freebsd-nq/sys/dev/cxgbe/crypto/t4_crypto.c
John Baldwin db631975fe Don't overflow the ipad[] array when clearing the remainder.
After the auth key is copied into the ipad[] array, any remaining bytes
are cleared to zero (in case the key is shorter than one block size).
The full block size was used as the length of the zero rather than the
size of the remaining ipad[].  In practice this overflow was harmless as
it could only clear bytes in the following opad[] array which is
initialized with a copy of ipad[] in the next statement.

Sponsored by:	Chelsio Communications
2018-02-26 22:17:27 +00:00

2348 lines
66 KiB
C

/*-
* Copyright (c) 2017 Chelsio Communications, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/sglist.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include "cryptodev_if.h"
#include "common/common.h"
#include "crypto/t4_crypto.h"
/*
* Requests consist of:
*
* +-------------------------------+
* | struct fw_crypto_lookaside_wr |
* +-------------------------------+
* | struct ulp_txpkt |
* +-------------------------------+
* | struct ulptx_idata |
* +-------------------------------+
* | struct cpl_tx_sec_pdu |
* +-------------------------------+
* | struct cpl_tls_tx_scmd_fmt |
* +-------------------------------+
* | key context header |
* +-------------------------------+
* | AES key | ----- For requests with AES
* +-------------------------------+ -
* | IPAD (16-byte aligned) | \
* +-------------------------------+ +---- For requests with HMAC
* | OPAD (16-byte aligned) | /
* +-------------------------------+ -
* | GMAC H | ----- For AES-GCM
* +-------------------------------+ -
* | struct cpl_rx_phys_dsgl | \
* +-------------------------------+ +---- Destination buffer for
* | PHYS_DSGL entries | / non-hash-only requests
* +-------------------------------+ -
* | 16 dummy bytes | ----- Only for hash-only requests
* +-------------------------------+
* | IV | ----- If immediate IV
* +-------------------------------+
* | Payload | ----- If immediate Payload
* +-------------------------------+ -
* | struct ulptx_sgl | \
* +-------------------------------+ +---- If payload via SGL
* | SGL entries | /
* +-------------------------------+ -
*
* Note that the key context must be padded to ensure 16-byte alignment.
* For HMAC requests, the key consists of the partial hash of the IPAD
* followed by the partial hash of the OPAD.
*
* Replies consist of:
*
* +-------------------------------+
* | struct cpl_fw6_pld |
* +-------------------------------+
* | hash digest | ----- For HMAC request with
* +-------------------------------+ 'hash_size' set in work request
*
* A 32-bit big-endian error status word is supplied in the last 4
* bytes of data[0] in the CPL_FW6_PLD message. bit 0 indicates a
* "MAC" error and bit 1 indicates a "PAD" error.
*
* The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message
* in the request is returned in data[1] of the CPL_FW6_PLD message.
*
* For block cipher replies, the updated IV is supplied in data[2] and
* data[3] of the CPL_FW6_PLD message.
*
* For hash replies where the work request set 'hash_size' to request
* a copy of the hash in the reply, the hash digest is supplied
* immediately following the CPL_FW6_PLD message.
*/
/*
* The crypto engine supports a maximum AAD size of 511 bytes.
*/
#define MAX_AAD_LEN 511
/*
* The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32 SG
* entries. While the CPL includes a 16-bit length field, the T6 can
* sometimes hang if an error occurs while processing a request with a
* single DSGL entry larger than 2k.
*/
#define MAX_RX_PHYS_DSGL_SGE 32
#define DSGL_SGE_MAXLEN 2048
/*
* The adapter only supports requests with a total input or output
* length of 64k-1 or smaller. Longer requests either result in hung
* requests or incorrect results.
*/
#define MAX_REQUEST_SIZE 65535
static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto");
struct ccr_session_hmac {
struct auth_hash *auth_hash;
int hash_len;
unsigned int partial_digest_len;
unsigned int auth_mode;
unsigned int mk_size;
char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128];
char opad[CHCR_HASH_MAX_BLOCK_SIZE_128];
};
struct ccr_session_gmac {
int hash_len;
char ghash_h[GMAC_BLOCK_LEN];
};
struct ccr_session_blkcipher {
unsigned int cipher_mode;
unsigned int key_len;
unsigned int iv_len;
__be32 key_ctx_hdr;
char enckey[CHCR_AES_MAX_KEY_LEN];
char deckey[CHCR_AES_MAX_KEY_LEN];
};
struct ccr_session {
bool active;
int pending;
enum { HMAC, BLKCIPHER, AUTHENC, GCM } mode;
union {
struct ccr_session_hmac hmac;
struct ccr_session_gmac gmac;
};
struct ccr_session_blkcipher blkcipher;
};
struct ccr_softc {
struct adapter *adapter;
device_t dev;
uint32_t cid;
int tx_channel_id;
struct ccr_session *sessions;
int nsessions;
struct mtx lock;
bool detaching;
struct sge_wrq *txq;
struct sge_rxq *rxq;
/*
* Pre-allocate S/G lists used when preparing a work request.
* 'sg_crp' contains an sglist describing the entire buffer
* for a 'struct cryptop'. 'sg_ulptx' is used to describe
* the data the engine should DMA as input via ULPTX_SGL.
* 'sg_dsgl' is used to describe the destination that cipher
* text and a tag should be written to.
*/
struct sglist *sg_crp;
struct sglist *sg_ulptx;
struct sglist *sg_dsgl;
/*
* Pre-allocate a dummy output buffer for the IV and AAD for
* AEAD requests.
*/
char *iv_aad_buf;
struct sglist *sg_iv_aad;
/* Statistics. */
uint64_t stats_blkcipher_encrypt;
uint64_t stats_blkcipher_decrypt;
uint64_t stats_hmac;
uint64_t stats_authenc_encrypt;
uint64_t stats_authenc_decrypt;
uint64_t stats_gcm_encrypt;
uint64_t stats_gcm_decrypt;
uint64_t stats_wr_nomem;
uint64_t stats_inflight;
uint64_t stats_mac_error;
uint64_t stats_pad_error;
uint64_t stats_bad_session;
uint64_t stats_sglist_error;
uint64_t stats_process_error;
uint64_t stats_sw_fallback;
};
/*
* Crypto requests involve two kind of scatter/gather lists.
*
* Non-hash-only requests require a PHYS_DSGL that describes the
* location to store the results of the encryption or decryption
* operation. This SGL uses a different format (PHYS_DSGL) and should
* exclude the crd_skip bytes at the start of the data as well as
* any AAD or IV. For authenticated encryption requests it should
* cover include the destination of the hash or tag.
*
* The input payload may either be supplied inline as immediate data,
* or via a standard ULP_TX SGL. This SGL should include AAD,
* ciphertext, and the hash or tag for authenticated decryption
* requests.
*
* These scatter/gather lists can describe different subsets of the
* buffer described by the crypto operation. ccr_populate_sglist()
* generates a scatter/gather list that covers the entire crypto
* operation buffer that is then used to construct the other
* scatter/gather lists.
*/
static int
ccr_populate_sglist(struct sglist *sg, struct cryptop *crp)
{
int error;
sglist_reset(sg);
if (crp->crp_flags & CRYPTO_F_IMBUF)
error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf);
else if (crp->crp_flags & CRYPTO_F_IOV)
error = sglist_append_uio(sg, (struct uio *)crp->crp_buf);
else
error = sglist_append(sg, crp->crp_buf, crp->crp_ilen);
return (error);
}
/*
* Segments in 'sg' larger than 'maxsegsize' are counted as multiple
* segments.
*/
static int
ccr_count_sgl(struct sglist *sg, int maxsegsize)
{
int i, nsegs;
nsegs = 0;
for (i = 0; i < sg->sg_nseg; i++)
nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize);
return (nsegs);
}
/* These functions deal with PHYS_DSGL for the reply buffer. */
static inline int
ccr_phys_dsgl_len(int nsegs)
{
int len;
len = (nsegs / 8) * sizeof(struct phys_sge_pairs);
if ((nsegs % 8) != 0) {
len += sizeof(uint16_t) * 8;
len += roundup2(nsegs % 8, 2) * sizeof(uint64_t);
}
return (len);
}
static void
ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs)
{
struct sglist *sg;
struct cpl_rx_phys_dsgl *cpl;
struct phys_sge_pairs *sgl;
vm_paddr_t paddr;
size_t seglen;
u_int i, j;
sg = sc->sg_dsgl;
cpl = dst;
cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) |
V_CPL_RX_PHYS_DSGL_ISRDMA(0));
cpl->pcirlxorder_to_noofsgentr = htobe32(
V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) |
V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) |
V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) |
V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs));
cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id);
cpl->rss_hdr_int.hash_val = 0;
sgl = (struct phys_sge_pairs *)(cpl + 1);
j = 0;
for (i = 0; i < sg->sg_nseg; i++) {
seglen = sg->sg_segs[i].ss_len;
paddr = sg->sg_segs[i].ss_paddr;
do {
sgl->addr[j] = htobe64(paddr);
if (seglen > DSGL_SGE_MAXLEN) {
sgl->len[j] = htobe16(DSGL_SGE_MAXLEN);
paddr += DSGL_SGE_MAXLEN;
seglen -= DSGL_SGE_MAXLEN;
} else {
sgl->len[j] = htobe16(seglen);
seglen = 0;
}
j++;
if (j == 8) {
sgl++;
j = 0;
}
} while (seglen != 0);
}
MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs);
}
/* These functions deal with the ULPTX_SGL for input payload. */
static inline int
ccr_ulptx_sgl_len(int nsegs)
{
u_int n;
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (roundup2(n, 16));
}
static void
ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs)
{
struct ulptx_sgl *usgl;
struct sglist *sg;
struct sglist_seg *ss;
int i;
sg = sc->sg_ulptx;
MPASS(nsegs == sg->sg_nseg);
ss = &sg->sg_segs[0];
usgl = dst;
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
usgl->len0 = htobe32(ss->ss_len);
usgl->addr0 = htobe64(ss->ss_paddr);
ss++;
for (i = 0; i < sg->sg_nseg - 1; i++) {
usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr);
ss++;
}
}
static bool
ccr_use_imm_data(u_int transhdr_len, u_int input_len)
{
if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN)
return (false);
if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) >
SGE_MAX_WR_LEN)
return (false);
return (true);
}
static void
ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len,
u_int wr_len, uint32_t sid, u_int imm_len, u_int sgl_len, u_int hash_size,
struct cryptop *crp)
{
u_int cctx_size;
cctx_size = sizeof(struct _key_ctx) + kctx_len;
crwr->wreq.op_to_cctx_size = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) |
V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) |
V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) |
V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) |
V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4));
crwr->wreq.len16_pkd = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16));
crwr->wreq.session_id = htobe32(sid);
crwr->wreq.rx_chid_to_rx_q_id = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) |
V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) |
V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) |
V_FW_CRYPTO_LOOKASIDE_WR_IV(IV_NOP) |
V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) |
V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) |
V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id));
crwr->wreq.key_addr = 0;
crwr->wreq.pld_size_hash_size = htobe32(
V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) |
V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size));
crwr->wreq.cookie = htobe64((uintptr_t)crp);
crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
V_ULP_TXPKT_DATAMODIFY(0) |
V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1));
crwr->ulptx.len = htobe32(
((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16));
crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
V_ULP_TX_SC_MORE(imm_len != 0 ? 0 : 1));
crwr->sc_imm.len = htobe32(wr_len - offsetof(struct chcr_wr, sec_cpl) -
sgl_len);
}
static int
ccr_hmac(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp)
{
struct chcr_wr *crwr;
struct wrqe *wr;
struct auth_hash *axf;
struct cryptodesc *crd;
char *dst;
u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len;
u_int imm_len, iopad_size;
int error, sgl_nsegs, sgl_len;
crd = crp->crp_desc;
/* Reject requests with too large of an input buffer. */
if (crd->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
axf = s->hmac.auth_hash;
/* PADs must be 128-bit aligned. */
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
/*
* The 'key' part of the context includes the aligned IPAD and
* OPAD.
*/
kctx_len = iopad_size * 2;
hash_size_in_response = axf->hashsize;
transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
if (crd->crd_len == 0) {
imm_len = axf->blocksize;
sgl_nsegs = 0;
sgl_len = 0;
} else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) {
imm_len = crd->crd_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crd->crd_skip, crd->crd_len);
if (error)
return (error);
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
if (wr_len > SGE_MAX_WR_LEN)
return (EFBIG);
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
hash_size_in_response, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(0));
crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize :
crd->crd_len);
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_NOP) |
V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NO_TRUNC));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_LAST_FRAG(0) |
V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1));
memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len);
memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad,
s->hmac.partial_digest_len);
/* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */
kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
V_KEY_CONTEXT_OPAD_PRESENT(1) | V_KEY_CONTEXT_SALT_PRESENT(1) |
V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) |
V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1));
dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES;
if (crd->crd_len == 0) {
dst[0] = 0x80;
*(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) =
htobe64(axf->blocksize << 3);
} else if (imm_len != 0)
crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
crd->crd_len, dst);
else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_hmac_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
const struct cpl_fw6_pld *cpl, int error)
{
struct cryptodesc *crd;
crd = crp->crp_desc;
if (error == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
s->hmac.hash_len, (c_caddr_t)(cpl + 1));
}
return (error);
}
static int
ccr_blkcipher(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
struct cryptodesc *crd;
char *dst;
u_int kctx_len, key_half, op_type, transhdr_len, wr_len;
u_int imm_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
crd = crp->crp_desc;
if (s->blkcipher.key_len == 0 || crd->crd_len == 0)
return (EINVAL);
if (crd->crd_alg == CRYPTO_AES_CBC &&
(crd->crd_len % AES_BLOCK_LEN) != 0)
return (EINVAL);
/* Reject requests with too large of an input buffer. */
if (crd->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
if (crd->crd_flags & CRD_F_ENCRYPT)
op_type = CHCR_ENCRYPT_OP;
else
op_type = CHCR_DECRYPT_OP;
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip,
crd->crd_len);
if (error)
return (error);
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/* The 'key' must be 128-bit aligned. */
kctx_len = roundup2(s->blkcipher.key_len, 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
if (ccr_use_imm_data(transhdr_len, crd->crd_len +
s->blkcipher.iv_len)) {
imm_len = crd->crd_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crd->crd_skip, crd->crd_len);
if (error)
return (error);
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len +
roundup2(imm_len, 16) + sgl_len;
if (wr_len > SGE_MAX_WR_LEN)
return (EFBIG);
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
/*
* Read the existing IV from the request or generate a random
* one if none is provided. Optionally copy the generated IV
* into the output buffer if requested.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len, iv);
} else {
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len, iv);
}
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len, 0,
crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len);
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_NOP) |
V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NOP) |
V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
switch (crd->crd_alg) {
case CRYPTO_AES_CBC:
if (crd->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
else
memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_ICM:
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_XTS:
key_half = s->blkcipher.key_len / 2;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
key_half);
if (crd->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.enckey, key_half);
else
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.deckey, key_half);
break;
}
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
memcpy(dst, iv, s->blkcipher.iv_len);
dst += s->blkcipher.iv_len;
if (imm_len != 0)
crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
crd->crd_len, dst);
else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*/
return (error);
}
/*
* 'hashsize' is the length of a full digest. 'authsize' is the
* requested digest length for this operation which may be less
* than 'hashsize'.
*/
static int
ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize)
{
if (authsize == 10)
return (CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366);
if (authsize == 12)
return (CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT);
if (authsize == hashsize / 2)
return (CHCR_SCMD_HMAC_CTRL_DIV2);
return (CHCR_SCMD_HMAC_CTRL_NO_TRUNC);
}
static int
ccr_authenc(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
struct auth_hash *axf;
char *dst;
u_int kctx_len, key_half, op_type, transhdr_len, wr_len;
u_int hash_size_in_response, imm_len, iopad_size;
u_int aad_start, aad_len, aad_stop;
u_int auth_start, auth_stop, auth_insert;
u_int cipher_start, cipher_stop;
u_int hmac_ctrl, input_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
/*
* If there is a need in the future, requests with an empty
* payload could be supported as HMAC-only requests.
*/
if (s->blkcipher.key_len == 0 || crde->crd_len == 0)
return (EINVAL);
if (crde->crd_alg == CRYPTO_AES_CBC &&
(crde->crd_len % AES_BLOCK_LEN) != 0)
return (EINVAL);
/*
* Compute the length of the AAD (data covered by the
* authentication descriptor but not the encryption
* descriptor). To simplify the logic, AAD is only permitted
* before the cipher/plain text, not after. This is true of
* all currently-generated requests.
*/
if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
return (EINVAL);
if (crda->crd_skip < crde->crd_skip) {
if (crda->crd_skip + crda->crd_len > crde->crd_skip)
aad_len = (crde->crd_skip - crda->crd_skip);
else
aad_len = crda->crd_len;
} else
aad_len = 0;
if (aad_len + s->blkcipher.iv_len > MAX_AAD_LEN)
return (EINVAL);
axf = s->hmac.auth_hash;
hash_size_in_response = s->hmac.hash_len;
if (crde->crd_flags & CRD_F_ENCRYPT)
op_type = CHCR_ENCRYPT_OP;
else
op_type = CHCR_DECRYPT_OP;
/*
* The output buffer consists of the cipher text followed by
* the hash when encrypting. For decryption it only contains
* the plain text.
*
* Due to a firmware bug, the output buffer must include a
* dummy output buffer for the IV and AAD prior to the real
* output buffer.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (s->blkcipher.iv_len + aad_len + crde->crd_len +
hash_size_in_response > MAX_REQUEST_SIZE)
return (EFBIG);
} else {
if (s->blkcipher.iv_len + aad_len + crde->crd_len >
MAX_REQUEST_SIZE)
return (EFBIG);
}
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0,
s->blkcipher.iv_len + aad_len);
if (error)
return (error);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_ENCRYPT_OP) {
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/* PADs must be 128-bit aligned. */
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
/*
* The 'key' part of the key context consists of the key followed
* by the IPAD and OPAD.
*/
kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
/*
* The input buffer consists of the IV, any AAD, and then the
* cipher/plain text. For decryption requests the hash is
* appended after the cipher text.
*
* The IV is always stored at the start of the input buffer
* even though it may be duplicated in the payload. The
* crypto engine doesn't work properly if the IV offset points
* inside of the AAD region, so a second copy is always
* required.
*/
input_len = aad_len + crde->crd_len;
/*
* The firmware hangs if sent a request which is a
* bit smaller than MAX_REQUEST_SIZE. In particular, the
* firmware appears to require 512 - 16 bytes of spare room
* along with the size of the hash even if the hash isn't
* included in the input buffer.
*/
if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) >
MAX_REQUEST_SIZE)
return (EFBIG);
if (op_type == CHCR_DECRYPT_OP)
input_len += hash_size_in_response;
if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) {
imm_len = input_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
if (aad_len != 0) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_skip, aad_len);
if (error)
return (error);
}
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crde->crd_skip, crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_DECRYPT_OP) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
/*
* Any auth-only data before the cipher region is marked as AAD.
* Auth-data that overlaps with the cipher region is placed in
* the auth section.
*/
if (aad_len != 0) {
aad_start = s->blkcipher.iv_len + 1;
aad_stop = aad_start + aad_len - 1;
} else {
aad_start = 0;
aad_stop = 0;
}
cipher_start = s->blkcipher.iv_len + aad_len + 1;
if (op_type == CHCR_DECRYPT_OP)
cipher_stop = hash_size_in_response;
else
cipher_stop = 0;
if (aad_len == crda->crd_len) {
auth_start = 0;
auth_stop = 0;
} else {
if (aad_len != 0)
auth_start = cipher_start;
else
auth_start = s->blkcipher.iv_len + crda->crd_skip -
crde->crd_skip + 1;
auth_stop = (crde->crd_skip + crde->crd_len) -
(crda->crd_skip + crda->crd_len) + cipher_stop;
}
if (op_type == CHCR_DECRYPT_OP)
auth_insert = hash_size_in_response;
else
auth_insert = 0;
wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len +
roundup2(imm_len, 16) + sgl_len;
if (wr_len > SGE_MAX_WR_LEN)
return (EFBIG);
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
/*
* Read the existing IV from the request or generate a random
* one if none is provided. Optionally copy the generated IV
* into the output buffer if requested.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
} else {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
}
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len);
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) |
V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) |
V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) |
V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response);
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
V_SCMD_HMAC_CTRL(hmac_ctrl) |
V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
switch (crde->crd_alg) {
case CRYPTO_AES_CBC:
if (crde->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
else
memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_ICM:
memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
s->blkcipher.key_len);
break;
case CRYPTO_AES_XTS:
key_half = s->blkcipher.key_len / 2;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
key_half);
if (crde->crd_flags & CRD_F_ENCRYPT)
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.enckey, key_half);
else
memcpy(crwr->key_ctx.key + key_half,
s->blkcipher.deckey, key_half);
break;
}
dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len);
memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len);
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
memcpy(dst, iv, s->blkcipher.iv_len);
dst += s->blkcipher.iv_len;
if (imm_len != 0) {
if (aad_len != 0) {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_skip, aad_len, dst);
dst += aad_len;
}
crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
crde->crd_len, dst);
dst += crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_inject, hash_size_in_response, dst);
} else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
struct cryptodesc *crd;
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*
* For a decryption request, the hardware may do a verification
* of the HMAC which will fail if the existing HMAC isn't in the
* buffer. If that happens, clear the error and copy the HMAC
* from the CPL reply into the buffer.
*
* For encryption requests, crd should be the cipher request
* which will have CRD_F_ENCRYPT set. For decryption
* requests, crp_desc will be the HMAC request which should
* not have this flag set.
*/
crd = crp->crp_desc;
if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) &&
!(crd->crd_flags & CRD_F_ENCRYPT)) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
s->hmac.hash_len, (c_caddr_t)(cpl + 1));
error = 0;
}
return (error);
}
static int
ccr_gcm(struct ccr_softc *sc, uint32_t sid, struct ccr_session *s,
struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde)
{
char iv[CHCR_MAX_CRYPTO_IV_LEN];
struct chcr_wr *crwr;
struct wrqe *wr;
char *dst;
u_int iv_len, kctx_len, op_type, transhdr_len, wr_len;
u_int hash_size_in_response, imm_len;
u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert;
u_int hmac_ctrl, input_len;
int dsgl_nsegs, dsgl_len;
int sgl_nsegs, sgl_len;
int error;
if (s->blkcipher.key_len == 0)
return (EINVAL);
/*
* The crypto engine doesn't handle GCM requests with an empty
* payload, so handle those in software instead.
*/
if (crde->crd_len == 0)
return (EMSGSIZE);
/*
* AAD is only permitted before the cipher/plain text, not
* after.
*/
if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
return (EMSGSIZE);
if (crda->crd_len + AES_BLOCK_LEN > MAX_AAD_LEN)
return (EMSGSIZE);
hash_size_in_response = s->gmac.hash_len;
if (crde->crd_flags & CRD_F_ENCRYPT)
op_type = CHCR_ENCRYPT_OP;
else
op_type = CHCR_DECRYPT_OP;
/*
* The IV handling for GCM in OCF is a bit more complicated in
* that IPSec provides a full 16-byte IV (including the
* counter), whereas the /dev/crypto interface sometimes
* provides a full 16-byte IV (if no IV is provided in the
* ioctl) and sometimes a 12-byte IV (if the IV was explicit).
*
* When provided a 12-byte IV, assume the IV is really 16 bytes
* with a counter in the last 4 bytes initialized to 1.
*
* While iv_len is checked below, the value is currently
* always set to 12 when creating a GCM session in this driver
* due to limitations in OCF (there is no way to know what the
* IV length of a given request will be). This means that the
* driver always assumes as 12-byte IV for now.
*/
if (s->blkcipher.iv_len == 12)
iv_len = AES_BLOCK_LEN;
else
iv_len = s->blkcipher.iv_len;
/*
* The output buffer consists of the cipher text followed by
* the tag when encrypting. For decryption it only contains
* the plain text.
*
* Due to a firmware bug, the output buffer must include a
* dummy output buffer for the IV and AAD prior to the real
* output buffer.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (iv_len + crda->crd_len + crde->crd_len +
hash_size_in_response > MAX_REQUEST_SIZE)
return (EFBIG);
} else {
if (iv_len + crda->crd_len + crde->crd_len > MAX_REQUEST_SIZE)
return (EFBIG);
}
sglist_reset(sc->sg_dsgl);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len +
crda->crd_len);
if (error)
return (error);
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_ENCRYPT_OP) {
error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
return (EFBIG);
dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
/*
* The 'key' part of the key context consists of the key followed
* by the Galois hash key.
*/
kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
/*
* The input buffer consists of the IV, any AAD, and then the
* cipher/plain text. For decryption requests the hash is
* appended after the cipher text.
*
* The IV is always stored at the start of the input buffer
* even though it may be duplicated in the payload. The
* crypto engine doesn't work properly if the IV offset points
* inside of the AAD region, so a second copy is always
* required.
*/
input_len = crda->crd_len + crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
input_len += hash_size_in_response;
if (input_len > MAX_REQUEST_SIZE)
return (EFBIG);
if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) {
imm_len = input_len;
sgl_nsegs = 0;
sgl_len = 0;
} else {
imm_len = 0;
sglist_reset(sc->sg_ulptx);
if (crda->crd_len != 0) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_skip, crda->crd_len);
if (error)
return (error);
}
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crde->crd_skip, crde->crd_len);
if (error)
return (error);
if (op_type == CHCR_DECRYPT_OP) {
error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
crda->crd_inject, hash_size_in_response);
if (error)
return (error);
}
sgl_nsegs = sc->sg_ulptx->sg_nseg;
sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
}
if (crda->crd_len != 0) {
aad_start = iv_len + 1;
aad_stop = aad_start + crda->crd_len - 1;
} else {
aad_start = 0;
aad_stop = 0;
}
cipher_start = iv_len + crda->crd_len + 1;
if (op_type == CHCR_DECRYPT_OP)
cipher_stop = hash_size_in_response;
else
cipher_stop = 0;
if (op_type == CHCR_DECRYPT_OP)
auth_insert = hash_size_in_response;
else
auth_insert = 0;
wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) +
sgl_len;
if (wr_len > SGE_MAX_WR_LEN)
return (EFBIG);
wr = alloc_wrqe(wr_len, sc->txq);
if (wr == NULL) {
sc->stats_wr_nomem++;
return (ENOMEM);
}
crwr = wrtod(wr);
memset(crwr, 0, wr_len);
/*
* Read the existing IV from the request or generate a random
* one if none is provided. Optionally copy the generated IV
* into the output buffer if requested.
*
* If the input IV is 12 bytes, append an explicit 4-byte
* counter of 1.
*/
if (op_type == CHCR_ENCRYPT_OP) {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
arc4rand(iv, s->blkcipher.iv_len, 0);
if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
} else {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, s->blkcipher.iv_len, iv);
}
if (s->blkcipher.iv_len == 12)
*(uint32_t *)&iv[12] = htobe32(1);
ccr_populate_wreq(sc, crwr, kctx_len, wr_len, sid, imm_len, sgl_len,
0, crp);
/* XXX: Hardcodes SGE loopback channel of 0. */
crwr->sec_cpl.op_ivinsrtofst = htobe32(
V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
crwr->sec_cpl.pldlen = htobe32(iv_len + input_len);
/*
* NB: cipherstop is explicitly set to 0. On encrypt it
* should normally be set to 0 anyway (as the encrypt crd ends
* at the end of the input). However, for decrypt the cipher
* ends before the tag in the AUTHENC case (and authstop is
* set to stop before the tag), but for GCM the cipher still
* runs to the end of the buffer. Not sure if this is
* intentional or a firmware quirk, but it is required for
* working tag validation with GCM decryption.
*/
crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) |
V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) |
V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) |
V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response);
crwr->sec_cpl.seqno_numivs = htobe32(
V_SCMD_SEQ_NO_CTRL(0) |
V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) |
V_SCMD_ENC_DEC_CTRL(op_type) |
V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_AES_GCM) |
V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_GHASH) |
V_SCMD_HMAC_CTRL(hmac_ctrl) |
V_SCMD_IV_SIZE(iv_len / 2) |
V_SCMD_NUM_IVS(0));
crwr->sec_cpl.ivgen_hdrlen = htobe32(
V_SCMD_IV_GEN_CTRL(0) |
V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len));
crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len);
dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN);
dst = (char *)(crwr + 1) + kctx_len;
ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
memcpy(dst, iv, iv_len);
dst += iv_len;
if (imm_len != 0) {
if (crda->crd_len != 0) {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_skip, crda->crd_len, dst);
dst += crda->crd_len;
}
crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
crde->crd_len, dst);
dst += crde->crd_len;
if (op_type == CHCR_DECRYPT_OP)
crypto_copydata(crp->crp_flags, crp->crp_buf,
crda->crd_inject, hash_size_in_response, dst);
} else
ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
/* XXX: TODO backpressure */
t4_wrq_tx(sc->adapter, wr);
return (0);
}
static int
ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s,
struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
{
/*
* The updated IV to permit chained requests is at
* cpl->data[2], but OCF doesn't permit chained requests.
*
* Note that the hardware should always verify the GMAC hash.
*/
return (error);
}
/*
* Handle a GCM request that is not supported by the crypto engine by
* performing the operation in software. Derived from swcr_authenc().
*/
static void
ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp,
struct cryptodesc *crda, struct cryptodesc *crde)
{
struct auth_hash *axf;
struct enc_xform *exf;
void *auth_ctx;
uint8_t *kschedule;
char block[GMAC_BLOCK_LEN];
char digest[GMAC_DIGEST_LEN];
char iv[AES_BLOCK_LEN];
int error, i, len;
auth_ctx = NULL;
kschedule = NULL;
/* Initialize the MAC. */
switch (s->blkcipher.key_len) {
case 16:
axf = &auth_hash_nist_gmac_aes_128;
break;
case 24:
axf = &auth_hash_nist_gmac_aes_192;
break;
case 32:
axf = &auth_hash_nist_gmac_aes_256;
break;
default:
error = EINVAL;
goto out;
}
auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT);
if (auth_ctx == NULL) {
error = ENOMEM;
goto out;
}
axf->Init(auth_ctx);
axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len);
/* Initialize the cipher. */
exf = &enc_xform_aes_nist_gcm;
error = exf->setkey(&kschedule, s->blkcipher.enckey,
s->blkcipher.key_len);
if (error)
goto out;
/*
* This assumes a 12-byte IV from the crp. See longer comment
* above in ccr_gcm() for more details.
*/
if (crde->crd_flags & CRD_F_ENCRYPT) {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, 12);
else
arc4rand(iv, 12, 0);
if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_inject, 12, iv);
} else {
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, 12);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_inject, 12, iv);
}
*(uint32_t *)&iv[12] = htobe32(1);
axf->Reinit(auth_ctx, iv, sizeof(iv));
/* MAC the AAD. */
for (i = 0; i < crda->crd_len; i += sizeof(block)) {
len = imin(crda->crd_len - i, sizeof(block));
crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip +
i, len, block);
bzero(block + len, sizeof(block) - len);
axf->Update(auth_ctx, block, sizeof(block));
}
exf->reinit(kschedule, iv);
/* Do encryption with MAC */
for (i = 0; i < crde->crd_len; i += sizeof(block)) {
len = imin(crde->crd_len - i, sizeof(block));
crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip +
i, len, block);
bzero(block + len, sizeof(block) - len);
if (crde->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(kschedule, block);
axf->Update(auth_ctx, block, len);
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_skip + i, len, block);
} else {
axf->Update(auth_ctx, block, len);
}
}
/* Length block. */
bzero(block, sizeof(block));
((uint32_t *)block)[1] = htobe32(crda->crd_len * 8);
((uint32_t *)block)[3] = htobe32(crde->crd_len * 8);
axf->Update(auth_ctx, block, sizeof(block));
/* Finalize MAC. */
axf->Final(digest, auth_ctx);
/* Inject or validate tag. */
if (crde->crd_flags & CRD_F_ENCRYPT) {
crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject,
sizeof(digest), digest);
error = 0;
} else {
char digest2[GMAC_DIGEST_LEN];
crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject,
sizeof(digest2), digest2);
if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) {
error = 0;
/* Tag matches, decrypt data. */
for (i = 0; i < crde->crd_len; i += sizeof(block)) {
len = imin(crde->crd_len - i, sizeof(block));
crypto_copydata(crp->crp_flags, crp->crp_buf,
crde->crd_skip + i, len, block);
bzero(block + len, sizeof(block) - len);
exf->decrypt(kschedule, block);
crypto_copyback(crp->crp_flags, crp->crp_buf,
crde->crd_skip + i, len, block);
}
} else
error = EBADMSG;
}
exf->zerokey(&kschedule);
out:
if (auth_ctx != NULL) {
memset(auth_ctx, 0, axf->ctxsize);
free(auth_ctx, M_CCR);
}
crp->crp_etype = error;
crypto_done(crp);
}
static void
ccr_identify(driver_t *driver, device_t parent)
{
struct adapter *sc;
sc = device_get_softc(parent);
if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE &&
device_find_child(parent, "ccr", -1) == NULL)
device_add_child(parent, "ccr", -1);
}
static int
ccr_probe(device_t dev)
{
device_set_desc(dev, "Chelsio Crypto Accelerator");
return (BUS_PROBE_DEFAULT);
}
static void
ccr_sysctls(struct ccr_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->dev);
/*
* dev.ccr.X.
*/
oid = device_get_sysctl_tree(sc->dev);
children = SYSCTL_CHILDREN(oid);
/*
* dev.ccr.X.stats.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "statistics");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD,
&sc->stats_hmac, 0, "HMAC requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD,
&sc->stats_blkcipher_encrypt, 0,
"Cipher encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD,
&sc->stats_blkcipher_decrypt, 0,
"Cipher decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD,
&sc->stats_authenc_encrypt, 0,
"Combined AES+HMAC encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD,
&sc->stats_authenc_decrypt, 0,
"Combined AES+HMAC decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD,
&sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD,
&sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD,
&sc->stats_wr_nomem, 0, "Work request memory allocation failures");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD,
&sc->stats_inflight, 0, "Requests currently pending");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD,
&sc->stats_mac_error, 0, "MAC errors");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD,
&sc->stats_pad_error, 0, "Padding errors");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD,
&sc->stats_bad_session, 0, "Requests with invalid session ID");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD,
&sc->stats_sglist_error, 0,
"Requests for which DMA mapping failed");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD,
&sc->stats_process_error, 0, "Requests failed during queueing");
SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sw_fallback", CTLFLAG_RD,
&sc->stats_sw_fallback, 0,
"Requests processed by falling back to software");
}
static int
ccr_attach(device_t dev)
{
struct ccr_softc *sc;
int32_t cid;
/*
* TODO: Crypto requests will panic if the parent device isn't
* initialized so that the queues are up and running. Need to
* figure out how to handle that correctly, maybe just reject
* requests if the adapter isn't fully initialized?
*/
sc = device_get_softc(dev);
sc->dev = dev;
sc->adapter = device_get_softc(device_get_parent(dev));
sc->txq = &sc->adapter->sge.ctrlq[0];
sc->rxq = &sc->adapter->sge.rxq[0];
cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
return (ENXIO);
}
sc->cid = cid;
sc->adapter->ccr_softc = sc;
/* XXX: TODO? */
sc->tx_channel_id = 0;
mtx_init(&sc->lock, "ccr", NULL, MTX_DEF);
sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK);
sc->iv_aad_buf = malloc(MAX_AAD_LEN, M_CCR, M_WAITOK);
sc->sg_iv_aad = sglist_build(sc->iv_aad_buf, MAX_AAD_LEN, M_WAITOK);
ccr_sysctls(sc);
crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0);
crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_CBC, 0, 0);
crypto_register(cid, CRYPTO_AES_ICM, 0, 0);
crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0);
crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0);
crypto_register(cid, CRYPTO_AES_XTS, 0, 0);
return (0);
}
static int
ccr_detach(device_t dev)
{
struct ccr_softc *sc;
int i;
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
for (i = 0; i < sc->nsessions; i++) {
if (sc->sessions[i].active || sc->sessions[i].pending != 0) {
mtx_unlock(&sc->lock);
return (EBUSY);
}
}
sc->detaching = true;
mtx_unlock(&sc->lock);
crypto_unregister_all(sc->cid);
free(sc->sessions, M_CCR);
mtx_destroy(&sc->lock);
sglist_free(sc->sg_iv_aad);
free(sc->iv_aad_buf, M_CCR);
sglist_free(sc->sg_dsgl);
sglist_free(sc->sg_ulptx);
sglist_free(sc->sg_crp);
sc->adapter->ccr_softc = NULL;
return (0);
}
static void
ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx)
{
uint32_t *u32;
uint64_t *u64;
u_int i;
u32 = (uint32_t *)dst;
u64 = (uint64_t *)dst;
switch (cri_alg) {
case CRYPTO_SHA1_HMAC:
for (i = 0; i < SHA1_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
break;
case CRYPTO_SHA2_256_HMAC:
for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
break;
case CRYPTO_SHA2_384_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
break;
case CRYPTO_SHA2_512_HMAC:
for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
break;
}
}
static void
ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key,
int klen)
{
union authctx auth_ctx;
struct auth_hash *axf;
u_int i;
/*
* If the key is larger than the block size, use the digest of
* the key as the key instead.
*/
axf = s->hmac.auth_hash;
klen /= 8;
if (klen > axf->blocksize) {
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, key, klen);
axf->Final(s->hmac.ipad, &auth_ctx);
klen = axf->hashsize;
} else
memcpy(s->hmac.ipad, key, klen);
memset(s->hmac.ipad + klen, 0, axf->blocksize - klen);
memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize);
for (i = 0; i < axf->blocksize; i++) {
s->hmac.ipad[i] ^= HMAC_IPAD_VAL;
s->hmac.opad[i] ^= HMAC_OPAD_VAL;
}
/*
* Hash the raw ipad and opad and store the partial result in
* the same buffer.
*/
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize);
ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx);
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize);
ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx);
}
/*
* Borrowed from AES_GMAC_Setkey().
*/
static void
ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen)
{
static char zeroes[GMAC_BLOCK_LEN];
uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
int rounds;
rounds = rijndaelKeySetupEnc(keysched, key, klen);
rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h);
}
static int
ccr_aes_check_keylen(int alg, int klen)
{
switch (klen) {
case 128:
case 192:
if (alg == CRYPTO_AES_XTS)
return (EINVAL);
break;
case 256:
break;
case 512:
if (alg != CRYPTO_AES_XTS)
return (EINVAL);
break;
default:
return (EINVAL);
}
return (0);
}
static void
ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen)
{
unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size;
unsigned int opad_present;
if (alg == CRYPTO_AES_XTS)
kbits = klen / 2;
else
kbits = klen;
switch (kbits) {
case 128:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
break;
case 192:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
break;
case 256:
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
break;
default:
panic("should not get here");
}
s->blkcipher.key_len = klen / 8;
memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len);
switch (alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_XTS:
t4_aes_getdeckey(s->blkcipher.deckey, key, kbits);
break;
}
kctx_len = roundup2(s->blkcipher.key_len, 16);
switch (s->mode) {
case AUTHENC:
mk_size = s->hmac.mk_size;
opad_present = 1;
iopad_size = roundup2(s->hmac.partial_digest_len, 16);
kctx_len += iopad_size * 2;
break;
case GCM:
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
opad_present = 0;
kctx_len += GMAC_BLOCK_LEN;
break;
default:
mk_size = CHCR_KEYCTX_NO_KEY;
opad_present = 0;
break;
}
kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) |
V_KEY_CONTEXT_OPAD_PRESENT(opad_present) |
V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) |
V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1));
}
static int
ccr_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
{
struct ccr_softc *sc;
struct ccr_session *s;
struct auth_hash *auth_hash;
struct cryptoini *c, *hash, *cipher;
unsigned int auth_mode, cipher_mode, iv_len, mk_size;
unsigned int partial_digest_len;
int error, i, sess;
bool gcm_hash;
if (sidp == NULL || cri == NULL)
return (EINVAL);
gcm_hash = false;
cipher = NULL;
hash = NULL;
auth_hash = NULL;
auth_mode = CHCR_SCMD_AUTH_MODE_NOP;
cipher_mode = CHCR_SCMD_CIPHER_MODE_NOP;
iv_len = 0;
mk_size = 0;
partial_digest_len = 0;
for (c = cri; c != NULL; c = c->cri_next) {
switch (c->cri_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
if (hash)
return (EINVAL);
hash = c;
switch (c->cri_alg) {
case CRYPTO_SHA1_HMAC:
auth_hash = &auth_hash_hmac_sha1;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
partial_digest_len = SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
auth_hash = &auth_hash_hmac_sha2_256;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
partial_digest_len = SHA2_256_HASH_LEN;
break;
case CRYPTO_SHA2_384_HMAC:
auth_hash = &auth_hash_hmac_sha2_384;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
partial_digest_len = SHA2_512_HASH_LEN;
break;
case CRYPTO_SHA2_512_HMAC:
auth_hash = &auth_hash_hmac_sha2_512;
auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
partial_digest_len = SHA2_512_HASH_LEN;
break;
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
gcm_hash = true;
auth_mode = CHCR_SCMD_AUTH_MODE_GHASH;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
break;
}
break;
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_XTS:
if (cipher)
return (EINVAL);
cipher = c;
switch (c->cri_alg) {
case CRYPTO_AES_CBC:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
iv_len = AES_BLOCK_LEN;
break;
case CRYPTO_AES_ICM:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
iv_len = AES_BLOCK_LEN;
break;
case CRYPTO_AES_NIST_GCM_16:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_GCM;
iv_len = AES_GCM_IV_LEN;
break;
case CRYPTO_AES_XTS:
cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
iv_len = AES_BLOCK_LEN;
break;
}
if (c->cri_key != NULL) {
error = ccr_aes_check_keylen(c->cri_alg,
c->cri_klen);
if (error)
return (error);
}
break;
default:
return (EINVAL);
}
}
if (gcm_hash != (cipher_mode == CHCR_SCMD_CIPHER_MODE_AES_GCM))
return (EINVAL);
if (hash == NULL && cipher == NULL)
return (EINVAL);
if (hash != NULL && hash->cri_key == NULL)
return (EINVAL);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sc->detaching) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
sess = -1;
for (i = 0; i < sc->nsessions; i++) {
if (!sc->sessions[i].active && sc->sessions[i].pending == 0) {
sess = i;
break;
}
}
if (sess == -1) {
s = malloc(sizeof(*s) * (sc->nsessions + 1), M_CCR,
M_NOWAIT | M_ZERO);
if (s == NULL) {
mtx_unlock(&sc->lock);
return (ENOMEM);
}
if (sc->sessions != NULL)
memcpy(s, sc->sessions, sizeof(*s) * sc->nsessions);
sess = sc->nsessions;
free(sc->sessions, M_CCR);
sc->sessions = s;
sc->nsessions++;
}
s = &sc->sessions[sess];
if (gcm_hash)
s->mode = GCM;
else if (hash != NULL && cipher != NULL)
s->mode = AUTHENC;
else if (hash != NULL)
s->mode = HMAC;
else {
MPASS(cipher != NULL);
s->mode = BLKCIPHER;
}
if (gcm_hash) {
if (hash->cri_mlen == 0)
s->gmac.hash_len = AES_GMAC_HASH_LEN;
else
s->gmac.hash_len = hash->cri_mlen;
ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen);
} else if (hash != NULL) {
s->hmac.auth_hash = auth_hash;
s->hmac.auth_mode = auth_mode;
s->hmac.mk_size = mk_size;
s->hmac.partial_digest_len = partial_digest_len;
if (hash->cri_mlen == 0)
s->hmac.hash_len = auth_hash->hashsize;
else
s->hmac.hash_len = hash->cri_mlen;
ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key,
hash->cri_klen);
}
if (cipher != NULL) {
s->blkcipher.cipher_mode = cipher_mode;
s->blkcipher.iv_len = iv_len;
if (cipher->cri_key != NULL)
ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key,
cipher->cri_klen);
}
s->active = true;
mtx_unlock(&sc->lock);
*sidp = sess;
return (0);
}
static int
ccr_freesession(device_t dev, uint64_t tid)
{
struct ccr_softc *sc;
uint32_t sid;
int error;
sc = device_get_softc(dev);
sid = CRYPTO_SESID2LID(tid);
mtx_lock(&sc->lock);
if (sid >= sc->nsessions || !sc->sessions[sid].active)
error = EINVAL;
else {
if (sc->sessions[sid].pending != 0)
device_printf(dev,
"session %d freed with %d pending requests\n", sid,
sc->sessions[sid].pending);
sc->sessions[sid].active = false;
error = 0;
}
mtx_unlock(&sc->lock);
return (error);
}
static int
ccr_process(device_t dev, struct cryptop *crp, int hint)
{
struct ccr_softc *sc;
struct ccr_session *s;
struct cryptodesc *crd, *crda, *crde;
uint32_t sid;
int error;
if (crp == NULL)
return (EINVAL);
crd = crp->crp_desc;
sid = CRYPTO_SESID2LID(crp->crp_sid);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sid >= sc->nsessions || !sc->sessions[sid].active) {
sc->stats_bad_session++;
error = EINVAL;
goto out;
}
error = ccr_populate_sglist(sc->sg_crp, crp);
if (error) {
sc->stats_sglist_error++;
goto out;
}
s = &sc->sessions[sid];
switch (s->mode) {
case HMAC:
if (crd->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key,
crd->crd_klen);
error = ccr_hmac(sc, sid, s, crp);
if (error == 0)
sc->stats_hmac++;
break;
case BLKCIPHER:
if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crd->crd_alg,
crd->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crd->crd_alg, crd->crd_key,
crd->crd_klen);
}
error = ccr_blkcipher(sc, sid, s, crp);
if (error == 0) {
if (crd->crd_flags & CRD_F_ENCRYPT)
sc->stats_blkcipher_encrypt++;
else
sc->stats_blkcipher_decrypt++;
}
break;
case AUTHENC:
error = 0;
switch (crd->crd_alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_XTS:
/* Only encrypt-then-authenticate supported. */
crde = crd;
crda = crd->crd_next;
if (!(crde->crd_flags & CRD_F_ENCRYPT)) {
error = EINVAL;
break;
}
break;
default:
crda = crd;
crde = crd->crd_next;
if (crde->crd_flags & CRD_F_ENCRYPT) {
error = EINVAL;
break;
}
break;
}
if (error)
break;
if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key,
crda->crd_klen);
if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crde->crd_alg,
crde->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
crde->crd_klen);
}
error = ccr_authenc(sc, sid, s, crp, crda, crde);
if (error == 0) {
if (crde->crd_flags & CRD_F_ENCRYPT)
sc->stats_authenc_encrypt++;
else
sc->stats_authenc_decrypt++;
}
break;
case GCM:
error = 0;
if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) {
crde = crd;
crda = crd->crd_next;
} else {
crda = crd;
crde = crd->crd_next;
}
if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen);
if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
error = ccr_aes_check_keylen(crde->crd_alg,
crde->crd_klen);
if (error)
break;
ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
crde->crd_klen);
}
if (crde->crd_len == 0) {
mtx_unlock(&sc->lock);
ccr_gcm_soft(s, crp, crda, crde);
return (0);
}
error = ccr_gcm(sc, sid, s, crp, crda, crde);
if (error == EMSGSIZE) {
sc->stats_sw_fallback++;
mtx_unlock(&sc->lock);
ccr_gcm_soft(s, crp, crda, crde);
return (0);
}
if (error == 0) {
if (crde->crd_flags & CRD_F_ENCRYPT)
sc->stats_gcm_encrypt++;
else
sc->stats_gcm_decrypt++;
}
break;
}
if (error == 0) {
s->pending++;
sc->stats_inflight++;
} else
sc->stats_process_error++;
out:
mtx_unlock(&sc->lock);
if (error) {
crp->crp_etype = error;
crypto_done(crp);
}
return (0);
}
static int
do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct ccr_softc *sc = iq->adapter->ccr_softc;
struct ccr_session *s;
const struct cpl_fw6_pld *cpl;
struct cryptop *crp;
uint32_t sid, status;
int error;
if (m != NULL)
cpl = mtod(m, const void *);
else
cpl = (const void *)(rss + 1);
crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]);
sid = CRYPTO_SESID2LID(crp->crp_sid);
status = be64toh(cpl->data[0]);
if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status))
error = EBADMSG;
else
error = 0;
mtx_lock(&sc->lock);
MPASS(sid < sc->nsessions);
s = &sc->sessions[sid];
s->pending--;
sc->stats_inflight--;
switch (s->mode) {
case HMAC:
error = ccr_hmac_done(sc, s, crp, cpl, error);
break;
case BLKCIPHER:
error = ccr_blkcipher_done(sc, s, crp, cpl, error);
break;
case AUTHENC:
error = ccr_authenc_done(sc, s, crp, cpl, error);
break;
case GCM:
error = ccr_gcm_done(sc, s, crp, cpl, error);
break;
}
if (error == EBADMSG) {
if (CHK_MAC_ERR_BIT(status))
sc->stats_mac_error++;
if (CHK_PAD_ERR_BIT(status))
sc->stats_pad_error++;
}
mtx_unlock(&sc->lock);
crp->crp_etype = error;
crypto_done(crp);
m_freem(m);
return (0);
}
static int
ccr_modevent(module_t mod, int cmd, void *arg)
{
switch (cmd) {
case MOD_LOAD:
t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld);
return (0);
case MOD_UNLOAD:
t4_register_cpl_handler(CPL_FW6_PLD, NULL);
return (0);
default:
return (EOPNOTSUPP);
}
}
static device_method_t ccr_methods[] = {
DEVMETHOD(device_identify, ccr_identify),
DEVMETHOD(device_probe, ccr_probe),
DEVMETHOD(device_attach, ccr_attach),
DEVMETHOD(device_detach, ccr_detach),
DEVMETHOD(cryptodev_newsession, ccr_newsession),
DEVMETHOD(cryptodev_freesession, ccr_freesession),
DEVMETHOD(cryptodev_process, ccr_process),
DEVMETHOD_END
};
static driver_t ccr_driver = {
"ccr",
ccr_methods,
sizeof(struct ccr_softc)
};
static devclass_t ccr_devclass;
DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL);
MODULE_VERSION(ccr, 1);
MODULE_DEPEND(ccr, crypto, 1, 1, 1);
MODULE_DEPEND(ccr, t6nex, 1, 1, 1);