACPY(&sk->addr[pd->didx], daddr, pd->af);
|
|
sk->port[pd->sidx] = sport;
|
|
sk->port[pd->didx] = dport;
|
|
sk->proto = pd->proto;
|
|
sk->af = pd->af;
|
|
|
|
return (sk);
|
|
}
|
|
|
|
struct pf_state_key *
|
|
pf_state_key_clone(struct pf_state_key *orig)
|
|
{
|
|
struct pf_state_key *sk;
|
|
|
|
sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
|
|
if (sk == NULL)
|
|
return (NULL);
|
|
|
|
bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
|
|
|
|
return (sk);
|
|
}
|
|
|
|
int
|
|
pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
|
|
struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
|
|
{
|
|
struct pf_idhash *ih;
|
|
struct pf_kstate *cur;
|
|
int error;
|
|
|
|
KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
|
|
("%s: sks not pristine", __func__));
|
|
KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
|
|
("%s: skw not pristine", __func__));
|
|
KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
|
|
|
|
s->kif = kif;
|
|
s->orig_kif = orig_kif;
|
|
|
|
if (s->id == 0 && s->creatorid == 0) {
|
|
/* XXX: should be atomic, but probability of collision low */
|
|
if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID)
|
|
V_pf_stateid[curcpu] = 1;
|
|
s->id |= (uint64_t )curcpu << PFID_CPUSHIFT;
|
|
s->id = htobe64(s->id);
|
|
s->creatorid = V_pf_status.hostid;
|
|
}
|
|
|
|
/* Returns with ID locked on success. */
|
|
if ((error = pf_state_key_attach(skw, sks, s)) != 0)
|
|
return (error);
|
|
|
|
ih = &V_pf_idhash[PF_IDHASH(s)];
|
|
PF_HASHROW_ASSERT(ih);
|
|
LIST_FOREACH(cur, &ih->states, entry)
|
|
if (cur->id == s->id && cur->creatorid == s->creatorid)
|
|
break;
|
|
|
|
if (cur != NULL) {
|
|
PF_HASHROW_UNLOCK(ih);
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: state ID collision: "
|
|
"id: %016llx creatorid: %08x\n",
|
|
(unsigned long long)be64toh(s->id),
|
|
ntohl(s->creatorid));
|
|
}
|
|
pf_detach_state(s);
|
|
return (EEXIST);
|
|
}
|
|
LIST_INSERT_HEAD(&ih->states, s, entry);
|
|
/* One for keys, one for ID hash. */
|
|
refcount_init(&s->refs, 2);
|
|
|
|
pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
|
|
if (V_pfsync_insert_state_ptr != NULL)
|
|
V_pfsync_insert_state_ptr(s);
|
|
|
|
/* Returns locked. */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find state by ID: returns with locked row on success.
|
|
*/
|
|
struct pf_kstate *
|
|
pf_find_state_byid(uint64_t id, uint32_t creatorid)
|
|
{
|
|
struct pf_idhash *ih;
|
|
struct pf_kstate *s;
|
|
|
|
pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
|
|
|
|
ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))];
|
|
|
|
PF_HASHROW_LOCK(ih);
|
|
LIST_FOREACH(s, &ih->states, entry)
|
|
if (s->id == id && s->creatorid == creatorid)
|
|
break;
|
|
|
|
if (s == NULL)
|
|
PF_HASHROW_UNLOCK(ih);
|
|
|
|
return (s);
|
|
}
|
|
|
|
/*
|
|
* Find state by key.
|
|
* Returns with ID hash slot locked on success.
|
|
*/
|
|
static struct pf_kstate *
|
|
pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir)
|
|
{
|
|
struct pf_keyhash *kh;
|
|
struct pf_state_key *sk;
|
|
struct pf_kstate *s;
|
|
int idx;
|
|
|
|
pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
|
|
|
|
kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
|
|
|
|
PF_HASHROW_LOCK(kh);
|
|
LIST_FOREACH(sk, &kh->keys, entry)
|
|
if (pf_bcmp_state_key(sk, key) == 0)
|
|
break;
|
|
if (sk == NULL) {
|
|
PF_HASHROW_UNLOCK(kh);
|
|
return (NULL);
|
|
}
|
|
|
|
idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
|
|
|
|
/* List is sorted, if-bound states before floating ones. */
|
|
TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
|
|
if (s->kif == V_pfi_all || s->kif == kif) {
|
|
PF_STATE_LOCK(s);
|
|
PF_HASHROW_UNLOCK(kh);
|
|
if (__predict_false(s->timeout >= PFTM_MAX)) {
|
|
/*
|
|
* State is either being processed by
|
|
* pf_unlink_state() in an other thread, or
|
|
* is scheduled for immediate expiry.
|
|
*/
|
|
PF_STATE_UNLOCK(s);
|
|
return (NULL);
|
|
}
|
|
return (s);
|
|
}
|
|
PF_HASHROW_UNLOCK(kh);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns with ID hash slot locked on success.
|
|
*/
|
|
struct pf_kstate *
|
|
pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more)
|
|
{
|
|
struct pf_keyhash *kh;
|
|
struct pf_state_key *sk;
|
|
struct pf_kstate *s, *ret = NULL;
|
|
int idx, inout = 0;
|
|
|
|
pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
|
|
|
|
kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
|
|
|
|
PF_HASHROW_LOCK(kh);
|
|
LIST_FOREACH(sk, &kh->keys, entry)
|
|
if (pf_bcmp_state_key(sk, key) == 0)
|
|
break;
|
|
if (sk == NULL) {
|
|
PF_HASHROW_UNLOCK(kh);
|
|
return (NULL);
|
|
}
|
|
switch (dir) {
|
|
case PF_IN:
|
|
idx = PF_SK_WIRE;
|
|
break;
|
|
case PF_OUT:
|
|
idx = PF_SK_STACK;
|
|
break;
|
|
case PF_INOUT:
|
|
idx = PF_SK_WIRE;
|
|
inout = 1;
|
|
break;
|
|
default:
|
|
panic("%s: dir %u", __func__, dir);
|
|
}
|
|
second_run:
|
|
TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
|
|
if (more == NULL) {
|
|
PF_STATE_LOCK(s);
|
|
PF_HASHROW_UNLOCK(kh);
|
|
return (s);
|
|
}
|
|
|
|
if (ret)
|
|
(*more)++;
|
|
else {
|
|
ret = s;
|
|
PF_STATE_LOCK(s);
|
|
}
|
|
}
|
|
if (inout == 1) {
|
|
inout = 0;
|
|
idx = PF_SK_STACK;
|
|
goto second_run;
|
|
}
|
|
PF_HASHROW_UNLOCK(kh);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* FIXME
|
|
* This routine is inefficient -- locks the state only to unlock immediately on
|
|
* return.
|
|
* It is racy -- after the state is unlocked nothing stops other threads from
|
|
* removing it.
|
|
*/
|
|
bool
|
|
pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir)
|
|
{
|
|
struct pf_kstate *s;
|
|
|
|
s = pf_find_state_all(key, dir, NULL);
|
|
if (s != NULL) {
|
|
PF_STATE_UNLOCK(s);
|
|
return (true);
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
/* END state table stuff */
|
|
|
|
static void
|
|
pf_send(struct pf_send_entry *pfse)
|
|
{
|
|
|
|
PF_SENDQ_LOCK();
|
|
STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
|
|
PF_SENDQ_UNLOCK();
|
|
swi_sched(V_pf_swi_cookie, 0);
|
|
}
|
|
|
|
static bool
|
|
pf_isforlocal(struct mbuf *m, int af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET: {
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
|
|
return (in_localip(ip->ip_dst));
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6: {
|
|
struct ip6_hdr *ip6;
|
|
struct in6_ifaddr *ia;
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
|
|
if (ia == NULL)
|
|
return (false);
|
|
return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
|
|
}
|
|
#endif
|
|
default:
|
|
panic("Unsupported af %d", af);
|
|
}
|
|
|
|
return (false);
|
|
}
|
|
|
|
void
|
|
pf_intr(void *v)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct pf_send_head queue;
|
|
struct pf_send_entry *pfse, *next;
|
|
|
|
CURVNET_SET((struct vnet *)v);
|
|
|
|
PF_SENDQ_LOCK();
|
|
queue = V_pf_sendqueue;
|
|
STAILQ_INIT(&V_pf_sendqueue);
|
|
PF_SENDQ_UNLOCK();
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
|
|
STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
|
|
switch (pfse->pfse_type) {
|
|
#ifdef INET
|
|
case PFSE_IP: {
|
|
if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
|
|
pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
|
|
pfse->pfse_m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_VALID | CSUM_IP_CHECKED;
|
|
ip_input(pfse->pfse_m);
|
|
} else {
|
|
ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
|
|
NULL);
|
|
}
|
|
break;
|
|
}
|
|
case PFSE_ICMP:
|
|
icmp_error(pfse->pfse_m, pfse->icmpopts.type,
|
|
pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case PFSE_IP6:
|
|
if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
|
|
pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
|
|
ip6_input(pfse->pfse_m);
|
|
} else {
|
|
ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
|
|
NULL, NULL);
|
|
}
|
|
break;
|
|
case PFSE_ICMP6:
|
|
icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
|
|
pfse->icmpopts.code, pfse->icmpopts.mtu);
|
|
break;
|
|
#endif /* INET6 */
|
|
default:
|
|
panic("%s: unknown type", __func__);
|
|
}
|
|
free(pfse, M_PFTEMP);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
#define pf_purge_thread_period (hz / 10)
|
|
|
|
#ifdef PF_WANT_32_TO_64_COUNTER
|
|
static void
|
|
pf_status_counter_u64_periodic(void)
|
|
{
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < FCNT_MAX; i++) {
|
|
pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pf_kif_counter_u64_periodic(void)
|
|
{
|
|
struct pfi_kkif *kif;
|
|
size_t r, run;
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
if (__predict_false(V_pf_allkifcount == 0)) {
|
|
return;
|
|
}
|
|
|
|
if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
|
|
return;
|
|
}
|
|
|
|
run = V_pf_allkifcount / 10;
|
|
if (run < 5)
|
|
run = 5;
|
|
|
|
for (r = 0; r < run; r++) {
|
|
kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
|
|
if (kif == NULL) {
|
|
LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
|
|
LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
|
|
break;
|
|
}
|
|
|
|
LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
|
|
LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int k = 0; k < 2; k++) {
|
|
pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
|
|
pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
pf_rule_counter_u64_periodic(void)
|
|
{
|
|
struct pf_krule *rule;
|
|
size_t r, run;
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
if (__predict_false(V_pf_allrulecount == 0)) {
|
|
return;
|
|
}
|
|
|
|
if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
|
|
return;
|
|
}
|
|
|
|
run = V_pf_allrulecount / 10;
|
|
if (run < 5)
|
|
run = 5;
|
|
|
|
for (r = 0; r < run; r++) {
|
|
rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
|
|
if (rule == NULL) {
|
|
LIST_REMOVE(V_pf_rulemarker, allrulelist);
|
|
LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
|
|
break;
|
|
}
|
|
|
|
LIST_REMOVE(V_pf_rulemarker, allrulelist);
|
|
LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
|
|
|
|
pf_counter_u64_periodic(&rule->evaluations);
|
|
for (int i = 0; i < 2; i++) {
|
|
pf_counter_u64_periodic(&rule->packets[i]);
|
|
pf_counter_u64_periodic(&rule->bytes[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
pf_counter_u64_periodic_main(void)
|
|
{
|
|
PF_RULES_RLOCK_TRACKER;
|
|
|
|
V_pf_counter_periodic_iter++;
|
|
|
|
PF_RULES_RLOCK();
|
|
pf_counter_u64_critical_enter();
|
|
pf_status_counter_u64_periodic();
|
|
pf_kif_counter_u64_periodic();
|
|
pf_rule_counter_u64_periodic();
|
|
pf_counter_u64_critical_exit();
|
|
PF_RULES_RUNLOCK();
|
|
}
|
|
#else
|
|
#define pf_counter_u64_periodic_main() do { } while (0)
|
|
#endif
|
|
|
|
void
|
|
pf_purge_thread(void *unused __unused)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
sx_xlock(&pf_end_lock);
|
|
while (pf_end_threads == 0) {
|
|
sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
|
|
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter);
|
|
|
|
/* Wait until V_pf_default_rule is initialized. */
|
|
if (V_pf_vnet_active == 0) {
|
|
CURVNET_RESTORE();
|
|
continue;
|
|
}
|
|
|
|
pf_counter_u64_periodic_main();
|
|
|
|
/*
|
|
* Process 1/interval fraction of the state
|
|
* table every run.
|
|
*/
|
|
V_pf_purge_idx =
|
|
pf_purge_expired_states(V_pf_purge_idx, pf_hashmask /
|
|
(V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
|
|
|
|
/*
|
|
* Purge other expired types every
|
|
* PFTM_INTERVAL seconds.
|
|
*/
|
|
if (V_pf_purge_idx == 0) {
|
|
/*
|
|
* Order is important:
|
|
* - states and src nodes reference rules
|
|
* - states and rules reference kifs
|
|
*/
|
|
pf_purge_expired_fragments();
|
|
pf_purge_expired_src_nodes();
|
|
pf_purge_unlinked_rules();
|
|
pfi_kkif_purge();
|
|
}
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
}
|
|
|
|
pf_end_threads++;
|
|
sx_xunlock(&pf_end_lock);
|
|
kproc_exit(0);
|
|
}
|
|
|
|
void
|
|
pf_unload_vnet_purge(void)
|
|
{
|
|
|
|
/*
|
|
* To cleanse up all kifs and rules we need
|
|
* two runs: first one clears reference flags,
|
|
* then pf_purge_expired_states() doesn't
|
|
* raise them, and then second run frees.
|
|
*/
|
|
pf_purge_unlinked_rules();
|
|
pfi_kkif_purge();
|
|
|
|
/*
|
|
* Now purge everything.
|
|
*/
|
|
pf_purge_expired_states(0, pf_hashmask);
|
|
pf_purge_fragments(UINT_MAX);
|
|
pf_purge_expired_src_nodes();
|
|
|
|
/*
|
|
* Now all kifs & rules should be unreferenced,
|
|
* thus should be successfully freed.
|
|
*/
|
|
pf_purge_unlinked_rules();
|
|
pfi_kkif_purge();
|
|
}
|
|
|
|
u_int32_t
|
|
pf_state_expires(const struct pf_kstate *state)
|
|
{
|
|
u_int32_t timeout;
|
|
u_int32_t start;
|
|
u_int32_t end;
|
|
u_int32_t states;
|
|
|
|
/* handle all PFTM_* > PFTM_MAX here */
|
|
if (state->timeout == PFTM_PURGE)
|
|
return (time_uptime);
|
|
KASSERT(state->timeout != PFTM_UNLINKED,
|
|
("pf_state_expires: timeout == PFTM_UNLINKED"));
|
|
KASSERT((state->timeout < PFTM_MAX),
|
|
("pf_state_expires: timeout > PFTM_MAX"));
|
|
timeout = state->rule.ptr->timeout[state->timeout];
|
|
if (!timeout)
|
|
timeout = V_pf_default_rule.timeout[state->timeout];
|
|
start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START];
|
|
if (start && state->rule.ptr != &V_pf_default_rule) {
|
|
end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END];
|
|
states = counter_u64_fetch(state->rule.ptr->states_cur);
|
|
} else {
|
|
start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
|
|
end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
|
|
states = V_pf_status.states;
|
|
}
|
|
if (end && states > start && start < end) {
|
|
if (states < end) {
|
|
timeout = (u_int64_t)timeout * (end - states) /
|
|
(end - start);
|
|
return (state->expire + timeout);
|
|
}
|
|
else
|
|
return (time_uptime);
|
|
}
|
|
return (state->expire + timeout);
|
|
}
|
|
|
|
void
|
|
pf_purge_expired_src_nodes()
|
|
{
|
|
struct pf_ksrc_node_list freelist;
|
|
struct pf_srchash *sh;
|
|
struct pf_ksrc_node *cur, *next;
|
|
int i;
|
|
|
|
LIST_INIT(&freelist);
|
|
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
|
|
PF_HASHROW_LOCK(sh);
|
|
LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
|
|
if (cur->states == 0 && cur->expire <= time_uptime) {
|
|
pf_unlink_src_node(cur);
|
|
LIST_INSERT_HEAD(&freelist, cur, entry);
|
|
} else if (cur->rule.ptr != NULL)
|
|
cur->rule.ptr->rule_ref |= PFRULE_REFS;
|
|
PF_HASHROW_UNLOCK(sh);
|
|
}
|
|
|
|
pf_free_src_nodes(&freelist);
|
|
|
|
V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
|
|
}
|
|
|
|
static void
|
|
pf_src_tree_remove_state(struct pf_kstate *s)
|
|
{
|
|
struct pf_ksrc_node *sn;
|
|
struct pf_srchash *sh;
|
|
uint32_t timeout;
|
|
|
|
timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ?
|
|
s->rule.ptr->timeout[PFTM_SRC_NODE] :
|
|
V_pf_default_rule.timeout[PFTM_SRC_NODE];
|
|
|
|
if (s->src_node != NULL) {
|
|
sn = s->src_node;
|
|
sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
|
|
PF_HASHROW_LOCK(sh);
|
|
if (s->src.tcp_est)
|
|
--sn->conn;
|
|
if (--sn->states == 0)
|
|
sn->expire = time_uptime + timeout;
|
|
PF_HASHROW_UNLOCK(sh);
|
|
}
|
|
if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
|
|
sn = s->nat_src_node;
|
|
sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
|
|
PF_HASHROW_LOCK(sh);
|
|
if (--sn->states == 0)
|
|
sn->expire = time_uptime + timeout;
|
|
PF_HASHROW_UNLOCK(sh);
|
|
}
|
|
s->src_node = s->nat_src_node = NULL;
|
|
}
|
|
|
|
/*
|
|
* Unlink and potentilly free a state. Function may be
|
|
* called with ID hash row locked, but always returns
|
|
* unlocked, since it needs to go through key hash locking.
|
|
*/
|
|
int
|
|
pf_unlink_state(struct pf_kstate *s)
|
|
{
|
|
struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
|
|
|
|
PF_HASHROW_ASSERT(ih);
|
|
|
|
if (s->timeout == PFTM_UNLINKED) {
|
|
/*
|
|
* State is being processed
|
|
* by pf_unlink_state() in
|
|
* an other thread.
|
|
*/
|
|
PF_HASHROW_UNLOCK(ih);
|
|
return (0); /* XXXGL: undefined actually */
|
|
}
|
|
|
|
if (s->src.state == PF_TCPS_PROXY_DST) {
|
|
/* XXX wire key the right one? */
|
|
pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af,
|
|
&s->key[PF_SK_WIRE]->addr[1],
|
|
&s->key[PF_SK_WIRE]->addr[0],
|
|
s->key[PF_SK_WIRE]->port[1],
|
|
s->key[PF_SK_WIRE]->port[0],
|
|
s->src.seqhi, s->src.seqlo + 1,
|
|
TH_RST|TH_ACK, 0, 0, 0, 1, s->tag);
|
|
}
|
|
|
|
LIST_REMOVE(s, entry);
|
|
pf_src_tree_remove_state(s);
|
|
|
|
if (V_pfsync_delete_state_ptr != NULL)
|
|
V_pfsync_delete_state_ptr(s);
|
|
|
|
STATE_DEC_COUNTERS(s);
|
|
|
|
s->timeout = PFTM_UNLINKED;
|
|
|
|
/* Ensure we remove it from the list of halfopen states, if needed. */
|
|
if (s->key[PF_SK_STACK] != NULL &&
|
|
s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
|
|
pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
|
|
|
|
PF_HASHROW_UNLOCK(ih);
|
|
|
|
pf_detach_state(s);
|
|
/* pf_state_insert() initialises refs to 2 */
|
|
return (pf_release_staten(s, 2));
|
|
}
|
|
|
|
struct pf_kstate *
|
|
pf_alloc_state(int flags)
|
|
{
|
|
|
|
return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
|
|
}
|
|
|
|
void
|
|
pf_free_state(struct pf_kstate *cur)
|
|
{
|
|
|
|
KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
|
|
KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
|
|
cur->timeout));
|
|
|
|
pf_normalize_tcp_cleanup(cur);
|
|
uma_zfree(V_pf_state_z, cur);
|
|
pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
|
|
}
|
|
|
|
/*
|
|
* Called only from pf_purge_thread(), thus serialized.
|
|
*/
|
|
static u_int
|
|
pf_purge_expired_states(u_int i, int maxcheck)
|
|
{
|
|
struct pf_idhash *ih;
|
|
struct pf_kstate *s;
|
|
|
|
V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
|
|
|
|
/*
|
|
* Go through hash and unlink states that expire now.
|
|
*/
|
|
while (maxcheck > 0) {
|
|
ih = &V_pf_idhash[i];
|
|
|
|
/* only take the lock if we expect to do work */
|
|
if (!LIST_EMPTY(&ih->states)) {
|
|
relock:
|
|
PF_HASHROW_LOCK(ih);
|
|
LIST_FOREACH(s, &ih->states, entry) {
|
|
if (pf_state_expires(s) <= time_uptime) {
|
|
V_pf_status.states -=
|
|
pf_unlink_state(s);
|
|
goto relock;
|
|
}
|
|
s->rule.ptr->rule_ref |= PFRULE_REFS;
|
|
if (s->nat_rule.ptr != NULL)
|
|
s->nat_rule.ptr->rule_ref |= PFRULE_REFS;
|
|
if (s->anchor.ptr != NULL)
|
|
s->anchor.ptr->rule_ref |= PFRULE_REFS;
|
|
s->kif->pfik_flags |= PFI_IFLAG_REFS;
|
|
if (s->rt_kif)
|
|
s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
|
|
}
|
|
PF_HASHROW_UNLOCK(ih);
|
|
}
|
|
|
|
/* Return when we hit end of hash. */
|
|
if (++i > pf_hashmask) {
|
|
V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
|
|
return (0);
|
|
}
|
|
|
|
maxcheck--;
|
|
}
|
|
|
|
V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
|
|
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
pf_purge_unlinked_rules()
|
|
{
|
|
struct pf_krulequeue tmpq;
|
|
struct pf_krule *r, *r1;
|
|
|
|
/*
|
|
* If we have overloading task pending, then we'd
|
|
* better skip purging this time. There is a tiny
|
|
* probability that overloading task references
|
|
* an already unlinked rule.
|
|
*/
|
|
PF_OVERLOADQ_LOCK();
|
|
if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
|
|
PF_OVERLOADQ_UNLOCK();
|
|
return;
|
|
}
|
|
PF_OVERLOADQ_UNLOCK();
|
|
|
|
/*
|
|
* Do naive mark-and-sweep garbage collecting of old rules.
|
|
* Reference flag is raised by pf_purge_expired_states()
|
|
* and pf_purge_expired_src_nodes().
|
|
*
|
|
* To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
|
|
* use a temporary queue.
|
|
*/
|
|
TAILQ_INIT(&tmpq);
|
|
PF_UNLNKDRULES_LOCK();
|
|
TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
|
|
if (!(r->rule_ref & PFRULE_REFS)) {
|
|
TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
|
|
TAILQ_INSERT_TAIL(&tmpq, r, entries);
|
|
} else
|
|
r->rule_ref &= ~PFRULE_REFS;
|
|
}
|
|
PF_UNLNKDRULES_UNLOCK();
|
|
|
|
if (!TAILQ_EMPTY(&tmpq)) {
|
|
PF_RULES_WLOCK();
|
|
TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
|
|
TAILQ_REMOVE(&tmpq, r, entries);
|
|
pf_free_rule(r);
|
|
}
|
|
PF_RULES_WUNLOCK();
|
|
}
|
|
}
|
|
|
|
void
|
|
pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET: {
|
|
u_int32_t a = ntohl(addr->addr32[0]);
|
|
printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
|
|
(a>>8)&255, a&255);
|
|
if (p) {
|
|
p = ntohs(p);
|
|
printf(":%u", p);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6: {
|
|
u_int16_t b;
|
|
u_int8_t i, curstart, curend, maxstart, maxend;
|
|
curstart = curend = maxstart = maxend = 255;
|
|
for (i = 0; i < 8; i++) {
|
|
if (!addr->addr16[i]) {
|
|
if (curstart == 255)
|
|
curstart = i;
|
|
curend = i;
|
|
} else {
|
|
if ((curend - curstart) >
|
|
(maxend - maxstart)) {
|
|
maxstart = curstart;
|
|
maxend = curend;
|
|
}
|
|
curstart = curend = 255;
|
|
}
|
|
}
|
|
if ((curend - curstart) >
|
|
(maxend - maxstart)) {
|
|
maxstart = curstart;
|
|
maxend = curend;
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
if (i >= maxstart && i <= maxend) {
|
|
if (i == 0)
|
|
printf(":");
|
|
if (i == maxend)
|
|
printf(":");
|
|
} else {
|
|
b = ntohs(addr->addr16[i]);
|
|
printf("%x", b);
|
|
if (i < 7)
|
|
printf(":");
|
|
}
|
|
}
|
|
if (p) {
|
|
p = ntohs(p);
|
|
printf("[%u]", p);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
}
|
|
}
|
|
|
|
void
|
|
pf_print_state(struct pf_kstate *s)
|
|
{
|
|
pf_print_state_parts(s, NULL, NULL);
|
|
}
|
|
|
|
static void
|
|
pf_print_state_parts(struct pf_kstate *s,
|
|
struct pf_state_key *skwp, struct pf_state_key *sksp)
|
|
{
|
|
struct pf_state_key *skw, *sks;
|
|
u_int8_t proto, dir;
|
|
|
|
/* Do our best to fill these, but they're skipped if NULL */
|
|
skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
|
|
sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
|
|
proto = skw ? skw->proto : (sks ? sks->proto : 0);
|
|
dir = s ? s->direction : 0;
|
|
|
|
switch (proto) {
|
|
case IPPROTO_IPV4:
|
|
printf("IPv4");
|
|
break;
|
|
case IPPROTO_IPV6:
|
|
printf("IPv6");
|
|
break;
|
|
case IPPROTO_TCP:
|
|
printf("TCP");
|
|
break;
|
|
case IPPROTO_UDP:
|
|
printf("UDP");
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
printf("ICMP");
|
|
break;
|
|
case IPPROTO_ICMPV6:
|
|
printf("ICMPv6");
|
|
break;
|
|
default:
|
|
printf("%u", proto);
|
|
break;
|
|
}
|
|
switch (dir) {
|
|
case PF_IN:
|
|
printf(" in");
|
|
break;
|
|
case PF_OUT:
|
|
printf(" out");
|
|
break;
|
|
}
|
|
if (skw) {
|
|
printf(" wire: ");
|
|
pf_print_host(&skw->addr[0], skw->port[0], skw->af);
|
|
printf(" ");
|
|
pf_print_host(&skw->addr[1], skw->port[1], skw->af);
|
|
}
|
|
if (sks) {
|
|
printf(" stack: ");
|
|
if (sks != skw) {
|
|
pf_print_host(&sks->addr[0], sks->port[0], sks->af);
|
|
printf(" ");
|
|
pf_print_host(&sks->addr[1], sks->port[1], sks->af);
|
|
} else
|
|
printf("-");
|
|
}
|
|
if (s) {
|
|
if (proto == IPPROTO_TCP) {
|
|
printf(" [lo=%u high=%u win=%u modulator=%u",
|
|
s->src.seqlo, s->src.seqhi,
|
|
s->src.max_win, s->src.seqdiff);
|
|
if (s->src.wscale && s->dst.wscale)
|
|
printf(" wscale=%u",
|
|
s->src.wscale & PF_WSCALE_MASK);
|
|
printf("]");
|
|
printf(" [lo=%u high=%u win=%u modulator=%u",
|
|
s->dst.seqlo, s->dst.seqhi,
|
|
s->dst.max_win, s->dst.seqdiff);
|
|
if (s->src.wscale && s->dst.wscale)
|
|
printf(" wscale=%u",
|
|
s->dst.wscale & PF_WSCALE_MASK);
|
|
printf("]");
|
|
}
|
|
printf(" %u:%u", s->src.state, s->dst.state);
|
|
}
|
|
}
|
|
|
|
void
|
|
pf_print_flags(u_int8_t f)
|
|
{
|
|
if (f)
|
|
printf(" ");
|
|
if (f & TH_FIN)
|
|
printf("F");
|
|
if (f & TH_SYN)
|
|
printf("S");
|
|
if (f & TH_RST)
|
|
printf("R");
|
|
if (f & TH_PUSH)
|
|
printf("P");
|
|
if (f & TH_ACK)
|
|
printf("A");
|
|
if (f & TH_URG)
|
|
printf("U");
|
|
if (f & TH_ECE)
|
|
printf("E");
|
|
if (f & TH_CWR)
|
|
printf("W");
|
|
}
|
|
|
|
#define PF_SET_SKIP_STEPS(i) \
|
|
do { \
|
|
while (head[i] != cur) { \
|
|
head[i]->skip[i].ptr = cur; \
|
|
head[i] = TAILQ_NEXT(head[i], entries); \
|
|
} \
|
|
} while (0)
|
|
|
|
void
|
|
pf_calc_skip_steps(struct pf_krulequeue *rules)
|
|
{
|
|
struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
|
|
int i;
|
|
|
|
cur = TAILQ_FIRST(rules);
|
|
prev = cur;
|
|
for (i = 0; i < PF_SKIP_COUNT; ++i)
|
|
head[i] = cur;
|
|
while (cur != NULL) {
|
|
if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_IFP);
|
|
if (cur->direction != prev->direction)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_DIR);
|
|
if (cur->af != prev->af)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_AF);
|
|
if (cur->proto != prev->proto)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
|
|
if (cur->src.neg != prev->src.neg ||
|
|
pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
|
|
PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
|
|
if (cur->src.port[0] != prev->src.port[0] ||
|
|
cur->src.port[1] != prev->src.port[1] ||
|
|
cur->src.port_op != prev->src.port_op)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
|
|
if (cur->dst.neg != prev->dst.neg ||
|
|
pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
|
|
PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
|
|
if (cur->dst.port[0] != prev->dst.port[0] ||
|
|
cur->dst.port[1] != prev->dst.port[1] ||
|
|
cur->dst.port_op != prev->dst.port_op)
|
|
PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
|
|
|
|
prev = cur;
|
|
cur = TAILQ_NEXT(cur, entries);
|
|
}
|
|
for (i = 0; i < PF_SKIP_COUNT; ++i)
|
|
PF_SET_SKIP_STEPS(i);
|
|
}
|
|
|
|
static int
|
|
pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
|
|
{
|
|
if (aw1->type != aw2->type)
|
|
return (1);
|
|
switch (aw1->type) {
|
|
case PF_ADDR_ADDRMASK:
|
|
case PF_ADDR_RANGE:
|
|
if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
|
|
return (1);
|
|
if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
|
|
return (1);
|
|
return (0);
|
|
case PF_ADDR_DYNIFTL:
|
|
return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
|
|
case PF_ADDR_NOROUTE:
|
|
case PF_ADDR_URPFFAILED:
|
|
return (0);
|
|
case PF_ADDR_TABLE:
|
|
return (aw1->p.tbl != aw2->p.tbl);
|
|
default:
|
|
printf("invalid address type: %d\n", aw1->type);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Checksum updates are a little complicated because the checksum in the TCP/UDP
|
|
* header isn't always a full checksum. In some cases (i.e. output) it's a
|
|
* pseudo-header checksum, which is a partial checksum over src/dst IP
|
|
* addresses, protocol number and length.
|
|
*
|
|
* That means we have the following cases:
|
|
* * Input or forwarding: we don't have TSO, the checksum fields are full
|
|
* checksums, we need to update the checksum whenever we change anything.
|
|
* * Output (i.e. the checksum is a pseudo-header checksum):
|
|
* x The field being updated is src/dst address or affects the length of
|
|
* the packet. We need to update the pseudo-header checksum (note that this
|
|
* checksum is not ones' complement).
|
|
* x Some other field is being modified (e.g. src/dst port numbers): We
|
|
* don't have to update anything.
|
|
**/
|
|
u_int16_t
|
|
pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
|
|
{
|
|
u_int32_t x;
|
|
|
|
x = cksum + old - new;
|
|
x = (x + (x >> 16)) & 0xffff;
|
|
|
|
/* optimise: eliminate a branch when not udp */
|
|
if (udp && cksum == 0x0000)
|
|
return cksum;
|
|
if (udp && x == 0x0000)
|
|
x = 0xffff;
|
|
|
|
return (u_int16_t)(x);
|
|
}
|
|
|
|
static void
|
|
pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
|
|
u_int8_t udp)
|
|
{
|
|
u_int16_t old = htons(hi ? (*f << 8) : *f);
|
|
u_int16_t new = htons(hi ? ( v << 8) : v);
|
|
|
|
if (*f == v)
|
|
return;
|
|
|
|
*f = v;
|
|
|
|
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
|
|
return;
|
|
|
|
*cksum = pf_cksum_fixup(*cksum, old, new, udp);
|
|
}
|
|
|
|
void
|
|
pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
|
|
bool hi, u_int8_t udp)
|
|
{
|
|
u_int8_t *fb = (u_int8_t *)f;
|
|
u_int8_t *vb = (u_int8_t *)&v;
|
|
|
|
pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
|
|
pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
|
|
}
|
|
|
|
void
|
|
pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
|
|
bool hi, u_int8_t udp)
|
|
{
|
|
u_int8_t *fb = (u_int8_t *)f;
|
|
u_int8_t *vb = (u_int8_t *)&v;
|
|
|
|
pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
|
|
pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
|
|
pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
|
|
pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
|
|
}
|
|
|
|
u_int16_t
|
|
pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
|
|
u_int16_t new, u_int8_t udp)
|
|
{
|
|
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
|
|
return (cksum);
|
|
|
|
return (pf_cksum_fixup(cksum, old, new, udp));
|
|
}
|
|
|
|
static void
|
|
pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
|
|
u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
|
|
sa_family_t af)
|
|
{
|
|
struct pf_addr ao;
|
|
u_int16_t po = *p;
|
|
|
|
PF_ACPY(&ao, a, af);
|
|
PF_ACPY(a, an, af);
|
|
|
|
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
|
|
*pc = ~*pc;
|
|
|
|
*p = pn;
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
|
|
ao.addr16[0], an->addr16[0], 0),
|
|
ao.addr16[1], an->addr16[1], 0);
|
|
*p = pn;
|
|
|
|
*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
|
|
ao.addr16[0], an->addr16[0], u),
|
|
ao.addr16[1], an->addr16[1], u);
|
|
|
|
*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(*pc,
|
|
ao.addr16[0], an->addr16[0], u),
|
|
ao.addr16[1], an->addr16[1], u),
|
|
ao.addr16[2], an->addr16[2], u),
|
|
ao.addr16[3], an->addr16[3], u),
|
|
ao.addr16[4], an->addr16[4], u),
|
|
ao.addr16[5], an->addr16[5], u),
|
|
ao.addr16[6], an->addr16[6], u),
|
|
ao.addr16[7], an->addr16[7], u);
|
|
|
|
*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
|
|
CSUM_DELAY_DATA_IPV6)) {
|
|
*pc = ~*pc;
|
|
if (! *pc)
|
|
*pc = 0xffff;
|
|
}
|
|
}
|
|
|
|
/* Changes a u_int32_t. Uses a void * so there are no align restrictions */
|
|
void
|
|
pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
|
|
{
|
|
u_int32_t ao;
|
|
|
|
memcpy(&ao, a, sizeof(ao));
|
|
memcpy(a, &an, sizeof(u_int32_t));
|
|
*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
|
|
ao % 65536, an % 65536, u);
|
|
}
|
|
|
|
void
|
|
pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
|
|
{
|
|
u_int32_t ao;
|
|
|
|
memcpy(&ao, a, sizeof(ao));
|
|
memcpy(a, &an, sizeof(u_int32_t));
|
|
|
|
*c = pf_proto_cksum_fixup(m,
|
|
pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
|
|
ao % 65536, an % 65536, udp);
|
|
}
|
|
|
|
#ifdef INET6
|
|
static void
|
|
pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
|
|
{
|
|
struct pf_addr ao;
|
|
|
|
PF_ACPY(&ao, a, AF_INET6);
|
|
PF_ACPY(a, an, AF_INET6);
|
|
|
|
*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(*c,
|
|
ao.addr16[0], an->addr16[0], u),
|
|
ao.addr16[1], an->addr16[1], u),
|
|
ao.addr16[2], an->addr16[2], u),
|
|
ao.addr16[3], an->addr16[3], u),
|
|
ao.addr16[4], an->addr16[4], u),
|
|
ao.addr16[5], an->addr16[5], u),
|
|
ao.addr16[6], an->addr16[6], u),
|
|
ao.addr16[7], an->addr16[7], u);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
static void
|
|
pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
|
|
struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
|
|
u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
|
|
{
|
|
struct pf_addr oia, ooa;
|
|
|
|
PF_ACPY(&oia, ia, af);
|
|
if (oa)
|
|
PF_ACPY(&ooa, oa, af);
|
|
|
|
/* Change inner protocol port, fix inner protocol checksum. */
|
|
if (ip != NULL) {
|
|
u_int16_t oip = *ip;
|
|
u_int32_t opc;
|
|
|
|
if (pc != NULL)
|
|
opc = *pc;
|
|
*ip = np;
|
|
if (pc != NULL)
|
|
*pc = pf_cksum_fixup(*pc, oip, *ip, u);
|
|
*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
|
|
if (pc != NULL)
|
|
*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
|
|
}
|
|
/* Change inner ip address, fix inner ip and icmp checksums. */
|
|
PF_ACPY(ia, na, af);
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET: {
|
|
u_int32_t oh2c = *h2c;
|
|
|
|
*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
|
|
oia.addr16[0], ia->addr16[0], 0),
|
|
oia.addr16[1], ia->addr16[1], 0);
|
|
*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
|
|
oia.addr16[0], ia->addr16[0], 0),
|
|
oia.addr16[1], ia->addr16[1], 0);
|
|
*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
|
|
break;
|
|
}
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(*ic,
|
|
oia.addr16[0], ia->addr16[0], u),
|
|
oia.addr16[1], ia->addr16[1], u),
|
|
oia.addr16[2], ia->addr16[2], u),
|
|
oia.addr16[3], ia->addr16[3], u),
|
|
oia.addr16[4], ia->addr16[4], u),
|
|
oia.addr16[5], ia->addr16[5], u),
|
|
oia.addr16[6], ia->addr16[6], u),
|
|
oia.addr16[7], ia->addr16[7], u);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
|
|
if (oa) {
|
|
PF_ACPY(oa, na, af);
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
|
|
ooa.addr16[0], oa->addr16[0], 0),
|
|
ooa.addr16[1], oa->addr16[1], 0);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
|
|
pf_cksum_fixup(pf_cksum_fixup(*ic,
|
|
ooa.addr16[0], oa->addr16[0], u),
|
|
ooa.addr16[1], oa->addr16[1], u),
|
|
ooa.addr16[2], oa->addr16[2], u),
|
|
ooa.addr16[3], oa->addr16[3], u),
|
|
ooa.addr16[4], oa->addr16[4], u),
|
|
ooa.addr16[5], oa->addr16[5], u),
|
|
ooa.addr16[6], oa->addr16[6], u),
|
|
ooa.addr16[7], oa->addr16[7], u);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Need to modulate the sequence numbers in the TCP SACK option
|
|
* (credits to Krzysztof Pfaff for report and patch)
|
|
*/
|
|
static int
|
|
pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd,
|
|
struct tcphdr *th, struct pf_state_peer *dst)
|
|
{
|
|
int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
|
|
u_int8_t opts[TCP_MAXOLEN], *opt = opts;
|
|
int copyback = 0, i, olen;
|
|
struct sackblk sack;
|
|
|
|
#define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
|
|
if (hlen < TCPOLEN_SACKLEN ||
|
|
!pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
|
|
return 0;
|
|
|
|
while (hlen >= TCPOLEN_SACKLEN) {
|
|
size_t startoff = opt - opts;
|
|
olen = opt[1];
|
|
switch (*opt) {
|
|
case TCPOPT_EOL: /* FALLTHROUGH */
|
|
case TCPOPT_NOP:
|
|
opt++;
|
|
hlen--;
|
|
break;
|
|
case TCPOPT_SACK:
|
|
if (olen > hlen)
|
|
olen = hlen;
|
|
if (olen >= TCPOLEN_SACKLEN) {
|
|
for (i = 2; i + TCPOLEN_SACK <= olen;
|
|
i += TCPOLEN_SACK) {
|
|
memcpy(&sack, &opt[i], sizeof(sack));
|
|
pf_patch_32_unaligned(m,
|
|
&th->th_sum, &sack.start,
|
|
htonl(ntohl(sack.start) - dst->seqdiff),
|
|
PF_ALGNMNT(startoff),
|
|
0);
|
|
pf_patch_32_unaligned(m, &th->th_sum,
|
|
&sack.end,
|
|
htonl(ntohl(sack.end) - dst->seqdiff),
|
|
PF_ALGNMNT(startoff),
|
|
0);
|
|
memcpy(&opt[i], &sack, sizeof(sack));
|
|
}
|
|
copyback = 1;
|
|
}
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if (olen < 2)
|
|
olen = 2;
|
|
hlen -= olen;
|
|
opt += olen;
|
|
}
|
|
}
|
|
|
|
if (copyback)
|
|
m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts);
|
|
return (copyback);
|
|
}
|
|
|
|
struct mbuf *
|
|
pf_build_tcp(const struct pf_krule *r, sa_family_t af,
|
|
const struct pf_addr *saddr, const struct pf_addr *daddr,
|
|
u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
|
|
u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
|
|
u_int16_t rtag)
|
|
{
|
|
struct mbuf *m;
|
|
int len, tlen;
|
|
#ifdef INET
|
|
struct ip *h = NULL;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
struct ip6_hdr *h6 = NULL;
|
|
#endif /* INET6 */
|
|
struct tcphdr *th;
|
|
char *opt;
|
|
struct pf_mtag *pf_mtag;
|
|
|
|
len = 0;
|
|
th = NULL;
|
|
|
|
/* maximum segment size tcp option */
|
|
tlen = sizeof(struct tcphdr);
|
|
if (mss)
|
|
tlen += 4;
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
len = sizeof(struct ip) + tlen;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
len = sizeof(struct ip6_hdr) + tlen;
|
|
break;
|
|
#endif /* INET6 */
|
|
default:
|
|
panic("%s: unsupported af %d", __func__, af);
|
|
}
|
|
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
#ifdef MAC
|
|
mac_netinet_firewall_send(m);
|
|
#endif
|
|
if ((pf_mtag = pf_get_mtag(m)) == NULL) {
|
|
m_freem(m);
|
|
return (NULL);
|
|
}
|
|
if (tag)
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
pf_mtag->tag = rtag;
|
|
|
|
if (r != NULL && r->rtableid >= 0)
|
|
M_SETFIB(m, r->rtableid);
|
|
|
|
#ifdef ALTQ
|
|
if (r != NULL && r->qid) {
|
|
pf_mtag->qid = r->qid;
|
|
|
|
/* add hints for ecn */
|
|
pf_mtag->hdr = mtod(m, struct ip *);
|
|
}
|
|
#endif /* ALTQ */
|
|
m->m_data += max_linkhdr;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
/* The rest of the stack assumes a rcvif, so provide one.
|
|
* This is a locally generated packet, so .. close enough. */
|
|
m->m_pkthdr.rcvif = V_loif;
|
|
bzero(m->m_data, len);
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
h = mtod(m, struct ip *);
|
|
|
|
/* IP header fields included in the TCP checksum */
|
|
h->ip_p = IPPROTO_TCP;
|
|
h->ip_len = htons(tlen);
|
|
h->ip_src.s_addr = saddr->v4.s_addr;
|
|
h->ip_dst.s_addr = daddr->v4.s_addr;
|
|
|
|
th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
h6 = mtod(m, struct ip6_hdr *);
|
|
|
|
/* IP header fields included in the TCP checksum */
|
|
h6->ip6_nxt = IPPROTO_TCP;
|
|
h6->ip6_plen = htons(tlen);
|
|
memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
|
|
memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
|
|
|
|
th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
/* TCP header */
|
|
th->th_sport = sport;
|
|
th->th_dport = dport;
|
|
th->th_seq = htonl(seq);
|
|
th->th_ack = htonl(ack);
|
|
th->th_off = tlen >> 2;
|
|
th->th_flags = flags;
|
|
th->th_win = htons(win);
|
|
|
|
if (mss) {
|
|
opt = (char *)(th + 1);
|
|
opt[0] = TCPOPT_MAXSEG;
|
|
opt[1] = 4;
|
|
HTONS(mss);
|
|
bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
|
|
}
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
/* TCP checksum */
|
|
th->th_sum = in_cksum(m, len);
|
|
|
|
/* Finish the IP header */
|
|
h->ip_v = 4;
|
|
h->ip_hl = sizeof(*h) >> 2;
|
|
h->ip_tos = IPTOS_LOWDELAY;
|
|
h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
|
|
h->ip_len = htons(len);
|
|
h->ip_ttl = ttl ? ttl : V_ip_defttl;
|
|
h->ip_sum = 0;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
/* TCP checksum */
|
|
th->th_sum = in6_cksum(m, IPPROTO_TCP,
|
|
sizeof(struct ip6_hdr), tlen);
|
|
|
|
h6->ip6_vfc |= IPV6_VERSION;
|
|
h6->ip6_hlim = IPV6_DEFHLIM;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
pf_send_tcp(const struct pf_krule *r, sa_family_t af,
|
|
const struct pf_addr *saddr, const struct pf_addr *daddr,
|
|
u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
|
|
u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
|
|
u_int16_t rtag)
|
|
{
|
|
struct pf_send_entry *pfse;
|
|
struct mbuf *m;
|
|
|
|
m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags,
|
|
win, mss, ttl, tag, rtag);
|
|
if (m == NULL)
|
|
return;
|
|
|
|
/* Allocate outgoing queue entry, mbuf and mbuf tag. */
|
|
pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
|
|
if (pfse == NULL) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
pfse->pfse_type = PFSE_IP;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
pfse->pfse_type = PFSE_IP6;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
pfse->pfse_m = m;
|
|
pf_send(pfse);
|
|
}
|
|
|
|
static void
|
|
pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
|
|
struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th,
|
|
struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen,
|
|
u_short *reason)
|
|
{
|
|
struct pf_addr * const saddr = pd->src;
|
|
struct pf_addr * const daddr = pd->dst;
|
|
sa_family_t af = pd->af;
|
|
|
|
/* undo NAT changes, if they have taken place */
|
|
if (nr != NULL) {
|
|
PF_ACPY(saddr, &sk->addr[pd->sidx], af);
|
|
PF_ACPY(daddr, &sk->addr[pd->didx], af);
|
|
if (pd->sport)
|
|
*pd->sport = sk->port[pd->sidx];
|
|
if (pd->dport)
|
|
*pd->dport = sk->port[pd->didx];
|
|
if (pd->proto_sum)
|
|
*pd->proto_sum = bproto_sum;
|
|
if (pd->ip_sum)
|
|
*pd->ip_sum = bip_sum;
|
|
m_copyback(m, off, hdrlen, pd->hdr.any);
|
|
}
|
|
if (pd->proto == IPPROTO_TCP &&
|
|
((r->rule_flag & PFRULE_RETURNRST) ||
|
|
(r->rule_flag & PFRULE_RETURN)) &&
|
|
!(th->th_flags & TH_RST)) {
|
|
u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
|
|
int len = 0;
|
|
#ifdef INET
|
|
struct ip *h4;
|
|
#endif
|
|
#ifdef INET6
|
|
struct ip6_hdr *h6;
|
|
#endif
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
h4 = mtod(m, struct ip *);
|
|
len = ntohs(h4->ip_len) - off;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
h6 = mtod(m, struct ip6_hdr *);
|
|
len = ntohs(h6->ip6_plen) - (off - sizeof(*h6));
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af))
|
|
REASON_SET(reason, PFRES_PROTCKSUM);
|
|
else {
|
|
if (th->th_flags & TH_SYN)
|
|
ack++;
|
|
if (th->th_flags & TH_FIN)
|
|
ack++;
|
|
pf_send_tcp(r, af, pd->dst,
|
|
pd->src, th->th_dport, th->th_sport,
|
|
ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
|
|
r->return_ttl, 1, 0);
|
|
}
|
|
} else if (pd->proto != IPPROTO_ICMP && af == AF_INET &&
|
|
r->return_icmp)
|
|
pf_send_icmp(m, r->return_icmp >> 8,
|
|
r->return_icmp & 255, af, r);
|
|
else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 &&
|
|
r->return_icmp6)
|
|
pf_send_icmp(m, r->return_icmp6 >> 8,
|
|
r->return_icmp6 & 255, af, r);
|
|
}
|
|
|
|
static int
|
|
pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
|
|
{
|
|
struct m_tag *mtag;
|
|
u_int8_t mpcp;
|
|
|
|
mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
|
|
if (mtag == NULL)
|
|
return (0);
|
|
|
|
if (prio == PF_PRIO_ZERO)
|
|
prio = 0;
|
|
|
|
mpcp = *(uint8_t *)(mtag + 1);
|
|
|
|
return (mpcp == prio);
|
|
}
|
|
|
|
static void
|
|
pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
|
|
struct pf_krule *r)
|
|
{
|
|
struct pf_send_entry *pfse;
|
|
struct mbuf *m0;
|
|
struct pf_mtag *pf_mtag;
|
|
|
|
/* Allocate outgoing queue entry, mbuf and mbuf tag. */
|
|
pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
|
|
if (pfse == NULL)
|
|
return;
|
|
|
|
if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
|
|
free(pfse, M_PFTEMP);
|
|
return;
|
|
}
|
|
|
|
if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
|
|
free(pfse, M_PFTEMP);
|
|
return;
|
|
}
|
|
/* XXX: revisit */
|
|
m0->m_flags |= M_SKIP_FIREWALL;
|
|
|
|
if (r->rtableid >= 0)
|
|
M_SETFIB(m0, r->rtableid);
|
|
|
|
#ifdef ALTQ
|
|
if (r->qid) {
|
|
pf_mtag->qid = r->qid;
|
|
/* add hints for ecn */
|
|
pf_mtag->hdr = mtod(m0, struct ip *);
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
pfse->pfse_type = PFSE_ICMP;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
pfse->pfse_type = PFSE_ICMP6;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
pfse->pfse_m = m0;
|
|
pfse->icmpopts.type = type;
|
|
pfse->icmpopts.code = code;
|
|
pf_send(pfse);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the addresses a and b match (with mask m), otherwise return 0.
|
|
* If n is 0, they match if they are equal. If n is != 0, they match if they
|
|
* are different.
|
|
*/
|
|
int
|
|
pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
|
|
struct pf_addr *b, sa_family_t af)
|
|
{
|
|
int match = 0;
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if ((a->addr32[0] & m->addr32[0]) ==
|
|
(b->addr32[0] & m->addr32[0]))
|
|
match++;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (((a->addr32[0] & m->addr32[0]) ==
|
|
(b->addr32[0] & m->addr32[0])) &&
|
|
((a->addr32[1] & m->addr32[1]) ==
|
|
(b->addr32[1] & m->addr32[1])) &&
|
|
((a->addr32[2] & m->addr32[2]) ==
|
|
(b->addr32[2] & m->addr32[2])) &&
|
|
((a->addr32[3] & m->addr32[3]) ==
|
|
(b->addr32[3] & m->addr32[3])))
|
|
match++;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
if (match) {
|
|
if (n)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
} else {
|
|
if (n)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return 1 if b <= a <= e, otherwise return 0.
|
|
*/
|
|
int
|
|
pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
|
|
struct pf_addr *a, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
|
|
(ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
|
|
return (0);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6: {
|
|
int i;
|
|
|
|
/* check a >= b */
|
|
for (i = 0; i < 4; ++i)
|
|
if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
|
|
break;
|
|
else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
|
|
return (0);
|
|
/* check a <= e */
|
|
for (i = 0; i < 4; ++i)
|
|
if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
|
|
break;
|
|
else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
|
|
return (0);
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
|
|
{
|
|
switch (op) {
|
|
case PF_OP_IRG:
|
|
return ((p > a1) && (p < a2));
|
|
case PF_OP_XRG:
|
|
return ((p < a1) || (p > a2));
|
|
case PF_OP_RRG:
|
|
return ((p >= a1) && (p <= a2));
|
|
case PF_OP_EQ:
|
|
return (p == a1);
|
|
case PF_OP_NE:
|
|
return (p != a1);
|
|
case PF_OP_LT:
|
|
return (p < a1);
|
|
case PF_OP_LE:
|
|
return (p <= a1);
|
|
case PF_OP_GT:
|
|
return (p > a1);
|
|
case PF_OP_GE:
|
|
return (p >= a1);
|
|
}
|
|
return (0); /* never reached */
|
|
}
|
|
|
|
int
|
|
pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
|
|
{
|
|
NTOHS(a1);
|
|
NTOHS(a2);
|
|
NTOHS(p);
|
|
return (pf_match(op, a1, a2, p));
|
|
}
|
|
|
|
static int
|
|
pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
|
|
{
|
|
if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
|
|
return (0);
|
|
return (pf_match(op, a1, a2, u));
|
|
}
|
|
|
|
static int
|
|
pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
|
|
{
|
|
if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
|
|
return (0);
|
|
return (pf_match(op, a1, a2, g));
|
|
}
|
|
|
|
int
|
|
pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
|
|
{
|
|
if (*tag == -1)
|
|
*tag = mtag;
|
|
|
|
return ((!r->match_tag_not && r->match_tag == *tag) ||
|
|
(r->match_tag_not && r->match_tag != *tag));
|
|
}
|
|
|
|
int
|
|
pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag)
|
|
{
|
|
|
|
KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
|
|
|
|
if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL))
|
|
return (ENOMEM);
|
|
|
|
pd->pf_mtag->tag = tag;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define PF_ANCHOR_STACKSIZE 32
|
|
struct pf_kanchor_stackframe {
|
|
struct pf_kruleset *rs;
|
|
struct pf_krule *r; /* XXX: + match bit */
|
|
struct pf_kanchor *child;
|
|
};
|
|
|
|
/*
|
|
* XXX: We rely on malloc(9) returning pointer aligned addresses.
|
|
*/
|
|
#define PF_ANCHORSTACK_MATCH 0x00000001
|
|
#define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
|
|
|
|
#define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
|
|
#define PF_ANCHOR_RULE(f) (struct pf_krule *) \
|
|
((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
|
|
#define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
|
|
((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
|
|
} while (0)
|
|
|
|
void
|
|
pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
|
|
struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
|
|
int *match)
|
|
{
|
|
struct pf_kanchor_stackframe *f;
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
if (match)
|
|
*match = 0;
|
|
if (*depth >= PF_ANCHOR_STACKSIZE) {
|
|
printf("%s: anchor stack overflow on %s\n",
|
|
__func__, (*r)->anchor->name);
|
|
*r = TAILQ_NEXT(*r, entries);
|
|
return;
|
|
} else if (*depth == 0 && a != NULL)
|
|
*a = *r;
|
|
f = stack + (*depth)++;
|
|
f->rs = *rs;
|
|
f->r = *r;
|
|
if ((*r)->anchor_wildcard) {
|
|
struct pf_kanchor_node *parent = &(*r)->anchor->children;
|
|
|
|
if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
|
|
*r = NULL;
|
|
return;
|
|
}
|
|
*rs = &f->child->ruleset;
|
|
} else {
|
|
f->child = NULL;
|
|
*rs = &(*r)->anchor->ruleset;
|
|
}
|
|
*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
|
|
}
|
|
|
|
int
|
|
pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
|
|
struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
|
|
int *match)
|
|
{
|
|
struct pf_kanchor_stackframe *f;
|
|
struct pf_krule *fr;
|
|
int quick = 0;
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
do {
|
|
if (*depth <= 0)
|
|
break;
|
|
f = stack + *depth - 1;
|
|
fr = PF_ANCHOR_RULE(f);
|
|
if (f->child != NULL) {
|
|
struct pf_kanchor_node *parent;
|
|
|
|
/*
|
|
* This block traverses through
|
|
* a wildcard anchor.
|
|
*/
|
|
parent = &fr->anchor->children;
|
|
if (match != NULL && *match) {
|
|
/*
|
|
* If any of "*" matched, then
|
|
* "foo/ *" matched, mark frame
|
|
* appropriately.
|
|
*/
|
|
PF_ANCHOR_SET_MATCH(f);
|
|
*match = 0;
|
|
}
|
|
f->child = RB_NEXT(pf_kanchor_node, parent, f->child);
|
|
if (f->child != NULL) {
|
|
*rs = &f->child->ruleset;
|
|
*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
|
|
if (*r == NULL)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
(*depth)--;
|
|
if (*depth == 0 && a != NULL)
|
|
*a = NULL;
|
|
*rs = f->rs;
|
|
if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
|
|
quick = fr->quick;
|
|
*r = TAILQ_NEXT(fr, entries);
|
|
} while (*r == NULL);
|
|
|
|
return (quick);
|
|
}
|
|
|
|
#ifdef INET6
|
|
void
|
|
pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
|
|
struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
|
|
((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
|
|
break;
|
|
#endif /* INET */
|
|
case AF_INET6:
|
|
naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
|
|
((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
|
|
naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
|
|
((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
|
|
naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
|
|
((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
|
|
naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
|
|
((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
pf_addr_inc(struct pf_addr *addr, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
|
|
break;
|
|
#endif /* INET */
|
|
case AF_INET6:
|
|
if (addr->addr32[3] == 0xffffffff) {
|
|
addr->addr32[3] = 0;
|
|
if (addr->addr32[2] == 0xffffffff) {
|
|
addr->addr32[2] = 0;
|
|
if (addr->addr32[1] == 0xffffffff) {
|
|
addr->addr32[1] = 0;
|
|
addr->addr32[0] =
|
|
htonl(ntohl(addr->addr32[0]) + 1);
|
|
} else
|
|
addr->addr32[1] =
|
|
htonl(ntohl(addr->addr32[1]) + 1);
|
|
} else
|
|
addr->addr32[2] =
|
|
htonl(ntohl(addr->addr32[2]) + 1);
|
|
} else
|
|
addr->addr32[3] =
|
|
htonl(ntohl(addr->addr32[3]) + 1);
|
|
break;
|
|
}
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
void
|
|
pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
|
|
{
|
|
if (r->qid)
|
|
a->qid = r->qid;
|
|
if (r->pqid)
|
|
a->pqid = r->pqid;
|
|
if (r->dnpipe)
|
|
a->dnpipe = r->dnpipe;
|
|
if (r->dnrpipe)
|
|
a->dnpipe = r->dnrpipe;
|
|
if (r->free_flags & PFRULE_DN_IS_PIPE)
|
|
a->flags |= PFRULE_DN_IS_PIPE;
|
|
}
|
|
|
|
int
|
|
pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m)
|
|
{
|
|
struct pf_addr *saddr, *daddr;
|
|
u_int16_t sport, dport;
|
|
struct inpcbinfo *pi;
|
|
struct inpcb *inp;
|
|
|
|
pd->lookup.uid = UID_MAX;
|
|
pd->lookup.gid = GID_MAX;
|
|
|
|
switch (pd->proto) {
|
|
case IPPROTO_TCP:
|
|
sport = pd->hdr.tcp.th_sport;
|
|
dport = pd->hdr.tcp.th_dport;
|
|
pi = &V_tcbinfo;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
sport = pd->hdr.udp.uh_sport;
|
|
dport = pd->hdr.udp.uh_dport;
|
|
pi = &V_udbinfo;
|
|
break;
|
|
default:
|
|
return (-1);
|
|
}
|
|
if (direction == PF_IN) {
|
|
saddr = pd->src;
|
|
daddr = pd->dst;
|
|
} else {
|
|
u_int16_t p;
|
|
|
|
p = sport;
|
|
sport = dport;
|
|
dport = p;
|
|
saddr = pd->dst;
|
|
daddr = pd->src;
|
|
}
|
|
switch (pd->af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
|
|
dport, INPLOOKUP_RLOCKPCB, NULL, m);
|
|
if (inp == NULL) {
|
|
inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
|
|
daddr->v4, dport, INPLOOKUP_WILDCARD |
|
|
INPLOOKUP_RLOCKPCB, NULL, m);
|
|
if (inp == NULL)
|
|
return (-1);
|
|
}
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
|
|
dport, INPLOOKUP_RLOCKPCB, NULL, m);
|
|
if (inp == NULL) {
|
|
inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
|
|
&daddr->v6, dport, INPLOOKUP_WILDCARD |
|
|
INPLOOKUP_RLOCKPCB, NULL, m);
|
|
if (inp == NULL)
|
|
return (-1);
|
|
}
|
|
break;
|
|
#endif /* INET6 */
|
|
|
|
default:
|
|
return (-1);
|
|
}
|
|
INP_RLOCK_ASSERT(inp);
|
|
pd->lookup.uid = inp->inp_cred->cr_uid;
|
|
pd->lookup.gid = inp->inp_cred->cr_groups[0];
|
|
INP_RUNLOCK(inp);
|
|
|
|
return (1);
|
|
}
|
|
|
|
u_int8_t
|
|
pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
|
|
{
|
|
int hlen;
|
|
u_int8_t hdr[60];
|
|
u_int8_t *opt, optlen;
|
|
u_int8_t wscale = 0;
|
|
|
|
hlen = th_off << 2; /* hlen <= sizeof(hdr) */
|
|
if (hlen <= sizeof(struct tcphdr))
|
|
return (0);
|
|
if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
|
|
return (0);
|
|
opt = hdr + sizeof(struct tcphdr);
|
|
hlen -= sizeof(struct tcphdr);
|
|
while (hlen >= 3) {
|
|
switch (*opt) {
|
|
case TCPOPT_EOL:
|
|
case TCPOPT_NOP:
|
|
++opt;
|
|
--hlen;
|
|
break;
|
|
case TCPOPT_WINDOW:
|
|
wscale = opt[2];
|
|
if (wscale > TCP_MAX_WINSHIFT)
|
|
wscale = TCP_MAX_WINSHIFT;
|
|
wscale |= PF_WSCALE_FLAG;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
optlen = opt[1];
|
|
if (optlen < 2)
|
|
optlen = 2;
|
|
hlen -= optlen;
|
|
opt += optlen;
|
|
break;
|
|
}
|
|
}
|
|
return (wscale);
|
|
}
|
|
|
|
u_int16_t
|
|
pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
|
|
{
|
|
int hlen;
|
|
u_int8_t hdr[60];
|
|
u_int8_t *opt, optlen;
|
|
u_int16_t mss = V_tcp_mssdflt;
|
|
|
|
hlen = th_off << 2; /* hlen <= sizeof(hdr) */
|
|
if (hlen <= sizeof(struct tcphdr))
|
|
return (0);
|
|
if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
|
|
return (0);
|
|
opt = hdr + sizeof(struct tcphdr);
|
|
hlen -= sizeof(struct tcphdr);
|
|
while (hlen >= TCPOLEN_MAXSEG) {
|
|
switch (*opt) {
|
|
case TCPOPT_EOL:
|
|
case TCPOPT_NOP:
|
|
++opt;
|
|
--hlen;
|
|
break;
|
|
case TCPOPT_MAXSEG:
|
|
bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
|
|
NTOHS(mss);
|
|
/* FALLTHROUGH */
|
|
default:
|
|
optlen = opt[1];
|
|
if (optlen < 2)
|
|
optlen = 2;
|
|
hlen -= optlen;
|
|
opt += optlen;
|
|
break;
|
|
}
|
|
}
|
|
return (mss);
|
|
}
|
|
|
|
static u_int16_t
|
|
pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
|
|
{
|
|
struct nhop_object *nh;
|
|
#ifdef INET6
|
|
struct in6_addr dst6;
|
|
uint32_t scopeid;
|
|
#endif /* INET6 */
|
|
int hlen = 0;
|
|
uint16_t mss = 0;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
hlen = sizeof(struct ip);
|
|
nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
|
|
if (nh != NULL)
|
|
mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hlen = sizeof(struct ip6_hdr);
|
|
in6_splitscope(&addr->v6, &dst6, &scopeid);
|
|
nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
|
|
if (nh != NULL)
|
|
mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
mss = max(V_tcp_mssdflt, mss);
|
|
mss = min(mss, offer);
|
|
mss = max(mss, 64); /* sanity - at least max opt space */
|
|
return (mss);
|
|
}
|
|
|
|
static u_int32_t
|
|
pf_tcp_iss(struct pf_pdesc *pd)
|
|
{
|
|
MD5_CTX ctx;
|
|
u_int32_t digest[4];
|
|
|
|
if (V_pf_tcp_secret_init == 0) {
|
|
arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
|
|
MD5Init(&V_pf_tcp_secret_ctx);
|
|
MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
|
|
sizeof(V_pf_tcp_secret));
|
|
V_pf_tcp_secret_init = 1;
|
|
}
|
|
|
|
ctx = V_pf_tcp_secret_ctx;
|
|
|
|
MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
|
|
MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
|
|
if (pd->af == AF_INET6) {
|
|
MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
|
|
MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
|
|
} else {
|
|
MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
|
|
MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
|
|
}
|
|
MD5Final((u_char *)digest, &ctx);
|
|
V_pf_tcp_iss_off += 4096;
|
|
#define ISN_RANDOM_INCREMENT (4096 - 1)
|
|
return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
|
|
V_pf_tcp_iss_off);
|
|
#undef ISN_RANDOM_INCREMENT
|
|
}
|
|
|
|
static int
|
|
pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction,
|
|
struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd,
|
|
struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp)
|
|
{
|
|
struct pf_krule *nr = NULL;
|
|
struct pf_addr * const saddr = pd->src;
|
|
struct pf_addr * const daddr = pd->dst;
|
|
sa_family_t af = pd->af;
|
|
struct pf_krule *r, *a = NULL;
|
|
struct pf_kruleset *ruleset = NULL;
|
|
struct pf_ksrc_node *nsn = NULL;
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
struct pf_state_key *sk = NULL, *nk = NULL;
|
|
u_short reason;
|
|
int rewrite = 0, hdrlen = 0;
|
|
int tag = -1, rtableid = -1;
|
|
int asd = 0;
|
|
int match = 0;
|
|
int state_icmp = 0;
|
|
u_int16_t sport = 0, dport = 0;
|
|
u_int16_t bproto_sum = 0, bip_sum = 0;
|
|
u_int8_t icmptype = 0, icmpcode = 0;
|
|
struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
if (inp != NULL) {
|
|
INP_LOCK_ASSERT(inp);
|
|
pd->lookup.uid = inp->inp_cred->cr_uid;
|
|
pd->lookup.gid = inp->inp_cred->cr_groups[0];
|
|
pd->lookup.done = 1;
|
|
}
|
|
|
|
switch (pd->proto) {
|
|
case IPPROTO_TCP:
|
|
sport = th->th_sport;
|
|
dport = th->th_dport;
|
|
hdrlen = sizeof(*th);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
sport = pd->hdr.udp.uh_sport;
|
|
dport = pd->hdr.udp.uh_dport;
|
|
hdrlen = sizeof(pd->hdr.udp);
|
|
break;
|
|
#ifdef INET
|
|
case IPPROTO_ICMP:
|
|
if (pd->af != AF_INET)
|
|
break;
|
|
sport = dport = pd->hdr.icmp.icmp_id;
|
|
hdrlen = sizeof(pd->hdr.icmp);
|
|
icmptype = pd->hdr.icmp.icmp_type;
|
|
icmpcode = pd->hdr.icmp.icmp_code;
|
|
|
|
if (icmptype == ICMP_UNREACH ||
|
|
icmptype == ICMP_SOURCEQUENCH ||
|
|
icmptype == ICMP_REDIRECT ||
|
|
icmptype == ICMP_TIMXCEED ||
|
|
icmptype == ICMP_PARAMPROB)
|
|
state_icmp++;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
if (af != AF_INET6)
|
|
break;
|
|
sport = dport = pd->hdr.icmp6.icmp6_id;
|
|
hdrlen = sizeof(pd->hdr.icmp6);
|
|
icmptype = pd->hdr.icmp6.icmp6_type;
|
|
icmpcode = pd->hdr.icmp6.icmp6_code;
|
|
|
|
if (icmptype == ICMP6_DST_UNREACH ||
|
|
icmptype == ICMP6_PACKET_TOO_BIG ||
|
|
icmptype == ICMP6_TIME_EXCEEDED ||
|
|
icmptype == ICMP6_PARAM_PROB)
|
|
state_icmp++;
|
|
break;
|
|
#endif /* INET6 */
|
|
default:
|
|
sport = dport = hdrlen = 0;
|
|
break;
|
|
}
|
|
|
|
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
|
|
|
|
/* check packet for BINAT/NAT/RDR */
|
|
if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk,
|
|
&nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) {
|
|
KASSERT(sk != NULL, ("%s: null sk", __func__));
|
|
KASSERT(nk != NULL, ("%s: null nk", __func__));
|
|
|
|
if (nr->log) {
|
|
PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a,
|
|
ruleset, pd, 1);
|
|
}
|
|
|
|
if (pd->ip_sum)
|
|
bip_sum = *pd->ip_sum;
|
|
|
|
switch (pd->proto) {
|
|
case IPPROTO_TCP:
|
|
bproto_sum = th->th_sum;
|
|
pd->proto_sum = &th->th_sum;
|
|
|
|
if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
|
|
nk->port[pd->sidx] != sport) {
|
|
pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum,
|
|
&th->th_sum, &nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 0, af);
|
|
pd->sport = &th->th_sport;
|
|
sport = th->th_sport;
|
|
}
|
|
|
|
if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
|
|
nk->port[pd->didx] != dport) {
|
|
pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum,
|
|
&th->th_sum, &nk->addr[pd->didx],
|
|
nk->port[pd->didx], 0, af);
|
|
dport = th->th_dport;
|
|
pd->dport = &th->th_dport;
|
|
}
|
|
rewrite++;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
bproto_sum = pd->hdr.udp.uh_sum;
|
|
pd->proto_sum = &pd->hdr.udp.uh_sum;
|
|
|
|
if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
|
|
nk->port[pd->sidx] != sport) {
|
|
pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport,
|
|
pd->ip_sum, &pd->hdr.udp.uh_sum,
|
|
&nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 1, af);
|
|
sport = pd->hdr.udp.uh_sport;
|
|
pd->sport = &pd->hdr.udp.uh_sport;
|
|
}
|
|
|
|
if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
|
|
nk->port[pd->didx] != dport) {
|
|
pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport,
|
|
pd->ip_sum, &pd->hdr.udp.uh_sum,
|
|
&nk->addr[pd->didx],
|
|
nk->port[pd->didx], 1, af);
|
|
dport = pd->hdr.udp.uh_dport;
|
|
pd->dport = &pd->hdr.udp.uh_dport;
|
|
}
|
|
rewrite++;
|
|
break;
|
|
#ifdef INET
|
|
case IPPROTO_ICMP:
|
|
nk->port[0] = nk->port[1];
|
|
if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
|
|
pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
|
|
nk->addr[pd->sidx].v4.s_addr, 0);
|
|
|
|
if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
|
|
pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
|
|
nk->addr[pd->didx].v4.s_addr, 0);
|
|
|
|
if (nk->port[1] != pd->hdr.icmp.icmp_id) {
|
|
pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
|
|
pd->hdr.icmp.icmp_cksum, sport,
|
|
nk->port[1], 0);
|
|
pd->hdr.icmp.icmp_id = nk->port[1];
|
|
pd->sport = &pd->hdr.icmp.icmp_id;
|
|
}
|
|
m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
nk->port[0] = nk->port[1];
|
|
if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
|
|
pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
|
|
&nk->addr[pd->sidx], 0);
|
|
|
|
if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
|
|
pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
|
|
&nk->addr[pd->didx], 0);
|
|
rewrite++;
|
|
break;
|
|
#endif /* INET */
|
|
default:
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (PF_ANEQ(saddr,
|
|
&nk->addr[pd->sidx], AF_INET))
|
|
pf_change_a(&saddr->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->sidx].v4.s_addr, 0);
|
|
|
|
if (PF_ANEQ(daddr,
|
|
&nk->addr[pd->didx], AF_INET))
|
|
pf_change_a(&daddr->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->didx].v4.s_addr, 0);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (PF_ANEQ(saddr,
|
|
&nk->addr[pd->sidx], AF_INET6))
|
|
PF_ACPY(saddr, &nk->addr[pd->sidx], af);
|
|
|
|
if (PF_ANEQ(daddr,
|
|
&nk->addr[pd->didx], AF_INET6))
|
|
PF_ACPY(daddr, &nk->addr[pd->didx], af);
|
|
break;
|
|
#endif /* INET */
|
|
}
|
|
break;
|
|
}
|
|
if (nr->natpass)
|
|
r = NULL;
|
|
pd->nat_rule = nr;
|
|
}
|
|
|
|
while (r != NULL) {
|
|
pf_counter_u64_add(&r->evaluations, 1);
|
|
if (pfi_kkif_match(r->kif, kif) == r->ifnot)
|
|
r = r->skip[PF_SKIP_IFP].ptr;
|
|
else if (r->direction && r->direction != direction)
|
|
r = r->skip[PF_SKIP_DIR].ptr;
|
|
else if (r->af && r->af != af)
|
|
r = r->skip[PF_SKIP_AF].ptr;
|
|
else if (r->proto && r->proto != pd->proto)
|
|
r = r->skip[PF_SKIP_PROTO].ptr;
|
|
else if (PF_MISMATCHAW(&r->src.addr, saddr, af,
|
|
r->src.neg, kif, M_GETFIB(m)))
|
|
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
|
|
/* tcp/udp only. port_op always 0 in other cases */
|
|
else if (r->src.port_op && !pf_match_port(r->src.port_op,
|
|
r->src.port[0], r->src.port[1], sport))
|
|
r = r->skip[PF_SKIP_SRC_PORT].ptr;
|
|
else if (PF_MISMATCHAW(&r->dst.addr, daddr, af,
|
|
r->dst.neg, NULL, M_GETFIB(m)))
|
|
r = r->skip[PF_SKIP_DST_ADDR].ptr;
|
|
/* tcp/udp only. port_op always 0 in other cases */
|
|
else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
|
|
r->dst.port[0], r->dst.port[1], dport))
|
|
r = r->skip[PF_SKIP_DST_PORT].ptr;
|
|
/* icmp only. type always 0 in other cases */
|
|
else if (r->type && r->type != icmptype + 1)
|
|
r = TAILQ_NEXT(r, entries);
|
|
/* icmp only. type always 0 in other cases */
|
|
else if (r->code && r->code != icmpcode + 1)
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->tos && !(r->tos == pd->tos))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->rule_flag & PFRULE_FRAGMENT)
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (pd->proto == IPPROTO_TCP &&
|
|
(r->flagset & th->th_flags) != r->flags)
|
|
r = TAILQ_NEXT(r, entries);
|
|
/* tcp/udp only. uid.op always 0 in other cases */
|
|
else if (r->uid.op && (pd->lookup.done || (pd->lookup.done =
|
|
pf_socket_lookup(direction, pd, m), 1)) &&
|
|
!pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
|
|
pd->lookup.uid))
|
|
r = TAILQ_NEXT(r, entries);
|
|
/* tcp/udp only. gid.op always 0 in other cases */
|
|
else if (r->gid.op && (pd->lookup.done || (pd->lookup.done =
|
|
pf_socket_lookup(direction, pd, m), 1)) &&
|
|
!pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
|
|
pd->lookup.gid))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->prio &&
|
|
!pf_match_ieee8021q_pcp(r->prio, m))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->prob &&
|
|
r->prob <= arc4random())
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->match_tag && !pf_match_tag(m, r, &tag,
|
|
pd->pf_mtag ? pd->pf_mtag->tag : 0))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->os_fingerprint != PF_OSFP_ANY &&
|
|
(pd->proto != IPPROTO_TCP || !pf_osfp_match(
|
|
pf_osfp_fingerprint(pd, m, off, th),
|
|
r->os_fingerprint)))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else {
|
|
if (r->tag)
|
|
tag = r->tag;
|
|
if (r->rtableid >= 0)
|
|
rtableid = r->rtableid;
|
|
if (r->anchor == NULL) {
|
|
if (r->action == PF_MATCH) {
|
|
pf_counter_u64_critical_enter();
|
|
pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1);
|
|
pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len);
|
|
pf_counter_u64_critical_exit();
|
|
pf_rule_to_actions(r, &pd->act);
|
|
if (r->log)
|
|
PFLOG_PACKET(kif, m, af,
|
|
direction, PFRES_MATCH, r,
|
|
a, ruleset, pd, 1);
|
|
} else {
|
|
match = 1;
|
|
*rm = r;
|
|
*am = a;
|
|
*rsm = ruleset;
|
|
}
|
|
if ((*rm)->quick)
|
|
break;
|
|
r = TAILQ_NEXT(r, entries);
|
|
} else
|
|
pf_step_into_anchor(anchor_stack, &asd,
|
|
&ruleset, PF_RULESET_FILTER, &r, &a,
|
|
&match);
|
|
}
|
|
if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
|
|
&ruleset, PF_RULESET_FILTER, &r, &a, &match))
|
|
break;
|
|
}
|
|
r = *rm;
|
|
a = *am;
|
|
ruleset = *rsm;
|
|
|
|
REASON_SET(&reason, PFRES_MATCH);
|
|
|
|
/* apply actions for last matching pass/block rule */
|
|
pf_rule_to_actions(r, &pd->act);
|
|
|
|
if (r->log) {
|
|
if (rewrite)
|
|
m_copyback(m, off, hdrlen, pd->hdr.any);
|
|
PFLOG_PACKET(kif, m, af, direction, reason, r, a,
|
|
ruleset, pd, 1);
|
|
}
|
|
|
|
if ((r->action == PF_DROP) &&
|
|
((r->rule_flag & PFRULE_RETURNRST) ||
|
|
(r->rule_flag & PFRULE_RETURNICMP) ||
|
|
(r->rule_flag & PFRULE_RETURN))) {
|
|
pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum,
|
|
bip_sum, hdrlen, &reason);
|
|
}
|
|
|
|
if (r->action == PF_DROP)
|
|
goto cleanup;
|
|
|
|
if (tag > 0 && pf_tag_packet(m, pd, tag)) {
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
goto cleanup;
|
|
}
|
|
if (rtableid >= 0)
|
|
M_SETFIB(m, rtableid);
|
|
|
|
if (!state_icmp && (r->keep_state || nr != NULL ||
|
|
(pd->flags & PFDESC_TCP_NORM))) {
|
|
int action;
|
|
action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off,
|
|
sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum,
|
|
hdrlen);
|
|
if (action != PF_PASS) {
|
|
if (action == PF_DROP &&
|
|
(r->rule_flag & PFRULE_RETURN))
|
|
pf_return(r, nr, pd, sk, off, m, th, kif,
|
|
bproto_sum, bip_sum, hdrlen, &reason);
|
|
return (action);
|
|
}
|
|
} else {
|
|
if (sk != NULL)
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
if (nk != NULL)
|
|
uma_zfree(V_pf_state_key_z, nk);
|
|
}
|
|
|
|
/* copy back packet headers if we performed NAT operations */
|
|
if (rewrite)
|
|
m_copyback(m, off, hdrlen, pd->hdr.any);
|
|
|
|
if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
|
|
direction == PF_OUT &&
|
|
V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m))
|
|
/*
|
|
* We want the state created, but we dont
|
|
* want to send this in case a partner
|
|
* firewall has to know about it to allow
|
|
* replies through it.
|
|
*/
|
|
return (PF_DEFER);
|
|
|
|
return (PF_PASS);
|
|
|
|
cleanup:
|
|
if (sk != NULL)
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
if (nk != NULL)
|
|
uma_zfree(V_pf_state_key_z, nk);
|
|
return (PF_DROP);
|
|
}
|
|
|
|
static int
|
|
pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
|
|
struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk,
|
|
struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport,
|
|
u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm,
|
|
int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen)
|
|
{
|
|
struct pf_kstate *s = NULL;
|
|
struct pf_ksrc_node *sn = NULL;
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
u_int16_t mss = V_tcp_mssdflt;
|
|
u_short reason;
|
|
|
|
/* check maximums */
|
|
if (r->max_states &&
|
|
(counter_u64_fetch(r->states_cur) >= r->max_states)) {
|
|
counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
|
|
REASON_SET(&reason, PFRES_MAXSTATES);
|
|
goto csfailed;
|
|
}
|
|
/* src node for filter rule */
|
|
if ((r->rule_flag & PFRULE_SRCTRACK ||
|
|
r->rpool.opts & PF_POOL_STICKYADDR) &&
|
|
pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) {
|
|
REASON_SET(&reason, PFRES_SRCLIMIT);
|
|
goto csfailed;
|
|
}
|
|
/* src node for translation rule */
|
|
if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
|
|
pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) {
|
|
REASON_SET(&reason, PFRES_SRCLIMIT);
|
|
goto csfailed;
|
|
}
|
|
s = pf_alloc_state(M_NOWAIT);
|
|
if (s == NULL) {
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
goto csfailed;
|
|
}
|
|
s->rule.ptr = r;
|
|
s->nat_rule.ptr = nr;
|
|
s->anchor.ptr = a;
|
|
STATE_INC_COUNTERS(s);
|
|
if (r->allow_opts)
|
|
s->state_flags |= PFSTATE_ALLOWOPTS;
|
|
if (r->rule_flag & PFRULE_STATESLOPPY)
|
|
s->state_flags |= PFSTATE_SLOPPY;
|
|
s->log = r->log & PF_LOG_ALL;
|
|
s->sync_state = PFSYNC_S_NONE;
|
|
s->qid = pd->act.qid;
|
|
s->pqid = pd->act.pqid;
|
|
s->dnpipe = pd->act.dnpipe;
|
|
s->dnrpipe = pd->act.dnrpipe;
|
|
s->state_flags |= pd->act.flags;
|
|
if (nr != NULL)
|
|
s->log |= nr->log & PF_LOG_ALL;
|
|
switch (pd->proto) {
|
|
case IPPROTO_TCP:
|
|
s->src.seqlo = ntohl(th->th_seq);
|
|
s->src.seqhi = s->src.seqlo + pd->p_len + 1;
|
|
if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
|
|
r->keep_state == PF_STATE_MODULATE) {
|
|
/* Generate sequence number modulator */
|
|
if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
|
|
0)
|
|
s->src.seqdiff = 1;
|
|
pf_change_proto_a(m, &th->th_seq, &th->th_sum,
|
|
htonl(s->src.seqlo + s->src.seqdiff), 0);
|
|
*rewrite = 1;
|
|
} else
|
|
s->src.seqdiff = 0;
|
|
if (th->th_flags & TH_SYN) {
|
|
s->src.seqhi++;
|
|
s->src.wscale = pf_get_wscale(m, off,
|
|
th->th_off, pd->af);
|
|
}
|
|
s->src.max_win = MAX(ntohs(th->th_win), 1);
|
|
if (s->src.wscale & PF_WSCALE_MASK) {
|
|
/* Remove scale factor from initial window */
|
|
int win = s->src.max_win;
|
|
win += 1 << (s->src.wscale & PF_WSCALE_MASK);
|
|
s->src.max_win = (win - 1) >>
|
|
(s->src.wscale & PF_WSCALE_MASK);
|
|
}
|
|
if (th->th_flags & TH_FIN)
|
|
s->src.seqhi++;
|
|
s->dst.seqhi = 1;
|
|
s->dst.max_win = 1;
|
|
pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
|
|
pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
|
|
s->timeout = PFTM_TCP_FIRST_PACKET;
|
|
atomic_add_32(&V_pf_status.states_halfopen, 1);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
|
|
pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
|
|
s->timeout = PFTM_UDP_FIRST_PACKET;
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
#endif
|
|
s->timeout = PFTM_ICMP_FIRST_PACKET;
|
|
break;
|
|
default:
|
|
pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
|
|
pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
|
|
s->timeout = PFTM_OTHER_FIRST_PACKET;
|
|
}
|
|
|
|
if (r->rt) {
|
|
if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) {
|
|
REASON_SET(&reason, PFRES_MAPFAILED);
|
|
pf_src_tree_remove_state(s);
|
|
s->timeout = PFTM_UNLINKED;
|
|
STATE_DEC_COUNTERS(s);
|
|
pf_free_state(s);
|
|
goto csfailed;
|
|
}
|
|
s->rt_kif = r->rpool.cur->kif;
|
|
}
|
|
|
|
s->creation = time_uptime;
|
|
s->expire = time_uptime;
|
|
|
|
if (sn != NULL)
|
|
s->src_node = sn;
|
|
if (nsn != NULL) {
|
|
/* XXX We only modify one side for now. */
|
|
PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
|
|
s->nat_src_node = nsn;
|
|
}
|
|
if (pd->proto == IPPROTO_TCP) {
|
|
if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m,
|
|
off, pd, th, &s->src, &s->dst)) {
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
pf_src_tree_remove_state(s);
|
|
s->timeout = PFTM_UNLINKED;
|
|
STATE_DEC_COUNTERS(s);
|
|
pf_free_state(s);
|
|
return (PF_DROP);
|
|
}
|
|
if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub &&
|
|
pf_normalize_tcp_stateful(m, off, pd, &reason, th, s,
|
|
&s->src, &s->dst, rewrite)) {
|
|
/* This really shouldn't happen!!! */
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("pf_normalize_tcp_stateful failed on first "
|
|
"pkt\n"));
|
|
pf_src_tree_remove_state(s);
|
|
s->timeout = PFTM_UNLINKED;
|
|
STATE_DEC_COUNTERS(s);
|
|
pf_free_state(s);
|
|
return (PF_DROP);
|
|
}
|
|
}
|
|
s->direction = pd->dir;
|
|
|
|
/*
|
|
* sk/nk could already been setup by pf_get_translation().
|
|
*/
|
|
if (nr == NULL) {
|
|
KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
|
|
__func__, nr, sk, nk));
|
|
sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
|
|
if (sk == NULL)
|
|
goto csfailed;
|
|
nk = sk;
|
|
} else
|
|
KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
|
|
__func__, nr, sk, nk));
|
|
|
|
/* Swap sk/nk for PF_OUT. */
|
|
if (pf_state_insert(BOUND_IFACE(r, kif), kif,
|
|
(pd->dir == PF_IN) ? sk : nk,
|
|
(pd->dir == PF_IN) ? nk : sk, s)) {
|
|
REASON_SET(&reason, PFRES_STATEINS);
|
|
pf_src_tree_remove_state(s);
|
|
s->timeout = PFTM_UNLINKED;
|
|
STATE_DEC_COUNTERS(s);
|
|
pf_free_state(s);
|
|
return (PF_DROP);
|
|
} else
|
|
*sm = s;
|
|
|
|
if (tag > 0)
|
|
s->tag = tag;
|
|
if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
|
|
TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
|
|
pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
|
|
/* undo NAT changes, if they have taken place */
|
|
if (nr != NULL) {
|
|
struct pf_state_key *skt = s->key[PF_SK_WIRE];
|
|
if (pd->dir == PF_OUT)
|
|
skt = s->key[PF_SK_STACK];
|
|
PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
|
|
PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
|
|
if (pd->sport)
|
|
*pd->sport = skt->port[pd->sidx];
|
|
if (pd->dport)
|
|
*pd->dport = skt->port[pd->didx];
|
|
if (pd->proto_sum)
|
|
*pd->proto_sum = bproto_sum;
|
|
if (pd->ip_sum)
|
|
*pd->ip_sum = bip_sum;
|
|
m_copyback(m, off, hdrlen, pd->hdr.any);
|
|
}
|
|
s->src.seqhi = htonl(arc4random());
|
|
/* Find mss option */
|
|
int rtid = M_GETFIB(m);
|
|
mss = pf_get_mss(m, off, th->th_off, pd->af);
|
|
mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
|
|
mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
|
|
s->src.mss = mss;
|
|
pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
|
|
th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
|
|
TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0);
|
|
REASON_SET(&reason, PFRES_SYNPROXY);
|
|
return (PF_SYNPROXY_DROP);
|
|
}
|
|
|
|
return (PF_PASS);
|
|
|
|
csfailed:
|
|
if (sk != NULL)
|
|
uma_zfree(V_pf_state_key_z, sk);
|
|
if (nk != NULL)
|
|
uma_zfree(V_pf_state_key_z, nk);
|
|
|
|
if (sn != NULL) {
|
|
struct pf_srchash *sh;
|
|
|
|
sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
|
|
PF_HASHROW_LOCK(sh);
|
|
if (--sn->states == 0 && sn->expire == 0) {
|
|
pf_unlink_src_node(sn);
|
|
uma_zfree(V_pf_sources_z, sn);
|
|
counter_u64_add(
|
|
V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
|
|
}
|
|
PF_HASHROW_UNLOCK(sh);
|
|
}
|
|
|
|
if (nsn != sn && nsn != NULL) {
|
|
struct pf_srchash *sh;
|
|
|
|
sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)];
|
|
PF_HASHROW_LOCK(sh);
|
|
if (--nsn->states == 0 && nsn->expire == 0) {
|
|
pf_unlink_src_node(nsn);
|
|
uma_zfree(V_pf_sources_z, nsn);
|
|
counter_u64_add(
|
|
V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
|
|
}
|
|
PF_HASHROW_UNLOCK(sh);
|
|
}
|
|
|
|
return (PF_DROP);
|
|
}
|
|
|
|
static int
|
|
pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif,
|
|
struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am,
|
|
struct pf_kruleset **rsm)
|
|
{
|
|
struct pf_krule *r, *a = NULL;
|
|
struct pf_kruleset *ruleset = NULL;
|
|
sa_family_t af = pd->af;
|
|
u_short reason;
|
|
int tag = -1;
|
|
int asd = 0;
|
|
int match = 0;
|
|
struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
|
|
|
|
PF_RULES_RASSERT();
|
|
|
|
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
|
|
while (r != NULL) {
|
|
pf_counter_u64_add(&r->evaluations, 1);
|
|
if (pfi_kkif_match(r->kif, kif) == r->ifnot)
|
|
r = r->skip[PF_SKIP_IFP].ptr;
|
|
else if (r->direction && r->direction != direction)
|
|
r = r->skip[PF_SKIP_DIR].ptr;
|
|
else if (r->af && r->af != af)
|
|
r = r->skip[PF_SKIP_AF].ptr;
|
|
else if (r->proto && r->proto != pd->proto)
|
|
r = r->skip[PF_SKIP_PROTO].ptr;
|
|
else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
|
|
r->src.neg, kif, M_GETFIB(m)))
|
|
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
|
|
else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
|
|
r->dst.neg, NULL, M_GETFIB(m)))
|
|
r = r->skip[PF_SKIP_DST_ADDR].ptr;
|
|
else if (r->tos && !(r->tos == pd->tos))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->os_fingerprint != PF_OSFP_ANY)
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (pd->proto == IPPROTO_UDP &&
|
|
(r->src.port_op || r->dst.port_op))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (pd->proto == IPPROTO_TCP &&
|
|
(r->src.port_op || r->dst.port_op || r->flagset))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if ((pd->proto == IPPROTO_ICMP ||
|
|
pd->proto == IPPROTO_ICMPV6) &&
|
|
(r->type || r->code))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->prio &&
|
|
!pf_match_ieee8021q_pcp(r->prio, m))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->prob && r->prob <=
|
|
(arc4random() % (UINT_MAX - 1) + 1))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else if (r->match_tag && !pf_match_tag(m, r, &tag,
|
|
pd->pf_mtag ? pd->pf_mtag->tag : 0))
|
|
r = TAILQ_NEXT(r, entries);
|
|
else {
|
|
if (r->anchor == NULL) {
|
|
if (r->action == PF_MATCH) {
|
|
pf_counter_u64_critical_enter();
|
|
pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1);
|
|
pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len);
|
|
pf_counter_u64_critical_exit();
|
|
pf_rule_to_actions(r, &pd->act);
|
|
if (r->log)
|
|
PFLOG_PACKET(kif, m, af,
|
|
direction, PFRES_MATCH, r,
|
|
a, ruleset, pd, 1);
|
|
} else {
|
|
match = 1;
|
|
*rm = r;
|
|
*am = a;
|
|
*rsm = ruleset;
|
|
}
|
|
if ((*rm)->quick)
|
|
break;
|
|
r = TAILQ_NEXT(r, entries);
|
|
} else
|
|
pf_step_into_anchor(anchor_stack, &asd,
|
|
&ruleset, PF_RULESET_FILTER, &r, &a,
|
|
&match);
|
|
}
|
|
if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
|
|
&ruleset, PF_RULESET_FILTER, &r, &a, &match))
|
|
break;
|
|
}
|
|
r = *rm;
|
|
a = *am;
|
|
ruleset = *rsm;
|
|
|
|
REASON_SET(&reason, PFRES_MATCH);
|
|
|
|
/* apply actions for last matching pass/block rule */
|
|
pf_rule_to_actions(r, &pd->act);
|
|
|
|
if (r->log)
|
|
PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd,
|
|
1);
|
|
|
|
if (r->action != PF_PASS)
|
|
return (PF_DROP);
|
|
|
|
if (tag > 0 && pf_tag_packet(m, pd, tag)) {
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
return (PF_DROP);
|
|
}
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif,
|
|
struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason,
|
|
int *copyback)
|
|
{
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
struct pf_state_peer *src, *dst;
|
|
u_int16_t win = ntohs(th->th_win);
|
|
u_int32_t ack, end, seq, orig_seq;
|
|
u_int8_t sws, dws, psrc, pdst;
|
|
int ackskew;
|
|
|
|
if (pd->dir == (*state)->direction) {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
psrc = PF_PEER_SRC;
|
|
pdst = PF_PEER_DST;
|
|
} else {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
psrc = PF_PEER_DST;
|
|
pdst = PF_PEER_SRC;
|
|
}
|
|
|
|
if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
|
|
sws = src->wscale & PF_WSCALE_MASK;
|
|
dws = dst->wscale & PF_WSCALE_MASK;
|
|
} else
|
|
sws = dws = 0;
|
|
|
|
/*
|
|
* Sequence tracking algorithm from Guido van Rooij's paper:
|
|
* http://www.madison-gurkha.com/publications/tcp_filtering/
|
|
* tcp_filtering.ps
|
|
*/
|
|
|
|
orig_seq = seq = ntohl(th->th_seq);
|
|
if (src->seqlo == 0) {
|
|
/* First packet from this end. Set its state */
|
|
|
|
if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) &&
|
|
src->scrub == NULL) {
|
|
if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) {
|
|
REASON_SET(reason, PFRES_MEMORY);
|
|
return (PF_DROP);
|
|
}
|
|
}
|
|
|
|
/* Deferred generation of sequence number modulator */
|
|
if (dst->seqdiff && !src->seqdiff) {
|
|
/* use random iss for the TCP server */
|
|
while ((src->seqdiff = arc4random() - seq) == 0)
|
|
;
|
|
ack = ntohl(th->th_ack) - dst->seqdiff;
|
|
pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
|
|
src->seqdiff), 0);
|
|
pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
|
|
*copyback = 1;
|
|
} else {
|
|
ack = ntohl(th->th_ack);
|
|
}
|
|
|
|
end = seq + pd->p_len;
|
|
if (th->th_flags & TH_SYN) {
|
|
end++;
|
|
if (dst->wscale & PF_WSCALE_FLAG) {
|
|
src->wscale = pf_get_wscale(m, off, th->th_off,
|
|
pd->af);
|
|
if (src->wscale & PF_WSCALE_FLAG) {
|
|
/* Remove scale factor from initial
|
|
* window */
|
|
sws = src->wscale & PF_WSCALE_MASK;
|
|
win = ((u_int32_t)win + (1 << sws) - 1)
|
|
>> sws;
|
|
dws = dst->wscale & PF_WSCALE_MASK;
|
|
} else {
|
|
/* fixup other window */
|
|
dst->max_win <<= dst->wscale &
|
|
PF_WSCALE_MASK;
|
|
/* in case of a retrans SYN|ACK */
|
|
dst->wscale = 0;
|
|
}
|
|
}
|
|
}
|
|
if (th->th_flags & TH_FIN)
|
|
end++;
|
|
|
|
src->seqlo = seq;
|
|
if (src->state < TCPS_SYN_SENT)
|
|
pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
|
|
|
|
/*
|
|
* May need to slide the window (seqhi may have been set by
|
|
* the crappy stack check or if we picked up the connection
|
|
* after establishment)
|
|
*/
|
|
if (src->seqhi == 1 ||
|
|
SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
|
|
src->seqhi = end + MAX(1, dst->max_win << dws);
|
|
if (win > src->max_win)
|
|
src->max_win = win;
|
|
|
|
} else {
|
|
ack = ntohl(th->th_ack) - dst->seqdiff;
|
|
if (src->seqdiff) {
|
|
/* Modulate sequence numbers */
|
|
pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
|
|
src->seqdiff), 0);
|
|
pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
|
|
*copyback = 1;
|
|
}
|
|
end = seq + pd->p_len;
|
|
if (th->th_flags & TH_SYN)
|
|
end++;
|
|
if (th->th_flags & TH_FIN)
|
|
end++;
|
|
}
|
|
|
|
if ((th->th_flags & TH_ACK) == 0) {
|
|
/* Let it pass through the ack skew check */
|
|
ack = dst->seqlo;
|
|
} else if ((ack == 0 &&
|
|
(th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
|
|
/* broken tcp stacks do not set ack */
|
|
(dst->state < TCPS_SYN_SENT)) {
|
|
/*
|
|
* Many stacks (ours included) will set the ACK number in an
|
|
* FIN|ACK if the SYN times out -- no sequence to ACK.
|
|
*/
|
|
ack = dst->seqlo;
|
|
}
|
|
|
|
if (seq == end) {
|
|
/* Ease sequencing restrictions on no data packets */
|
|
seq = src->seqlo;
|
|
end = seq;
|
|
}
|
|
|
|
ackskew = dst->seqlo - ack;
|
|
|
|
/*
|
|
* Need to demodulate the sequence numbers in any TCP SACK options
|
|
* (Selective ACK). We could optionally validate the SACK values
|
|
* against the current ACK window, either forwards or backwards, but
|
|
* I'm not confident that SACK has been implemented properly
|
|
* everywhere. It wouldn't surprise me if several stacks accidentally
|
|
* SACK too far backwards of previously ACKed data. There really aren't
|
|
* any security implications of bad SACKing unless the target stack
|
|
* doesn't validate the option length correctly. Someone trying to
|
|
* spoof into a TCP connection won't bother blindly sending SACK
|
|
* options anyway.
|
|
*/
|
|
if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
|
|
if (pf_modulate_sack(m, off, pd, th, dst))
|
|
*copyback = 1;
|
|
}
|
|
|
|
#define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
|
|
if (SEQ_GEQ(src->seqhi, end) &&
|
|
/* Last octet inside other's window space */
|
|
SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
|
|
/* Retrans: not more than one window back */
|
|
(ackskew >= -MAXACKWINDOW) &&
|
|
/* Acking not more than one reassembled fragment backwards */
|
|
(ackskew <= (MAXACKWINDOW << sws)) &&
|
|
/* Acking not more than one window forward */
|
|
((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
|
|
(orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
|
|
(pd->flags & PFDESC_IP_REAS) == 0)) {
|
|
/* Require an exact/+1 sequence match on resets when possible */
|
|
|
|
if (dst->scrub || src->scrub) {
|
|
if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
|
|
*state, src, dst, copyback))
|
|
return (PF_DROP);
|
|
}
|
|
|
|
/* update max window */
|
|
if (src->max_win < win)
|
|
src->max_win = win;
|
|
/* synchronize sequencing */
|
|
if (SEQ_GT(end, src->seqlo))
|
|
src->seqlo = end;
|
|
/* slide the window of what the other end can send */
|
|
if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
|
|
dst->seqhi = ack + MAX((win << sws), 1);
|
|
|
|
/* update states */
|
|
if (th->th_flags & TH_SYN)
|
|
if (src->state < TCPS_SYN_SENT)
|
|
pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
|
|
if (th->th_flags & TH_FIN)
|
|
if (src->state < TCPS_CLOSING)
|
|
pf_set_protostate(*state, psrc, TCPS_CLOSING);
|
|
if (th->th_flags & TH_ACK) {
|
|
if (dst->state == TCPS_SYN_SENT) {
|
|
pf_set_protostate(*state, pdst,
|
|
TCPS_ESTABLISHED);
|
|
if (src->state == TCPS_ESTABLISHED &&
|
|
(*state)->src_node != NULL &&
|
|
pf_src_connlimit(state)) {
|
|
REASON_SET(reason, PFRES_SRCLIMIT);
|
|
return (PF_DROP);
|
|
}
|
|
} else if (dst->state == TCPS_CLOSING)
|
|
pf_set_protostate(*state, pdst,
|
|
TCPS_FIN_WAIT_2);
|
|
}
|
|
if (th->th_flags & TH_RST)
|
|
pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
|
|
|
|
/* update expire time */
|
|
(*state)->expire = time_uptime;
|
|
if (src->state >= TCPS_FIN_WAIT_2 &&
|
|
dst->state >= TCPS_FIN_WAIT_2)
|
|
(*state)->timeout = PFTM_TCP_CLOSED;
|
|
else if (src->state >= TCPS_CLOSING &&
|
|
dst->state >= TCPS_CLOSING)
|
|
(*state)->timeout = PFTM_TCP_FIN_WAIT;
|
|
else if (src->state < TCPS_ESTABLISHED ||
|
|
dst->state < TCPS_ESTABLISHED)
|
|
(*state)->timeout = PFTM_TCP_OPENING;
|
|
else if (src->state >= TCPS_CLOSING ||
|
|
dst->state >= TCPS_CLOSING)
|
|
(*state)->timeout = PFTM_TCP_CLOSING;
|
|
else
|
|
(*state)->timeout = PFTM_TCP_ESTABLISHED;
|
|
|
|
/* Fall through to PASS packet */
|
|
|
|
} else if ((dst->state < TCPS_SYN_SENT ||
|
|
dst->state >= TCPS_FIN_WAIT_2 ||
|
|
src->state >= TCPS_FIN_WAIT_2) &&
|
|
SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) &&
|
|
/* Within a window forward of the originating packet */
|
|
SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
|
|
/* Within a window backward of the originating packet */
|
|
|
|
/*
|
|
* This currently handles three situations:
|
|
* 1) Stupid stacks will shotgun SYNs before their peer
|
|
* replies.
|
|
* 2) When PF catches an already established stream (the
|
|
* firewall rebooted, the state table was flushed, routes
|
|
* changed...)
|
|
* 3) Packets get funky immediately after the connection
|
|
* closes (this should catch Solaris spurious ACK|FINs
|
|
* that web servers like to spew after a close)
|
|
*
|
|
* This must be a little more careful than the above code
|
|
* since packet floods will also be caught here. We don't
|
|
* update the TTL here to mitigate the damage of a packet
|
|
* flood and so the same code can handle awkward establishment
|
|
* and a loosened connection close.
|
|
* In the establishment case, a correct peer response will
|
|
* validate the connection, go through the normal state code
|
|
* and keep updating the state TTL.
|
|
*/
|
|
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: loose state match: ");
|
|
pf_print_state(*state);
|
|
pf_print_flags(th->th_flags);
|
|
printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
|
|
"pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
|
|
pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
|
|
(unsigned long long)(*state)->packets[1],
|
|
pd->dir == PF_IN ? "in" : "out",
|
|
pd->dir == (*state)->direction ? "fwd" : "rev");
|
|
}
|
|
|
|
if (dst->scrub || src->scrub) {
|
|
if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
|
|
*state, src, dst, copyback))
|
|
return (PF_DROP);
|
|
}
|
|
|
|
/* update max window */
|
|
if (src->max_win < win)
|
|
src->max_win = win;
|
|
/* synchronize sequencing */
|
|
if (SEQ_GT(end, src->seqlo))
|
|
src->seqlo = end;
|
|
/* slide the window of what the other end can send */
|
|
if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
|
|
dst->seqhi = ack + MAX((win << sws), 1);
|
|
|
|
/*
|
|
* Cannot set dst->seqhi here since this could be a shotgunned
|
|
* SYN and not an already established connection.
|
|
*/
|
|
|
|
if (th->th_flags & TH_FIN)
|
|
if (src->state < TCPS_CLOSING)
|
|
pf_set_protostate(*state, psrc, TCPS_CLOSING);
|
|
if (th->th_flags & TH_RST)
|
|
pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
|
|
|
|
/* Fall through to PASS packet */
|
|
|
|
} else {
|
|
if ((*state)->dst.state == TCPS_SYN_SENT &&
|
|
(*state)->src.state == TCPS_SYN_SENT) {
|
|
/* Send RST for state mismatches during handshake */
|
|
if (!(th->th_flags & TH_RST))
|
|
pf_send_tcp((*state)->rule.ptr, pd->af,
|
|
pd->dst, pd->src, th->th_dport,
|
|
th->th_sport, ntohl(th->th_ack), 0,
|
|
TH_RST, 0, 0,
|
|
(*state)->rule.ptr->return_ttl, 1, 0);
|
|
src->seqlo = 0;
|
|
src->seqhi = 1;
|
|
src->max_win = 1;
|
|
} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: BAD state: ");
|
|
pf_print_state(*state);
|
|
pf_print_flags(th->th_flags);
|
|
printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
|
|
"pkts=%llu:%llu dir=%s,%s\n",
|
|
seq, orig_seq, ack, pd->p_len, ackskew,
|
|
(unsigned long long)(*state)->packets[0],
|
|
(unsigned long long)(*state)->packets[1],
|
|
pd->dir == PF_IN ? "in" : "out",
|
|
pd->dir == (*state)->direction ? "fwd" : "rev");
|
|
printf("pf: State failure on: %c %c %c %c | %c %c\n",
|
|
SEQ_GEQ(src->seqhi, end) ? ' ' : '1',
|
|
SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
|
|
' ': '2',
|
|
(ackskew >= -MAXACKWINDOW) ? ' ' : '3',
|
|
(ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
|
|
SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5',
|
|
SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
|
|
}
|
|
REASON_SET(reason, PFRES_BADSTATE);
|
|
return (PF_DROP);
|
|
}
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
|
|
{
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
struct pf_state_peer *src, *dst;
|
|
u_int8_t psrc, pdst;
|
|
|
|
if (pd->dir == (*state)->direction) {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
psrc = PF_PEER_SRC;
|
|
pdst = PF_PEER_DST;
|
|
} else {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
psrc = PF_PEER_DST;
|
|
pdst = PF_PEER_SRC;
|
|
}
|
|
|
|
if (th->th_flags & TH_SYN)
|
|
if (src->state < TCPS_SYN_SENT)
|
|
pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
|
|
if (th->th_flags & TH_FIN)
|
|
if (src->state < TCPS_CLOSING)
|
|
pf_set_protostate(*state, psrc, TCPS_CLOSING);
|
|
if (th->th_flags & TH_ACK) {
|
|
if (dst->state == TCPS_SYN_SENT) {
|
|
pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
|
|
if (src->state == TCPS_ESTABLISHED &&
|
|
(*state)->src_node != NULL &&
|
|
pf_src_connlimit(state)) {
|
|
REASON_SET(reason, PFRES_SRCLIMIT);
|
|
return (PF_DROP);
|
|
}
|
|
} else if (dst->state == TCPS_CLOSING) {
|
|
pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
|
|
} else if (src->state == TCPS_SYN_SENT &&
|
|
dst->state < TCPS_SYN_SENT) {
|
|
/*
|
|
* Handle a special sloppy case where we only see one
|
|
* half of the connection. If there is a ACK after
|
|
* the initial SYN without ever seeing a packet from
|
|
* the destination, set the connection to established.
|
|
*/
|
|
pf_set_protostate(*state, PF_PEER_BOTH,
|
|
TCPS_ESTABLISHED);
|
|
dst->state = src->state = TCPS_ESTABLISHED;
|
|
if ((*state)->src_node != NULL &&
|
|
pf_src_connlimit(state)) {
|
|
REASON_SET(reason, PFRES_SRCLIMIT);
|
|
return (PF_DROP);
|
|
}
|
|
} else if (src->state == TCPS_CLOSING &&
|
|
dst->state == TCPS_ESTABLISHED &&
|
|
dst->seqlo == 0) {
|
|
/*
|
|
* Handle the closing of half connections where we
|
|
* don't see the full bidirectional FIN/ACK+ACK
|
|
* handshake.
|
|
*/
|
|
pf_set_protostate(*state, pdst, TCPS_CLOSING);
|
|
}
|
|
}
|
|
if (th->th_flags & TH_RST)
|
|
pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
|
|
|
|
/* update expire time */
|
|
(*state)->expire = time_uptime;
|
|
if (src->state >= TCPS_FIN_WAIT_2 &&
|
|
dst->state >= TCPS_FIN_WAIT_2)
|
|
(*state)->timeout = PFTM_TCP_CLOSED;
|
|
else if (src->state >= TCPS_CLOSING &&
|
|
dst->state >= TCPS_CLOSING)
|
|
(*state)->timeout = PFTM_TCP_FIN_WAIT;
|
|
else if (src->state < TCPS_ESTABLISHED ||
|
|
dst->state < TCPS_ESTABLISHED)
|
|
(*state)->timeout = PFTM_TCP_OPENING;
|
|
else if (src->state >= TCPS_CLOSING ||
|
|
dst->state >= TCPS_CLOSING)
|
|
(*state)->timeout = PFTM_TCP_CLOSING;
|
|
else
|
|
(*state)->timeout = PFTM_TCP_ESTABLISHED;
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
|
|
{
|
|
struct pf_state_key *sk = (*state)->key[pd->didx];
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
|
|
if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
|
|
if (pd->dir != (*state)->direction) {
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_SYNPROXY_DROP);
|
|
}
|
|
if (th->th_flags & TH_SYN) {
|
|
if (ntohl(th->th_seq) != (*state)->src.seqlo) {
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_DROP);
|
|
}
|
|
pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
|
|
pd->src, th->th_dport, th->th_sport,
|
|
(*state)->src.seqhi, ntohl(th->th_seq) + 1,
|
|
TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0);
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_SYNPROXY_DROP);
|
|
} else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
|
|
(ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
|
|
(ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_DROP);
|
|
} else if ((*state)->src_node != NULL &&
|
|
pf_src_connlimit(state)) {
|
|
REASON_SET(reason, PFRES_SRCLIMIT);
|
|
return (PF_DROP);
|
|
} else
|
|
pf_set_protostate(*state, PF_PEER_SRC,
|
|
PF_TCPS_PROXY_DST);
|
|
}
|
|
if ((*state)->src.state == PF_TCPS_PROXY_DST) {
|
|
if (pd->dir == (*state)->direction) {
|
|
if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
|
|
(ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
|
|
(ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_DROP);
|
|
}
|
|
(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
|
|
if ((*state)->dst.seqhi == 1)
|
|
(*state)->dst.seqhi = htonl(arc4random());
|
|
pf_send_tcp((*state)->rule.ptr, pd->af,
|
|
&sk->addr[pd->sidx], &sk->addr[pd->didx],
|
|
sk->port[pd->sidx], sk->port[pd->didx],
|
|
(*state)->dst.seqhi, 0, TH_SYN, 0,
|
|
(*state)->src.mss, 0, 0, (*state)->tag);
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_SYNPROXY_DROP);
|
|
} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
|
|
(TH_SYN|TH_ACK)) ||
|
|
(ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_DROP);
|
|
} else {
|
|
(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
|
|
(*state)->dst.seqlo = ntohl(th->th_seq);
|
|
pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
|
|
pd->src, th->th_dport, th->th_sport,
|
|
ntohl(th->th_ack), ntohl(th->th_seq) + 1,
|
|
TH_ACK, (*state)->src.max_win, 0, 0, 0,
|
|
(*state)->tag);
|
|
pf_send_tcp((*state)->rule.ptr, pd->af,
|
|
&sk->addr[pd->sidx], &sk->addr[pd->didx],
|
|
sk->port[pd->sidx], sk->port[pd->didx],
|
|
(*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
|
|
TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0);
|
|
(*state)->src.seqdiff = (*state)->dst.seqhi -
|
|
(*state)->src.seqlo;
|
|
(*state)->dst.seqdiff = (*state)->src.seqhi -
|
|
(*state)->dst.seqlo;
|
|
(*state)->src.seqhi = (*state)->src.seqlo +
|
|
(*state)->dst.max_win;
|
|
(*state)->dst.seqhi = (*state)->dst.seqlo +
|
|
(*state)->src.max_win;
|
|
(*state)->src.wscale = (*state)->dst.wscale = 0;
|
|
pf_set_protostate(*state, PF_PEER_BOTH,
|
|
TCPS_ESTABLISHED);
|
|
REASON_SET(reason, PFRES_SYNPROXY);
|
|
return (PF_SYNPROXY_DROP);
|
|
}
|
|
}
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
|
|
struct mbuf *m, int off, void *h, struct pf_pdesc *pd,
|
|
u_short *reason)
|
|
{
|
|
struct pf_state_key_cmp key;
|
|
struct tcphdr *th = &pd->hdr.tcp;
|
|
int copyback = 0;
|
|
int action;
|
|
struct pf_state_peer *src, *dst;
|
|
|
|
bzero(&key, sizeof(key));
|
|
key.af = pd->af;
|
|
key.proto = IPPROTO_TCP;
|
|
if (direction == PF_IN) { /* wire side, straight */
|
|
PF_ACPY(&key.addr[0], pd->src, key.af);
|
|
PF_ACPY(&key.addr[1], pd->dst, key.af);
|
|
key.port[0] = th->th_sport;
|
|
key.port[1] = th->th_dport;
|
|
} else { /* stack side, reverse */
|
|
PF_ACPY(&key.addr[1], pd->src, key.af);
|
|
PF_ACPY(&key.addr[0], pd->dst, key.af);
|
|
key.port[1] = th->th_sport;
|
|
key.port[0] = th->th_dport;
|
|
}
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
if (direction == (*state)->direction) {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
} else {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
}
|
|
|
|
if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
|
|
return (action);
|
|
|
|
if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) &&
|
|
dst->state >= TCPS_FIN_WAIT_2 &&
|
|
src->state >= TCPS_FIN_WAIT_2) {
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: state reuse ");
|
|
pf_print_state(*state);
|
|
pf_print_flags(th->th_flags);
|
|
printf("\n");
|
|
}
|
|
/* XXX make sure it's the same direction ?? */
|
|
pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
|
|
pf_unlink_state(*state);
|
|
*state = NULL;
|
|
return (PF_DROP);
|
|
}
|
|
|
|
if ((*state)->state_flags & PFSTATE_SLOPPY) {
|
|
if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
|
|
return (PF_DROP);
|
|
} else {
|
|
if (pf_tcp_track_full(state, kif, m, off, pd, reason,
|
|
©back) == PF_DROP)
|
|
return (PF_DROP);
|
|
}
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk = (*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
|
|
nk->port[pd->sidx] != th->th_sport)
|
|
pf_change_ap(m, pd->src, &th->th_sport,
|
|
pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 0, pd->af);
|
|
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
|
|
nk->port[pd->didx] != th->th_dport)
|
|
pf_change_ap(m, pd->dst, &th->th_dport,
|
|
pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
|
|
nk->port[pd->didx], 0, pd->af);
|
|
copyback = 1;
|
|
}
|
|
|
|
/* Copyback sequence modulation or stateful scrub changes if needed */
|
|
if (copyback)
|
|
m_copyback(m, off, sizeof(*th), (caddr_t)th);
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
|
|
struct mbuf *m, int off, void *h, struct pf_pdesc *pd)
|
|
{
|
|
struct pf_state_peer *src, *dst;
|
|
struct pf_state_key_cmp key;
|
|
struct udphdr *uh = &pd->hdr.udp;
|
|
uint8_t psrc, pdst;
|
|
|
|
bzero(&key, sizeof(key));
|
|
key.af = pd->af;
|
|
key.proto = IPPROTO_UDP;
|
|
if (direction == PF_IN) { /* wire side, straight */
|
|
PF_ACPY(&key.addr[0], pd->src, key.af);
|
|
PF_ACPY(&key.addr[1], pd->dst, key.af);
|
|
key.port[0] = uh->uh_sport;
|
|
key.port[1] = uh->uh_dport;
|
|
} else { /* stack side, reverse */
|
|
PF_ACPY(&key.addr[1], pd->src, key.af);
|
|
PF_ACPY(&key.addr[0], pd->dst, key.af);
|
|
key.port[1] = uh->uh_sport;
|
|
key.port[0] = uh->uh_dport;
|
|
}
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
if (direction == (*state)->direction) {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
psrc = PF_PEER_SRC;
|
|
pdst = PF_PEER_DST;
|
|
} else {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
psrc = PF_PEER_DST;
|
|
pdst = PF_PEER_SRC;
|
|
}
|
|
|
|
/* update states */
|
|
if (src->state < PFUDPS_SINGLE)
|
|
pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
|
|
if (dst->state == PFUDPS_SINGLE)
|
|
pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
|
|
|
|
/* update expire time */
|
|
(*state)->expire = time_uptime;
|
|
if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
|
|
(*state)->timeout = PFTM_UDP_MULTIPLE;
|
|
else
|
|
(*state)->timeout = PFTM_UDP_SINGLE;
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk = (*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
|
|
nk->port[pd->sidx] != uh->uh_sport)
|
|
pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
|
|
&uh->uh_sum, &nk->addr[pd->sidx],
|
|
nk->port[pd->sidx], 1, pd->af);
|
|
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
|
|
nk->port[pd->didx] != uh->uh_dport)
|
|
pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
|
|
&uh->uh_sum, &nk->addr[pd->didx],
|
|
nk->port[pd->didx], 1, pd->af);
|
|
m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
|
|
}
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
static int
|
|
pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
|
|
struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason)
|
|
{
|
|
struct pf_addr *saddr = pd->src, *daddr = pd->dst;
|
|
u_int16_t icmpid = 0, *icmpsum;
|
|
u_int8_t icmptype, icmpcode;
|
|
int state_icmp = 0;
|
|
struct pf_state_key_cmp key;
|
|
|
|
bzero(&key, sizeof(key));
|
|
switch (pd->proto) {
|
|
#ifdef INET
|
|
case IPPROTO_ICMP:
|
|
icmptype = pd->hdr.icmp.icmp_type;
|
|
icmpcode = pd->hdr.icmp.icmp_code;
|
|
icmpid = pd->hdr.icmp.icmp_id;
|
|
icmpsum = &pd->hdr.icmp.icmp_cksum;
|
|
|
|
if (icmptype == ICMP_UNREACH ||
|
|
icmptype == ICMP_SOURCEQUENCH ||
|
|
icmptype == ICMP_REDIRECT ||
|
|
icmptype == ICMP_TIMXCEED ||
|
|
icmptype == ICMP_PARAMPROB)
|
|
state_icmp++;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
icmptype = pd->hdr.icmp6.icmp6_type;
|
|
icmpcode = pd->hdr.icmp6.icmp6_code;
|
|
icmpid = pd->hdr.icmp6.icmp6_id;
|
|
icmpsum = &pd->hdr.icmp6.icmp6_cksum;
|
|
|
|
if (icmptype == ICMP6_DST_UNREACH ||
|
|
icmptype == ICMP6_PACKET_TOO_BIG ||
|
|
icmptype == ICMP6_TIME_EXCEEDED ||
|
|
icmptype == ICMP6_PARAM_PROB)
|
|
state_icmp++;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
if (!state_icmp) {
|
|
/*
|
|
* ICMP query/reply message not related to a TCP/UDP packet.
|
|
* Search for an ICMP state.
|
|
*/
|
|
key.af = pd->af;
|
|
key.proto = pd->proto;
|
|
key.port[0] = key.port[1] = icmpid;
|
|
if (direction == PF_IN) { /* wire side, straight */
|
|
PF_ACPY(&key.addr[0], pd->src, key.af);
|
|
PF_ACPY(&key.addr[1], pd->dst, key.af);
|
|
} else { /* stack side, reverse */
|
|
PF_ACPY(&key.addr[1], pd->src, key.af);
|
|
PF_ACPY(&key.addr[0], pd->dst, key.af);
|
|
}
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
(*state)->expire = time_uptime;
|
|
(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk = (*state)->key[pd->didx];
|
|
|
|
switch (pd->af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (PF_ANEQ(pd->src,
|
|
&nk->addr[pd->sidx], AF_INET))
|
|
pf_change_a(&saddr->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->sidx].v4.s_addr, 0);
|
|
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
|
|
AF_INET))
|
|
pf_change_a(&daddr->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->didx].v4.s_addr, 0);
|
|
|
|
if (nk->port[0] !=
|
|
pd->hdr.icmp.icmp_id) {
|
|
pd->hdr.icmp.icmp_cksum =
|
|
pf_cksum_fixup(
|
|
pd->hdr.icmp.icmp_cksum, icmpid,
|
|
nk->port[pd->sidx], 0);
|
|
pd->hdr.icmp.icmp_id =
|
|
nk->port[pd->sidx];
|
|
}
|
|
|
|
m_copyback(m, off, ICMP_MINLEN,
|
|
(caddr_t )&pd->hdr.icmp);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (PF_ANEQ(pd->src,
|
|
&nk->addr[pd->sidx], AF_INET6))
|
|
pf_change_a6(saddr,
|
|
&pd->hdr.icmp6.icmp6_cksum,
|
|
&nk->addr[pd->sidx], 0);
|
|
|
|
if (PF_ANEQ(pd->dst,
|
|
&nk->addr[pd->didx], AF_INET6))
|
|
pf_change_a6(daddr,
|
|
&pd->hdr.icmp6.icmp6_cksum,
|
|
&nk->addr[pd->didx], 0);
|
|
|
|
m_copyback(m, off, sizeof(struct icmp6_hdr),
|
|
(caddr_t )&pd->hdr.icmp6);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
}
|
|
return (PF_PASS);
|
|
|
|
} else {
|
|
/*
|
|
* ICMP error message in response to a TCP/UDP packet.
|
|
* Extract the inner TCP/UDP header and search for that state.
|
|
*/
|
|
|
|
struct pf_pdesc pd2;
|
|
bzero(&pd2, sizeof pd2);
|
|
#ifdef INET
|
|
struct ip h2;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
struct ip6_hdr h2_6;
|
|
int terminal = 0;
|
|
#endif /* INET6 */
|
|
int ipoff2 = 0;
|
|
int off2 = 0;
|
|
|
|
pd2.af = pd->af;
|
|
/* Payload packet is from the opposite direction. */
|
|
pd2.sidx = (direction == PF_IN) ? 1 : 0;
|
|
pd2.didx = (direction == PF_IN) ? 0 : 1;
|
|
switch (pd->af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
/* offset of h2 in mbuf chain */
|
|
ipoff2 = off + ICMP_MINLEN;
|
|
|
|
if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2),
|
|
NULL, reason, pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short "
|
|
"(ip)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
/*
|
|
* ICMP error messages don't refer to non-first
|
|
* fragments
|
|
*/
|
|
if (h2.ip_off & htons(IP_OFFMASK)) {
|
|
REASON_SET(reason, PFRES_FRAG);
|
|
return (PF_DROP);
|
|
}
|
|
|
|
/* offset of protocol header that follows h2 */
|
|
off2 = ipoff2 + (h2.ip_hl << 2);
|
|
|
|
pd2.proto = h2.ip_p;
|
|
pd2.src = (struct pf_addr *)&h2.ip_src;
|
|
pd2.dst = (struct pf_addr *)&h2.ip_dst;
|
|
pd2.ip_sum = &h2.ip_sum;
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ipoff2 = off + sizeof(struct icmp6_hdr);
|
|
|
|
if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6),
|
|
NULL, reason, pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short "
|
|
"(ip6)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
pd2.proto = h2_6.ip6_nxt;
|
|
pd2.src = (struct pf_addr *)&h2_6.ip6_src;
|
|
pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
|
|
pd2.ip_sum = NULL;
|
|
off2 = ipoff2 + sizeof(h2_6);
|
|
do {
|
|
switch (pd2.proto) {
|
|
case IPPROTO_FRAGMENT:
|
|
/*
|
|
* ICMPv6 error messages for
|
|
* non-first fragments
|
|
*/
|
|
REASON_SET(reason, PFRES_FRAG);
|
|
return (PF_DROP);
|
|
case IPPROTO_AH:
|
|
case IPPROTO_HOPOPTS:
|
|
case IPPROTO_ROUTING:
|
|
case IPPROTO_DSTOPTS: {
|
|
/* get next header and header length */
|
|
struct ip6_ext opt6;
|
|
|
|
if (!pf_pull_hdr(m, off2, &opt6,
|
|
sizeof(opt6), NULL, reason,
|
|
pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMPv6 short opt\n"));
|
|
return (PF_DROP);
|
|
}
|
|
if (pd2.proto == IPPROTO_AH)
|
|
off2 += (opt6.ip6e_len + 2) * 4;
|
|
else
|
|
off2 += (opt6.ip6e_len + 1) * 8;
|
|
pd2.proto = opt6.ip6e_nxt;
|
|
/* goto the next header */
|
|
break;
|
|
}
|
|
default:
|
|
terminal++;
|
|
break;
|
|
}
|
|
} while (!terminal);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: BAD ICMP %d:%d outer dst: ",
|
|
icmptype, icmpcode);
|
|
pf_print_host(pd->src, 0, pd->af);
|
|
printf(" -> ");
|
|
pf_print_host(pd->dst, 0, pd->af);
|
|
printf(" inner src: ");
|
|
pf_print_host(pd2.src, 0, pd2.af);
|
|
printf(" -> ");
|
|
pf_print_host(pd2.dst, 0, pd2.af);
|
|
printf("\n");
|
|
}
|
|
REASON_SET(reason, PFRES_BADSTATE);
|
|
return (PF_DROP);
|
|
}
|
|
|
|
switch (pd2.proto) {
|
|
case IPPROTO_TCP: {
|
|
struct tcphdr th;
|
|
u_int32_t seq;
|
|
struct pf_state_peer *src, *dst;
|
|
u_int8_t dws;
|
|
int copyback = 0;
|
|
|
|
/*
|
|
* Only the first 8 bytes of the TCP header can be
|
|
* expected. Don't access any TCP header fields after
|
|
* th_seq, an ackskew test is not possible.
|
|
*/
|
|
if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason,
|
|
pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short "
|
|
"(tcp)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
|
|
key.af = pd2.af;
|
|
key.proto = IPPROTO_TCP;
|
|
PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
|
|
PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
|
|
key.port[pd2.sidx] = th.th_sport;
|
|
key.port[pd2.didx] = th.th_dport;
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
if (direction == (*state)->direction) {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
} else {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
}
|
|
|
|
if (src->wscale && dst->wscale)
|
|
dws = dst->wscale & PF_WSCALE_MASK;
|
|
else
|
|
dws = 0;
|
|
|
|
/* Demodulate sequence number */
|
|
seq = ntohl(th.th_seq) - src->seqdiff;
|
|
if (src->seqdiff) {
|
|
pf_change_a(&th.th_seq, icmpsum,
|
|
htonl(seq), 0);
|
|
copyback = 1;
|
|
}
|
|
|
|
if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
|
|
(!SEQ_GEQ(src->seqhi, seq) ||
|
|
!SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: BAD ICMP %d:%d ",
|
|
icmptype, icmpcode);
|
|
pf_print_host(pd->src, 0, pd->af);
|
|
printf(" -> ");
|
|
pf_print_host(pd->dst, 0, pd->af);
|
|
printf(" state: ");
|
|
pf_print_state(*state);
|
|
printf(" seq=%u\n", seq);
|
|
}
|
|
REASON_SET(reason, PFRES_BADSTATE);
|
|
return (PF_DROP);
|
|
} else {
|
|
if (V_pf_status.debug >= PF_DEBUG_MISC) {
|
|
printf("pf: OK ICMP %d:%d ",
|
|
icmptype, icmpcode);
|
|
pf_print_host(pd->src, 0, pd->af);
|
|
printf(" -> ");
|
|
pf_print_host(pd->dst, 0, pd->af);
|
|
printf(" state: ");
|
|
pf_print_state(*state);
|
|
printf(" seq=%u\n", seq);
|
|
}
|
|
}
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] !=
|
|
(*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk =
|
|
(*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd2.src,
|
|
&nk->addr[pd2.sidx], pd2.af) ||
|
|
nk->port[pd2.sidx] != th.th_sport)
|
|
pf_change_icmp(pd2.src, &th.th_sport,
|
|
daddr, &nk->addr[pd2.sidx],
|
|
nk->port[pd2.sidx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, pd2.af);
|
|
|
|
if (PF_ANEQ(pd2.dst,
|
|
&nk->addr[pd2.didx], pd2.af) ||
|
|
nk->port[pd2.didx] != th.th_dport)
|
|
pf_change_icmp(pd2.dst, &th.th_dport,
|
|
saddr, &nk->addr[pd2.didx],
|
|
nk->port[pd2.didx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, pd2.af);
|
|
copyback = 1;
|
|
}
|
|
|
|
if (copyback) {
|
|
switch (pd2.af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
m_copyback(m, off, ICMP_MINLEN,
|
|
(caddr_t )&pd->hdr.icmp);
|
|
m_copyback(m, ipoff2, sizeof(h2),
|
|
(caddr_t )&h2);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
m_copyback(m, off,
|
|
sizeof(struct icmp6_hdr),
|
|
(caddr_t )&pd->hdr.icmp6);
|
|
m_copyback(m, ipoff2, sizeof(h2_6),
|
|
(caddr_t )&h2_6);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
m_copyback(m, off2, 8, (caddr_t)&th);
|
|
}
|
|
|
|
return (PF_PASS);
|
|
break;
|
|
}
|
|
case IPPROTO_UDP: {
|
|
struct udphdr uh;
|
|
|
|
if (!pf_pull_hdr(m, off2, &uh, sizeof(uh),
|
|
NULL, reason, pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short "
|
|
"(udp)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
|
|
key.af = pd2.af;
|
|
key.proto = IPPROTO_UDP;
|
|
PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
|
|
PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
|
|
key.port[pd2.sidx] = uh.uh_sport;
|
|
key.port[pd2.didx] = uh.uh_dport;
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] !=
|
|
(*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk =
|
|
(*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd2.src,
|
|
&nk->addr[pd2.sidx], pd2.af) ||
|
|
nk->port[pd2.sidx] != uh.uh_sport)
|
|
pf_change_icmp(pd2.src, &uh.uh_sport,
|
|
daddr, &nk->addr[pd2.sidx],
|
|
nk->port[pd2.sidx], &uh.uh_sum,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 1, pd2.af);
|
|
|
|
if (PF_ANEQ(pd2.dst,
|
|
&nk->addr[pd2.didx], pd2.af) ||
|
|
nk->port[pd2.didx] != uh.uh_dport)
|
|
pf_change_icmp(pd2.dst, &uh.uh_dport,
|
|
saddr, &nk->addr[pd2.didx],
|
|
nk->port[pd2.didx], &uh.uh_sum,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 1, pd2.af);
|
|
|
|
switch (pd2.af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
m_copyback(m, off, ICMP_MINLEN,
|
|
(caddr_t )&pd->hdr.icmp);
|
|
m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
m_copyback(m, off,
|
|
sizeof(struct icmp6_hdr),
|
|
(caddr_t )&pd->hdr.icmp6);
|
|
m_copyback(m, ipoff2, sizeof(h2_6),
|
|
(caddr_t )&h2_6);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
m_copyback(m, off2, sizeof(uh), (caddr_t)&uh);
|
|
}
|
|
return (PF_PASS);
|
|
break;
|
|
}
|
|
#ifdef INET
|
|
case IPPROTO_ICMP: {
|
|
struct icmp iih;
|
|
|
|
if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN,
|
|
NULL, reason, pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short i"
|
|
"(icmp)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
|
|
key.af = pd2.af;
|
|
key.proto = IPPROTO_ICMP;
|
|
PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
|
|
PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
|
|
key.port[0] = key.port[1] = iih.icmp_id;
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] !=
|
|
(*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk =
|
|
(*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd2.src,
|
|
&nk->addr[pd2.sidx], pd2.af) ||
|
|
nk->port[pd2.sidx] != iih.icmp_id)
|
|
pf_change_icmp(pd2.src, &iih.icmp_id,
|
|
daddr, &nk->addr[pd2.sidx],
|
|
nk->port[pd2.sidx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, AF_INET);
|
|
|
|
if (PF_ANEQ(pd2.dst,
|
|
&nk->addr[pd2.didx], pd2.af) ||
|
|
nk->port[pd2.didx] != iih.icmp_id)
|
|
pf_change_icmp(pd2.dst, &iih.icmp_id,
|
|
saddr, &nk->addr[pd2.didx],
|
|
nk->port[pd2.didx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, AF_INET);
|
|
|
|
m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
|
|
m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
|
|
m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih);
|
|
}
|
|
return (PF_PASS);
|
|
break;
|
|
}
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6: {
|
|
struct icmp6_hdr iih;
|
|
|
|
if (!pf_pull_hdr(m, off2, &iih,
|
|
sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: ICMP error message too short "
|
|
"(icmp6)\n"));
|
|
return (PF_DROP);
|
|
}
|
|
|
|
key.af = pd2.af;
|
|
key.proto = IPPROTO_ICMPV6;
|
|
PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
|
|
PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
|
|
key.port[0] = key.port[1] = iih.icmp6_id;
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] !=
|
|
(*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk =
|
|
(*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd2.src,
|
|
&nk->addr[pd2.sidx], pd2.af) ||
|
|
nk->port[pd2.sidx] != iih.icmp6_id)
|
|
pf_change_icmp(pd2.src, &iih.icmp6_id,
|
|
daddr, &nk->addr[pd2.sidx],
|
|
nk->port[pd2.sidx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, AF_INET6);
|
|
|
|
if (PF_ANEQ(pd2.dst,
|
|
&nk->addr[pd2.didx], pd2.af) ||
|
|
nk->port[pd2.didx] != iih.icmp6_id)
|
|
pf_change_icmp(pd2.dst, &iih.icmp6_id,
|
|
saddr, &nk->addr[pd2.didx],
|
|
nk->port[pd2.didx], NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, AF_INET6);
|
|
|
|
m_copyback(m, off, sizeof(struct icmp6_hdr),
|
|
(caddr_t)&pd->hdr.icmp6);
|
|
m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
|
|
m_copyback(m, off2, sizeof(struct icmp6_hdr),
|
|
(caddr_t)&iih);
|
|
}
|
|
return (PF_PASS);
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
default: {
|
|
key.af = pd2.af;
|
|
key.proto = pd2.proto;
|
|
PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
|
|
PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
|
|
key.port[0] = key.port[1] = 0;
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] !=
|
|
(*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk =
|
|
(*state)->key[pd->didx];
|
|
|
|
if (PF_ANEQ(pd2.src,
|
|
&nk->addr[pd2.sidx], pd2.af))
|
|
pf_change_icmp(pd2.src, NULL, daddr,
|
|
&nk->addr[pd2.sidx], 0, NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, pd2.af);
|
|
|
|
if (PF_ANEQ(pd2.dst,
|
|
&nk->addr[pd2.didx], pd2.af))
|
|
pf_change_icmp(pd2.dst, NULL, saddr,
|
|
&nk->addr[pd2.didx], 0, NULL,
|
|
pd2.ip_sum, icmpsum,
|
|
pd->ip_sum, 0, pd2.af);
|
|
|
|
switch (pd2.af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
m_copyback(m, off, ICMP_MINLEN,
|
|
(caddr_t)&pd->hdr.icmp);
|
|
m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
m_copyback(m, off,
|
|
sizeof(struct icmp6_hdr),
|
|
(caddr_t )&pd->hdr.icmp6);
|
|
m_copyback(m, ipoff2, sizeof(h2_6),
|
|
(caddr_t )&h2_6);
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
}
|
|
return (PF_PASS);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
|
|
struct mbuf *m, struct pf_pdesc *pd)
|
|
{
|
|
struct pf_state_peer *src, *dst;
|
|
struct pf_state_key_cmp key;
|
|
uint8_t psrc, pdst;
|
|
|
|
bzero(&key, sizeof(key));
|
|
key.af = pd->af;
|
|
key.proto = pd->proto;
|
|
if (direction == PF_IN) {
|
|
PF_ACPY(&key.addr[0], pd->src, key.af);
|
|
PF_ACPY(&key.addr[1], pd->dst, key.af);
|
|
key.port[0] = key.port[1] = 0;
|
|
} else {
|
|
PF_ACPY(&key.addr[1], pd->src, key.af);
|
|
PF_ACPY(&key.addr[0], pd->dst, key.af);
|
|
key.port[1] = key.port[0] = 0;
|
|
}
|
|
|
|
STATE_LOOKUP(kif, &key, direction, *state, pd);
|
|
|
|
if (direction == (*state)->direction) {
|
|
src = &(*state)->src;
|
|
dst = &(*state)->dst;
|
|
psrc = PF_PEER_SRC;
|
|
pdst = PF_PEER_DST;
|
|
} else {
|
|
src = &(*state)->dst;
|
|
dst = &(*state)->src;
|
|
psrc = PF_PEER_DST;
|
|
pdst = PF_PEER_SRC;
|
|
}
|
|
|
|
/* update states */
|
|
if (src->state < PFOTHERS_SINGLE)
|
|
pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
|
|
if (dst->state == PFOTHERS_SINGLE)
|
|
pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
|
|
|
|
/* update expire time */
|
|
(*state)->expire = time_uptime;
|
|
if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
|
|
(*state)->timeout = PFTM_OTHER_MULTIPLE;
|
|
else
|
|
(*state)->timeout = PFTM_OTHER_SINGLE;
|
|
|
|
/* translate source/destination address, if necessary */
|
|
if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
|
|
struct pf_state_key *nk = (*state)->key[pd->didx];
|
|
|
|
KASSERT(nk, ("%s: nk is null", __func__));
|
|
KASSERT(pd, ("%s: pd is null", __func__));
|
|
KASSERT(pd->src, ("%s: pd->src is null", __func__));
|
|
KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
|
|
switch (pd->af) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
|
|
pf_change_a(&pd->src->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->sidx].v4.s_addr,
|
|
0);
|
|
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
|
|
pf_change_a(&pd->dst->v4.s_addr,
|
|
pd->ip_sum,
|
|
nk->addr[pd->didx].v4.s_addr,
|
|
0);
|
|
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
|
|
PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
|
|
|
|
if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
|
|
PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
|
|
#endif /* INET6 */
|
|
}
|
|
}
|
|
return (PF_PASS);
|
|
}
|
|
|
|
/*
|
|
* ipoff and off are measured from the start of the mbuf chain.
|
|
* h must be at "ipoff" on the mbuf chain.
|
|
*/
|
|
void *
|
|
pf_pull_hdr(struct mbuf *m, int off, void *p, int len,
|
|
u_short *actionp, u_short *reasonp, sa_family_t af)
|
|
{
|
|
switch (af) {
|
|
#ifdef INET
|
|
case AF_INET: {
|
|
struct ip *h = mtod(m, struct ip *);
|
|
u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
|
|
|
|
if (fragoff) {
|
|
if (fragoff >= len)
|
|
ACTION_SET(actionp, PF_PASS);
|
|
else {
|
|
ACTION_SET(actionp, PF_DROP);
|
|
REASON_SET(reasonp, PFRES_FRAG);
|
|
}
|
|
return (NULL);
|
|
}
|
|
if (m->m_pkthdr.len < off + len ||
|
|
ntohs(h->ip_len) < off + len) {
|
|
ACTION_SET(actionp, PF_DROP);
|
|
REASON_SET(reasonp, PFRES_SHORT);
|
|
return (NULL);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
case AF_INET6: {
|
|
struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
|
|
|
|
if (m->m_pkthdr.len < off + len ||
|
|
(ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
|
|
(unsigned)(off + len)) {
|
|
ACTION_SET(actionp, PF_DROP);
|
|
REASON_SET(reasonp, PFRES_SHORT);
|
|
return (NULL);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
}
|
|
m_copydata(m, off, len, p);
|
|
return (p);
|
|
}
|
|
|
|
int
|
|
pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
|
|
int rtableid)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
/*
|
|
* Skip check for addresses with embedded interface scope,
|
|
* as they would always match anyway.
|
|
*/
|
|
if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
|
|
return (1);
|
|
|
|
if (af != AF_INET && af != AF_INET6)
|
|
return (0);
|
|
|
|
/* Skip checks for ipsec interfaces */
|
|
if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
|
|
return (1);
|
|
|
|
ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
|
|
|
|
switch (af) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
|
|
ifp));
|
|
#endif
|
|
#ifdef INET
|
|
case AF_INET:
|
|
return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
|
|
ifp));
|
|
#endif
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef INET
|
|
static void
|
|
pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp,
|
|
struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
|
|
{
|
|
struct mbuf *m0, *m1;
|
|
struct sockaddr_in dst;
|
|
struct ip *ip;
|
|
struct ifnet *ifp = NULL;
|
|
struct pf_addr naddr;
|
|
struct pf_ksrc_node *sn = NULL;
|
|
int error = 0;
|
|
uint16_t ip_len, ip_off;
|
|
|
|
KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
|
|
KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
|
|
__func__));
|
|
|
|
if ((pd->pf_mtag == NULL &&
|
|
((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
|
|
pd->pf_mtag->routed++ > 3) {
|
|
m0 = *m;
|
|
*m = NULL;
|
|
goto bad_locked;
|
|
}
|
|
|
|
if (r->rt == PF_DUPTO) {
|
|
if ((pd->pf_mtag->flags & PF_DUPLICATED)) {
|
|
if (s == NULL) {
|
|
ifp = r->rpool.cur->kif ?
|
|
r->rpool.cur->kif->pfik_ifp : NULL;
|
|
} else {
|
|
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
|
|
PF_STATE_UNLOCK(s);
|
|
}
|
|
if (ifp == oifp) {
|
|
/* When the 2nd interface is not skipped */
|
|
return;
|
|
} else {
|
|
m0 = *m;
|
|
*m = NULL;
|
|
goto bad;
|
|
}
|
|
} else {
|
|
pd->pf_mtag->flags |= PF_DUPLICATED;
|
|
if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
return;
|
|
}
|
|
m0 = *m;
|
|
}
|
|
|
|
ip = mtod(m0, struct ip *);
|
|
|
|
bzero(&dst, sizeof(dst));
|
|
dst.sin_family = AF_INET;
|
|
dst.sin_len = sizeof(dst);
|
|
dst.sin_addr = ip->ip_dst;
|
|
|
|
bzero(&naddr, sizeof(naddr));
|
|
|
|
if (s == NULL) {
|
|
if (TAILQ_EMPTY(&r->rpool.list)) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
|
|
goto bad_locked;
|
|
}
|
|
pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
|
|
&naddr, NULL, &sn);
|
|
if (!PF_AZERO(&naddr, AF_INET))
|
|
dst.sin_addr.s_addr = naddr.v4.s_addr;
|
|
ifp = r->rpool.cur->kif ?
|
|
r->rpool.cur->kif->pfik_ifp : NULL;
|
|
} else {
|
|
if (!PF_AZERO(&s->rt_addr, AF_INET))
|
|
dst.sin_addr.s_addr =
|
|
s->rt_addr.v4.s_addr;
|
|
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
|
|
PF_STATE_UNLOCK(s);
|
|
}
|
|
if (ifp == NULL)
|
|
goto bad;
|
|
|
|
if (dir == PF_IN) {
|
|
if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS)
|
|
goto bad;
|
|
else if (m0 == NULL)
|
|
goto done;
|
|
if (m0->m_len < sizeof(struct ip)) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("%s: m0->m_len < sizeof(struct ip)\n", __func__));
|
|
goto bad;
|
|
}
|
|
ip = mtod(m0, struct ip *);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_LOOPBACK)
|
|
m0->m_flags |= M_SKIP_FIREWALL;
|
|
|
|
ip_len = ntohs(ip->ip_len);
|
|
ip_off = ntohs(ip->ip_off);
|
|
|
|
/* Copied from FreeBSD 10.0-CURRENT ip_output. */
|
|
m0->m_pkthdr.csum_flags |= CSUM_IP;
|
|
if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
|
|
in_delayed_cksum(m0);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
|
|
sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2));
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If small enough for interface, or the interface will take
|
|
* care of the fragmentation for us, we can just send directly.
|
|
*/
|
|
if (ip_len <= ifp->if_mtu ||
|
|
(m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
|
|
ip->ip_sum = 0;
|
|
if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
|
|
ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_IP;
|
|
}
|
|
m_clrprotoflags(m0); /* Avoid confusing lower layers. */
|
|
error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
|
|
goto done;
|
|
}
|
|
|
|
/* Balk when DF bit is set or the interface didn't support TSO. */
|
|
if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
|
|
error = EMSGSIZE;
|
|
KMOD_IPSTAT_INC(ips_cantfrag);
|
|
if (r->rt != PF_DUPTO) {
|
|
if (s && pd->nat_rule != NULL)
|
|
PACKET_UNDO_NAT(m0, pd,
|
|
(ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
|
|
s, dir);
|
|
|
|
icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
|
|
ifp->if_mtu);
|
|
goto done;
|
|
} else
|
|
goto bad;
|
|
}
|
|
|
|
error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
|
|
if (error)
|
|
goto bad;
|
|
|
|
for (; m0; m0 = m1) {
|
|
m1 = m0->m_nextpkt;
|
|
m0->m_nextpkt = NULL;
|
|
if (error == 0) {
|
|
m_clrprotoflags(m0);
|
|
error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
|
|
} else
|
|
m_freem(m0);
|
|
}
|
|
|
|
if (error == 0)
|
|
KMOD_IPSTAT_INC(ips_fragmented);
|
|
|
|
done:
|
|
if (r->rt != PF_DUPTO)
|
|
*m = NULL;
|
|
return;
|
|
|
|
bad_locked:
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
bad:
|
|
m_freem(m0);
|
|
goto done;
|
|
}
|
|
#endif /* INET */
|
|
|
|
#ifdef INET6
|
|
static void
|
|
pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp,
|
|
struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
|
|
{
|
|
struct mbuf *m0;
|
|
struct sockaddr_in6 dst;
|
|
struct ip6_hdr *ip6;
|
|
struct ifnet *ifp = NULL;
|
|
struct pf_addr naddr;
|
|
struct pf_ksrc_node *sn = NULL;
|
|
|
|
KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
|
|
KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
|
|
__func__));
|
|
|
|
if ((pd->pf_mtag == NULL &&
|
|
((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
|
|
pd->pf_mtag->routed++ > 3) {
|
|
m0 = *m;
|
|
*m = NULL;
|
|
goto bad_locked;
|
|
}
|
|
|
|
if (r->rt == PF_DUPTO) {
|
|
if ((pd->pf_mtag->flags & PF_DUPLICATED)) {
|
|
if (s == NULL) {
|
|
ifp = r->rpool.cur->kif ?
|
|
r->rpool.cur->kif->pfik_ifp : NULL;
|
|
} else {
|
|
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
|
|
PF_STATE_UNLOCK(s);
|
|
}
|
|
if (ifp == oifp) {
|
|
/* When the 2nd interface is not skipped */
|
|
return;
|
|
} else {
|
|
m0 = *m;
|
|
*m = NULL;
|
|
goto bad;
|
|
}
|
|
} else {
|
|
pd->pf_mtag->flags |= PF_DUPLICATED;
|
|
if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
return;
|
|
}
|
|
m0 = *m;
|
|
}
|
|
|
|
ip6 = mtod(m0, struct ip6_hdr *);
|
|
|
|
bzero(&dst, sizeof(dst));
|
|
dst.sin6_family = AF_INET6;
|
|
dst.sin6_len = sizeof(dst);
|
|
dst.sin6_addr = ip6->ip6_dst;
|
|
|
|
bzero(&naddr, sizeof(naddr));
|
|
|
|
if (s == NULL) {
|
|
if (TAILQ_EMPTY(&r->rpool.list)) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
|
|
goto bad_locked;
|
|
}
|
|
pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
|
|
&naddr, NULL, &sn);
|
|
if (!PF_AZERO(&naddr, AF_INET6))
|
|
PF_ACPY((struct pf_addr *)&dst.sin6_addr,
|
|
&naddr, AF_INET6);
|
|
ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL;
|
|
} else {
|
|
if (!PF_AZERO(&s->rt_addr, AF_INET6))
|
|
PF_ACPY((struct pf_addr *)&dst.sin6_addr,
|
|
&s->rt_addr, AF_INET6);
|
|
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
|
|
}
|
|
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
|
|
if (ifp == NULL)
|
|
goto bad;
|
|
|
|
if (dir == PF_IN) {
|
|
if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS)
|
|
goto bad;
|
|
else if (m0 == NULL)
|
|
goto done;
|
|
if (m0->m_len < sizeof(struct ip6_hdr)) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
|
|
__func__));
|
|
goto bad;
|
|
}
|
|
ip6 = mtod(m0, struct ip6_hdr *);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_LOOPBACK)
|
|
m0->m_flags |= M_SKIP_FIREWALL;
|
|
|
|
if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
|
|
~ifp->if_hwassist) {
|
|
uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
|
|
in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
|
|
}
|
|
|
|
/*
|
|
* If the packet is too large for the outgoing interface,
|
|
* send back an icmp6 error.
|
|
*/
|
|
if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
|
|
dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
|
|
if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu)
|
|
nd6_output_ifp(ifp, ifp, m0, &dst, NULL);
|
|
else {
|
|
in6_ifstat_inc(ifp, ifs6_in_toobig);
|
|
if (r->rt != PF_DUPTO) {
|
|
if (s && pd->nat_rule != NULL)
|
|
PACKET_UNDO_NAT(m0, pd,
|
|
((caddr_t)ip6 - m0->m_data) +
|
|
sizeof(struct ip6_hdr), s, dir);
|
|
|
|
icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
|
|
} else
|
|
goto bad;
|
|
}
|
|
|
|
done:
|
|
if (r->rt != PF_DUPTO)
|
|
*m = NULL;
|
|
return;
|
|
|
|
bad_locked:
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
bad:
|
|
m_freem(m0);
|
|
goto done;
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* FreeBSD supports cksum offloads for the following drivers.
|
|
* em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
|
|
*
|
|
* CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
|
|
* network driver performed cksum including pseudo header, need to verify
|
|
* csum_data
|
|
* CSUM_DATA_VALID :
|
|
* network driver performed cksum, needs to additional pseudo header
|
|
* cksum computation with partial csum_data(i.e. lack of H/W support for
|
|
* pseudo header, for instance sk(4) and possibly gem(4))
|
|
*
|
|
* After validating the cksum of packet, set both flag CSUM_DATA_VALID and
|
|
* CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
|
|
* TCP/UDP layer.
|
|
* Also, set csum_data to 0xffff to force cksum validation.
|
|
*/
|
|
static int
|
|
pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
|
|
{
|
|
u_int16_t sum = 0;
|
|
int hw_assist = 0;
|
|
struct ip *ip;
|
|
|
|
if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
|
|
return (1);
|
|
if (m->m_pkthdr.len < off + len)
|
|
return (1);
|
|
|
|
switch (p) {
|
|
case IPPROTO_TCP:
|
|
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
|
|
sum = m->m_pkthdr.csum_data;
|
|
} else {
|
|
ip = mtod(m, struct ip *);
|
|
sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htonl((u_short)len +
|
|
m->m_pkthdr.csum_data + IPPROTO_TCP));
|
|
}
|
|
sum ^= 0xffff;
|
|
++hw_assist;
|
|
}
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
|
|
sum = m->m_pkthdr.csum_data;
|
|
} else {
|
|
ip = mtod(m, struct ip *);
|
|
sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htonl((u_short)len +
|
|
m->m_pkthdr.csum_data + IPPROTO_UDP));
|
|
}
|
|
sum ^= 0xffff;
|
|
++hw_assist;
|
|
}
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
#endif /* INET6 */
|
|
break;
|
|
default:
|
|
return (1);
|
|
}
|
|
|
|
if (!hw_assist) {
|
|
switch (af) {
|
|
case AF_INET:
|
|
if (p == IPPROTO_ICMP) {
|
|
if (m->m_len < off)
|
|
return (1);
|
|
m->m_data += off;
|
|
m->m_len -= off;
|
|
sum = in_cksum(m, len);
|
|
m->m_data -= off;
|
|
m->m_len += off;
|
|
} else {
|
|
if (m->m_len < sizeof(struct ip))
|
|
return (1);
|
|
sum = in4_cksum(m, p, off, len);
|
|
}
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (m->m_len < sizeof(struct ip6_hdr))
|
|
return (1);
|
|
sum = in6_cksum(m, p, off, len);
|
|
break;
|
|
#endif /* INET6 */
|
|
default:
|
|
return (1);
|
|
}
|
|
}
|
|
if (sum) {
|
|
switch (p) {
|
|
case IPPROTO_TCP:
|
|
{
|
|
KMOD_TCPSTAT_INC(tcps_rcvbadsum);
|
|
break;
|
|
}
|
|
case IPPROTO_UDP:
|
|
{
|
|
KMOD_UDPSTAT_INC(udps_badsum);
|
|
break;
|
|
}
|
|
#ifdef INET
|
|
case IPPROTO_ICMP:
|
|
{
|
|
KMOD_ICMPSTAT_INC(icps_checksum);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
{
|
|
KMOD_ICMP6STAT_INC(icp6s_checksum);
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
}
|
|
return (1);
|
|
} else {
|
|
if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
|
|
m->m_pkthdr.csum_flags |=
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static bool
|
|
pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd,
|
|
const struct pf_krule *r, const struct pf_kstate *s,
|
|
struct ip_fw_args *dnflow)
|
|
{
|
|
int dndir = r->direction;
|
|
|
|
if (s && dndir == PF_INOUT)
|
|
dndir = s->direction;
|
|
|
|
memset(dnflow, 0, sizeof(*dnflow));
|
|
|
|
if (pd->dport != NULL)
|
|
dnflow->f_id.dst_port = ntohs(*pd->dport);
|
|
if (pd->sport != NULL)
|
|
dnflow->f_id.src_port = ntohs(*pd->sport);
|
|
|
|
if (dir == PF_IN)
|
|
dnflow->flags |= IPFW_ARGS_IN;
|
|
else
|
|
dnflow->flags |= IPFW_ARGS_OUT;
|
|
|
|
if (dir != dndir && pd->act.dnrpipe) {
|
|
dnflow->rule.info = pd->act.dnrpipe;
|
|
}
|
|
else if (dir == dndir) {
|
|
dnflow->rule.info = pd->act.dnpipe;
|
|
}
|
|
else {
|
|
return (false);
|
|
}
|
|
|
|
dnflow->rule.info |= IPFW_IS_DUMMYNET;
|
|
if (r->free_flags & PFRULE_DN_IS_PIPE)
|
|
dnflow->rule.info |= IPFW_IS_PIPE;
|
|
|
|
dnflow->f_id.proto = pd->proto;
|
|
dnflow->f_id.extra = dnflow->rule.info;
|
|
switch (pd->af) {
|
|
case AF_INET:
|
|
dnflow->f_id.addr_type = 4;
|
|
dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
|
|
dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
|
|
break;
|
|
case AF_INET6:
|
|
dnflow->flags |= IPFW_ARGS_IP6;
|
|
dnflow->f_id.addr_type = 6;
|
|
dnflow->f_id.src_ip6 = pd->src->v6;
|
|
dnflow->f_id.dst_ip6 = pd->dst->v6;
|
|
break;
|
|
default:
|
|
panic("Invalid AF");
|
|
break;
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
#ifdef INET
|
|
int
|
|
pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
|
|
{
|
|
struct pfi_kkif *kif;
|
|
u_short action, reason = 0, log = 0;
|
|
struct mbuf *m = *m0;
|
|
struct ip *h = NULL;
|
|
struct m_tag *ipfwtag;
|
|
struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr;
|
|
struct pf_kstate *s = NULL;
|
|
struct pf_kruleset *ruleset = NULL;
|
|
struct pf_pdesc pd;
|
|
int off, dirndx, pqid = 0;
|
|
|
|
PF_RULES_RLOCK_TRACKER;
|
|
KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
if (!V_pf_status.running)
|
|
return (PF_PASS);
|
|
|
|
memset(&pd, 0, sizeof(pd));
|
|
|
|
kif = (struct pfi_kkif *)ifp->if_pf_kif;
|
|
|
|
if (kif == NULL) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
|
|
return (PF_DROP);
|
|
}
|
|
if (kif->pfik_flags & PFI_IFLAG_SKIP)
|
|
return (PF_PASS);
|
|
|
|
if (m->m_flags & M_SKIP_FIREWALL)
|
|
return (PF_PASS);
|
|
|
|
pd.pf_mtag = pf_find_mtag(m);
|
|
|
|
if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
|
|
pd.pf_mtag->flags & PF_TAG_DUMMYNET) {
|
|
/* Dummynet re-injects packets after they've
|
|
* completed their delay. We've already
|
|
* processed them, so pass unconditionally. */
|
|
|
|
/* But only once. We may see the packet multiple times (e.g.
|
|
* PFIL_IN/PFIL_OUT). */
|
|
pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET;
|
|
|
|
return (PF_PASS);
|
|
}
|
|
|
|
PF_RULES_RLOCK();
|
|
|
|
if (__predict_false(ip_divert_ptr != NULL) &&
|
|
((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) {
|
|
struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1);
|
|
if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) {
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
action = PF_DROP;
|
|
goto done;
|
|
}
|
|
pd.pf_mtag->flags |= PF_PACKET_LOOPED;
|
|
m_tag_delete(m, ipfwtag);
|
|
}
|
|
if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) {
|
|
m->m_flags |= M_FASTFWD_OURS;
|
|
pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT;
|
|
}
|
|
} else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) {
|
|
/* We do IP header normalization and packet reassembly here */
|
|
action = PF_DROP;
|
|
goto done;
|
|
}
|
|
m = *m0; /* pf_normalize messes with m0 */
|
|
h = mtod(m, struct ip *);
|
|
|
|
off = h->ip_hl << 2;
|
|
if (off < (int)sizeof(struct ip)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_SHORT);
|
|
log = 1;
|
|
goto done;
|
|
}
|
|
|
|
pd.src = (struct pf_addr *)&h->ip_src;
|
|
pd.dst = (struct pf_addr *)&h->ip_dst;
|
|
pd.sport = pd.dport = NULL;
|
|
pd.ip_sum = &h->ip_sum;
|
|
pd.proto_sum = NULL;
|
|
pd.proto = h->ip_p;
|
|
pd.dir = dir;
|
|
pd.sidx = (dir == PF_IN) ? 0 : 1;
|
|
pd.didx = (dir == PF_IN) ? 1 : 0;
|
|
pd.af = AF_INET;
|
|
pd.tos = h->ip_tos & ~IPTOS_ECN_MASK;
|
|
pd.tot_len = ntohs(h->ip_len);
|
|
|
|
/* handle fragments that didn't get reassembled by normalization */
|
|
if (h->ip_off & htons(IP_MF | IP_OFFMASK)) {
|
|
action = pf_test_fragment(&r, dir, kif, m, h,
|
|
&pd, &a, &ruleset);
|
|
goto done;
|
|
}
|
|
|
|
switch (h->ip_p) {
|
|
case IPPROTO_TCP: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp),
|
|
&action, &reason, AF_INET)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2);
|
|
|
|
pd.sport = &pd.hdr.tcp.th_sport;
|
|
pd.dport = &pd.hdr.tcp.th_dport;
|
|
|
|
/* Respond to SYN with a syncookie. */
|
|
if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
|
|
pd.dir == PF_IN && pf_synflood_check(&pd)) {
|
|
pf_syncookie_send(m, off, &pd);
|
|
action = PF_DROP;
|
|
break;
|
|
}
|
|
|
|
if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0)
|
|
pqid = 1;
|
|
action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
|
|
if (action == PF_DROP)
|
|
goto done;
|
|
action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
|
|
&reason);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL) {
|
|
/* Validate remote SYN|ACK, re-create original SYN if
|
|
* valid. */
|
|
if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) ==
|
|
TH_ACK && pf_syncookie_validate(&pd) &&
|
|
pd.dir == PF_IN) {
|
|
struct mbuf *msyn;
|
|
|
|
msyn = pf_syncookie_recreate_syn(h->ip_ttl,
|
|
off,&pd);
|
|
if (msyn == NULL) {
|
|
action = PF_DROP;
|
|
break;
|
|
}
|
|
|
|
action = pf_test(dir, pflags, ifp, &msyn, inp);
|
|
m_freem(msyn);
|
|
|
|
if (action == PF_PASS) {
|
|
action = pf_test_state_tcp(&s, dir,
|
|
kif, m, off, h, &pd, &reason);
|
|
if (action != PF_PASS || s == NULL) {
|
|
action = PF_DROP;
|
|
break;
|
|
}
|
|
|
|
s->src.seqhi = ntohl(pd.hdr.tcp.th_ack)
|
|
- 1;
|
|
s->src.seqlo = ntohl(pd.hdr.tcp.th_seq)
|
|
- 1;
|
|
pf_set_protostate(s, PF_PEER_SRC,
|
|
PF_TCPS_PROXY_DST);
|
|
|
|
action = pf_synproxy(&pd, &s, &reason);
|
|
if (action != PF_PASS)
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
else {
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off,
|
|
&pd, &a, &ruleset, inp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IPPROTO_UDP: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp),
|
|
&action, &reason, AF_INET)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
pd.sport = &pd.hdr.udp.uh_sport;
|
|
pd.dport = &pd.hdr.udp.uh_dport;
|
|
if (pd.hdr.udp.uh_dport == 0 ||
|
|
ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off ||
|
|
ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_SHORT);
|
|
goto done;
|
|
}
|
|
action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
case IPPROTO_ICMP: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN,
|
|
&action, &reason, AF_INET)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd,
|
|
&reason);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6: {
|
|
action = PF_DROP;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: dropping IPv4 packet with ICMPv6 payload\n"));
|
|
goto done;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
action = pf_test_state_other(&s, dir, kif, m, &pd);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
done:
|
|
PF_RULES_RUNLOCK();
|
|
if (action == PF_PASS && h->ip_hl > 5 &&
|
|
!((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_IPOPTIONS);
|
|
log = r->log;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: dropping packet with ip options\n"));
|
|
}
|
|
|
|
if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
}
|
|
if (r->rtableid >= 0)
|
|
M_SETFIB(m, r->rtableid);
|
|
|
|
if (r->scrub_flags & PFSTATE_SETPRIO) {
|
|
if (pd.tos & IPTOS_LOWDELAY)
|
|
pqid = 1;
|
|
if (vlan_set_pcp(m, r->set_prio[pqid])) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
log = 1;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: failed to allocate 802.1q mtag\n"));
|
|
}
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
if (s && s->qid) {
|
|
pd.act.pqid = s->pqid;
|
|
pd.act.qid = s->qid;
|
|
} else if (r->qid) {
|
|
pd.act.pqid = r->pqid;
|
|
pd.act.qid = r->qid;
|
|
}
|
|
if (action == PF_PASS && pd.act.qid) {
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
} else {
|
|
if (s != NULL)
|
|
pd.pf_mtag->qid_hash = pf_state_hash(s);
|
|
if (pqid || (pd.tos & IPTOS_LOWDELAY))
|
|
pd.pf_mtag->qid = pd.act.pqid;
|
|
else
|
|
pd.pf_mtag->qid = pd.act.qid;
|
|
/* Add hints for ecn. */
|
|
pd.pf_mtag->hdr = h;
|
|
}
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
/*
|
|
* connections redirected to loopback should not match sockets
|
|
* bound specifically to loopback due to security implications,
|
|
* see tcp_input() and in_pcblookup_listen().
|
|
*/
|
|
if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
|
|
pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
|
|
(s->nat_rule.ptr->action == PF_RDR ||
|
|
s->nat_rule.ptr->action == PF_BINAT) &&
|
|
IN_LOOPBACK(ntohl(pd.dst->v4.s_addr)))
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
|
|
if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS &&
|
|
r->divert.port && !PACKET_LOOPED(&pd)) {
|
|
ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0,
|
|
sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO);
|
|
if (ipfwtag != NULL) {
|
|
((struct ipfw_rule_ref *)(ipfwtag+1))->info =
|
|
ntohs(r->divert.port);
|
|
((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir;
|
|
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
|
|
m_tag_prepend(m, ipfwtag);
|
|
if (m->m_flags & M_FASTFWD_OURS) {
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
log = 1;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: failed to allocate tag\n"));
|
|
} else {
|
|
pd.pf_mtag->flags |=
|
|
PF_FASTFWD_OURS_PRESENT;
|
|
m->m_flags &= ~M_FASTFWD_OURS;
|
|
}
|
|
}
|
|
ip_divert_ptr(*m0, dir == PF_IN);
|
|
*m0 = NULL;
|
|
|
|
return (action);
|
|
} else {
|
|
/* XXX: ipfw has the same behaviour! */
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
log = 1;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: failed to allocate divert tag\n"));
|
|
}
|
|
}
|
|
|
|
if (log) {
|
|
struct pf_krule *lr;
|
|
|
|
if (s != NULL && s->nat_rule.ptr != NULL &&
|
|
s->nat_rule.ptr->log & PF_LOG_ALL)
|
|
lr = s->nat_rule.ptr;
|
|
else
|
|
lr = r;
|
|
PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd,
|
|
(s == NULL));
|
|
}
|
|
|
|
pf_counter_u64_critical_enter();
|
|
pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS],
|
|
pd.tot_len);
|
|
pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS],
|
|
1);
|
|
|
|
if (action == PF_PASS || r->action == PF_DROP) {
|
|
dirndx = (dir == PF_OUT);
|
|
pf_counter_u64_add_protected(&r->packets[dirndx], 1);
|
|
pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len);
|
|
if (a != NULL) {
|
|
pf_counter_u64_add_protected(&a->packets[dirndx], 1);
|
|
pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len);
|
|
}
|
|
if (s != NULL) {
|
|
if (s->nat_rule.ptr != NULL) {
|
|
pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx],
|
|
1);
|
|
pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
if (s->src_node != NULL) {
|
|
counter_u64_add(s->src_node->packets[dirndx],
|
|
1);
|
|
counter_u64_add(s->src_node->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
if (s->nat_src_node != NULL) {
|
|
counter_u64_add(s->nat_src_node->packets[dirndx],
|
|
1);
|
|
counter_u64_add(s->nat_src_node->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
dirndx = (dir == s->direction) ? 0 : 1;
|
|
s->packets[dirndx]++;
|
|
s->bytes[dirndx] += pd.tot_len;
|
|
}
|
|
tr = r;
|
|
nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
|
|
if (nr != NULL && r == &V_pf_default_rule)
|
|
tr = nr;
|
|
if (tr->src.addr.type == PF_ADDR_TABLE)
|
|
pfr_update_stats(tr->src.addr.p.tbl,
|
|
(s == NULL) ? pd.src :
|
|
&s->key[(s->direction == PF_IN)]->
|
|
addr[(s->direction == PF_OUT)],
|
|
pd.af, pd.tot_len, dir == PF_OUT,
|
|
r->action == PF_PASS, tr->src.neg);
|
|
if (tr->dst.addr.type == PF_ADDR_TABLE)
|
|
pfr_update_stats(tr->dst.addr.p.tbl,
|
|
(s == NULL) ? pd.dst :
|
|
&s->key[(s->direction == PF_IN)]->
|
|
addr[(s->direction == PF_IN)],
|
|
pd.af, pd.tot_len, dir == PF_OUT,
|
|
r->action == PF_PASS, tr->dst.neg);
|
|
}
|
|
pf_counter_u64_critical_exit();
|
|
|
|
switch (action) {
|
|
case PF_SYNPROXY_DROP:
|
|
m_freem(*m0);
|
|
case PF_DEFER:
|
|
*m0 = NULL;
|
|
action = PF_PASS;
|
|
break;
|
|
case PF_DROP:
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
break;
|
|
default:
|
|
/* pf_route() returns unlocked. */
|
|
if (r->rt) {
|
|
pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
|
|
return (action);
|
|
}
|
|
/* Dummynet processing. */
|
|
if (s && (s->dnpipe || s->dnrpipe)) {
|
|
pd.act.dnpipe = s->dnpipe;
|
|
pd.act.dnrpipe = s->dnrpipe;
|
|
pd.act.flags = s->state_flags;
|
|
} else if (r->dnpipe || r->dnrpipe) {
|
|
pd.act.dnpipe = r->dnpipe;
|
|
pd.act.dnrpipe = r->dnrpipe;
|
|
pd.act.flags = r->free_flags;
|
|
}
|
|
if (pd.act.dnpipe || pd.act.dnrpipe) {
|
|
struct ip_fw_args dnflow;
|
|
if (ip_dn_io_ptr == NULL) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
break;
|
|
}
|
|
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
break;
|
|
}
|
|
|
|
if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) {
|
|
pd.pf_mtag->flags |= PF_TAG_DUMMYNET;
|
|
ip_dn_io_ptr(m0, &dnflow);
|
|
if (*m0 == NULL)
|
|
action = PF_DROP;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
|
|
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
|
|
return (action);
|
|
}
|
|
#endif /* INET */
|
|
|
|
#ifdef INET6
|
|
int
|
|
pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
|
|
{
|
|
struct pfi_kkif *kif;
|
|
u_short action, reason = 0, log = 0;
|
|
struct mbuf *m = *m0, *n = NULL;
|
|
struct m_tag *mtag;
|
|
struct ip6_hdr *h = NULL;
|
|
struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr;
|
|
struct pf_kstate *s = NULL;
|
|
struct pf_kruleset *ruleset = NULL;
|
|
struct pf_pdesc pd;
|
|
int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0;
|
|
|
|
PF_RULES_RLOCK_TRACKER;
|
|
KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
if (!V_pf_status.running)
|
|
return (PF_PASS);
|
|
|
|
memset(&pd, 0, sizeof(pd));
|
|
pd.pf_mtag = pf_find_mtag(m);
|
|
|
|
if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED)
|
|
return (PF_PASS);
|
|
|
|
kif = (struct pfi_kkif *)ifp->if_pf_kif;
|
|
if (kif == NULL) {
|
|
DPFPRINTF(PF_DEBUG_URGENT,
|
|
("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname));
|
|
return (PF_DROP);
|
|
}
|
|
if (kif->pfik_flags & PFI_IFLAG_SKIP)
|
|
return (PF_PASS);
|
|
|
|
if (m->m_flags & M_SKIP_FIREWALL)
|
|
return (PF_PASS);
|
|
|
|
if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
|
|
pd.pf_mtag->flags & PF_TAG_DUMMYNET) {
|
|
pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET;
|
|
/* Dummynet re-injects packets after they've
|
|
* completed their delay. We've already
|
|
* processed them, so pass unconditionally. */
|
|
return (PF_PASS);
|
|
}
|
|
|
|
PF_RULES_RLOCK();
|
|
|
|
/* We do IP header normalization and packet reassembly here */
|
|
if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) {
|
|
action = PF_DROP;
|
|
goto done;
|
|
}
|
|
m = *m0; /* pf_normalize messes with m0 */
|
|
h = mtod(m, struct ip6_hdr *);
|
|
|
|
/*
|
|
* we do not support jumbogram. if we keep going, zero ip6_plen
|
|
* will do something bad, so drop the packet for now.
|
|
*/
|
|
if (htons(h->ip6_plen) == 0) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_NORM); /*XXX*/
|
|
goto done;
|
|
}
|
|
|
|
pd.src = (struct pf_addr *)&h->ip6_src;
|
|
pd.dst = (struct pf_addr *)&h->ip6_dst;
|
|
pd.sport = pd.dport = NULL;
|
|
pd.ip_sum = NULL;
|
|
pd.proto_sum = NULL;
|
|
pd.dir = dir;
|
|
pd.sidx = (dir == PF_IN) ? 0 : 1;
|
|
pd.didx = (dir == PF_IN) ? 1 : 0;
|
|
pd.af = AF_INET6;
|
|
pd.tos = IPV6_DSCP(h);
|
|
pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
|
|
|
|
off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr);
|
|
pd.proto = h->ip6_nxt;
|
|
do {
|
|
switch (pd.proto) {
|
|
case IPPROTO_FRAGMENT:
|
|
action = pf_test_fragment(&r, dir, kif, m, h,
|
|
&pd, &a, &ruleset);
|
|
if (action == PF_DROP)
|
|
REASON_SET(&reason, PFRES_FRAG);
|
|
goto done;
|
|
case IPPROTO_ROUTING: {
|
|
struct ip6_rthdr rthdr;
|
|
|
|
if (rh_cnt++) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: IPv6 more than one rthdr\n"));
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_IPOPTIONS);
|
|
log = 1;
|
|
goto done;
|
|
}
|
|
if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL,
|
|
&reason, pd.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: IPv6 short rthdr\n"));
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_SHORT);
|
|
log = 1;
|
|
goto done;
|
|
}
|
|
if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: IPv6 rthdr0\n"));
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_IPOPTIONS);
|
|
log = 1;
|
|
goto done;
|
|
}
|
|
/* FALLTHROUGH */
|
|
}
|
|
case IPPROTO_AH:
|
|
case IPPROTO_HOPOPTS:
|
|
case IPPROTO_DSTOPTS: {
|
|
/* get next header and header length */
|
|
struct ip6_ext opt6;
|
|
|
|
if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6),
|
|
NULL, &reason, pd.af)) {
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: IPv6 short opt\n"));
|
|
action = PF_DROP;
|
|
log = 1;
|
|
goto done;
|
|
}
|
|
if (pd.proto == IPPROTO_AH)
|
|
off += (opt6.ip6e_len + 2) * 4;
|
|
else
|
|
off += (opt6.ip6e_len + 1) * 8;
|
|
pd.proto = opt6.ip6e_nxt;
|
|
/* goto the next header */
|
|
break;
|
|
}
|
|
default:
|
|
terminal++;
|
|
break;
|
|
}
|
|
} while (!terminal);
|
|
|
|
/* if there's no routing header, use unmodified mbuf for checksumming */
|
|
if (!n)
|
|
n = m;
|
|
|
|
switch (pd.proto) {
|
|
case IPPROTO_TCP: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp),
|
|
&action, &reason, AF_INET6)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2);
|
|
pd.sport = &pd.hdr.tcp.th_sport;
|
|
pd.dport = &pd.hdr.tcp.th_dport;
|
|
action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
|
|
if (action == PF_DROP)
|
|
goto done;
|
|
action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
|
|
&reason);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
case IPPROTO_UDP: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp),
|
|
&action, &reason, AF_INET6)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
pd.sport = &pd.hdr.udp.uh_sport;
|
|
pd.dport = &pd.hdr.udp.uh_dport;
|
|
if (pd.hdr.udp.uh_dport == 0 ||
|
|
ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off ||
|
|
ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_SHORT);
|
|
goto done;
|
|
}
|
|
action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
case IPPROTO_ICMP: {
|
|
action = PF_DROP;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: dropping IPv6 packet with ICMPv4 payload\n"));
|
|
goto done;
|
|
}
|
|
|
|
case IPPROTO_ICMPV6: {
|
|
if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6),
|
|
&action, &reason, AF_INET6)) {
|
|
log = action != PF_PASS;
|
|
goto done;
|
|
}
|
|
action = pf_test_state_icmp(&s, dir, kif,
|
|
m, off, h, &pd, &reason);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
action = pf_test_state_other(&s, dir, kif, m, &pd);
|
|
if (action == PF_PASS) {
|
|
if (V_pfsync_update_state_ptr != NULL)
|
|
V_pfsync_update_state_ptr(s);
|
|
r = s->rule.ptr;
|
|
a = s->anchor.ptr;
|
|
log = s->log;
|
|
} else if (s == NULL)
|
|
action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
|
|
&a, &ruleset, inp);
|
|
break;
|
|
}
|
|
|
|
done:
|
|
PF_RULES_RUNLOCK();
|
|
if (n != m) {
|
|
m_freem(n);
|
|
n = NULL;
|
|
}
|
|
|
|
/* handle dangerous IPv6 extension headers. */
|
|
if (action == PF_PASS && rh_cnt &&
|
|
!((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_IPOPTIONS);
|
|
log = r->log;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: dropping packet with dangerous v6 headers\n"));
|
|
}
|
|
|
|
if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
}
|
|
if (r->rtableid >= 0)
|
|
M_SETFIB(m, r->rtableid);
|
|
|
|
if (r->scrub_flags & PFSTATE_SETPRIO) {
|
|
if (pd.tos & IPTOS_LOWDELAY)
|
|
pqid = 1;
|
|
if (vlan_set_pcp(m, r->set_prio[pqid])) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
log = 1;
|
|
DPFPRINTF(PF_DEBUG_MISC,
|
|
("pf: failed to allocate 802.1q mtag\n"));
|
|
}
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
if (s && s->qid) {
|
|
pd.act.pqid = s->pqid;
|
|
pd.act.qid = s->qid;
|
|
} else if (r->qid) {
|
|
pd.act.pqid = r->pqid;
|
|
pd.act.qid = r->qid;
|
|
}
|
|
if (action == PF_PASS && pd.act.qid) {
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
} else {
|
|
if (s != NULL)
|
|
pd.pf_mtag->qid_hash = pf_state_hash(s);
|
|
if (pd.tos & IPTOS_LOWDELAY)
|
|
pd.pf_mtag->qid = pd.act.pqid;
|
|
else
|
|
pd.pf_mtag->qid = pd.act.qid;
|
|
/* Add hints for ecn. */
|
|
pd.pf_mtag->hdr = h;
|
|
}
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
|
|
pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
|
|
(s->nat_rule.ptr->action == PF_RDR ||
|
|
s->nat_rule.ptr->action == PF_BINAT) &&
|
|
IN6_IS_ADDR_LOOPBACK(&pd.dst->v6))
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
|
|
/* XXX: Anybody working on it?! */
|
|
if (r->divert.port)
|
|
printf("pf: divert(9) is not supported for IPv6\n");
|
|
|
|
if (log) {
|
|
struct pf_krule *lr;
|
|
|
|
if (s != NULL && s->nat_rule.ptr != NULL &&
|
|
s->nat_rule.ptr->log & PF_LOG_ALL)
|
|
lr = s->nat_rule.ptr;
|
|
else
|
|
lr = r;
|
|
PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset,
|
|
&pd, (s == NULL));
|
|
}
|
|
|
|
pf_counter_u64_critical_enter();
|
|
pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS],
|
|
pd.tot_len);
|
|
pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS],
|
|
1);
|
|
|
|
if (action == PF_PASS || r->action == PF_DROP) {
|
|
dirndx = (dir == PF_OUT);
|
|
pf_counter_u64_add_protected(&r->packets[dirndx], 1);
|
|
pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len);
|
|
if (a != NULL) {
|
|
pf_counter_u64_add_protected(&a->packets[dirndx], 1);
|
|
pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len);
|
|
}
|
|
if (s != NULL) {
|
|
if (s->nat_rule.ptr != NULL) {
|
|
pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx],
|
|
1);
|
|
pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
if (s->src_node != NULL) {
|
|
counter_u64_add(s->src_node->packets[dirndx],
|
|
1);
|
|
counter_u64_add(s->src_node->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
if (s->nat_src_node != NULL) {
|
|
counter_u64_add(s->nat_src_node->packets[dirndx],
|
|
1);
|
|
counter_u64_add(s->nat_src_node->bytes[dirndx],
|
|
pd.tot_len);
|
|
}
|
|
dirndx = (dir == s->direction) ? 0 : 1;
|
|
s->packets[dirndx]++;
|
|
s->bytes[dirndx] += pd.tot_len;
|
|
}
|
|
tr = r;
|
|
nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
|
|
if (nr != NULL && r == &V_pf_default_rule)
|
|
tr = nr;
|
|
if (tr->src.addr.type == PF_ADDR_TABLE)
|
|
pfr_update_stats(tr->src.addr.p.tbl,
|
|
(s == NULL) ? pd.src :
|
|
&s->key[(s->direction == PF_IN)]->addr[0],
|
|
pd.af, pd.tot_len, dir == PF_OUT,
|
|
r->action == PF_PASS, tr->src.neg);
|
|
if (tr->dst.addr.type == PF_ADDR_TABLE)
|
|
pfr_update_stats(tr->dst.addr.p.tbl,
|
|
(s == NULL) ? pd.dst :
|
|
&s->key[(s->direction == PF_IN)]->addr[1],
|
|
pd.af, pd.tot_len, dir == PF_OUT,
|
|
r->action == PF_PASS, tr->dst.neg);
|
|
}
|
|
pf_counter_u64_critical_exit();
|
|
|
|
switch (action) {
|
|
case PF_SYNPROXY_DROP:
|
|
m_freem(*m0);
|
|
case PF_DEFER:
|
|
*m0 = NULL;
|
|
action = PF_PASS;
|
|
break;
|
|
case PF_DROP:
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
break;
|
|
default:
|
|
/* pf_route6() returns unlocked. */
|
|
if (r->rt) {
|
|
pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
|
|
return (action);
|
|
}
|
|
/* Dummynet processing. */
|
|
if (s && (s->dnpipe || s->dnrpipe)) {
|
|
pd.act.dnpipe = s->dnpipe;
|
|
pd.act.dnrpipe = s->dnrpipe;
|
|
pd.act.flags = s->state_flags;
|
|
} else {
|
|
pd.act.dnpipe = r->dnpipe;
|
|
pd.act.dnrpipe = r->dnrpipe;
|
|
pd.act.flags = r->free_flags;
|
|
}
|
|
if (pd.act.dnpipe || pd.act.dnrpipe) {
|
|
struct ip_fw_args dnflow;
|
|
|
|
if (ip_dn_io_ptr == NULL) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
break;
|
|
}
|
|
|
|
if (pd.pf_mtag == NULL &&
|
|
((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
action = PF_DROP;
|
|
REASON_SET(&reason, PFRES_MEMORY);
|
|
break;
|
|
}
|
|
|
|
if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) {
|
|
pd.pf_mtag->flags |= PF_TAG_DUMMYNET;
|
|
ip_dn_io_ptr(m0, &dnflow);
|
|
if (*m0 == NULL)
|
|
action = PF_DROP;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (s)
|
|
PF_STATE_UNLOCK(s);
|
|
|
|
/* If reassembled packet passed, create new fragments. */
|
|
if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) &&
|
|
(mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL)
|
|
action = pf_refragment6(ifp, m0, mtag);
|
|
|
|
SDT_PROBE4(pf, ip, test6, done, action, reason, r, s);
|
|
|
|
return (action);
|
|
}
|
|
#endif /* INET6 */
|