2021-08-26 19:32:00 +02:00

7718 lines
194 KiB
C

/*-
* Copyright (c) 2010-2012 Citrix Inc.
* Copyright (c) 2009-2012,2016-2017 Microsoft Corp.
* Copyright (c) 2012 NetApp Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2004-2006 Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_hn.h"
#include "opt_inet6.h"
#include "opt_inet.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/counter.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/rmlock.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/buf_ring.h>
#include <sys/eventhandler.h>
#include <sys/epoch.h>
#include <machine/atomic.h>
#include <machine/in_cksum.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/rndis.h>
#ifdef RSS
#include <net/rss_config.h>
#endif
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
#include <dev/hyperv/include/hyperv.h>
#include <dev/hyperv/include/hyperv_busdma.h>
#include <dev/hyperv/include/vmbus.h>
#include <dev/hyperv/include/vmbus_xact.h>
#include <dev/hyperv/netvsc/ndis.h>
#include <dev/hyperv/netvsc/if_hnreg.h>
#include <dev/hyperv/netvsc/if_hnvar.h>
#include <dev/hyperv/netvsc/hn_nvs.h>
#include <dev/hyperv/netvsc/hn_rndis.h>
#include "vmbus_if.h"
#define HN_IFSTART_SUPPORT
#define HN_RING_CNT_DEF_MAX 8
#define HN_VFMAP_SIZE_DEF 8
#define HN_XPNT_VF_ATTWAIT_MIN 2 /* seconds */
/* YYY should get it from the underlying channel */
#define HN_TX_DESC_CNT 512
#define HN_RNDIS_PKT_LEN \
(sizeof(struct rndis_packet_msg) + \
HN_RNDIS_PKTINFO_SIZE(HN_NDIS_HASH_VALUE_SIZE) + \
HN_RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) + \
HN_RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) + \
HN_RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE))
#define HN_RNDIS_PKT_BOUNDARY PAGE_SIZE
#define HN_RNDIS_PKT_ALIGN CACHE_LINE_SIZE
#define HN_TX_DATA_BOUNDARY PAGE_SIZE
#define HN_TX_DATA_MAXSIZE IP_MAXPACKET
#define HN_TX_DATA_SEGSIZE PAGE_SIZE
/* -1 for RNDIS packet message */
#define HN_TX_DATA_SEGCNT_MAX (HN_GPACNT_MAX - 1)
#define HN_DIRECT_TX_SIZE_DEF 128
#define HN_EARLY_TXEOF_THRESH 8
#define HN_PKTBUF_LEN_DEF (16 * 1024)
#define HN_LROENT_CNT_DEF 128
#define HN_LRO_LENLIM_MULTIRX_DEF (12 * ETHERMTU)
#define HN_LRO_LENLIM_DEF (25 * ETHERMTU)
/* YYY 2*MTU is a bit rough, but should be good enough. */
#define HN_LRO_LENLIM_MIN(ifp) (2 * (ifp)->if_mtu)
#define HN_LRO_ACKCNT_DEF 1
#define HN_LOCK_INIT(sc) \
sx_init(&(sc)->hn_lock, device_get_nameunit((sc)->hn_dev))
#define HN_LOCK_DESTROY(sc) sx_destroy(&(sc)->hn_lock)
#define HN_LOCK_ASSERT(sc) sx_assert(&(sc)->hn_lock, SA_XLOCKED)
#define HN_LOCK(sc) \
do { \
while (sx_try_xlock(&(sc)->hn_lock) == 0) { \
/* Relinquish cpu to avoid deadlock */ \
sched_relinquish(curthread); \
DELAY(1000); \
} \
} while (0)
#define HN_UNLOCK(sc) sx_xunlock(&(sc)->hn_lock)
#define HN_CSUM_IP_MASK (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP)
#define HN_CSUM_IP6_MASK (CSUM_IP6_TCP | CSUM_IP6_UDP)
#define HN_CSUM_IP_HWASSIST(sc) \
((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP_MASK)
#define HN_CSUM_IP6_HWASSIST(sc) \
((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP6_MASK)
#define HN_PKTSIZE_MIN(align) \
roundup2(ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN + \
HN_RNDIS_PKT_LEN, (align))
#define HN_PKTSIZE(m, align) \
roundup2((m)->m_pkthdr.len + HN_RNDIS_PKT_LEN, (align))
#ifdef RSS
#define HN_RING_IDX2CPU(sc, idx) rss_getcpu((idx) % rss_getnumbuckets())
#else
#define HN_RING_IDX2CPU(sc, idx) (((sc)->hn_cpu + (idx)) % mp_ncpus)
#endif
struct hn_txdesc {
#ifndef HN_USE_TXDESC_BUFRING
SLIST_ENTRY(hn_txdesc) link;
#endif
STAILQ_ENTRY(hn_txdesc) agg_link;
/* Aggregated txdescs, in sending order. */
STAILQ_HEAD(, hn_txdesc) agg_list;
/* The oldest packet, if transmission aggregation happens. */
struct mbuf *m;
struct hn_tx_ring *txr;
int refs;
uint32_t flags; /* HN_TXD_FLAG_ */
struct hn_nvs_sendctx send_ctx;
uint32_t chim_index;
int chim_size;
bus_dmamap_t data_dmap;
bus_addr_t rndis_pkt_paddr;
struct rndis_packet_msg *rndis_pkt;
bus_dmamap_t rndis_pkt_dmap;
};
#define HN_TXD_FLAG_ONLIST 0x0001
#define HN_TXD_FLAG_DMAMAP 0x0002
#define HN_TXD_FLAG_ONAGG 0x0004
#define HN_NDIS_PKTINFO_SUBALLOC 0x01
#define HN_NDIS_PKTINFO_1ST_FRAG 0x02
#define HN_NDIS_PKTINFO_LAST_FRAG 0x04
struct packet_info_id {
uint8_t ver;
uint8_t flag;
uint16_t pkt_id;
};
#define NDIS_PKTINFOID_SZ sizeof(struct packet_info_id)
struct hn_rxinfo {
const uint32_t *vlan_info;
const uint32_t *csum_info;
const uint32_t *hash_info;
const uint32_t *hash_value;
const struct packet_info_id *pktinfo_id;
};
struct hn_rxvf_setarg {
struct hn_rx_ring *rxr;
struct ifnet *vf_ifp;
};
#define HN_RXINFO_VLAN 0x0001
#define HN_RXINFO_CSUM 0x0002
#define HN_RXINFO_HASHINF 0x0004
#define HN_RXINFO_HASHVAL 0x0008
#define HN_RXINFO_PKTINFO_ID 0x0010
#define HN_RXINFO_ALL \
(HN_RXINFO_VLAN | \
HN_RXINFO_CSUM | \
HN_RXINFO_HASHINF | \
HN_RXINFO_HASHVAL | \
HN_RXINFO_PKTINFO_ID)
static int hn_probe(device_t);
static int hn_attach(device_t);
static int hn_detach(device_t);
static int hn_shutdown(device_t);
static void hn_chan_callback(struct vmbus_channel *,
void *);
static void hn_init(void *);
static int hn_ioctl(struct ifnet *, u_long, caddr_t);
#ifdef HN_IFSTART_SUPPORT
static void hn_start(struct ifnet *);
#endif
static int hn_transmit(struct ifnet *, struct mbuf *);
static void hn_xmit_qflush(struct ifnet *);
static int hn_ifmedia_upd(struct ifnet *);
static void hn_ifmedia_sts(struct ifnet *,
struct ifmediareq *);
static void hn_ifnet_event(void *, struct ifnet *, int);
static void hn_ifaddr_event(void *, struct ifnet *);
static void hn_ifnet_attevent(void *, struct ifnet *);
static void hn_ifnet_detevent(void *, struct ifnet *);
static void hn_ifnet_lnkevent(void *, struct ifnet *, int);
static bool hn_ismyvf(const struct hn_softc *,
const struct ifnet *);
static void hn_rxvf_change(struct hn_softc *,
struct ifnet *, bool);
static void hn_rxvf_set(struct hn_softc *, struct ifnet *);
static void hn_rxvf_set_task(void *, int);
static void hn_xpnt_vf_input(struct ifnet *, struct mbuf *);
static int hn_xpnt_vf_iocsetflags(struct hn_softc *);
static int hn_xpnt_vf_iocsetcaps(struct hn_softc *,
struct ifreq *);
static void hn_xpnt_vf_saveifflags(struct hn_softc *);
static bool hn_xpnt_vf_isready(struct hn_softc *);
static void hn_xpnt_vf_setready(struct hn_softc *);
static void hn_xpnt_vf_init_taskfunc(void *, int);
static void hn_xpnt_vf_init(struct hn_softc *);
static void hn_xpnt_vf_setenable(struct hn_softc *);
static void hn_xpnt_vf_setdisable(struct hn_softc *, bool);
static void hn_vf_rss_fixup(struct hn_softc *, bool);
static void hn_vf_rss_restore(struct hn_softc *);
static int hn_rndis_rxinfo(const void *, int,
struct hn_rxinfo *);
static void hn_rndis_rx_data(struct hn_rx_ring *,
const void *, int);
static void hn_rndis_rx_status(struct hn_softc *,
const void *, int);
static void hn_rndis_init_fixat(struct hn_softc *, int);
static void hn_nvs_handle_notify(struct hn_softc *,
const struct vmbus_chanpkt_hdr *);
static void hn_nvs_handle_comp(struct hn_softc *,
struct vmbus_channel *,
const struct vmbus_chanpkt_hdr *);
static void hn_nvs_handle_rxbuf(struct hn_rx_ring *,
struct vmbus_channel *,
const struct vmbus_chanpkt_hdr *);
static void hn_nvs_ack_rxbuf(struct hn_rx_ring *,
struct vmbus_channel *, uint64_t);
#if __FreeBSD_version >= 1100099
static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS);
#endif
static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS);
#if __FreeBSD_version < 1100095
static int hn_rx_stat_int_sysctl(SYSCTL_HANDLER_ARGS);
#else
static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS);
#endif
static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_caps_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS);
#ifndef RSS
static int hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS);
#endif
static int hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_polling_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_vf_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_vflist_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS);
static void hn_stop(struct hn_softc *, bool);
static void hn_init_locked(struct hn_softc *);
static int hn_chan_attach(struct hn_softc *,
struct vmbus_channel *);
static void hn_chan_detach(struct hn_softc *,
struct vmbus_channel *);
static int hn_attach_subchans(struct hn_softc *);
static void hn_detach_allchans(struct hn_softc *);
static void hn_chan_rollup(struct hn_rx_ring *,
struct hn_tx_ring *);
static void hn_set_ring_inuse(struct hn_softc *, int);
static int hn_synth_attach(struct hn_softc *, int);
static void hn_synth_detach(struct hn_softc *);
static int hn_synth_alloc_subchans(struct hn_softc *,
int *);
static bool hn_synth_attachable(const struct hn_softc *);
static void hn_suspend(struct hn_softc *);
static void hn_suspend_data(struct hn_softc *);
static void hn_suspend_mgmt(struct hn_softc *);
static void hn_resume(struct hn_softc *);
static void hn_resume_data(struct hn_softc *);
static void hn_resume_mgmt(struct hn_softc *);
static void hn_suspend_mgmt_taskfunc(void *, int);
static void hn_chan_drain(struct hn_softc *,
struct vmbus_channel *);
static void hn_disable_rx(struct hn_softc *);
static void hn_drain_rxtx(struct hn_softc *, int);
static void hn_polling(struct hn_softc *, u_int);
static void hn_chan_polling(struct vmbus_channel *, u_int);
static void hn_mtu_change_fixup(struct hn_softc *);
static void hn_update_link_status(struct hn_softc *);
static void hn_change_network(struct hn_softc *);
static void hn_link_taskfunc(void *, int);
static void hn_netchg_init_taskfunc(void *, int);
static void hn_netchg_status_taskfunc(void *, int);
static void hn_link_status(struct hn_softc *);
static int hn_create_rx_data(struct hn_softc *, int);
static void hn_destroy_rx_data(struct hn_softc *);
static int hn_check_iplen(const struct mbuf *, int);
static void hn_rxpkt_proto(const struct mbuf *, int *, int *);
static int hn_set_rxfilter(struct hn_softc *, uint32_t);
static int hn_rxfilter_config(struct hn_softc *);
static int hn_rss_reconfig(struct hn_softc *);
static void hn_rss_ind_fixup(struct hn_softc *);
static void hn_rss_mbuf_hash(struct hn_softc *, uint32_t);
static int hn_rxpkt(struct hn_rx_ring *);
static uint32_t hn_rss_type_fromndis(uint32_t);
static uint32_t hn_rss_type_tondis(uint32_t);
static int hn_tx_ring_create(struct hn_softc *, int);
static void hn_tx_ring_destroy(struct hn_tx_ring *);
static int hn_create_tx_data(struct hn_softc *, int);
static void hn_fixup_tx_data(struct hn_softc *);
static void hn_fixup_rx_data(struct hn_softc *);
static void hn_destroy_tx_data(struct hn_softc *);
static void hn_txdesc_dmamap_destroy(struct hn_txdesc *);
static void hn_txdesc_gc(struct hn_tx_ring *,
struct hn_txdesc *);
static int hn_encap(struct ifnet *, struct hn_tx_ring *,
struct hn_txdesc *, struct mbuf **);
static int hn_txpkt(struct ifnet *, struct hn_tx_ring *,
struct hn_txdesc *);
static void hn_set_chim_size(struct hn_softc *, int);
static void hn_set_tso_maxsize(struct hn_softc *, int, int);
static bool hn_tx_ring_pending(struct hn_tx_ring *);
static void hn_tx_ring_qflush(struct hn_tx_ring *);
static void hn_resume_tx(struct hn_softc *, int);
static void hn_set_txagg(struct hn_softc *);
static void *hn_try_txagg(struct ifnet *,
struct hn_tx_ring *, struct hn_txdesc *,
int);
static int hn_get_txswq_depth(const struct hn_tx_ring *);
static void hn_txpkt_done(struct hn_nvs_sendctx *,
struct hn_softc *, struct vmbus_channel *,
const void *, int);
static int hn_txpkt_sglist(struct hn_tx_ring *,
struct hn_txdesc *);
static int hn_txpkt_chim(struct hn_tx_ring *,
struct hn_txdesc *);
static int hn_xmit(struct hn_tx_ring *, int);
static void hn_xmit_taskfunc(void *, int);
static void hn_xmit_txeof(struct hn_tx_ring *);
static void hn_xmit_txeof_taskfunc(void *, int);
#ifdef HN_IFSTART_SUPPORT
static int hn_start_locked(struct hn_tx_ring *, int);
static void hn_start_taskfunc(void *, int);
static void hn_start_txeof(struct hn_tx_ring *);
static void hn_start_txeof_taskfunc(void *, int);
#endif
SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"Hyper-V network interface");
/* Trust tcp segements verification on host side. */
static int hn_trust_hosttcp = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN,
&hn_trust_hosttcp, 0,
"Trust tcp segement verification on host side, "
"when csum info is missing (global setting)");
/* Trust udp datagrams verification on host side. */
static int hn_trust_hostudp = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN,
&hn_trust_hostudp, 0,
"Trust udp datagram verification on host side, "
"when csum info is missing (global setting)");
/* Trust ip packets verification on host side. */
static int hn_trust_hostip = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN,
&hn_trust_hostip, 0,
"Trust ip packet verification on host side, "
"when csum info is missing (global setting)");
/*
* Offload UDP/IPv4 checksum.
*/
static int hn_enable_udp4cs = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp4cs, CTLFLAG_RDTUN,
&hn_enable_udp4cs, 0, "Offload UDP/IPv4 checksum");
/*
* Offload UDP/IPv6 checksum.
*/
static int hn_enable_udp6cs = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp6cs, CTLFLAG_RDTUN,
&hn_enable_udp6cs, 0, "Offload UDP/IPv6 checksum");
/* Stats. */
static counter_u64_t hn_udpcs_fixup;
SYSCTL_COUNTER_U64(_hw_hn, OID_AUTO, udpcs_fixup, CTLFLAG_RW,
&hn_udpcs_fixup, "# of UDP checksum fixup");
/*
* See hn_set_hlen().
*
* This value is for Azure. For Hyper-V, set this above
* 65536 to disable UDP datagram checksum fixup.
*/
static int hn_udpcs_fixup_mtu = 1420;
SYSCTL_INT(_hw_hn, OID_AUTO, udpcs_fixup_mtu, CTLFLAG_RWTUN,
&hn_udpcs_fixup_mtu, 0, "UDP checksum fixup MTU threshold");
/* Limit TSO burst size */
static int hn_tso_maxlen = IP_MAXPACKET;
SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN,
&hn_tso_maxlen, 0, "TSO burst limit");
/* Limit chimney send size */
static int hn_tx_chimney_size = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN,
&hn_tx_chimney_size, 0, "Chimney send packet size limit");
/* Limit the size of packet for direct transmission */
static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF;
SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN,
&hn_direct_tx_size, 0, "Size of the packet for direct transmission");
/* # of LRO entries per RX ring */
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
static int hn_lro_entry_count = HN_LROENT_CNT_DEF;
SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN,
&hn_lro_entry_count, 0, "LRO entry count");
#endif
#endif
static int hn_tx_taskq_cnt = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_cnt, CTLFLAG_RDTUN,
&hn_tx_taskq_cnt, 0, "# of TX taskqueues");
#define HN_TX_TASKQ_M_INDEP 0
#define HN_TX_TASKQ_M_GLOBAL 1
#define HN_TX_TASKQ_M_EVTTQ 2
static int hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_mode, CTLFLAG_RDTUN,
&hn_tx_taskq_mode, 0, "TX taskqueue modes: "
"0 - independent, 1 - share global tx taskqs, 2 - share event taskqs");
#ifndef HN_USE_TXDESC_BUFRING
static int hn_use_txdesc_bufring = 0;
#else
static int hn_use_txdesc_bufring = 1;
#endif
SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD,
&hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors");
#ifdef HN_IFSTART_SUPPORT
/* Use ifnet.if_start instead of ifnet.if_transmit */
static int hn_use_if_start = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN,
&hn_use_if_start, 0, "Use if_start TX method");
#endif
/* # of channels to use */
static int hn_chan_cnt = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, chan_cnt, CTLFLAG_RDTUN,
&hn_chan_cnt, 0,
"# of channels to use; each channel has one RX ring and one TX ring");
/* # of transmit rings to use */
static int hn_tx_ring_cnt = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_ring_cnt, CTLFLAG_RDTUN,
&hn_tx_ring_cnt, 0, "# of TX rings to use");
/* Software TX ring deptch */
static int hn_tx_swq_depth = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_swq_depth, CTLFLAG_RDTUN,
&hn_tx_swq_depth, 0, "Depth of IFQ or BUFRING");
/* Enable sorted LRO, and the depth of the per-channel mbuf queue */
#if __FreeBSD_version >= 1100095
static u_int hn_lro_mbufq_depth = 0;
SYSCTL_UINT(_hw_hn, OID_AUTO, lro_mbufq_depth, CTLFLAG_RDTUN,
&hn_lro_mbufq_depth, 0, "Depth of LRO mbuf queue");
#endif
/* Packet transmission aggregation size limit */
static int hn_tx_agg_size = -1;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_size, CTLFLAG_RDTUN,
&hn_tx_agg_size, 0, "Packet transmission aggregation size limit");
/* Packet transmission aggregation count limit */
static int hn_tx_agg_pkts = -1;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_pkts, CTLFLAG_RDTUN,
&hn_tx_agg_pkts, 0, "Packet transmission aggregation packet limit");
/* VF list */
SYSCTL_PROC(_hw_hn, OID_AUTO, vflist,
CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, 0, 0,
hn_vflist_sysctl, "A",
"VF list");
/* VF mapping */
SYSCTL_PROC(_hw_hn, OID_AUTO, vfmap,
CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, 0, 0,
hn_vfmap_sysctl, "A",
"VF mapping");
/* Transparent VF */
static int hn_xpnt_vf = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, vf_transparent, CTLFLAG_RDTUN,
&hn_xpnt_vf, 0, "Transparent VF mod");
/* Accurate BPF support for Transparent VF */
static int hn_xpnt_vf_accbpf = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_accbpf, CTLFLAG_RDTUN,
&hn_xpnt_vf_accbpf, 0, "Accurate BPF for transparent VF");
/* Extra wait for transparent VF attach routing; unit seconds. */
static int hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN;
SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_attwait, CTLFLAG_RWTUN,
&hn_xpnt_vf_attwait, 0,
"Extra wait for transparent VF attach routing; unit: seconds");
static u_int hn_cpu_index; /* next CPU for channel */
static struct taskqueue **hn_tx_taskque;/* shared TX taskqueues */
static struct rmlock hn_vfmap_lock;
static int hn_vfmap_size;
static struct ifnet **hn_vfmap;
#ifndef RSS
static const uint8_t
hn_rss_key_default[NDIS_HASH_KEYSIZE_TOEPLITZ] = {
0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
};
#endif /* !RSS */
static const struct hyperv_guid hn_guid = {
.hv_guid = {
0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46,
0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e }
};
static device_method_t hn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hn_probe),
DEVMETHOD(device_attach, hn_attach),
DEVMETHOD(device_detach, hn_detach),
DEVMETHOD(device_shutdown, hn_shutdown),
DEVMETHOD_END
};
static driver_t hn_driver = {
"hn",
hn_methods,
sizeof(struct hn_softc)
};
static devclass_t hn_devclass;
DRIVER_MODULE(hn, vmbus, hn_driver, hn_devclass, 0, 0);
MODULE_VERSION(hn, 1);
MODULE_DEPEND(hn, vmbus, 1, 1, 1);
#if __FreeBSD_version >= 1100099
static void
hn_set_lro_lenlim(struct hn_softc *sc, int lenlim)
{
int i;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim;
}
#endif
static int
hn_txpkt_sglist(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID &&
txd->chim_size == 0, ("invalid rndis sglist txd"));
return (hn_nvs_send_rndis_sglist(txr->hn_chan, HN_NVS_RNDIS_MTYPE_DATA,
&txd->send_ctx, txr->hn_gpa, txr->hn_gpa_cnt));
}
static int
hn_txpkt_chim(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
struct hn_nvs_rndis rndis;
KASSERT(txd->chim_index != HN_NVS_CHIM_IDX_INVALID &&
txd->chim_size > 0, ("invalid rndis chim txd"));
rndis.nvs_type = HN_NVS_TYPE_RNDIS;
rndis.nvs_rndis_mtype = HN_NVS_RNDIS_MTYPE_DATA;
rndis.nvs_chim_idx = txd->chim_index;
rndis.nvs_chim_sz = txd->chim_size;
return (hn_nvs_send(txr->hn_chan, VMBUS_CHANPKT_FLAG_RC,
&rndis, sizeof(rndis), &txd->send_ctx));
}
static __inline uint32_t
hn_chim_alloc(struct hn_softc *sc)
{
int i, bmap_cnt = sc->hn_chim_bmap_cnt;
u_long *bmap = sc->hn_chim_bmap;
uint32_t ret = HN_NVS_CHIM_IDX_INVALID;
for (i = 0; i < bmap_cnt; ++i) {
int idx;
idx = ffsl(~bmap[i]);
if (idx == 0)
continue;
--idx; /* ffsl is 1-based */
KASSERT(i * LONG_BIT + idx < sc->hn_chim_cnt,
("invalid i %d and idx %d", i, idx));
if (atomic_testandset_long(&bmap[i], idx))
continue;
ret = i * LONG_BIT + idx;
break;
}
return (ret);
}
static __inline void
hn_chim_free(struct hn_softc *sc, uint32_t chim_idx)
{
u_long mask;
uint32_t idx;
idx = chim_idx / LONG_BIT;
KASSERT(idx < sc->hn_chim_bmap_cnt,
("invalid chimney index 0x%x", chim_idx));
mask = 1UL << (chim_idx % LONG_BIT);
KASSERT(sc->hn_chim_bmap[idx] & mask,
("index bitmap 0x%lx, chimney index %u, "
"bitmap idx %d, bitmask 0x%lx",
sc->hn_chim_bmap[idx], chim_idx, idx, mask));
atomic_clear_long(&sc->hn_chim_bmap[idx], mask);
}
#if defined(INET6) || defined(INET)
#define PULLUP_HDR(m, len) \
do { \
if (__predict_false((m)->m_len < (len))) { \
(m) = m_pullup((m), (len)); \
if ((m) == NULL) \
return (NULL); \
} \
} while (0)
/*
* NOTE: If this function failed, the m_head would be freed.
*/
static __inline struct mbuf *
hn_tso_fixup(struct mbuf *m_head)
{
struct ether_vlan_header *evl;
struct tcphdr *th;
int ehlen;
KASSERT(M_WRITABLE(m_head), ("TSO mbuf not writable"));
PULLUP_HDR(m_head, sizeof(*evl));
evl = mtod(m_head, struct ether_vlan_header *);
if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN))
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
else
ehlen = ETHER_HDR_LEN;
m_head->m_pkthdr.l2hlen = ehlen;
#ifdef INET
if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) {
struct ip *ip;
int iphlen;
PULLUP_HDR(m_head, ehlen + sizeof(*ip));
ip = mtodo(m_head, ehlen);
iphlen = ip->ip_hl << 2;
m_head->m_pkthdr.l3hlen = iphlen;
PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th));
th = mtodo(m_head, ehlen + iphlen);
ip->ip_len = 0;
ip->ip_sum = 0;
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
#endif
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET6
{
struct ip6_hdr *ip6;
PULLUP_HDR(m_head, ehlen + sizeof(*ip6));
ip6 = mtodo(m_head, ehlen);
if (ip6->ip6_nxt != IPPROTO_TCP) {
m_freem(m_head);
return (NULL);
}
m_head->m_pkthdr.l3hlen = sizeof(*ip6);
PULLUP_HDR(m_head, ehlen + sizeof(*ip6) + sizeof(*th));
th = mtodo(m_head, ehlen + sizeof(*ip6));
ip6->ip6_plen = 0;
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
}
#endif
return (m_head);
}
/*
* NOTE: If this function failed, the m_head would be freed.
*/
static __inline struct mbuf *
hn_set_hlen(struct mbuf *m_head)
{
const struct ether_vlan_header *evl;
int ehlen;
PULLUP_HDR(m_head, sizeof(*evl));
evl = mtod(m_head, const struct ether_vlan_header *);
if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN))
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
else
ehlen = ETHER_HDR_LEN;
m_head->m_pkthdr.l2hlen = ehlen;
#ifdef INET
if (m_head->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP_UDP)) {
const struct ip *ip;
int iphlen;
PULLUP_HDR(m_head, ehlen + sizeof(*ip));
ip = mtodo(m_head, ehlen);
iphlen = ip->ip_hl << 2;
m_head->m_pkthdr.l3hlen = iphlen;
/*
* UDP checksum offload does not work in Azure, if the
* following conditions meet:
* - sizeof(IP hdr + UDP hdr + payload) > 1420.
* - IP_DF is not set in the IP hdr.
*
* Fallback to software checksum for these UDP datagrams.
*/
if ((m_head->m_pkthdr.csum_flags & CSUM_IP_UDP) &&
m_head->m_pkthdr.len > hn_udpcs_fixup_mtu + ehlen &&
(ntohs(ip->ip_off) & IP_DF) == 0) {
uint16_t off = ehlen + iphlen;
counter_u64_add(hn_udpcs_fixup, 1);
PULLUP_HDR(m_head, off + sizeof(struct udphdr));
*(uint16_t *)(m_head->m_data + off +
m_head->m_pkthdr.csum_data) = in_cksum_skip(
m_head, m_head->m_pkthdr.len, off);
m_head->m_pkthdr.csum_flags &= ~CSUM_IP_UDP;
}
}
#endif
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET6
{
const struct ip6_hdr *ip6;
PULLUP_HDR(m_head, ehlen + sizeof(*ip6));
ip6 = mtodo(m_head, ehlen);
if (ip6->ip6_nxt != IPPROTO_TCP &&
ip6->ip6_nxt != IPPROTO_UDP) {
m_freem(m_head);
return (NULL);
}
m_head->m_pkthdr.l3hlen = sizeof(*ip6);
}
#endif
return (m_head);
}
/*
* NOTE: If this function failed, the m_head would be freed.
*/
static __inline struct mbuf *
hn_check_tcpsyn(struct mbuf *m_head, int *tcpsyn)
{
const struct tcphdr *th;
int ehlen, iphlen;
*tcpsyn = 0;
ehlen = m_head->m_pkthdr.l2hlen;
iphlen = m_head->m_pkthdr.l3hlen;
PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th));
th = mtodo(m_head, ehlen + iphlen);
if (th->th_flags & TH_SYN)
*tcpsyn = 1;
return (m_head);
}
#undef PULLUP_HDR
#endif /* INET6 || INET */
static int
hn_set_rxfilter(struct hn_softc *sc, uint32_t filter)
{
int error = 0;
HN_LOCK_ASSERT(sc);
if (sc->hn_rx_filter != filter) {
error = hn_rndis_set_rxfilter(sc, filter);
if (!error)
sc->hn_rx_filter = filter;
}
return (error);
}
static int
hn_rxfilter_config(struct hn_softc *sc)
{
struct ifnet *ifp = sc->hn_ifp;
uint32_t filter;
HN_LOCK_ASSERT(sc);
/*
* If the non-transparent mode VF is activated, we don't know how
* its RX filter is configured, so stick the synthetic device in
* the promiscous mode.
*/
if ((ifp->if_flags & IFF_PROMISC) || (sc->hn_flags & HN_FLAG_RXVF)) {
filter = NDIS_PACKET_TYPE_PROMISCUOUS;
} else {
filter = NDIS_PACKET_TYPE_DIRECTED;
if (ifp->if_flags & IFF_BROADCAST)
filter |= NDIS_PACKET_TYPE_BROADCAST;
/* TODO: support multicast list */
if ((ifp->if_flags & IFF_ALLMULTI) ||
!CK_STAILQ_EMPTY(&ifp->if_multiaddrs))
filter |= NDIS_PACKET_TYPE_ALL_MULTICAST;
}
return (hn_set_rxfilter(sc, filter));
}
static void
hn_set_txagg(struct hn_softc *sc)
{
uint32_t size, pkts;
int i;
/*
* Setup aggregation size.
*/
if (sc->hn_agg_size < 0)
size = UINT32_MAX;
else
size = sc->hn_agg_size;
if (sc->hn_rndis_agg_size < size)
size = sc->hn_rndis_agg_size;
/* NOTE: We only aggregate packets using chimney sending buffers. */
if (size > (uint32_t)sc->hn_chim_szmax)
size = sc->hn_chim_szmax;
if (size <= 2 * HN_PKTSIZE_MIN(sc->hn_rndis_agg_align)) {
/* Disable */
size = 0;
pkts = 0;
goto done;
}
/* NOTE: Type of the per TX ring setting is 'int'. */
if (size > INT_MAX)
size = INT_MAX;
/*
* Setup aggregation packet count.
*/
if (sc->hn_agg_pkts < 0)
pkts = UINT32_MAX;
else
pkts = sc->hn_agg_pkts;
if (sc->hn_rndis_agg_pkts < pkts)
pkts = sc->hn_rndis_agg_pkts;
if (pkts <= 1) {
/* Disable */
size = 0;
pkts = 0;
goto done;
}
/* NOTE: Type of the per TX ring setting is 'short'. */
if (pkts > SHRT_MAX)
pkts = SHRT_MAX;
done:
/* NOTE: Type of the per TX ring setting is 'short'. */
if (sc->hn_rndis_agg_align > SHRT_MAX) {
/* Disable */
size = 0;
pkts = 0;
}
if (bootverbose) {
if_printf(sc->hn_ifp, "TX agg size %u, pkts %u, align %u\n",
size, pkts, sc->hn_rndis_agg_align);
}
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
mtx_lock(&txr->hn_tx_lock);
txr->hn_agg_szmax = size;
txr->hn_agg_pktmax = pkts;
txr->hn_agg_align = sc->hn_rndis_agg_align;
mtx_unlock(&txr->hn_tx_lock);
}
}
static int
hn_get_txswq_depth(const struct hn_tx_ring *txr)
{
KASSERT(txr->hn_txdesc_cnt > 0, ("tx ring is not setup yet"));
if (hn_tx_swq_depth < txr->hn_txdesc_cnt)
return txr->hn_txdesc_cnt;
return hn_tx_swq_depth;
}
static int
hn_rss_reconfig(struct hn_softc *sc)
{
int error;
HN_LOCK_ASSERT(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
return (ENXIO);
/*
* Disable RSS first.
*
* NOTE:
* Direct reconfiguration by setting the UNCHG flags does
* _not_ work properly.
*/
if (bootverbose)
if_printf(sc->hn_ifp, "disable RSS\n");
error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_DISABLE);
if (error) {
if_printf(sc->hn_ifp, "RSS disable failed\n");
return (error);
}
/*
* Reenable the RSS w/ the updated RSS key or indirect
* table.
*/
if (bootverbose)
if_printf(sc->hn_ifp, "reconfig RSS\n");
error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE);
if (error) {
if_printf(sc->hn_ifp, "RSS reconfig failed\n");
return (error);
}
return (0);
}
static void
hn_rss_ind_fixup(struct hn_softc *sc)
{
struct ndis_rssprm_toeplitz *rss = &sc->hn_rss;
int i, nchan;
nchan = sc->hn_rx_ring_inuse;
KASSERT(nchan > 1, ("invalid # of channels %d", nchan));
/*
* Check indirect table to make sure that all channels in it
* can be used.
*/
for (i = 0; i < NDIS_HASH_INDCNT; ++i) {
if (rss->rss_ind[i] >= nchan) {
if_printf(sc->hn_ifp,
"RSS indirect table %d fixup: %u -> %d\n",
i, rss->rss_ind[i], nchan - 1);
rss->rss_ind[i] = nchan - 1;
}
}
}
static int
hn_ifmedia_upd(struct ifnet *ifp __unused)
{
return EOPNOTSUPP;
}
static void
hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct hn_softc *sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if ((sc->hn_link_flags & HN_LINK_FLAG_LINKUP) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
}
static void
hn_rxvf_set_task(void *xarg, int pending __unused)
{
struct hn_rxvf_setarg *arg = xarg;
arg->rxr->hn_rxvf_ifp = arg->vf_ifp;
}
static void
hn_rxvf_set(struct hn_softc *sc, struct ifnet *vf_ifp)
{
struct hn_rx_ring *rxr;
struct hn_rxvf_setarg arg;
struct task task;
int i;
HN_LOCK_ASSERT(sc);
TASK_INIT(&task, 0, hn_rxvf_set_task, &arg);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
if (i < sc->hn_rx_ring_inuse) {
arg.rxr = rxr;
arg.vf_ifp = vf_ifp;
vmbus_chan_run_task(rxr->hn_chan, &task);
} else {
rxr->hn_rxvf_ifp = vf_ifp;
}
}
}
static bool
hn_ismyvf(const struct hn_softc *sc, const struct ifnet *ifp)
{
const struct ifnet *hn_ifp;
hn_ifp = sc->hn_ifp;
if (ifp == hn_ifp)
return (false);
if (ifp->if_alloctype != IFT_ETHER)
return (false);
/* Ignore lagg/vlan interfaces */
if (strcmp(ifp->if_dname, "lagg") == 0 ||
strcmp(ifp->if_dname, "vlan") == 0)
return (false);
/*
* During detach events ifp->if_addr might be NULL.
* Make sure the bcmp() below doesn't panic on that:
*/
if (ifp->if_addr == NULL || hn_ifp->if_addr == NULL)
return (false);
if (bcmp(IF_LLADDR(ifp), IF_LLADDR(hn_ifp), ETHER_ADDR_LEN) != 0)
return (false);
return (true);
}
static void
hn_rxvf_change(struct hn_softc *sc, struct ifnet *ifp, bool rxvf)
{
struct ifnet *hn_ifp;
HN_LOCK(sc);
if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
goto out;
if (!hn_ismyvf(sc, ifp))
goto out;
hn_ifp = sc->hn_ifp;
if (rxvf) {
if (sc->hn_flags & HN_FLAG_RXVF)
goto out;
sc->hn_flags |= HN_FLAG_RXVF;
hn_rxfilter_config(sc);
} else {
if (!(sc->hn_flags & HN_FLAG_RXVF))
goto out;
sc->hn_flags &= ~HN_FLAG_RXVF;
if (hn_ifp->if_drv_flags & IFF_DRV_RUNNING)
hn_rxfilter_config(sc);
else
hn_set_rxfilter(sc, NDIS_PACKET_TYPE_NONE);
}
hn_nvs_set_datapath(sc,
rxvf ? HN_NVS_DATAPATH_VF : HN_NVS_DATAPATH_SYNTH);
hn_rxvf_set(sc, rxvf ? ifp : NULL);
if (rxvf) {
hn_vf_rss_fixup(sc, true);
hn_suspend_mgmt(sc);
sc->hn_link_flags &=
~(HN_LINK_FLAG_LINKUP | HN_LINK_FLAG_NETCHG);
if_link_state_change(hn_ifp, LINK_STATE_DOWN);
} else {
hn_vf_rss_restore(sc);
hn_resume_mgmt(sc);
}
devctl_notify("HYPERV_NIC_VF", hn_ifp->if_xname,
rxvf ? "VF_UP" : "VF_DOWN", NULL);
if (bootverbose) {
if_printf(hn_ifp, "datapath is switched %s %s\n",
rxvf ? "to" : "from", ifp->if_xname);
}
out:
HN_UNLOCK(sc);
}
static void
hn_ifnet_event(void *arg, struct ifnet *ifp, int event)
{
if (event != IFNET_EVENT_UP && event != IFNET_EVENT_DOWN)
return;
hn_rxvf_change(arg, ifp, event == IFNET_EVENT_UP);
}
static void
hn_ifaddr_event(void *arg, struct ifnet *ifp)
{
hn_rxvf_change(arg, ifp, ifp->if_flags & IFF_UP);
}
static int
hn_xpnt_vf_iocsetcaps(struct hn_softc *sc, struct ifreq *ifr)
{
struct ifnet *ifp, *vf_ifp;
uint64_t tmp;
int error;
HN_LOCK_ASSERT(sc);
ifp = sc->hn_ifp;
vf_ifp = sc->hn_vf_ifp;
/*
* Fix up requested capabilities w/ supported capabilities,
* since the supported capabilities could have been changed.
*/
ifr->ifr_reqcap &= ifp->if_capabilities;
/* Pass SIOCSIFCAP to VF. */
error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFCAP, (caddr_t)ifr);
/*
* NOTE:
* The error will be propagated to the callers, however, it
* is _not_ useful here.
*/
/*
* Merge VF's enabled capabilities.
*/
ifp->if_capenable = vf_ifp->if_capenable & ifp->if_capabilities;
tmp = vf_ifp->if_hwassist & HN_CSUM_IP_HWASSIST(sc);
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= tmp;
else
ifp->if_hwassist &= ~tmp;
tmp = vf_ifp->if_hwassist & HN_CSUM_IP6_HWASSIST(sc);
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= tmp;
else
ifp->if_hwassist &= ~tmp;
tmp = vf_ifp->if_hwassist & CSUM_IP_TSO;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= tmp;
else
ifp->if_hwassist &= ~tmp;
tmp = vf_ifp->if_hwassist & CSUM_IP6_TSO;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= tmp;
else
ifp->if_hwassist &= ~tmp;
return (error);
}
static int
hn_xpnt_vf_iocsetflags(struct hn_softc *sc)
{
struct ifnet *vf_ifp;
struct ifreq ifr;
HN_LOCK_ASSERT(sc);
vf_ifp = sc->hn_vf_ifp;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name));
ifr.ifr_flags = vf_ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = vf_ifp->if_flags >> 16;
return (vf_ifp->if_ioctl(vf_ifp, SIOCSIFFLAGS, (caddr_t)&ifr));
}
static void
hn_xpnt_vf_saveifflags(struct hn_softc *sc)
{
struct ifnet *ifp = sc->hn_ifp;
int allmulti = 0;
HN_LOCK_ASSERT(sc);
/* XXX vlan(4) style mcast addr maintenance */
if (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs))
allmulti = IFF_ALLMULTI;
/* Always set the VF's if_flags */
sc->hn_vf_ifp->if_flags = ifp->if_flags | allmulti;
}
static void
hn_xpnt_vf_input(struct ifnet *vf_ifp, struct mbuf *m)
{
struct rm_priotracker pt;
struct ifnet *hn_ifp = NULL;
struct mbuf *mn;
/*
* XXX racy, if hn(4) ever detached.
*/
rm_rlock(&hn_vfmap_lock, &pt);
if (vf_ifp->if_index < hn_vfmap_size)
hn_ifp = hn_vfmap[vf_ifp->if_index];
rm_runlock(&hn_vfmap_lock, &pt);
if (hn_ifp != NULL) {
for (mn = m; mn != NULL; mn = mn->m_nextpkt) {
/*
* Allow tapping on the VF.
*/
ETHER_BPF_MTAP(vf_ifp, mn);
/*
* Update VF stats.
*/
if ((vf_ifp->if_capenable & IFCAP_HWSTATS) == 0) {
if_inc_counter(vf_ifp, IFCOUNTER_IBYTES,
mn->m_pkthdr.len);
}
/*
* XXX IFCOUNTER_IMCAST
* This stat updating is kinda invasive, since it
* requires two checks on the mbuf: the length check
* and the ethernet header check. As of this write,
* all multicast packets go directly to hn(4), which
* makes imcast stat updating in the VF a try in vian.
*/
/*
* Fix up rcvif and increase hn(4)'s ipackets.
*/
mn->m_pkthdr.rcvif = hn_ifp;
if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1);
}
/*
* Go through hn(4)'s if_input.
*/
hn_ifp->if_input(hn_ifp, m);
} else {
/*
* In the middle of the transition; free this
* mbuf chain.
*/
while (m != NULL) {
mn = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = mn;
}
}
}
static void
hn_mtu_change_fixup(struct hn_softc *sc)
{
struct ifnet *ifp;
HN_LOCK_ASSERT(sc);
ifp = sc->hn_ifp;
hn_set_tso_maxsize(sc, hn_tso_maxlen, ifp->if_mtu);
#if __FreeBSD_version >= 1100099
if (sc->hn_rx_ring[0].hn_lro.lro_length_lim < HN_LRO_LENLIM_MIN(ifp))
hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MIN(ifp));
#endif
}
static uint32_t
hn_rss_type_fromndis(uint32_t rss_hash)
{
uint32_t types = 0;
if (rss_hash & NDIS_HASH_IPV4)
types |= RSS_TYPE_IPV4;
if (rss_hash & NDIS_HASH_TCP_IPV4)
types |= RSS_TYPE_TCP_IPV4;
if (rss_hash & NDIS_HASH_IPV6)
types |= RSS_TYPE_IPV6;
if (rss_hash & NDIS_HASH_IPV6_EX)
types |= RSS_TYPE_IPV6_EX;
if (rss_hash & NDIS_HASH_TCP_IPV6)
types |= RSS_TYPE_TCP_IPV6;
if (rss_hash & NDIS_HASH_TCP_IPV6_EX)
types |= RSS_TYPE_TCP_IPV6_EX;
if (rss_hash & NDIS_HASH_UDP_IPV4_X)
types |= RSS_TYPE_UDP_IPV4;
return (types);
}
static uint32_t
hn_rss_type_tondis(uint32_t types)
{
uint32_t rss_hash = 0;
KASSERT((types & (RSS_TYPE_UDP_IPV6 | RSS_TYPE_UDP_IPV6_EX)) == 0,
("UDP6 and UDP6EX are not supported"));
if (types & RSS_TYPE_IPV4)
rss_hash |= NDIS_HASH_IPV4;
if (types & RSS_TYPE_TCP_IPV4)
rss_hash |= NDIS_HASH_TCP_IPV4;
if (types & RSS_TYPE_IPV6)
rss_hash |= NDIS_HASH_IPV6;
if (types & RSS_TYPE_IPV6_EX)
rss_hash |= NDIS_HASH_IPV6_EX;
if (types & RSS_TYPE_TCP_IPV6)
rss_hash |= NDIS_HASH_TCP_IPV6;
if (types & RSS_TYPE_TCP_IPV6_EX)
rss_hash |= NDIS_HASH_TCP_IPV6_EX;
if (types & RSS_TYPE_UDP_IPV4)
rss_hash |= NDIS_HASH_UDP_IPV4_X;
return (rss_hash);
}
static void
hn_rss_mbuf_hash(struct hn_softc *sc, uint32_t mbuf_hash)
{
int i;
HN_LOCK_ASSERT(sc);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_mbuf_hash = mbuf_hash;
}
static void
hn_vf_rss_fixup(struct hn_softc *sc, bool reconf)
{
struct ifnet *ifp, *vf_ifp;
struct ifrsshash ifrh;
struct ifrsskey ifrk;
int error;
uint32_t my_types, diff_types, mbuf_types = 0;
HN_LOCK_ASSERT(sc);
KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
("%s: synthetic parts are not attached", sc->hn_ifp->if_xname));
if (sc->hn_rx_ring_inuse == 1) {
/* No RSS on synthetic parts; done. */
return;
}
if ((sc->hn_rss_hcap & NDIS_HASH_FUNCTION_TOEPLITZ) == 0) {
/* Synthetic parts do not support Toeplitz; done. */
return;
}
ifp = sc->hn_ifp;
vf_ifp = sc->hn_vf_ifp;
/*
* Extract VF's RSS key. Only 40 bytes key for Toeplitz is
* supported.
*/
memset(&ifrk, 0, sizeof(ifrk));
strlcpy(ifrk.ifrk_name, vf_ifp->if_xname, sizeof(ifrk.ifrk_name));
error = vf_ifp->if_ioctl(vf_ifp, SIOCGIFRSSKEY, (caddr_t)&ifrk);
if (error) {
if_printf(ifp, "%s SIOCGIFRSSKEY failed: %d\n",
vf_ifp->if_xname, error);
goto done;
}
if (ifrk.ifrk_func != RSS_FUNC_TOEPLITZ) {
if_printf(ifp, "%s RSS function %u is not Toeplitz\n",
vf_ifp->if_xname, ifrk.ifrk_func);
goto done;
}
if (ifrk.ifrk_keylen != NDIS_HASH_KEYSIZE_TOEPLITZ) {
if_printf(ifp, "%s invalid RSS Toeplitz key length %d\n",
vf_ifp->if_xname, ifrk.ifrk_keylen);
goto done;
}
/*
* Extract VF's RSS hash. Only Toeplitz is supported.
*/
memset(&ifrh, 0, sizeof(ifrh));
strlcpy(ifrh.ifrh_name, vf_ifp->if_xname, sizeof(ifrh.ifrh_name));
error = vf_ifp->if_ioctl(vf_ifp, SIOCGIFRSSHASH, (caddr_t)&ifrh);
if (error) {
if_printf(ifp, "%s SIOCGRSSHASH failed: %d\n",
vf_ifp->if_xname, error);
goto done;
}
if (ifrh.ifrh_func != RSS_FUNC_TOEPLITZ) {
if_printf(ifp, "%s RSS function %u is not Toeplitz\n",
vf_ifp->if_xname, ifrh.ifrh_func);
goto done;
}
my_types = hn_rss_type_fromndis(sc->hn_rss_hcap);
if ((ifrh.ifrh_types & my_types) == 0) {
/* This disables RSS; ignore it then */
if_printf(ifp, "%s intersection of RSS types failed. "
"VF %#x, mine %#x\n", vf_ifp->if_xname,
ifrh.ifrh_types, my_types);
goto done;
}
diff_types = my_types ^ ifrh.ifrh_types;
my_types &= ifrh.ifrh_types;
mbuf_types = my_types;
/*
* Detect RSS hash value/type confliction.
*
* NOTE:
* We don't disable the hash type, but stop delivery the hash
* value/type through mbufs on RX path.
*
* XXX If HN_CAP_UDPHASH is set in hn_caps, then UDP 4-tuple
* hash is delivered with type of TCP_IPV4. This means if
* UDP_IPV4 is enabled, then TCP_IPV4 should be forced, at
* least to hn_mbuf_hash. However, given that _all_ of the
* NICs implement TCP_IPV4, this will _not_ impose any issues
* here.
*/
if ((my_types & RSS_TYPE_IPV4) &&
(diff_types & ifrh.ifrh_types &
(RSS_TYPE_TCP_IPV4 | RSS_TYPE_UDP_IPV4))) {
/* Conflict; disable IPV4 hash type/value delivery. */
if_printf(ifp, "disable IPV4 mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_IPV4;
}
if ((my_types & RSS_TYPE_IPV6) &&
(diff_types & ifrh.ifrh_types &
(RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 |
RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX |
RSS_TYPE_IPV6_EX))) {
/* Conflict; disable IPV6 hash type/value delivery. */
if_printf(ifp, "disable IPV6 mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_IPV6;
}
if ((my_types & RSS_TYPE_IPV6_EX) &&
(diff_types & ifrh.ifrh_types &
(RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 |
RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX |
RSS_TYPE_IPV6))) {
/* Conflict; disable IPV6_EX hash type/value delivery. */
if_printf(ifp, "disable IPV6_EX mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_IPV6_EX;
}
if ((my_types & RSS_TYPE_TCP_IPV6) &&
(diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6_EX)) {
/* Conflict; disable TCP_IPV6 hash type/value delivery. */
if_printf(ifp, "disable TCP_IPV6 mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_TCP_IPV6;
}
if ((my_types & RSS_TYPE_TCP_IPV6_EX) &&
(diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6)) {
/* Conflict; disable TCP_IPV6_EX hash type/value delivery. */
if_printf(ifp, "disable TCP_IPV6_EX mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_TCP_IPV6_EX;
}
if ((my_types & RSS_TYPE_UDP_IPV6) &&
(diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6_EX)) {
/* Conflict; disable UDP_IPV6 hash type/value delivery. */
if_printf(ifp, "disable UDP_IPV6 mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_UDP_IPV6;
}
if ((my_types & RSS_TYPE_UDP_IPV6_EX) &&
(diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6)) {
/* Conflict; disable UDP_IPV6_EX hash type/value delivery. */
if_printf(ifp, "disable UDP_IPV6_EX mbuf hash delivery\n");
mbuf_types &= ~RSS_TYPE_UDP_IPV6_EX;
}
/*
* Indirect table does not matter.
*/
sc->hn_rss_hash = (sc->hn_rss_hcap & NDIS_HASH_FUNCTION_MASK) |
hn_rss_type_tondis(my_types);
memcpy(sc->hn_rss.rss_key, ifrk.ifrk_key, sizeof(sc->hn_rss.rss_key));
sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
if (reconf) {
error = hn_rss_reconfig(sc);
if (error) {
/* XXX roll-back? */
if_printf(ifp, "hn_rss_reconfig failed: %d\n", error);
/* XXX keep going. */
}
}
done:
/* Hash deliverability for mbufs. */
hn_rss_mbuf_hash(sc, hn_rss_type_tondis(mbuf_types));
}
static void
hn_vf_rss_restore(struct hn_softc *sc)
{
HN_LOCK_ASSERT(sc);
KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
("%s: synthetic parts are not attached", sc->hn_ifp->if_xname));
if (sc->hn_rx_ring_inuse == 1)
goto done;
/*
* Restore hash types. Key does _not_ matter.
*/
if (sc->hn_rss_hash != sc->hn_rss_hcap) {
int error;
sc->hn_rss_hash = sc->hn_rss_hcap;
error = hn_rss_reconfig(sc);
if (error) {
if_printf(sc->hn_ifp, "hn_rss_reconfig failed: %d\n",
error);
/* XXX keep going. */
}
}
done:
/* Hash deliverability for mbufs. */
hn_rss_mbuf_hash(sc, NDIS_HASH_ALL);
}
static void
hn_xpnt_vf_setready(struct hn_softc *sc)
{
struct ifnet *ifp, *vf_ifp;
struct ifreq ifr;
HN_LOCK_ASSERT(sc);
ifp = sc->hn_ifp;
vf_ifp = sc->hn_vf_ifp;
/*
* Mark the VF ready.
*/
sc->hn_vf_rdytick = 0;
/*
* Save information for restoration.
*/
sc->hn_saved_caps = ifp->if_capabilities;
sc->hn_saved_tsomax = ifp->if_hw_tsomax;
sc->hn_saved_tsosegcnt = ifp->if_hw_tsomaxsegcount;
sc->hn_saved_tsosegsz = ifp->if_hw_tsomaxsegsize;
/*
* Intersect supported/enabled capabilities.
*
* NOTE:
* if_hwassist is not changed here.
*/
ifp->if_capabilities &= vf_ifp->if_capabilities;
ifp->if_capenable &= ifp->if_capabilities;
/*
* Fix TSO settings.
*/
if (ifp->if_hw_tsomax > vf_ifp->if_hw_tsomax)
ifp->if_hw_tsomax = vf_ifp->if_hw_tsomax;
if (ifp->if_hw_tsomaxsegcount > vf_ifp->if_hw_tsomaxsegcount)
ifp->if_hw_tsomaxsegcount = vf_ifp->if_hw_tsomaxsegcount;
if (ifp->if_hw_tsomaxsegsize > vf_ifp->if_hw_tsomaxsegsize)
ifp->if_hw_tsomaxsegsize = vf_ifp->if_hw_tsomaxsegsize;
/*
* Change VF's enabled capabilities.
*/
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name));
ifr.ifr_reqcap = ifp->if_capenable;
hn_xpnt_vf_iocsetcaps(sc, &ifr);
if (ifp->if_mtu != ETHERMTU) {
int error;
/*
* Change VF's MTU.
*/
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name));
ifr.ifr_mtu = ifp->if_mtu;
error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFMTU, (caddr_t)&ifr);
if (error) {
if_printf(ifp, "%s SIOCSIFMTU %u failed\n",
vf_ifp->if_xname, ifp->if_mtu);
if (ifp->if_mtu > ETHERMTU) {
if_printf(ifp, "change MTU to %d\n", ETHERMTU);
/*
* XXX
* No need to adjust the synthetic parts' MTU;
* failure of the adjustment will cause us
* infinite headache.
*/
ifp->if_mtu = ETHERMTU;
hn_mtu_change_fixup(sc);
}
}
}
}
static bool
hn_xpnt_vf_isready(struct hn_softc *sc)
{
HN_LOCK_ASSERT(sc);
if (!hn_xpnt_vf || sc->hn_vf_ifp == NULL)
return (false);
if (sc->hn_vf_rdytick == 0)
return (true);
if (sc->hn_vf_rdytick > ticks)
return (false);
/* Mark VF as ready. */
hn_xpnt_vf_setready(sc);
return (true);
}
static void
hn_xpnt_vf_setenable(struct hn_softc *sc)
{
int i;
HN_LOCK_ASSERT(sc);
/* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
rm_wlock(&sc->hn_vf_lock);
sc->hn_xvf_flags |= HN_XVFFLAG_ENABLED;
rm_wunlock(&sc->hn_vf_lock);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_XPNT_VF;
}
static void
hn_xpnt_vf_setdisable(struct hn_softc *sc, bool clear_vf)
{
int i;
HN_LOCK_ASSERT(sc);
/* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
rm_wlock(&sc->hn_vf_lock);
sc->hn_xvf_flags &= ~HN_XVFFLAG_ENABLED;
if (clear_vf)
sc->hn_vf_ifp = NULL;
rm_wunlock(&sc->hn_vf_lock);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_rx_flags &= ~HN_RX_FLAG_XPNT_VF;
}
static void
hn_xpnt_vf_init(struct hn_softc *sc)
{
int error;
HN_LOCK_ASSERT(sc);
KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0,
("%s: transparent VF was enabled", sc->hn_ifp->if_xname));
if (bootverbose) {
if_printf(sc->hn_ifp, "try bringing up %s\n",
sc->hn_vf_ifp->if_xname);
}
/*
* Bring the VF up.
*/
hn_xpnt_vf_saveifflags(sc);
sc->hn_vf_ifp->if_flags |= IFF_UP;
error = hn_xpnt_vf_iocsetflags(sc);
if (error) {
if_printf(sc->hn_ifp, "bringing up %s failed: %d\n",
sc->hn_vf_ifp->if_xname, error);
return;
}
/*
* NOTE:
* Datapath setting must happen _after_ bringing the VF up.
*/
hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF);
/*
* NOTE:
* Fixup RSS related bits _after_ the VF is brought up, since
* many VFs generate RSS key during it's initialization.
*/
hn_vf_rss_fixup(sc, true);
/* Mark transparent mode VF as enabled. */
hn_xpnt_vf_setenable(sc);
}
static void
hn_xpnt_vf_init_taskfunc(void *xsc, int pending __unused)
{
struct hn_softc *sc = xsc;
HN_LOCK(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
goto done;
if (sc->hn_vf_ifp == NULL)
goto done;
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
goto done;
if (sc->hn_vf_rdytick != 0) {
/* Mark VF as ready. */
hn_xpnt_vf_setready(sc);
}
if (sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Delayed VF initialization.
*/
if (bootverbose) {
if_printf(sc->hn_ifp, "delayed initialize %s\n",
sc->hn_vf_ifp->if_xname);
}
hn_xpnt_vf_init(sc);
}
done:
HN_UNLOCK(sc);
}
static void
hn_ifnet_attevent(void *xsc, struct ifnet *ifp)
{
struct hn_softc *sc = xsc;
HN_LOCK(sc);
if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
goto done;
if (!hn_ismyvf(sc, ifp))
goto done;
if (sc->hn_vf_ifp != NULL) {
if_printf(sc->hn_ifp, "%s was attached as VF\n",
sc->hn_vf_ifp->if_xname);
goto done;
}
if (hn_xpnt_vf && ifp->if_start != NULL) {
/*
* ifnet.if_start is _not_ supported by transparent
* mode VF; mainly due to the IFF_DRV_OACTIVE flag.
*/
if_printf(sc->hn_ifp, "%s uses if_start, which is unsupported "
"in transparent VF mode.\n", ifp->if_xname);
goto done;
}
rm_wlock(&hn_vfmap_lock);
if (ifp->if_index >= hn_vfmap_size) {
struct ifnet **newmap;
int newsize;
newsize = ifp->if_index + HN_VFMAP_SIZE_DEF;
newmap = malloc(sizeof(struct ifnet *) * newsize, M_DEVBUF,
M_WAITOK | M_ZERO);
memcpy(newmap, hn_vfmap,
sizeof(struct ifnet *) * hn_vfmap_size);
free(hn_vfmap, M_DEVBUF);
hn_vfmap = newmap;
hn_vfmap_size = newsize;
}
KASSERT(hn_vfmap[ifp->if_index] == NULL,
("%s: ifindex %d was mapped to %s",
ifp->if_xname, ifp->if_index, hn_vfmap[ifp->if_index]->if_xname));
hn_vfmap[ifp->if_index] = sc->hn_ifp;
rm_wunlock(&hn_vfmap_lock);
/* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */
rm_wlock(&sc->hn_vf_lock);
KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0,
("%s: transparent VF was enabled", sc->hn_ifp->if_xname));
sc->hn_vf_ifp = ifp;
rm_wunlock(&sc->hn_vf_lock);
if (hn_xpnt_vf) {
int wait_ticks;
/*
* Install if_input for vf_ifp, which does vf_ifp -> hn_ifp.
* Save vf_ifp's current if_input for later restoration.
*/
sc->hn_vf_input = ifp->if_input;
ifp->if_input = hn_xpnt_vf_input;
/*
* Stop link status management; use the VF's.
*/
hn_suspend_mgmt(sc);
/*
* Give VF sometime to complete its attach routing.
*/
wait_ticks = hn_xpnt_vf_attwait * hz;
sc->hn_vf_rdytick = ticks + wait_ticks;
taskqueue_enqueue_timeout(sc->hn_vf_taskq, &sc->hn_vf_init,
wait_ticks);
}
done:
HN_UNLOCK(sc);
}
static void
hn_ifnet_detevent(void *xsc, struct ifnet *ifp)
{
struct hn_softc *sc = xsc;
HN_LOCK(sc);
if (sc->hn_vf_ifp == NULL)
goto done;
if (!hn_ismyvf(sc, ifp))
goto done;
if (hn_xpnt_vf) {
/*
* Make sure that the delayed initialization is not running.
*
* NOTE:
* - This lock _must_ be released, since the hn_vf_init task
* will try holding this lock.
* - It is safe to release this lock here, since the
* hn_ifnet_attevent() is interlocked by the hn_vf_ifp.
*
* XXX racy, if hn(4) ever detached.
*/
HN_UNLOCK(sc);
taskqueue_drain_timeout(sc->hn_vf_taskq, &sc->hn_vf_init);
HN_LOCK(sc);
KASSERT(sc->hn_vf_input != NULL, ("%s VF input is not saved",
sc->hn_ifp->if_xname));
ifp->if_input = sc->hn_vf_input;
sc->hn_vf_input = NULL;
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) &&
(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED))
hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH);
if (sc->hn_vf_rdytick == 0) {
/*
* The VF was ready; restore some settings.
*/
sc->hn_ifp->if_capabilities = sc->hn_saved_caps;
/*
* NOTE:
* There is _no_ need to fixup if_capenable and
* if_hwassist, since the if_capabilities before
* restoration was an intersection of the VF's
* if_capabilites and the synthetic device's
* if_capabilites.
*/
sc->hn_ifp->if_hw_tsomax = sc->hn_saved_tsomax;
sc->hn_ifp->if_hw_tsomaxsegcount =
sc->hn_saved_tsosegcnt;
sc->hn_ifp->if_hw_tsomaxsegsize = sc->hn_saved_tsosegsz;
}
if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
/*
* Restore RSS settings.
*/
hn_vf_rss_restore(sc);
/*
* Resume link status management, which was suspended
* by hn_ifnet_attevent().
*/
hn_resume_mgmt(sc);
}
}
/* Mark transparent mode VF as disabled. */
hn_xpnt_vf_setdisable(sc, true /* clear hn_vf_ifp */);
rm_wlock(&hn_vfmap_lock);
KASSERT(ifp->if_index < hn_vfmap_size,
("ifindex %d, vfmapsize %d", ifp->if_index, hn_vfmap_size));
if (hn_vfmap[ifp->if_index] != NULL) {
KASSERT(hn_vfmap[ifp->if_index] == sc->hn_ifp,
("%s: ifindex %d was mapped to %s",
ifp->if_xname, ifp->if_index,
hn_vfmap[ifp->if_index]->if_xname));
hn_vfmap[ifp->if_index] = NULL;
}
rm_wunlock(&hn_vfmap_lock);
done:
HN_UNLOCK(sc);
}
static void
hn_ifnet_lnkevent(void *xsc, struct ifnet *ifp, int link_state)
{
struct hn_softc *sc = xsc;
if (sc->hn_vf_ifp == ifp)
if_link_state_change(sc->hn_ifp, link_state);
}
static int
hn_probe(device_t dev)
{
if (VMBUS_PROBE_GUID(device_get_parent(dev), dev, &hn_guid) == 0) {
device_set_desc(dev, "Hyper-V Network Interface");
return BUS_PROBE_DEFAULT;
}
return ENXIO;
}
static int
hn_attach(device_t dev)
{
struct hn_softc *sc = device_get_softc(dev);
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
uint8_t eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp = NULL;
int error, ring_cnt, tx_ring_cnt;
uint32_t mtu;
sc->hn_dev = dev;
sc->hn_prichan = vmbus_get_channel(dev);
HN_LOCK_INIT(sc);
rm_init(&sc->hn_vf_lock, "hnvf");
if (hn_xpnt_vf && hn_xpnt_vf_accbpf)
sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF;
/*
* Initialize these tunables once.
*/
sc->hn_agg_size = hn_tx_agg_size;
sc->hn_agg_pkts = hn_tx_agg_pkts;
/*
* Setup taskqueue for transmission.
*/
if (hn_tx_taskq_mode == HN_TX_TASKQ_M_INDEP) {
int i;
sc->hn_tx_taskqs =
malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *),
M_DEVBUF, M_WAITOK);
for (i = 0; i < hn_tx_taskq_cnt; ++i) {
sc->hn_tx_taskqs[i] = taskqueue_create("hn_tx",
M_WAITOK, taskqueue_thread_enqueue,
&sc->hn_tx_taskqs[i]);
taskqueue_start_threads(&sc->hn_tx_taskqs[i], 1, PI_NET,
"%s tx%d", device_get_nameunit(dev), i);
}
} else if (hn_tx_taskq_mode == HN_TX_TASKQ_M_GLOBAL) {
sc->hn_tx_taskqs = hn_tx_taskque;
}
/*
* Setup taskqueue for mangement tasks, e.g. link status.
*/
sc->hn_mgmt_taskq0 = taskqueue_create("hn_mgmt", M_WAITOK,
taskqueue_thread_enqueue, &sc->hn_mgmt_taskq0);
taskqueue_start_threads(&sc->hn_mgmt_taskq0, 1, PI_NET, "%s mgmt",
device_get_nameunit(dev));
TASK_INIT(&sc->hn_link_task, 0, hn_link_taskfunc, sc);
TASK_INIT(&sc->hn_netchg_init, 0, hn_netchg_init_taskfunc, sc);
TIMEOUT_TASK_INIT(sc->hn_mgmt_taskq0, &sc->hn_netchg_status, 0,
hn_netchg_status_taskfunc, sc);
if (hn_xpnt_vf) {
/*
* Setup taskqueue for VF tasks, e.g. delayed VF bringing up.
*/
sc->hn_vf_taskq = taskqueue_create("hn_vf", M_WAITOK,
taskqueue_thread_enqueue, &sc->hn_vf_taskq);
taskqueue_start_threads(&sc->hn_vf_taskq, 1, PI_NET, "%s vf",
device_get_nameunit(dev));
TIMEOUT_TASK_INIT(sc->hn_vf_taskq, &sc->hn_vf_init, 0,
hn_xpnt_vf_init_taskfunc, sc);
}
/*
* Allocate ifnet and setup its name earlier, so that if_printf
* can be used by functions, which will be called after
* ether_ifattach().
*/
ifp = sc->hn_ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
/*
* Initialize ifmedia earlier so that it can be unconditionally
* destroyed, if error happened later on.
*/
ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts);
/*
* Figure out the # of RX rings (ring_cnt) and the # of TX rings
* to use (tx_ring_cnt).
*
* NOTE:
* The # of RX rings to use is same as the # of channels to use.
*/
ring_cnt = hn_chan_cnt;
if (ring_cnt <= 0) {
/* Default */
ring_cnt = mp_ncpus;
if (ring_cnt > HN_RING_CNT_DEF_MAX)
ring_cnt = HN_RING_CNT_DEF_MAX;
} else if (ring_cnt > mp_ncpus) {
ring_cnt = mp_ncpus;
}
#ifdef RSS
if (ring_cnt > rss_getnumbuckets())
ring_cnt = rss_getnumbuckets();
#endif
tx_ring_cnt = hn_tx_ring_cnt;
if (tx_ring_cnt <= 0 || tx_ring_cnt > ring_cnt)
tx_ring_cnt = ring_cnt;
#ifdef HN_IFSTART_SUPPORT
if (hn_use_if_start) {
/* ifnet.if_start only needs one TX ring. */
tx_ring_cnt = 1;
}
#endif
/*
* Set the leader CPU for channels.
*/
sc->hn_cpu = atomic_fetchadd_int(&hn_cpu_index, ring_cnt) % mp_ncpus;
/*
* Create enough TX/RX rings, even if only limited number of
* channels can be allocated.
*/
error = hn_create_tx_data(sc, tx_ring_cnt);
if (error)
goto failed;
error = hn_create_rx_data(sc, ring_cnt);
if (error)
goto failed;
/*
* Create transaction context for NVS and RNDIS transactions.
*/
sc->hn_xact = vmbus_xact_ctx_create(bus_get_dma_tag(dev),
HN_XACT_REQ_SIZE, HN_XACT_RESP_SIZE, 0);
if (sc->hn_xact == NULL) {
error = ENXIO;
goto failed;
}
/*
* Install orphan handler for the revocation of this device's
* primary channel.
*
* NOTE:
* The processing order is critical here:
* Install the orphan handler, _before_ testing whether this
* device's primary channel has been revoked or not.
*/
vmbus_chan_set_orphan(sc->hn_prichan, sc->hn_xact);
if (vmbus_chan_is_revoked(sc->hn_prichan)) {
error = ENXIO;
goto failed;
}
/*
* Attach the synthetic parts, i.e. NVS and RNDIS.
*/
error = hn_synth_attach(sc, ETHERMTU);
if (error)
goto failed;
error = hn_rndis_get_eaddr(sc, eaddr);
if (error)
goto failed;
error = hn_rndis_get_mtu(sc, &mtu);
if (error)
mtu = ETHERMTU;
else if (bootverbose)
device_printf(dev, "RNDIS mtu %u\n", mtu);
#if __FreeBSD_version >= 1100099
if (sc->hn_rx_ring_inuse > 1) {
/*
* Reduce TCP segment aggregation limit for multiple
* RX rings to increase ACK timeliness.
*/
hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MULTIRX_DEF);
}
#endif
/*
* Fixup TX/RX stuffs after synthetic parts are attached.
*/
hn_fixup_tx_data(sc);
hn_fixup_rx_data(sc);
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "nvs_version", CTLFLAG_RD,
&sc->hn_nvs_ver, 0, "NVS version");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "ndis_version",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_ndis_version_sysctl, "A", "NDIS version");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "caps",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_caps_sysctl, "A", "capabilities");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "hwassist",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_hwassist_sysctl, "A", "hwassist");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_max",
CTLFLAG_RD, &ifp->if_hw_tsomax, 0, "max TSO size");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_maxsegcnt",
CTLFLAG_RD, &ifp->if_hw_tsomaxsegcount, 0,
"max # of TSO segments");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_maxsegsz",
CTLFLAG_RD, &ifp->if_hw_tsomaxsegsize, 0,
"max size of TSO segment");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxfilter",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_rxfilter_sysctl, "A", "rxfilter");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hash",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_rss_hash_sysctl, "A", "RSS hash");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hashcap",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_rss_hcap_sysctl, "A", "RSS hash capabilities");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "mbuf_hash",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_rss_mbuf_sysctl, "A", "RSS hash for mbufs");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rss_ind_size",
CTLFLAG_RD, &sc->hn_rss_ind_size, 0, "RSS indirect entry count");
#ifndef RSS
/*
* Don't allow RSS key/indirect table changes, if RSS is defined.
*/
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_key",
CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_rss_key_sysctl, "IU", "RSS key");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_ind",
CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_rss_ind_sysctl, "IU", "RSS indirect table");
#endif
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_size",
CTLFLAG_RD, &sc->hn_rndis_agg_size, 0,
"RNDIS offered packet transmission aggregation size limit");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_pkts",
CTLFLAG_RD, &sc->hn_rndis_agg_pkts, 0,
"RNDIS offered packet transmission aggregation count limit");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_align",
CTLFLAG_RD, &sc->hn_rndis_agg_align, 0,
"RNDIS packet transmission aggregation alignment");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_size",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_txagg_size_sysctl, "I",
"Packet transmission aggregation size, 0 -- disable, -1 -- auto");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pkts",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_txagg_pkts_sysctl, "I",
"Packet transmission aggregation packets, "
"0 -- disable, -1 -- auto");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "polling",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_polling_sysctl, "I",
"Polling frequency: [100,1000000], 0 disable polling");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_vf_sysctl, "A", "Virtual Function's name");
if (!hn_xpnt_vf) {
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxvf",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_rxvf_sysctl, "A", "activated Virtual Function's name");
} else {
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_enabled",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_xpnt_vf_enabled_sysctl, "I",
"Transparent VF enabled");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_accbpf",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_xpnt_vf_accbpf_sysctl, "I",
"Accurate BPF for transparent VF");
}
/*
* Setup the ifmedia, which has been initialized earlier.
*/
ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO);
/* XXX ifmedia_set really should do this for us */
sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media;
/*
* Setup the ifnet for this interface.
*/
ifp->if_baudrate = IF_Gbps(10);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = hn_ioctl;
ifp->if_init = hn_init;
#ifdef HN_IFSTART_SUPPORT
if (hn_use_if_start) {
int qdepth = hn_get_txswq_depth(&sc->hn_tx_ring[0]);
ifp->if_start = hn_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qdepth);
ifp->if_snd.ifq_drv_maxlen = qdepth - 1;
IFQ_SET_READY(&ifp->if_snd);
} else
#endif
{
ifp->if_transmit = hn_transmit;
ifp->if_qflush = hn_xmit_qflush;
}
ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_LRO | IFCAP_LINKSTATE;
#ifdef foo
/* We can't diff IPv6 packets from IPv4 packets on RX path. */
ifp->if_capabilities |= IFCAP_RXCSUM_IPV6;
#endif
if (sc->hn_caps & HN_CAP_VLAN) {
/* XXX not sure about VLAN_MTU. */
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
}
ifp->if_hwassist = sc->hn_tx_ring[0].hn_csum_assist;
if (ifp->if_hwassist & HN_CSUM_IP_MASK)
ifp->if_capabilities |= IFCAP_TXCSUM;
if (ifp->if_hwassist & HN_CSUM_IP6_MASK)
ifp->if_capabilities |= IFCAP_TXCSUM_IPV6;
if (sc->hn_caps & HN_CAP_TSO4) {
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_hwassist |= CSUM_IP_TSO;
}
if (sc->hn_caps & HN_CAP_TSO6) {
ifp->if_capabilities |= IFCAP_TSO6;
ifp->if_hwassist |= CSUM_IP6_TSO;
}
/* Enable all available capabilities by default. */
ifp->if_capenable = ifp->if_capabilities;
/*
* Disable IPv6 TSO and TXCSUM by default, they still can
* be enabled through SIOCSIFCAP.
*/
ifp->if_capenable &= ~(IFCAP_TXCSUM_IPV6 | IFCAP_TSO6);
ifp->if_hwassist &= ~(HN_CSUM_IP6_MASK | CSUM_IP6_TSO);
if (ifp->if_capabilities & (IFCAP_TSO6 | IFCAP_TSO4)) {
/*
* Lock hn_set_tso_maxsize() to simplify its
* internal logic.
*/
HN_LOCK(sc);
hn_set_tso_maxsize(sc, hn_tso_maxlen, ETHERMTU);
HN_UNLOCK(sc);
ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX;
ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
}
ether_ifattach(ifp, eaddr);
if ((ifp->if_capabilities & (IFCAP_TSO6 | IFCAP_TSO4)) && bootverbose) {
if_printf(ifp, "TSO segcnt %u segsz %u\n",
ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize);
}
if (mtu < ETHERMTU) {
if_printf(ifp, "fixup mtu %u -> %u\n", ifp->if_mtu, mtu);
ifp->if_mtu = mtu;
}
/* Inform the upper layer about the long frame support. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/*
* Kick off link status check.
*/
sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0;
hn_update_link_status(sc);
if (!hn_xpnt_vf) {
sc->hn_ifnet_evthand = EVENTHANDLER_REGISTER(ifnet_event,
hn_ifnet_event, sc, EVENTHANDLER_PRI_ANY);
sc->hn_ifaddr_evthand = EVENTHANDLER_REGISTER(ifaddr_event,
hn_ifaddr_event, sc, EVENTHANDLER_PRI_ANY);
} else {
sc->hn_ifnet_lnkhand = EVENTHANDLER_REGISTER(ifnet_link_event,
hn_ifnet_lnkevent, sc, EVENTHANDLER_PRI_ANY);
}
/*
* NOTE:
* Subscribe ether_ifattach event, instead of ifnet_arrival event,
* since interface's LLADDR is needed; interface LLADDR is not
* available when ifnet_arrival event is triggered.
*/
sc->hn_ifnet_atthand = EVENTHANDLER_REGISTER(ether_ifattach_event,
hn_ifnet_attevent, sc, EVENTHANDLER_PRI_ANY);
sc->hn_ifnet_dethand = EVENTHANDLER_REGISTER(ifnet_departure_event,
hn_ifnet_detevent, sc, EVENTHANDLER_PRI_ANY);
return (0);
failed:
if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED)
hn_synth_detach(sc);
hn_detach(dev);
return (error);
}
static int
hn_detach(device_t dev)
{
struct hn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->hn_ifp, *vf_ifp;
if (sc->hn_xact != NULL && vmbus_chan_is_revoked(sc->hn_prichan)) {
/*
* In case that the vmbus missed the orphan handler
* installation.
*/
vmbus_xact_ctx_orphan(sc->hn_xact);
}
if (sc->hn_ifaddr_evthand != NULL)
EVENTHANDLER_DEREGISTER(ifaddr_event, sc->hn_ifaddr_evthand);
if (sc->hn_ifnet_evthand != NULL)
EVENTHANDLER_DEREGISTER(ifnet_event, sc->hn_ifnet_evthand);
if (sc->hn_ifnet_atthand != NULL) {
EVENTHANDLER_DEREGISTER(ether_ifattach_event,
sc->hn_ifnet_atthand);
}
if (sc->hn_ifnet_dethand != NULL) {
EVENTHANDLER_DEREGISTER(ifnet_departure_event,
sc->hn_ifnet_dethand);
}
if (sc->hn_ifnet_lnkhand != NULL)
EVENTHANDLER_DEREGISTER(ifnet_link_event, sc->hn_ifnet_lnkhand);
vf_ifp = sc->hn_vf_ifp;
__compiler_membar();
if (vf_ifp != NULL)
hn_ifnet_detevent(sc, vf_ifp);
if (device_is_attached(dev)) {
HN_LOCK(sc);
if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
hn_stop(sc, true);
/*
* NOTE:
* hn_stop() only suspends data, so managment
* stuffs have to be suspended manually here.
*/
hn_suspend_mgmt(sc);
hn_synth_detach(sc);
}
HN_UNLOCK(sc);
ether_ifdetach(ifp);
}
ifmedia_removeall(&sc->hn_media);
hn_destroy_rx_data(sc);
hn_destroy_tx_data(sc);
if (sc->hn_tx_taskqs != NULL && sc->hn_tx_taskqs != hn_tx_taskque) {
int i;
for (i = 0; i < hn_tx_taskq_cnt; ++i)
taskqueue_free(sc->hn_tx_taskqs[i]);
free(sc->hn_tx_taskqs, M_DEVBUF);
}
taskqueue_free(sc->hn_mgmt_taskq0);
if (sc->hn_vf_taskq != NULL)
taskqueue_free(sc->hn_vf_taskq);
if (sc->hn_xact != NULL) {
/*
* Uninstall the orphan handler _before_ the xact is
* destructed.
*/
vmbus_chan_unset_orphan(sc->hn_prichan);
vmbus_xact_ctx_destroy(sc->hn_xact);
}
if_free(ifp);
HN_LOCK_DESTROY(sc);
rm_destroy(&sc->hn_vf_lock);
return (0);
}
static int
hn_shutdown(device_t dev)
{
return (0);
}
static void
hn_link_status(struct hn_softc *sc)
{
uint32_t link_status;
int error;
error = hn_rndis_get_linkstatus(sc, &link_status);
if (error) {
/* XXX what to do? */
return;
}
if (link_status == NDIS_MEDIA_STATE_CONNECTED)
sc->hn_link_flags |= HN_LINK_FLAG_LINKUP;
else
sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP;
if_link_state_change(sc->hn_ifp,
(sc->hn_link_flags & HN_LINK_FLAG_LINKUP) ?
LINK_STATE_UP : LINK_STATE_DOWN);
}
static void
hn_link_taskfunc(void *xsc, int pending __unused)
{
struct hn_softc *sc = xsc;
if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG)
return;
hn_link_status(sc);
}
static void
hn_netchg_init_taskfunc(void *xsc, int pending __unused)
{
struct hn_softc *sc = xsc;
/* Prevent any link status checks from running. */
sc->hn_link_flags |= HN_LINK_FLAG_NETCHG;
/*
* Fake up a [link down --> link up] state change; 5 seconds
* delay is used, which closely simulates miibus reaction
* upon link down event.
*/
sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP;
if_link_state_change(sc->hn_ifp, LINK_STATE_DOWN);
taskqueue_enqueue_timeout(sc->hn_mgmt_taskq0,
&sc->hn_netchg_status, 5 * hz);
}
static void
hn_netchg_status_taskfunc(void *xsc, int pending __unused)
{
struct hn_softc *sc = xsc;
/* Re-allow link status checks. */
sc->hn_link_flags &= ~HN_LINK_FLAG_NETCHG;
hn_link_status(sc);
}
static void
hn_update_link_status(struct hn_softc *sc)
{
if (sc->hn_mgmt_taskq != NULL)
taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_link_task);
}
static void
hn_change_network(struct hn_softc *sc)
{
if (sc->hn_mgmt_taskq != NULL)
taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_netchg_init);
}
static __inline int
hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd,
struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs)
{
struct mbuf *m = *m_head;
int error;
KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID, ("txd uses chim"));
error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap,
m, segs, nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
struct mbuf *m_new;
m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX);
if (m_new == NULL)
return ENOBUFS;
else
*m_head = m = m_new;
txr->hn_tx_collapsed++;
error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag,
txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT);
}
if (!error) {
bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap,
BUS_DMASYNC_PREWRITE);
txd->flags |= HN_TXD_FLAG_DMAMAP;
}
return error;
}
static __inline int
hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0,
("put an onlist txd %#x", txd->flags));
KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0,
("put an onagg txd %#x", txd->flags));
KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs));
if (atomic_fetchadd_int(&txd->refs, -1) != 1)
return 0;
if (!STAILQ_EMPTY(&txd->agg_list)) {
struct hn_txdesc *tmp_txd;
while ((tmp_txd = STAILQ_FIRST(&txd->agg_list)) != NULL) {
int freed;
KASSERT(STAILQ_EMPTY(&tmp_txd->agg_list),
("resursive aggregation on aggregated txdesc"));
KASSERT((tmp_txd->flags & HN_TXD_FLAG_ONAGG),
("not aggregated txdesc"));
KASSERT((tmp_txd->flags & HN_TXD_FLAG_DMAMAP) == 0,
("aggregated txdesc uses dmamap"));
KASSERT(tmp_txd->chim_index == HN_NVS_CHIM_IDX_INVALID,
("aggregated txdesc consumes "
"chimney sending buffer"));
KASSERT(tmp_txd->chim_size == 0,
("aggregated txdesc has non-zero "
"chimney sending size"));
STAILQ_REMOVE_HEAD(&txd->agg_list, agg_link);
tmp_txd->flags &= ~HN_TXD_FLAG_ONAGG;
freed = hn_txdesc_put(txr, tmp_txd);
KASSERT(freed, ("failed to free aggregated txdesc"));
}
}
if (txd->chim_index != HN_NVS_CHIM_IDX_INVALID) {
KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0,
("chim txd uses dmamap"));
hn_chim_free(txr->hn_sc, txd->chim_index);
txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
txd->chim_size = 0;
} else if (txd->flags & HN_TXD_FLAG_DMAMAP) {
bus_dmamap_sync(txr->hn_tx_data_dtag,
txd->data_dmap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->hn_tx_data_dtag,
txd->data_dmap);
txd->flags &= ~HN_TXD_FLAG_DMAMAP;
}
if (txd->m != NULL) {
m_freem(txd->m);
txd->m = NULL;
}
txd->flags |= HN_TXD_FLAG_ONLIST;
#ifndef HN_USE_TXDESC_BUFRING
mtx_lock_spin(&txr->hn_txlist_spin);
KASSERT(txr->hn_txdesc_avail >= 0 &&
txr->hn_txdesc_avail < txr->hn_txdesc_cnt,
("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail));
txr->hn_txdesc_avail++;
SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
mtx_unlock_spin(&txr->hn_txlist_spin);
#else /* HN_USE_TXDESC_BUFRING */
#ifdef HN_DEBUG
atomic_add_int(&txr->hn_txdesc_avail, 1);
#endif
buf_ring_enqueue(txr->hn_txdesc_br, txd);
#endif /* !HN_USE_TXDESC_BUFRING */
return 1;
}
static __inline struct hn_txdesc *
hn_txdesc_get(struct hn_tx_ring *txr)
{
struct hn_txdesc *txd;
#ifndef HN_USE_TXDESC_BUFRING
mtx_lock_spin(&txr->hn_txlist_spin);
txd = SLIST_FIRST(&txr->hn_txlist);
if (txd != NULL) {
KASSERT(txr->hn_txdesc_avail > 0,
("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail));
txr->hn_txdesc_avail--;
SLIST_REMOVE_HEAD(&txr->hn_txlist, link);
}
mtx_unlock_spin(&txr->hn_txlist_spin);
#else
txd = buf_ring_dequeue_sc(txr->hn_txdesc_br);
#endif
if (txd != NULL) {
#ifdef HN_USE_TXDESC_BUFRING
#ifdef HN_DEBUG
atomic_subtract_int(&txr->hn_txdesc_avail, 1);
#endif
#endif /* HN_USE_TXDESC_BUFRING */
KASSERT(txd->m == NULL && txd->refs == 0 &&
STAILQ_EMPTY(&txd->agg_list) &&
txd->chim_index == HN_NVS_CHIM_IDX_INVALID &&
txd->chim_size == 0 &&
(txd->flags & HN_TXD_FLAG_ONLIST) &&
(txd->flags & HN_TXD_FLAG_ONAGG) == 0 &&
(txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("invalid txd"));
txd->flags &= ~HN_TXD_FLAG_ONLIST;
txd->refs = 1;
}
return txd;
}
static __inline void
hn_txdesc_hold(struct hn_txdesc *txd)
{
/* 0->1 transition will never work */
KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs));
atomic_add_int(&txd->refs, 1);
}
static __inline void
hn_txdesc_agg(struct hn_txdesc *agg_txd, struct hn_txdesc *txd)
{
KASSERT((agg_txd->flags & HN_TXD_FLAG_ONAGG) == 0,
("recursive aggregation on aggregating txdesc"));
KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0,
("already aggregated"));
KASSERT(STAILQ_EMPTY(&txd->agg_list),
("recursive aggregation on to-be-aggregated txdesc"));
txd->flags |= HN_TXD_FLAG_ONAGG;
STAILQ_INSERT_TAIL(&agg_txd->agg_list, txd, agg_link);
}
static bool
hn_tx_ring_pending(struct hn_tx_ring *txr)
{
bool pending = false;
#ifndef HN_USE_TXDESC_BUFRING
mtx_lock_spin(&txr->hn_txlist_spin);
if (txr->hn_txdesc_avail != txr->hn_txdesc_cnt)
pending = true;
mtx_unlock_spin(&txr->hn_txlist_spin);
#else
if (!buf_ring_full(txr->hn_txdesc_br))
pending = true;
#endif
return (pending);
}
static __inline void
hn_txeof(struct hn_tx_ring *txr)
{
txr->hn_has_txeof = 0;
txr->hn_txeof(txr);
}
static void
hn_txpkt_done(struct hn_nvs_sendctx *sndc, struct hn_softc *sc,
struct vmbus_channel *chan, const void *data __unused, int dlen __unused)
{
struct hn_txdesc *txd = sndc->hn_cbarg;
struct hn_tx_ring *txr;
txr = txd->txr;
KASSERT(txr->hn_chan == chan,
("channel mismatch, on chan%u, should be chan%u",
vmbus_chan_id(chan), vmbus_chan_id(txr->hn_chan)));
txr->hn_has_txeof = 1;
hn_txdesc_put(txr, txd);
++txr->hn_txdone_cnt;
if (txr->hn_txdone_cnt >= HN_EARLY_TXEOF_THRESH) {
txr->hn_txdone_cnt = 0;
if (txr->hn_oactive)
hn_txeof(txr);
}
}
static void
hn_chan_rollup(struct hn_rx_ring *rxr, struct hn_tx_ring *txr)
{
#if defined(INET) || defined(INET6)
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
tcp_lro_flush_all(&rxr->hn_lro);
NET_EPOCH_EXIT(et);
#endif
/*
* NOTE:
* 'txr' could be NULL, if multiple channels and
* ifnet.if_start method are enabled.
*/
if (txr == NULL || !txr->hn_has_txeof)
return;
txr->hn_txdone_cnt = 0;
hn_txeof(txr);
}
static __inline uint32_t
hn_rndis_pktmsg_offset(uint32_t ofs)
{
KASSERT(ofs >= sizeof(struct rndis_packet_msg),
("invalid RNDIS packet msg offset %u", ofs));
return (ofs - __offsetof(struct rndis_packet_msg, rm_dataoffset));
}
static __inline void *
hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt, size_t pktsize,
size_t pi_dlen, uint32_t pi_type)
{
const size_t pi_size = HN_RNDIS_PKTINFO_SIZE(pi_dlen);
struct rndis_pktinfo *pi;
KASSERT((pi_size & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK) == 0,
("unaligned pktinfo size %zu, pktinfo dlen %zu", pi_size, pi_dlen));
/*
* Per-packet-info does not move; it only grows.
*
* NOTE:
* rm_pktinfooffset in this phase counts from the beginning
* of rndis_packet_msg.
*/
KASSERT(pkt->rm_pktinfooffset + pkt->rm_pktinfolen + pi_size <= pktsize,
("%u pktinfo overflows RNDIS packet msg", pi_type));
pi = (struct rndis_pktinfo *)((uint8_t *)pkt + pkt->rm_pktinfooffset +
pkt->rm_pktinfolen);
pkt->rm_pktinfolen += pi_size;
pi->rm_size = pi_size;
pi->rm_type = pi_type;
pi->rm_internal = 0;
pi->rm_pktinfooffset = RNDIS_PKTINFO_OFFSET;
return (pi->rm_data);
}
static __inline int
hn_flush_txagg(struct ifnet *ifp, struct hn_tx_ring *txr)
{
struct hn_txdesc *txd;
struct mbuf *m;
int error, pkts;
txd = txr->hn_agg_txd;
KASSERT(txd != NULL, ("no aggregate txdesc"));
/*
* Since hn_txpkt() will reset this temporary stat, save
* it now, so that oerrors can be updated properly, if
* hn_txpkt() ever fails.
*/
pkts = txr->hn_stat_pkts;
/*
* Since txd's mbuf will _not_ be freed upon hn_txpkt()
* failure, save it for later freeing, if hn_txpkt() ever
* fails.
*/
m = txd->m;
error = hn_txpkt(ifp, txr, txd);
if (__predict_false(error)) {
/* txd is freed, but m is not. */
m_freem(m);
txr->hn_flush_failed++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, pkts);
}
/* Reset all aggregation states. */
txr->hn_agg_txd = NULL;
txr->hn_agg_szleft = 0;
txr->hn_agg_pktleft = 0;
txr->hn_agg_prevpkt = NULL;
return (error);
}
static void *
hn_try_txagg(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd,
int pktsize)
{
void *chim;
if (txr->hn_agg_txd != NULL) {
if (txr->hn_agg_pktleft >= 1 && txr->hn_agg_szleft > pktsize) {
struct hn_txdesc *agg_txd = txr->hn_agg_txd;
struct rndis_packet_msg *pkt = txr->hn_agg_prevpkt;
int olen;
/*
* Update the previous RNDIS packet's total length,
* it can be increased due to the mandatory alignment
* padding for this RNDIS packet. And update the
* aggregating txdesc's chimney sending buffer size
* accordingly.
*
* XXX
* Zero-out the padding, as required by the RNDIS spec.
*/
olen = pkt->rm_len;
pkt->rm_len = roundup2(olen, txr->hn_agg_align);
agg_txd->chim_size += pkt->rm_len - olen;
/* Link this txdesc to the parent. */
hn_txdesc_agg(agg_txd, txd);
chim = (uint8_t *)pkt + pkt->rm_len;
/* Save the current packet for later fixup. */
txr->hn_agg_prevpkt = chim;
txr->hn_agg_pktleft--;
txr->hn_agg_szleft -= pktsize;
if (txr->hn_agg_szleft <=
HN_PKTSIZE_MIN(txr->hn_agg_align)) {
/*
* Probably can't aggregate more packets,
* flush this aggregating txdesc proactively.
*/
txr->hn_agg_pktleft = 0;
}
/* Done! */
return (chim);
}
hn_flush_txagg(ifp, txr);
}
KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
txr->hn_tx_chimney_tried++;
txd->chim_index = hn_chim_alloc(txr->hn_sc);
if (txd->chim_index == HN_NVS_CHIM_IDX_INVALID)
return (NULL);
txr->hn_tx_chimney++;
chim = txr->hn_sc->hn_chim +
(txd->chim_index * txr->hn_sc->hn_chim_szmax);
if (txr->hn_agg_pktmax > 1 &&
txr->hn_agg_szmax > pktsize + HN_PKTSIZE_MIN(txr->hn_agg_align)) {
txr->hn_agg_txd = txd;
txr->hn_agg_pktleft = txr->hn_agg_pktmax - 1;
txr->hn_agg_szleft = txr->hn_agg_szmax - pktsize;
txr->hn_agg_prevpkt = chim;
}
return (chim);
}
/*
* NOTE:
* If this function fails, then both txd and m_head0 will be freed.
*/
static int
hn_encap(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd,
struct mbuf **m_head0)
{
bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX];
int error, nsegs, i;
struct mbuf *m_head = *m_head0;
struct rndis_packet_msg *pkt;
uint32_t *pi_data;
void *chim = NULL;
int pkt_hlen, pkt_size;
pkt = txd->rndis_pkt;
pkt_size = HN_PKTSIZE(m_head, txr->hn_agg_align);
if (pkt_size < txr->hn_chim_size) {
chim = hn_try_txagg(ifp, txr, txd, pkt_size);
if (chim != NULL)
pkt = chim;
} else {
if (txr->hn_agg_txd != NULL)
hn_flush_txagg(ifp, txr);
}
pkt->rm_type = REMOTE_NDIS_PACKET_MSG;
pkt->rm_len = m_head->m_pkthdr.len;
pkt->rm_dataoffset = 0;
pkt->rm_datalen = m_head->m_pkthdr.len;
pkt->rm_oobdataoffset = 0;
pkt->rm_oobdatalen = 0;
pkt->rm_oobdataelements = 0;
pkt->rm_pktinfooffset = sizeof(*pkt);
pkt->rm_pktinfolen = 0;
pkt->rm_vchandle = 0;
pkt->rm_reserved = 0;
if (txr->hn_tx_flags & HN_TX_FLAG_HASHVAL) {
/*
* Set the hash value for this packet.
*/
pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
HN_NDIS_HASH_VALUE_SIZE, HN_NDIS_PKTINFO_TYPE_HASHVAL);
if (M_HASHTYPE_ISHASH(m_head))
/*
* The flowid field contains the hash value host
* set in the rx queue if it is a ip forwarding pkt.
* Set the same hash value so host can send on the
* cpu it was received.
*/
*pi_data = m_head->m_pkthdr.flowid;
else
/*
* Otherwise just put the tx queue index.
*/
*pi_data = txr->hn_tx_idx;
}
if (m_head->m_flags & M_VLANTAG) {
pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
NDIS_VLAN_INFO_SIZE, NDIS_PKTINFO_TYPE_VLAN);
*pi_data = NDIS_VLAN_INFO_MAKE(
EVL_VLANOFTAG(m_head->m_pkthdr.ether_vtag),
EVL_PRIOFTAG(m_head->m_pkthdr.ether_vtag),
EVL_CFIOFTAG(m_head->m_pkthdr.ether_vtag));
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
#if defined(INET6) || defined(INET)
pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
NDIS_LSO2_INFO_SIZE, NDIS_PKTINFO_TYPE_LSO);
#ifdef INET
if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) {
*pi_data = NDIS_LSO2_INFO_MAKEIPV4(
m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen,
m_head->m_pkthdr.tso_segsz);
}
#endif
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET6
{
*pi_data = NDIS_LSO2_INFO_MAKEIPV6(
m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen,
m_head->m_pkthdr.tso_segsz);
}
#endif
#endif /* INET6 || INET */
} else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) {
pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN,
NDIS_TXCSUM_INFO_SIZE, NDIS_PKTINFO_TYPE_CSUM);
if (m_head->m_pkthdr.csum_flags &
(CSUM_IP6_TCP | CSUM_IP6_UDP)) {
*pi_data = NDIS_TXCSUM_INFO_IPV6;
} else {
*pi_data = NDIS_TXCSUM_INFO_IPV4;
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
*pi_data |= NDIS_TXCSUM_INFO_IPCS;
}
if (m_head->m_pkthdr.csum_flags &
(CSUM_IP_TCP | CSUM_IP6_TCP)) {
*pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(
m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen);
} else if (m_head->m_pkthdr.csum_flags &
(CSUM_IP_UDP | CSUM_IP6_UDP)) {
*pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(
m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen);
}
}
pkt_hlen = pkt->rm_pktinfooffset + pkt->rm_pktinfolen;
/* Fixup RNDIS packet message total length */
pkt->rm_len += pkt_hlen;
/* Convert RNDIS packet message offsets */
pkt->rm_dataoffset = hn_rndis_pktmsg_offset(pkt_hlen);
pkt->rm_pktinfooffset = hn_rndis_pktmsg_offset(pkt->rm_pktinfooffset);
/*
* Fast path: Chimney sending.
*/
if (chim != NULL) {
struct hn_txdesc *tgt_txd = txd;
if (txr->hn_agg_txd != NULL) {
tgt_txd = txr->hn_agg_txd;
#ifdef INVARIANTS
*m_head0 = NULL;
#endif
}
KASSERT(pkt == chim,
("RNDIS pkt not in chimney sending buffer"));
KASSERT(tgt_txd->chim_index != HN_NVS_CHIM_IDX_INVALID,
("chimney sending buffer is not used"));
tgt_txd->chim_size += pkt->rm_len;
m_copydata(m_head, 0, m_head->m_pkthdr.len,
((uint8_t *)chim) + pkt_hlen);
txr->hn_gpa_cnt = 0;
txr->hn_sendpkt = hn_txpkt_chim;
goto done;
}
KASSERT(txr->hn_agg_txd == NULL, ("aggregating sglist txdesc"));
KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID,
("chimney buffer is used"));
KASSERT(pkt == txd->rndis_pkt, ("RNDIS pkt not in txdesc"));
error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs);
if (__predict_false(error)) {
int freed;
/*
* This mbuf is not linked w/ the txd yet, so free it now.
*/
m_freem(m_head);
*m_head0 = NULL;
freed = hn_txdesc_put(txr, txd);
KASSERT(freed != 0,
("fail to free txd upon txdma error"));
txr->hn_txdma_failed++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return error;
}
*m_head0 = m_head;
/* +1 RNDIS packet message */
txr->hn_gpa_cnt = nsegs + 1;
/* send packet with page buffer */
txr->hn_gpa[0].gpa_page = atop(txd->rndis_pkt_paddr);
txr->hn_gpa[0].gpa_ofs = txd->rndis_pkt_paddr & PAGE_MASK;
txr->hn_gpa[0].gpa_len = pkt_hlen;
/*
* Fill the page buffers with mbuf info after the page
* buffer for RNDIS packet message.
*/
for (i = 0; i < nsegs; ++i) {
struct vmbus_gpa *gpa = &txr->hn_gpa[i + 1];
gpa->gpa_page = atop(segs[i].ds_addr);
gpa->gpa_ofs = segs[i].ds_addr & PAGE_MASK;
gpa->gpa_len = segs[i].ds_len;
}
txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
txd->chim_size = 0;
txr->hn_sendpkt = hn_txpkt_sglist;
done:
txd->m = m_head;
/* Set the completion routine */
hn_nvs_sendctx_init(&txd->send_ctx, hn_txpkt_done, txd);
/* Update temporary stats for later use. */
txr->hn_stat_pkts++;
txr->hn_stat_size += m_head->m_pkthdr.len;
if (m_head->m_flags & M_MCAST)
txr->hn_stat_mcasts++;
return 0;
}
/*
* NOTE:
* If this function fails, then txd will be freed, but the mbuf
* associated w/ the txd will _not_ be freed.
*/
static int
hn_txpkt(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
int error, send_failed = 0, has_bpf;
again:
has_bpf = bpf_peers_present(ifp->if_bpf);
if (has_bpf) {
/*
* Make sure that this txd and any aggregated txds are not
* freed before ETHER_BPF_MTAP.
*/
hn_txdesc_hold(txd);
}
error = txr->hn_sendpkt(txr, txd);
if (!error) {
if (has_bpf) {
const struct hn_txdesc *tmp_txd;
ETHER_BPF_MTAP(ifp, txd->m);
STAILQ_FOREACH(tmp_txd, &txd->agg_list, agg_link)
ETHER_BPF_MTAP(ifp, tmp_txd->m);
}
if_inc_counter(ifp, IFCOUNTER_OPACKETS, txr->hn_stat_pkts);
#ifdef HN_IFSTART_SUPPORT
if (!hn_use_if_start)
#endif
{
if_inc_counter(ifp, IFCOUNTER_OBYTES,
txr->hn_stat_size);
if (txr->hn_stat_mcasts != 0) {
if_inc_counter(ifp, IFCOUNTER_OMCASTS,
txr->hn_stat_mcasts);
}
}
txr->hn_pkts += txr->hn_stat_pkts;
txr->hn_sends++;
}
if (has_bpf)
hn_txdesc_put(txr, txd);
if (__predict_false(error)) {
int freed;
/*
* This should "really rarely" happen.
*
* XXX Too many RX to be acked or too many sideband
* commands to run? Ask netvsc_channel_rollup()
* to kick start later.
*/
txr->hn_has_txeof = 1;
if (!send_failed) {
txr->hn_send_failed++;
send_failed = 1;
/*
* Try sending again after set hn_has_txeof;
* in case that we missed the last
* netvsc_channel_rollup().
*/
goto again;
}
if_printf(ifp, "send failed\n");
/*
* Caller will perform further processing on the
* associated mbuf, so don't free it in hn_txdesc_put();
* only unload it from the DMA map in hn_txdesc_put(),
* if it was loaded.
*/
txd->m = NULL;
freed = hn_txdesc_put(txr, txd);
KASSERT(freed != 0,
("fail to free txd upon send error"));
txr->hn_send_failed++;
}
/* Reset temporary stats, after this sending is done. */
txr->hn_stat_size = 0;
txr->hn_stat_pkts = 0;
txr->hn_stat_mcasts = 0;
return (error);
}
/*
* Append the specified data to the indicated mbuf chain,
* Extend the mbuf chain if the new data does not fit in
* existing space.
*
* This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c.
* There should be an equivalent in the kernel mbuf code,
* but there does not appear to be one yet.
*
* Differs from m_append() in that additional mbufs are
* allocated with cluster size MJUMPAGESIZE, and filled
* accordingly.
*
* Return the last mbuf in the chain or NULL if failed to
* allocate new mbuf.
*/
static struct mbuf *
hv_m_append(struct mbuf *m0, int len, c_caddr_t cp)
{
struct mbuf *m, *n;
int remainder, space;
for (m = m0; m->m_next != NULL; m = m->m_next)
;
remainder = len;
space = M_TRAILINGSPACE(m);
if (space > 0) {
/*
* Copy into available space.
*/
if (space > remainder)
space = remainder;
bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
m->m_len += space;
cp += space;
remainder -= space;
}
while (remainder > 0) {
/*
* Allocate a new mbuf; could check space
* and allocate a cluster instead.
*/
n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE);
if (n == NULL)
return NULL;
n->m_len = min(MJUMPAGESIZE, remainder);
bcopy(cp, mtod(n, caddr_t), n->m_len);
cp += n->m_len;
remainder -= n->m_len;
m->m_next = n;
m = n;
}
return m;
}
#if defined(INET) || defined(INET6)
static __inline int
hn_lro_rx(struct lro_ctrl *lc, struct mbuf *m)
{
#if __FreeBSD_version >= 1100095
if (hn_lro_mbufq_depth) {
tcp_lro_queue_mbuf(lc, m);
return 0;
}
#endif
return tcp_lro_rx(lc, m, 0);
}
#endif
static int
hn_rxpkt(struct hn_rx_ring *rxr)
{
struct ifnet *ifp, *hn_ifp = rxr->hn_ifp;
struct mbuf *m_new, *n;
int size, do_lro = 0, do_csum = 1, is_vf = 0;
int hash_type = M_HASHTYPE_NONE;
int l3proto = ETHERTYPE_MAX, l4proto = IPPROTO_DONE;
int i;
ifp = hn_ifp;
if (rxr->hn_rxvf_ifp != NULL) {
/*
* Non-transparent mode VF; pretend this packet is from
* the VF.
*/
ifp = rxr->hn_rxvf_ifp;
is_vf = 1;
} else if (rxr->hn_rx_flags & HN_RX_FLAG_XPNT_VF) {
/* Transparent mode VF. */
is_vf = 1;
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
/*
* NOTE:
* See the NOTE of hn_rndis_init_fixat(). This
* function can be reached, immediately after the
* RNDIS is initialized but before the ifnet is
* setup on the hn_attach() path; drop the unexpected
* packets.
*/
return (0);
}
if (__predict_false(rxr->rsc.pktlen < ETHER_HDR_LEN)) {
if_inc_counter(hn_ifp, IFCOUNTER_IERRORS, 1);
return (0);
}
if (rxr->rsc.cnt == 1 && rxr->rsc.pktlen <= MHLEN) {
m_new = m_gethdr(M_NOWAIT, MT_DATA);
if (m_new == NULL) {
if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
return (0);
}
memcpy(mtod(m_new, void *), rxr->rsc.frag_data[0],
rxr->rsc.frag_len[0]);
m_new->m_pkthdr.len = m_new->m_len = rxr->rsc.frag_len[0];
} else {
/*
* Get an mbuf with a cluster. For packets 2K or less,
* get a standard 2K cluster. For anything larger, get a
* 4K cluster. Any buffers larger than 4K can cause problems
* if looped around to the Hyper-V TX channel, so avoid them.
*/
size = MCLBYTES;
if (rxr->rsc.pktlen > MCLBYTES) {
/* 4096 */
size = MJUMPAGESIZE;
}
m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size);
if (m_new == NULL) {
if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
return (0);
}
n = m_new;
for (i = 0; i < rxr->rsc.cnt; i++) {
n = hv_m_append(n, rxr->rsc.frag_len[i],
rxr->rsc.frag_data[i]);
if (n == NULL) {
if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1);
return (0);
} else {
m_new->m_pkthdr.len += rxr->rsc.frag_len[i];
}
}
}
if (rxr->rsc.pktlen <= MHLEN)
rxr->hn_small_pkts++;
m_new->m_pkthdr.rcvif = ifp;
if (__predict_false((hn_ifp->if_capenable & IFCAP_RXCSUM) == 0))
do_csum = 0;
/* receive side checksum offload */
if (rxr->rsc.csum_info != NULL) {
/* IP csum offload */
if ((*(rxr->rsc.csum_info) & NDIS_RXCSUM_INFO_IPCS_OK) && do_csum) {
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID);
rxr->hn_csum_ip++;
}
/* TCP/UDP csum offload */
if ((*(rxr->rsc.csum_info) & (NDIS_RXCSUM_INFO_UDPCS_OK |
NDIS_RXCSUM_INFO_TCPCS_OK)) && do_csum) {
m_new->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
if (*(rxr->rsc.csum_info) & NDIS_RXCSUM_INFO_TCPCS_OK)
rxr->hn_csum_tcp++;
else
rxr->hn_csum_udp++;
}
/*
* XXX
* As of this write (Oct 28th, 2016), host side will turn
* on only TCPCS_OK and IPCS_OK even for UDP datagrams, so
* the do_lro setting here is actually _not_ accurate. We
* depend on the RSS hash type check to reset do_lro.
*/
if ((*(rxr->rsc.csum_info) &
(NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK)) ==
(NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK))
do_lro = 1;
} else {
hn_rxpkt_proto(m_new, &l3proto, &l4proto);
if (l3proto == ETHERTYPE_IP) {
if (l4proto == IPPROTO_TCP) {
if (do_csum &&
(rxr->hn_trust_hcsum &
HN_TRUST_HCSUM_TCP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
}
do_lro = 1;
} else if (l4proto == IPPROTO_UDP) {
if (do_csum &&
(rxr->hn_trust_hcsum &
HN_TRUST_HCSUM_UDP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
}
} else if (l4proto != IPPROTO_DONE && do_csum &&
(rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID);
}
}
}
if (rxr->rsc.vlan_info != NULL) {
m_new->m_pkthdr.ether_vtag = EVL_MAKETAG(
NDIS_VLAN_INFO_ID(*(rxr->rsc.vlan_info)),
NDIS_VLAN_INFO_PRI(*(rxr->rsc.vlan_info)),
NDIS_VLAN_INFO_CFI(*(rxr->rsc.vlan_info)));
m_new->m_flags |= M_VLANTAG;
}
/*
* If VF is activated (tranparent/non-transparent mode does not
* matter here).
*
* - Disable LRO
*
* hn(4) will only receive broadcast packets, multicast packets,
* TCP SYN and SYN|ACK (in Azure), LRO is useless for these
* packet types.
*
* For non-transparent, we definitely _cannot_ enable LRO at
* all, since the LRO flush will use hn(4) as the receiving
* interface; i.e. hn_ifp->if_input(hn_ifp, m).
*/
if (is_vf)
do_lro = 0;
/*
* If VF is activated (tranparent/non-transparent mode does not
* matter here), do _not_ mess with unsupported hash types or
* functions.
*/
if (rxr->rsc.hash_info != NULL) {
rxr->hn_rss_pkts++;
m_new->m_pkthdr.flowid = *(rxr->rsc.hash_value);
if (!is_vf)
hash_type = M_HASHTYPE_OPAQUE_HASH;
if ((*(rxr->rsc.hash_info) & NDIS_HASH_FUNCTION_MASK) ==
NDIS_HASH_FUNCTION_TOEPLITZ) {
uint32_t type = (*(rxr->rsc.hash_info) & NDIS_HASH_TYPE_MASK &
rxr->hn_mbuf_hash);
/*
* NOTE:
* do_lro is resetted, if the hash types are not TCP
* related. See the comment in the above csum_flags
* setup section.
*/
switch (type) {
case NDIS_HASH_IPV4:
hash_type = M_HASHTYPE_RSS_IPV4;
do_lro = 0;
break;
case NDIS_HASH_TCP_IPV4:
hash_type = M_HASHTYPE_RSS_TCP_IPV4;
if (rxr->hn_rx_flags & HN_RX_FLAG_UDP_HASH) {
int def_htype = M_HASHTYPE_OPAQUE_HASH;
if (is_vf)
def_htype = M_HASHTYPE_NONE;
/*
* UDP 4-tuple hash is delivered as
* TCP 4-tuple hash.
*/
if (l3proto == ETHERTYPE_MAX) {
hn_rxpkt_proto(m_new,
&l3proto, &l4proto);
}
if (l3proto == ETHERTYPE_IP) {
if (l4proto == IPPROTO_UDP &&
(rxr->hn_mbuf_hash &
NDIS_HASH_UDP_IPV4_X)) {
hash_type =
M_HASHTYPE_RSS_UDP_IPV4;
do_lro = 0;
} else if (l4proto !=
IPPROTO_TCP) {
hash_type = def_htype;
do_lro = 0;
}
} else {
hash_type = def_htype;
do_lro = 0;
}
}
break;
case NDIS_HASH_IPV6:
hash_type = M_HASHTYPE_RSS_IPV6;
do_lro = 0;
break;
case NDIS_HASH_IPV6_EX:
hash_type = M_HASHTYPE_RSS_IPV6_EX;
do_lro = 0;
break;
case NDIS_HASH_TCP_IPV6:
hash_type = M_HASHTYPE_RSS_TCP_IPV6;
break;
case NDIS_HASH_TCP_IPV6_EX:
hash_type = M_HASHTYPE_RSS_TCP_IPV6_EX;
break;
}
}
} else if (!is_vf) {
m_new->m_pkthdr.flowid = rxr->hn_rx_idx;
hash_type = M_HASHTYPE_OPAQUE;
}
M_HASHTYPE_SET(m_new, hash_type);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if (hn_ifp != ifp) {
const struct ether_header *eh;
/*
* Non-transparent mode VF is activated.
*/
/*
* Allow tapping on hn(4).
*/
ETHER_BPF_MTAP(hn_ifp, m_new);
/*
* Update hn(4)'s stats.
*/
if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1);
if_inc_counter(hn_ifp, IFCOUNTER_IBYTES, m_new->m_pkthdr.len);
/* Checked at the beginning of this function. */
KASSERT(m_new->m_len >= ETHER_HDR_LEN, ("not ethernet frame"));
eh = mtod(m_new, struct ether_header *);
if (ETHER_IS_MULTICAST(eh->ether_dhost))
if_inc_counter(hn_ifp, IFCOUNTER_IMCASTS, 1);
}
rxr->hn_pkts++;
if ((hn_ifp->if_capenable & IFCAP_LRO) && do_lro) {
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxr->hn_lro;
if (lro->lro_cnt) {
rxr->hn_lro_tried++;
if (hn_lro_rx(lro, m_new) == 0) {
/* DONE! */
return 0;
}
}
#endif
}
ifp->if_input(ifp, m_new);
return (0);
}
static int
hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct hn_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data, ifr_vf;
struct ifnet *vf_ifp;
int mask, error = 0;
struct ifrsskey *ifrk;
struct ifrsshash *ifrh;
uint32_t mtu;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > HN_MTU_MAX) {
error = EINVAL;
break;
}
HN_LOCK(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
HN_UNLOCK(sc);
break;
}
if ((sc->hn_caps & HN_CAP_MTU) == 0) {
/* Can't change MTU */
HN_UNLOCK(sc);
error = EOPNOTSUPP;
break;
}
if (ifp->if_mtu == ifr->ifr_mtu) {
HN_UNLOCK(sc);
break;
}
if (hn_xpnt_vf_isready(sc)) {
vf_ifp = sc->hn_vf_ifp;
ifr_vf = *ifr;
strlcpy(ifr_vf.ifr_name, vf_ifp->if_xname,
sizeof(ifr_vf.ifr_name));
error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFMTU,
(caddr_t)&ifr_vf);
if (error) {
HN_UNLOCK(sc);
if_printf(ifp, "%s SIOCSIFMTU %d failed: %d\n",
vf_ifp->if_xname, ifr->ifr_mtu, error);
break;
}
}
/*
* Suspend this interface before the synthetic parts
* are ripped.
*/
hn_suspend(sc);
/*
* Detach the synthetics parts, i.e. NVS and RNDIS.
*/
hn_synth_detach(sc);
/*
* Reattach the synthetic parts, i.e. NVS and RNDIS,
* with the new MTU setting.
*/
error = hn_synth_attach(sc, ifr->ifr_mtu);
if (error) {
HN_UNLOCK(sc);
break;
}
error = hn_rndis_get_mtu(sc, &mtu);
if (error)
mtu = ifr->ifr_mtu;
else if (bootverbose)
if_printf(ifp, "RNDIS mtu %u\n", mtu);
/*
* Commit the requested MTU, after the synthetic parts
* have been successfully attached.
*/
if (mtu >= ifr->ifr_mtu) {
mtu = ifr->ifr_mtu;
} else {
if_printf(ifp, "fixup mtu %d -> %u\n",
ifr->ifr_mtu, mtu);
}
ifp->if_mtu = mtu;
/*
* Synthetic parts' reattach may change the chimney
* sending size; update it.
*/
if (sc->hn_tx_ring[0].hn_chim_size > sc->hn_chim_szmax)
hn_set_chim_size(sc, sc->hn_chim_szmax);
/*
* Make sure that various parameters based on MTU are
* still valid, after the MTU change.
*/
hn_mtu_change_fixup(sc);
/*
* All done! Resume the interface now.
*/
hn_resume(sc);
if ((sc->hn_flags & HN_FLAG_RXVF) ||
(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
/*
* Since we have reattached the NVS part,
* change the datapath to VF again; in case
* that it is lost, after the NVS was detached.
*/
hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF);
}
HN_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
HN_LOCK(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
HN_UNLOCK(sc);
break;
}
if (hn_xpnt_vf_isready(sc))
hn_xpnt_vf_saveifflags(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Caller meight hold mutex, e.g.
* bpf; use busy-wait for the RNDIS
* reply.
*/
HN_NO_SLEEPING(sc);
hn_rxfilter_config(sc);
HN_SLEEPING_OK(sc);
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
error = hn_xpnt_vf_iocsetflags(sc);
} else {
hn_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
hn_stop(sc, false);
}
sc->hn_if_flags = ifp->if_flags;
HN_UNLOCK(sc);
break;
case SIOCSIFCAP:
HN_LOCK(sc);
if (hn_xpnt_vf_isready(sc)) {
ifr_vf = *ifr;
strlcpy(ifr_vf.ifr_name, sc->hn_vf_ifp->if_xname,
sizeof(ifr_vf.ifr_name));
error = hn_xpnt_vf_iocsetcaps(sc, &ifr_vf);
HN_UNLOCK(sc);
break;
}
/*
* Fix up requested capabilities w/ supported capabilities,
* since the supported capabilities could have been changed.
*/
mask = (ifr->ifr_reqcap & ifp->if_capabilities) ^
ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= HN_CSUM_IP_HWASSIST(sc);
else
ifp->if_hwassist &= ~HN_CSUM_IP_HWASSIST(sc);
}
if (mask & IFCAP_TXCSUM_IPV6) {
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= HN_CSUM_IP6_HWASSIST(sc);
else
ifp->if_hwassist &= ~HN_CSUM_IP6_HWASSIST(sc);
}
/* TODO: flip RNDIS offload parameters for RXCSUM. */
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
#ifdef foo
/* We can't diff IPv6 packets from IPv4 packets on RX path. */
if (mask & IFCAP_RXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
#endif
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_IP_TSO;
else
ifp->if_hwassist &= ~CSUM_IP_TSO;
}
if (mask & IFCAP_TSO6) {
ifp->if_capenable ^= IFCAP_TSO6;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_IP6_TSO;
else
ifp->if_hwassist &= ~CSUM_IP6_TSO;
}
HN_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
HN_LOCK(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) {
HN_UNLOCK(sc);
break;
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Multicast uses mutex; use busy-wait for
* the RNDIS reply.
*/
HN_NO_SLEEPING(sc);
hn_rxfilter_config(sc);
HN_SLEEPING_OK(sc);
}
/* XXX vlan(4) style mcast addr maintenance */
if (hn_xpnt_vf_isready(sc)) {
int old_if_flags;
old_if_flags = sc->hn_vf_ifp->if_flags;
hn_xpnt_vf_saveifflags(sc);
if ((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) &&
((old_if_flags ^ sc->hn_vf_ifp->if_flags) &
IFF_ALLMULTI))
error = hn_xpnt_vf_iocsetflags(sc);
}
HN_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
HN_LOCK(sc);
if (hn_xpnt_vf_isready(sc)) {
/*
* SIOCGIFMEDIA expects ifmediareq, so don't
* create and pass ifr_vf to the VF here; just
* replace the ifr_name.
*/
vf_ifp = sc->hn_vf_ifp;
strlcpy(ifr->ifr_name, vf_ifp->if_xname,
sizeof(ifr->ifr_name));
error = vf_ifp->if_ioctl(vf_ifp, cmd, data);
/* Restore the ifr_name. */
strlcpy(ifr->ifr_name, ifp->if_xname,
sizeof(ifr->ifr_name));
HN_UNLOCK(sc);
break;
}
HN_UNLOCK(sc);
error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd);
break;
case SIOCGIFRSSHASH:
ifrh = (struct ifrsshash *)data;
HN_LOCK(sc);
if (sc->hn_rx_ring_inuse == 1) {
HN_UNLOCK(sc);
ifrh->ifrh_func = RSS_FUNC_NONE;
ifrh->ifrh_types = 0;
break;
}
if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ)
ifrh->ifrh_func = RSS_FUNC_TOEPLITZ;
else
ifrh->ifrh_func = RSS_FUNC_PRIVATE;
ifrh->ifrh_types = hn_rss_type_fromndis(sc->hn_rss_hash);
HN_UNLOCK(sc);
break;
case SIOCGIFRSSKEY:
ifrk = (struct ifrsskey *)data;
HN_LOCK(sc);
if (sc->hn_rx_ring_inuse == 1) {
HN_UNLOCK(sc);
ifrk->ifrk_func = RSS_FUNC_NONE;
ifrk->ifrk_keylen = 0;
break;
}
if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ)
ifrk->ifrk_func = RSS_FUNC_TOEPLITZ;
else
ifrk->ifrk_func = RSS_FUNC_PRIVATE;
ifrk->ifrk_keylen = NDIS_HASH_KEYSIZE_TOEPLITZ;
memcpy(ifrk->ifrk_key, sc->hn_rss.rss_key,
NDIS_HASH_KEYSIZE_TOEPLITZ);
HN_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
hn_stop(struct hn_softc *sc, bool detaching)
{
struct ifnet *ifp = sc->hn_ifp;
int i;
HN_LOCK_ASSERT(sc);
KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
("synthetic parts were not attached"));
/* Clear RUNNING bit ASAP. */
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_RUNNING);
/* Disable polling. */
hn_polling(sc, 0);
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) {
KASSERT(sc->hn_vf_ifp != NULL,
("%s: VF is not attached", ifp->if_xname));
/* Mark transparent mode VF as disabled. */
hn_xpnt_vf_setdisable(sc, false /* keep hn_vf_ifp */);
/*
* NOTE:
* Datapath setting must happen _before_ bringing
* the VF down.
*/
hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH);
/*
* Bring the VF down.
*/
hn_xpnt_vf_saveifflags(sc);
sc->hn_vf_ifp->if_flags &= ~IFF_UP;
hn_xpnt_vf_iocsetflags(sc);
}
/* Suspend data transfers. */
hn_suspend_data(sc);
/* Clear OACTIVE bit. */
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
sc->hn_tx_ring[i].hn_oactive = 0;
/*
* If the non-transparent mode VF is active, make sure
* that the RX filter still allows packet reception.
*/
if (!detaching && (sc->hn_flags & HN_FLAG_RXVF))
hn_rxfilter_config(sc);
}
static void
hn_init_locked(struct hn_softc *sc)
{
struct ifnet *ifp = sc->hn_ifp;
int i;
HN_LOCK_ASSERT(sc);
if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0)
return;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Configure RX filter */
hn_rxfilter_config(sc);
/* Clear OACTIVE bit. */
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
sc->hn_tx_ring[i].hn_oactive = 0;
/* Clear TX 'suspended' bit. */
hn_resume_tx(sc, sc->hn_tx_ring_inuse);
if (hn_xpnt_vf_isready(sc)) {
/* Initialize transparent VF. */
hn_xpnt_vf_init(sc);
}
/* Everything is ready; unleash! */
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING);
/* Re-enable polling if requested. */
if (sc->hn_pollhz > 0)
hn_polling(sc, sc->hn_pollhz);
}
static void
hn_init(void *xsc)
{
struct hn_softc *sc = xsc;
HN_LOCK(sc);
hn_init_locked(sc);
HN_UNLOCK(sc);
}
#if __FreeBSD_version >= 1100099
static int
hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
unsigned int lenlim;
int error;
lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim;
error = sysctl_handle_int(oidp, &lenlim, 0, req);
if (error || req->newptr == NULL)
return error;
HN_LOCK(sc);
if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) ||
lenlim > TCP_LRO_LENGTH_MAX) {
HN_UNLOCK(sc);
return EINVAL;
}
hn_set_lro_lenlim(sc, lenlim);
HN_UNLOCK(sc);
return 0;
}
static int
hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ackcnt, error, i;
/*
* lro_ackcnt_lim is append count limit,
* +1 to turn it into aggregation limit.
*/
ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1;
error = sysctl_handle_int(oidp, &ackcnt, 0, req);
if (error || req->newptr == NULL)
return error;
if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1))
return EINVAL;
/*
* Convert aggregation limit back to append
* count limit.
*/
--ackcnt;
HN_LOCK(sc);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt;
HN_UNLOCK(sc);
return 0;
}
#endif
static int
hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int hcsum = arg2;
int on, error, i;
on = 0;
if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum)
on = 1;
error = sysctl_handle_int(oidp, &on, 0, req);
if (error || req->newptr == NULL)
return error;
HN_LOCK(sc);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
if (on)
rxr->hn_trust_hcsum |= hcsum;
else
rxr->hn_trust_hcsum &= ~hcsum;
}
HN_UNLOCK(sc);
return 0;
}
static int
hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int chim_size, error;
chim_size = sc->hn_tx_ring[0].hn_chim_size;
error = sysctl_handle_int(oidp, &chim_size, 0, req);
if (error || req->newptr == NULL)
return error;
if (chim_size > sc->hn_chim_szmax || chim_size <= 0)
return EINVAL;
HN_LOCK(sc);
hn_set_chim_size(sc, chim_size);
HN_UNLOCK(sc);
return 0;
}
#if __FreeBSD_version < 1100095
static int
hn_rx_stat_int_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_rx_ring *rxr;
uint64_t stat;
stat = 0;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
stat += *((int *)((uint8_t *)rxr + ofs));
}
error = sysctl_handle_64(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
*((int *)((uint8_t *)rxr + ofs)) = 0;
}
return 0;
}
#else
static int
hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_rx_ring *rxr;
uint64_t stat;
stat = 0;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
stat += *((uint64_t *)((uint8_t *)rxr + ofs));
}
error = sysctl_handle_64(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
*((uint64_t *)((uint8_t *)rxr + ofs)) = 0;
}
return 0;
}
#endif
static int
hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_rx_ring *rxr;
u_long stat;
stat = 0;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
stat += *((u_long *)((uint8_t *)rxr + ofs));
}
error = sysctl_handle_long(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
rxr = &sc->hn_rx_ring[i];
*((u_long *)((uint8_t *)rxr + ofs)) = 0;
}
return 0;
}
static int
hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_tx_ring *txr;
u_long stat;
stat = 0;
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
txr = &sc->hn_tx_ring[i];
stat += *((u_long *)((uint8_t *)txr + ofs));
}
error = sysctl_handle_long(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
txr = &sc->hn_tx_ring[i];
*((u_long *)((uint8_t *)txr + ofs)) = 0;
}
return 0;
}
static int
hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error, conf;
struct hn_tx_ring *txr;
txr = &sc->hn_tx_ring[0];
conf = *((int *)((uint8_t *)txr + ofs));
error = sysctl_handle_int(oidp, &conf, 0, req);
if (error || req->newptr == NULL)
return error;
HN_LOCK(sc);
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
txr = &sc->hn_tx_ring[i];
*((int *)((uint8_t *)txr + ofs)) = conf;
}
HN_UNLOCK(sc);
return 0;
}
static int
hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int error, size;
size = sc->hn_agg_size;
error = sysctl_handle_int(oidp, &size, 0, req);
if (error || req->newptr == NULL)
return (error);
HN_LOCK(sc);
sc->hn_agg_size = size;
hn_set_txagg(sc);
HN_UNLOCK(sc);
return (0);
}
static int
hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int error, pkts;
pkts = sc->hn_agg_pkts;
error = sysctl_handle_int(oidp, &pkts, 0, req);
if (error || req->newptr == NULL)
return (error);
HN_LOCK(sc);
sc->hn_agg_pkts = pkts;
hn_set_txagg(sc);
HN_UNLOCK(sc);
return (0);
}
static int
hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int pkts;
pkts = sc->hn_tx_ring[0].hn_agg_pktmax;
return (sysctl_handle_int(oidp, &pkts, 0, req));
}
static int
hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int align;
align = sc->hn_tx_ring[0].hn_agg_align;
return (sysctl_handle_int(oidp, &align, 0, req));
}
static void
hn_chan_polling(struct vmbus_channel *chan, u_int pollhz)
{
if (pollhz == 0)
vmbus_chan_poll_disable(chan);
else
vmbus_chan_poll_enable(chan, pollhz);
}
static void
hn_polling(struct hn_softc *sc, u_int pollhz)
{
int nsubch = sc->hn_rx_ring_inuse - 1;
HN_LOCK_ASSERT(sc);
if (nsubch > 0) {
struct vmbus_channel **subch;
int i;
subch = vmbus_subchan_get(sc->hn_prichan, nsubch);
for (i = 0; i < nsubch; ++i)
hn_chan_polling(subch[i], pollhz);
vmbus_subchan_rel(subch, nsubch);
}
hn_chan_polling(sc->hn_prichan, pollhz);
}
static int
hn_polling_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int pollhz, error;
pollhz = sc->hn_pollhz;
error = sysctl_handle_int(oidp, &pollhz, 0, req);
if (error || req->newptr == NULL)
return (error);
if (pollhz != 0 &&
(pollhz < VMBUS_CHAN_POLLHZ_MIN || pollhz > VMBUS_CHAN_POLLHZ_MAX))
return (EINVAL);
HN_LOCK(sc);
if (sc->hn_pollhz != pollhz) {
sc->hn_pollhz = pollhz;
if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED))
hn_polling(sc, sc->hn_pollhz);
}
HN_UNLOCK(sc);
return (0);
}
static int
hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char verstr[16];
snprintf(verstr, sizeof(verstr), "%u.%u",
HN_NDIS_VERSION_MAJOR(sc->hn_ndis_ver),
HN_NDIS_VERSION_MINOR(sc->hn_ndis_ver));
return sysctl_handle_string(oidp, verstr, sizeof(verstr), req);
}
static int
hn_caps_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char caps_str[128];
uint32_t caps;
HN_LOCK(sc);
caps = sc->hn_caps;
HN_UNLOCK(sc);
snprintf(caps_str, sizeof(caps_str), "%b", caps, HN_CAP_BITS);
return sysctl_handle_string(oidp, caps_str, sizeof(caps_str), req);
}
static int
hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char assist_str[128];
uint32_t hwassist;
HN_LOCK(sc);
hwassist = sc->hn_ifp->if_hwassist;
HN_UNLOCK(sc);
snprintf(assist_str, sizeof(assist_str), "%b", hwassist, CSUM_BITS);
return sysctl_handle_string(oidp, assist_str, sizeof(assist_str), req);
}
static int
hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char filter_str[128];
uint32_t filter;
HN_LOCK(sc);
filter = sc->hn_rx_filter;
HN_UNLOCK(sc);
snprintf(filter_str, sizeof(filter_str), "%b", filter,
NDIS_PACKET_TYPES);
return sysctl_handle_string(oidp, filter_str, sizeof(filter_str), req);
}
#ifndef RSS
static int
hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int error;
HN_LOCK(sc);
error = SYSCTL_OUT(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key));
if (error || req->newptr == NULL)
goto back;
if ((sc->hn_flags & HN_FLAG_RXVF) ||
(hn_xpnt_vf && sc->hn_vf_ifp != NULL)) {
/*
* RSS key is synchronized w/ VF's, don't allow users
* to change it.
*/
error = EBUSY;
goto back;
}
error = SYSCTL_IN(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key));
if (error)
goto back;
sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
if (sc->hn_rx_ring_inuse > 1) {
error = hn_rss_reconfig(sc);
} else {
/* Not RSS capable, at least for now; just save the RSS key. */
error = 0;
}
back:
HN_UNLOCK(sc);
return (error);
}
static int
hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int error;
HN_LOCK(sc);
error = SYSCTL_OUT(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind));
if (error || req->newptr == NULL)
goto back;
/*
* Don't allow RSS indirect table change, if this interface is not
* RSS capable currently.
*/
if (sc->hn_rx_ring_inuse == 1) {
error = EOPNOTSUPP;
goto back;
}
error = SYSCTL_IN(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind));
if (error)
goto back;
sc->hn_flags |= HN_FLAG_HAS_RSSIND;
hn_rss_ind_fixup(sc);
error = hn_rss_reconfig(sc);
back:
HN_UNLOCK(sc);
return (error);
}
#endif /* !RSS */
static int
hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char hash_str[128];
uint32_t hash;
HN_LOCK(sc);
hash = sc->hn_rss_hash;
HN_UNLOCK(sc);
snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
}
static int
hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char hash_str[128];
uint32_t hash;
HN_LOCK(sc);
hash = sc->hn_rss_hcap;
HN_UNLOCK(sc);
snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
}
static int
hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char hash_str[128];
uint32_t hash;
HN_LOCK(sc);
hash = sc->hn_rx_ring[0].hn_mbuf_hash;
HN_UNLOCK(sc);
snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS);
return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req);
}
static int
hn_vf_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char vf_name[IFNAMSIZ + 1];
struct ifnet *vf_ifp;
HN_LOCK(sc);
vf_name[0] = '\0';
vf_ifp = sc->hn_vf_ifp;
if (vf_ifp != NULL)
snprintf(vf_name, sizeof(vf_name), "%s", vf_ifp->if_xname);
HN_UNLOCK(sc);
return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req);
}
static int
hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
char vf_name[IFNAMSIZ + 1];
struct ifnet *vf_ifp;
HN_LOCK(sc);
vf_name[0] = '\0';
vf_ifp = sc->hn_rx_ring[0].hn_rxvf_ifp;
if (vf_ifp != NULL)
snprintf(vf_name, sizeof(vf_name), "%s", vf_ifp->if_xname);
HN_UNLOCK(sc);
return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req);
}
static int
hn_vflist_sysctl(SYSCTL_HANDLER_ARGS)
{
struct rm_priotracker pt;
struct sbuf *sb;
int error, i;
bool first;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (sb == NULL)
return (ENOMEM);
rm_rlock(&hn_vfmap_lock, &pt);
first = true;
for (i = 0; i < hn_vfmap_size; ++i) {
struct ifnet *ifp;
if (hn_vfmap[i] == NULL)
continue;
ifp = ifnet_byindex(i);
if (ifp != NULL) {
if (first)
sbuf_printf(sb, "%s", ifp->if_xname);
else
sbuf_printf(sb, " %s", ifp->if_xname);
first = false;
}
}
rm_runlock(&hn_vfmap_lock, &pt);
error = sbuf_finish(sb);
sbuf_delete(sb);
return (error);
}
static int
hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS)
{
struct rm_priotracker pt;
struct sbuf *sb;
int error, i;
bool first;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (sb == NULL)
return (ENOMEM);
rm_rlock(&hn_vfmap_lock, &pt);
first = true;
for (i = 0; i < hn_vfmap_size; ++i) {
struct ifnet *ifp, *hn_ifp;
hn_ifp = hn_vfmap[i];
if (hn_ifp == NULL)
continue;
ifp = ifnet_byindex(i);
if (ifp != NULL) {
if (first) {
sbuf_printf(sb, "%s:%s", ifp->if_xname,
hn_ifp->if_xname);
} else {
sbuf_printf(sb, " %s:%s", ifp->if_xname,
hn_ifp->if_xname);
}
first = false;
}
}
rm_runlock(&hn_vfmap_lock, &pt);
error = sbuf_finish(sb);
sbuf_delete(sb);
return (error);
}
static int
hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int error, onoff = 0;
if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF)
onoff = 1;
error = sysctl_handle_int(oidp, &onoff, 0, req);
if (error || req->newptr == NULL)
return (error);
HN_LOCK(sc);
/* NOTE: hn_vf_lock for hn_transmit() */
rm_wlock(&sc->hn_vf_lock);
if (onoff)
sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF;
else
sc->hn_xvf_flags &= ~HN_XVFFLAG_ACCBPF;
rm_wunlock(&sc->hn_vf_lock);
HN_UNLOCK(sc);
return (0);
}
static int
hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int enabled = 0;
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
enabled = 1;
return (sysctl_handle_int(oidp, &enabled, 0, req));
}
static int
hn_check_iplen(const struct mbuf *m, int hoff)
{
const struct ip *ip;
int len, iphlen, iplen;
const struct tcphdr *th;
int thoff; /* TCP data offset */
len = hoff + sizeof(struct ip);
/* The packet must be at least the size of an IP header. */
if (m->m_pkthdr.len < len)
return IPPROTO_DONE;
/* The fixed IP header must reside completely in the first mbuf. */
if (m->m_len < len)
return IPPROTO_DONE;
ip = mtodo(m, hoff);
/* Bound check the packet's stated IP header length. */
iphlen = ip->ip_hl << 2;
if (iphlen < sizeof(struct ip)) /* minimum header length */
return IPPROTO_DONE;
/* The full IP header must reside completely in the one mbuf. */
if (m->m_len < hoff + iphlen)
return IPPROTO_DONE;
iplen = ntohs(ip->ip_len);
/*
* Check that the amount of data in the buffers is as
* at least much as the IP header would have us expect.
*/
if (m->m_pkthdr.len < hoff + iplen)
return IPPROTO_DONE;
/*
* Ignore IP fragments.
*/
if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF))
return IPPROTO_DONE;
/*
* The TCP/IP or UDP/IP header must be entirely contained within
* the first fragment of a packet.
*/
switch (ip->ip_p) {
case IPPROTO_TCP:
if (iplen < iphlen + sizeof(struct tcphdr))
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + sizeof(struct tcphdr))
return IPPROTO_DONE;
th = (const struct tcphdr *)((const uint8_t *)ip + iphlen);
thoff = th->th_off << 2;
if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen)
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + thoff)
return IPPROTO_DONE;
break;
case IPPROTO_UDP:
if (iplen < iphlen + sizeof(struct udphdr))
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + sizeof(struct udphdr))
return IPPROTO_DONE;
break;
default:
if (iplen < iphlen)
return IPPROTO_DONE;
break;
}
return ip->ip_p;
}
static void
hn_rxpkt_proto(const struct mbuf *m_new, int *l3proto, int *l4proto)
{
const struct ether_header *eh;
uint16_t etype;
int hoff;
hoff = sizeof(*eh);
/* Checked at the beginning of this function. */
KASSERT(m_new->m_len >= hoff, ("not ethernet frame"));
eh = mtod(m_new, const struct ether_header *);
etype = ntohs(eh->ether_type);
if (etype == ETHERTYPE_VLAN) {
const struct ether_vlan_header *evl;
hoff = sizeof(*evl);
if (m_new->m_len < hoff)
return;
evl = mtod(m_new, const struct ether_vlan_header *);
etype = ntohs(evl->evl_proto);
}
*l3proto = etype;
if (etype == ETHERTYPE_IP)
*l4proto = hn_check_iplen(m_new, hoff);
else
*l4proto = IPPROTO_DONE;
}
static int
hn_create_rx_data(struct hn_softc *sc, int ring_cnt)
{
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
device_t dev = sc->hn_dev;
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
int lroent_cnt;
#endif
#endif
int i;
/*
* Create RXBUF for reception.
*
* NOTE:
* - It is shared by all channels.
* - A large enough buffer is allocated, certain version of NVSes
* may further limit the usable space.
*/
sc->hn_rxbuf = hyperv_dmamem_alloc(bus_get_dma_tag(dev),
PAGE_SIZE, 0, HN_RXBUF_SIZE, &sc->hn_rxbuf_dma,
BUS_DMA_WAITOK | BUS_DMA_ZERO);
if (sc->hn_rxbuf == NULL) {
device_printf(sc->hn_dev, "allocate rxbuf failed\n");
return (ENOMEM);
}
sc->hn_rx_ring_cnt = ring_cnt;
sc->hn_rx_ring_inuse = sc->hn_rx_ring_cnt;
sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt,
M_DEVBUF, M_WAITOK | M_ZERO);
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
lroent_cnt = hn_lro_entry_count;
if (lroent_cnt < TCP_LRO_ENTRIES)
lroent_cnt = TCP_LRO_ENTRIES;
if (bootverbose)
device_printf(dev, "LRO: entry count %d\n", lroent_cnt);
#endif
#endif /* INET || INET6 */
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
/* Create dev.hn.UNIT.rx sysctl tree */
sc->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "rx",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
rxr->hn_br = hyperv_dmamem_alloc(bus_get_dma_tag(dev),
PAGE_SIZE, 0, HN_TXBR_SIZE + HN_RXBR_SIZE,
&rxr->hn_br_dma, BUS_DMA_WAITOK);
if (rxr->hn_br == NULL) {
device_printf(dev, "allocate bufring failed\n");
return (ENOMEM);
}
if (hn_trust_hosttcp)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP;
if (hn_trust_hostudp)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP;
if (hn_trust_hostip)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP;
rxr->hn_mbuf_hash = NDIS_HASH_ALL;
rxr->hn_ifp = sc->hn_ifp;
if (i < sc->hn_tx_ring_cnt)
rxr->hn_txr = &sc->hn_tx_ring[i];
rxr->hn_pktbuf_len = HN_PKTBUF_LEN_DEF;
rxr->hn_pktbuf = malloc(rxr->hn_pktbuf_len, M_DEVBUF, M_WAITOK);
rxr->hn_rx_idx = i;
rxr->hn_rxbuf = sc->hn_rxbuf;
/*
* Initialize LRO.
*/
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt,
hn_lro_mbufq_depth);
#else
tcp_lro_init(&rxr->hn_lro);
rxr->hn_lro.ifp = sc->hn_ifp;
#endif
#if __FreeBSD_version >= 1100099
rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF;
rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF;
#endif
#endif /* INET || INET6 */
if (sc->hn_rx_sysctl_tree != NULL) {
char name[16];
/*
* Create per RX ring sysctl tree:
* dev.hn.UNIT.rx.RINGID
*/
snprintf(name, sizeof(name), "%d", i);
rxr->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(sc->hn_rx_sysctl_tree),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
if (rxr->hn_rx_sysctl_tree != NULL) {
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "packets", CTLFLAG_RW,
&rxr->hn_pkts, "# of packets received");
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "rss_pkts", CTLFLAG_RW,
&rxr->hn_rss_pkts,
"# of packets w/ RSS info received");
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "rsc_pkts", CTLFLAG_RW,
&rxr->hn_rsc_pkts,
"# of RSC packets received");
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "rsc_drop", CTLFLAG_RW,
&rxr->hn_rsc_drop,
"# of RSC fragments dropped");
SYSCTL_ADD_INT(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "pktbuf_len", CTLFLAG_RD,
&rxr->hn_pktbuf_len, 0,
"Temporary channel packet buffer length");
}
}
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued",
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro.lro_queued),
#if __FreeBSD_version < 1100095
hn_rx_stat_int_sysctl,
#else
hn_rx_stat_u64_sysctl,
#endif
"LU", "LRO queued");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed",
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro.lro_flushed),
#if __FreeBSD_version < 1100095
hn_rx_stat_int_sysctl,
#else
hn_rx_stat_u64_sysctl,
#endif
"LU", "LRO flushed");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro_tried),
hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries");
#if __FreeBSD_version >= 1100099
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_lro_lenlim_sysctl, "IU",
"Max # of data bytes to be aggregated by LRO");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_lro_ackcnt_sysctl, "I",
"Max # of ACKs to be aggregated by LRO");
#endif
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_TCP,
hn_trust_hcsum_sysctl, "I",
"Trust tcp segement verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_UDP,
hn_trust_hcsum_sysctl, "I",
"Trust udp datagram verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_IP,
hn_trust_hcsum_sysctl, "I",
"Trust ip packet verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_ip),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_tcp),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_udp),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_trusted),
hn_rx_stat_ulong_sysctl, "LU",
"# of packets that we trust host's csum verification");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_small_pkts),
hn_rx_stat_ulong_sysctl, "LU", "# of small packets received");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_ack_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_ack_failed),
hn_rx_stat_ulong_sysctl, "LU", "# of RXBUF ack failures");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_cnt",
CTLFLAG_RD, &sc->hn_rx_ring_cnt, 0, "# created RX rings");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_inuse",
CTLFLAG_RD, &sc->hn_rx_ring_inuse, 0, "# used RX rings");
return (0);
}
static void
hn_destroy_rx_data(struct hn_softc *sc)
{
int i;
if (sc->hn_rxbuf != NULL) {
if ((sc->hn_flags & HN_FLAG_RXBUF_REF) == 0)
hyperv_dmamem_free(&sc->hn_rxbuf_dma, sc->hn_rxbuf);
else
device_printf(sc->hn_dev, "RXBUF is referenced\n");
sc->hn_rxbuf = NULL;
}
if (sc->hn_rx_ring_cnt == 0)
return;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
if (rxr->hn_br == NULL)
continue;
if ((rxr->hn_rx_flags & HN_RX_FLAG_BR_REF) == 0) {
hyperv_dmamem_free(&rxr->hn_br_dma, rxr->hn_br);
} else {
device_printf(sc->hn_dev,
"%dth channel bufring is referenced", i);
}
rxr->hn_br = NULL;
#if defined(INET) || defined(INET6)
tcp_lro_free(&rxr->hn_lro);
#endif
free(rxr->hn_pktbuf, M_DEVBUF);
}
free(sc->hn_rx_ring, M_DEVBUF);
sc->hn_rx_ring = NULL;
sc->hn_rx_ring_cnt = 0;
sc->hn_rx_ring_inuse = 0;
}
static int
hn_tx_ring_create(struct hn_softc *sc, int id)
{
struct hn_tx_ring *txr = &sc->hn_tx_ring[id];
device_t dev = sc->hn_dev;
bus_dma_tag_t parent_dtag;
int error, i;
txr->hn_sc = sc;
txr->hn_tx_idx = id;
#ifndef HN_USE_TXDESC_BUFRING
mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN);
#endif
mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF);
txr->hn_txdesc_cnt = HN_TX_DESC_CNT;
txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt,
M_DEVBUF, M_WAITOK | M_ZERO);
#ifndef HN_USE_TXDESC_BUFRING
SLIST_INIT(&txr->hn_txlist);
#else
txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_DEVBUF,
M_WAITOK, &txr->hn_tx_lock);
#endif
if (hn_tx_taskq_mode == HN_TX_TASKQ_M_EVTTQ) {
txr->hn_tx_taskq = VMBUS_GET_EVENT_TASKQ(
device_get_parent(dev), dev, HN_RING_IDX2CPU(sc, id));
} else {
txr->hn_tx_taskq = sc->hn_tx_taskqs[id % hn_tx_taskq_cnt];
}
#ifdef HN_IFSTART_SUPPORT
if (hn_use_if_start) {
txr->hn_txeof = hn_start_txeof;
TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr);
TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr);
} else
#endif
{
int br_depth;
txr->hn_txeof = hn_xmit_txeof;
TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr);
TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr);
br_depth = hn_get_txswq_depth(txr);
txr->hn_mbuf_br = buf_ring_alloc(br_depth, M_DEVBUF,
M_WAITOK, &txr->hn_tx_lock);
}
txr->hn_direct_tx_size = hn_direct_tx_size;
/*
* Always schedule transmission instead of trying to do direct
* transmission. This one gives the best performance so far.
*/
txr->hn_sched_tx = 1;
parent_dtag = bus_get_dma_tag(dev);
/* DMA tag for RNDIS packet messages. */
error = bus_dma_tag_create(parent_dtag, /* parent */
HN_RNDIS_PKT_ALIGN, /* alignment */
HN_RNDIS_PKT_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
HN_RNDIS_PKT_LEN, /* maxsize */
1, /* nsegments */
HN_RNDIS_PKT_LEN, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txr->hn_tx_rndis_dtag);
if (error) {
device_printf(dev, "failed to create rndis dmatag\n");
return error;
}
/* DMA tag for data. */
error = bus_dma_tag_create(parent_dtag, /* parent */
1, /* alignment */
HN_TX_DATA_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
HN_TX_DATA_MAXSIZE, /* maxsize */
HN_TX_DATA_SEGCNT_MAX, /* nsegments */
HN_TX_DATA_SEGSIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txr->hn_tx_data_dtag);
if (error) {
device_printf(dev, "failed to create data dmatag\n");
return error;
}
for (i = 0; i < txr->hn_txdesc_cnt; ++i) {
struct hn_txdesc *txd = &txr->hn_txdesc[i];
txd->txr = txr;
txd->chim_index = HN_NVS_CHIM_IDX_INVALID;
STAILQ_INIT(&txd->agg_list);
/*
* Allocate and load RNDIS packet message.
*/
error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag,
(void **)&txd->rndis_pkt,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&txd->rndis_pkt_dmap);
if (error) {
device_printf(dev,
"failed to allocate rndis_packet_msg, %d\n", i);
return error;
}
error = bus_dmamap_load(txr->hn_tx_rndis_dtag,
txd->rndis_pkt_dmap,
txd->rndis_pkt, HN_RNDIS_PKT_LEN,
hyperv_dma_map_paddr, &txd->rndis_pkt_paddr,
BUS_DMA_NOWAIT);
if (error) {
device_printf(dev,
"failed to load rndis_packet_msg, %d\n", i);
bus_dmamem_free(txr->hn_tx_rndis_dtag,
txd->rndis_pkt, txd->rndis_pkt_dmap);
return error;
}
/* DMA map for TX data. */
error = bus_dmamap_create(txr->hn_tx_data_dtag, 0,
&txd->data_dmap);
if (error) {
device_printf(dev,
"failed to allocate tx data dmamap\n");
bus_dmamap_unload(txr->hn_tx_rndis_dtag,
txd->rndis_pkt_dmap);
bus_dmamem_free(txr->hn_tx_rndis_dtag,
txd->rndis_pkt, txd->rndis_pkt_dmap);
return error;
}
/* All set, put it to list */
txd->flags |= HN_TXD_FLAG_ONLIST;
#ifndef HN_USE_TXDESC_BUFRING
SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
#else
buf_ring_enqueue(txr->hn_txdesc_br, txd);
#endif
}
txr->hn_txdesc_avail = txr->hn_txdesc_cnt;
if (sc->hn_tx_sysctl_tree != NULL) {
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
char name[16];
/*
* Create per TX ring sysctl tree:
* dev.hn.UNIT.tx.RINGID
*/
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree);
snprintf(name, sizeof(name), "%d", id);
txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO,
name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
if (txr->hn_tx_sysctl_tree != NULL) {
child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree);
#ifdef HN_DEBUG
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail",
CTLFLAG_RD, &txr->hn_txdesc_avail, 0,
"# of available TX descs");
#endif
#ifdef HN_IFSTART_SUPPORT
if (!hn_use_if_start)
#endif
{
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive",
CTLFLAG_RD, &txr->hn_oactive, 0,
"over active");
}
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "packets",
CTLFLAG_RW, &txr->hn_pkts,
"# of packets transmitted");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "sends",
CTLFLAG_RW, &txr->hn_sends, "# of sends");
}
}
return 0;
}
static void
hn_txdesc_dmamap_destroy(struct hn_txdesc *txd)
{
struct hn_tx_ring *txr = txd->txr;
KASSERT(txd->m == NULL, ("still has mbuf installed"));
KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped"));
bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_pkt_dmap);
bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_pkt,
txd->rndis_pkt_dmap);
bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap);
}
static void
hn_txdesc_gc(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
KASSERT(txd->refs == 0 || txd->refs == 1,
("invalid txd refs %d", txd->refs));
/* Aggregated txds will be freed by their aggregating txd. */
if (txd->refs > 0 && (txd->flags & HN_TXD_FLAG_ONAGG) == 0) {
int freed;
freed = hn_txdesc_put(txr, txd);
KASSERT(freed, ("can't free txdesc"));
}
}
static void
hn_tx_ring_destroy(struct hn_tx_ring *txr)
{
int i;
if (txr->hn_txdesc == NULL)
return;
/*
* NOTE:
* Because the freeing of aggregated txds will be deferred
* to the aggregating txd, two passes are used here:
* - The first pass GCes any pending txds. This GC is necessary,
* since if the channels are revoked, hypervisor will not
* deliver send-done for all pending txds.
* - The second pass frees the busdma stuffs, i.e. after all txds
* were freed.
*/
for (i = 0; i < txr->hn_txdesc_cnt; ++i)
hn_txdesc_gc(txr, &txr->hn_txdesc[i]);
for (i = 0; i < txr->hn_txdesc_cnt; ++i)
hn_txdesc_dmamap_destroy(&txr->hn_txdesc[i]);
if (txr->hn_tx_data_dtag != NULL)
bus_dma_tag_destroy(txr->hn_tx_data_dtag);
if (txr->hn_tx_rndis_dtag != NULL)
bus_dma_tag_destroy(txr->hn_tx_rndis_dtag);
#ifdef HN_USE_TXDESC_BUFRING
buf_ring_free(txr->hn_txdesc_br, M_DEVBUF);
#endif
free(txr->hn_txdesc, M_DEVBUF);
txr->hn_txdesc = NULL;
if (txr->hn_mbuf_br != NULL)
buf_ring_free(txr->hn_mbuf_br, M_DEVBUF);
#ifndef HN_USE_TXDESC_BUFRING
mtx_destroy(&txr->hn_txlist_spin);
#endif
mtx_destroy(&txr->hn_tx_lock);
}
static int
hn_create_tx_data(struct hn_softc *sc, int ring_cnt)
{
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
int i;
/*
* Create TXBUF for chimney sending.
*
* NOTE: It is shared by all channels.
*/
sc->hn_chim = hyperv_dmamem_alloc(bus_get_dma_tag(sc->hn_dev),
PAGE_SIZE, 0, HN_CHIM_SIZE, &sc->hn_chim_dma,
BUS_DMA_WAITOK | BUS_DMA_ZERO);
if (sc->hn_chim == NULL) {
device_printf(sc->hn_dev, "allocate txbuf failed\n");
return (ENOMEM);
}
sc->hn_tx_ring_cnt = ring_cnt;
sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt;
sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt,
M_DEVBUF, M_WAITOK | M_ZERO);
ctx = device_get_sysctl_ctx(sc->hn_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev));
/* Create dev.hn.UNIT.tx sysctl tree */
sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
int error;
error = hn_tx_ring_create(sc, i);
if (error)
return error;
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_no_txdescs),
hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_send_failed),
hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_txdma_failed),
hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_flush_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_flush_failed),
hn_tx_stat_ulong_sysctl, "LU",
"# of packet transmission aggregation flush failure");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_collapsed),
hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_chimney),
hn_tx_stat_ulong_sysctl, "LU", "# of chimney send");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_tried",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_chimney_tried),
hn_tx_stat_ulong_sysctl, "LU", "# of chimney send tries");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt",
CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0,
"# of total TX descs");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max",
CTLFLAG_RD, &sc->hn_chim_szmax, 0,
"Chimney send packet size upper boundary");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_chim_size_sysctl, "I", "Chimney send packet size limit");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_direct_tx_size),
hn_tx_conf_int_sysctl, "I",
"Size of the packet for direct transmission");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_sched_tx),
hn_tx_conf_int_sysctl, "I",
"Always schedule transmission "
"instead of doing direct transmission");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_cnt",
CTLFLAG_RD, &sc->hn_tx_ring_cnt, 0, "# created TX rings");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_inuse",
CTLFLAG_RD, &sc->hn_tx_ring_inuse, 0, "# used TX rings");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "agg_szmax",
CTLFLAG_RD, &sc->hn_tx_ring[0].hn_agg_szmax, 0,
"Applied packet transmission aggregation size");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pktmax",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_txagg_pktmax_sysctl, "I",
"Applied packet transmission aggregation packets");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_align",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
hn_txagg_align_sysctl, "I",
"Applied packet transmission aggregation alignment");
return 0;
}
static void
hn_set_chim_size(struct hn_softc *sc, int chim_size)
{
int i;
for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
sc->hn_tx_ring[i].hn_chim_size = chim_size;
}
static void
hn_set_tso_maxsize(struct hn_softc *sc, int tso_maxlen, int mtu)
{
struct ifnet *ifp = sc->hn_ifp;
u_int hw_tsomax;
int tso_minlen;
HN_LOCK_ASSERT(sc);
if ((ifp->if_capabilities & (IFCAP_TSO4 | IFCAP_TSO6)) == 0)
return;
KASSERT(sc->hn_ndis_tso_sgmin >= 2,
("invalid NDIS tso sgmin %d", sc->hn_ndis_tso_sgmin));
tso_minlen = sc->hn_ndis_tso_sgmin * mtu;
KASSERT(sc->hn_ndis_tso_szmax >= tso_minlen &&
sc->hn_ndis_tso_szmax <= IP_MAXPACKET,
("invalid NDIS tso szmax %d", sc->hn_ndis_tso_szmax));
if (tso_maxlen < tso_minlen)
tso_maxlen = tso_minlen;
else if (tso_maxlen > IP_MAXPACKET)
tso_maxlen = IP_MAXPACKET;
if (tso_maxlen > sc->hn_ndis_tso_szmax)
tso_maxlen = sc->hn_ndis_tso_szmax;
hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
if (hn_xpnt_vf_isready(sc)) {
if (hw_tsomax > sc->hn_vf_ifp->if_hw_tsomax)
hw_tsomax = sc->hn_vf_ifp->if_hw_tsomax;
}
ifp->if_hw_tsomax = hw_tsomax;
if (bootverbose)
if_printf(ifp, "TSO size max %u\n", ifp->if_hw_tsomax);
}
static void
hn_fixup_tx_data(struct hn_softc *sc)
{
uint64_t csum_assist;
int i;
hn_set_chim_size(sc, sc->hn_chim_szmax);
if (hn_tx_chimney_size > 0 &&
hn_tx_chimney_size < sc->hn_chim_szmax)
hn_set_chim_size(sc, hn_tx_chimney_size);
csum_assist = 0;
if (sc->hn_caps & HN_CAP_IPCS)
csum_assist |= CSUM_IP;
if (sc->hn_caps & HN_CAP_TCP4CS)
csum_assist |= CSUM_IP_TCP;
if ((sc->hn_caps & HN_CAP_UDP4CS) && hn_enable_udp4cs)
csum_assist |= CSUM_IP_UDP;
if (sc->hn_caps & HN_CAP_TCP6CS)
csum_assist |= CSUM_IP6_TCP;
if ((sc->hn_caps & HN_CAP_UDP6CS) && hn_enable_udp6cs)
csum_assist |= CSUM_IP6_UDP;
for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
sc->hn_tx_ring[i].hn_csum_assist = csum_assist;
if (sc->hn_caps & HN_CAP_HASHVAL) {
/*
* Support HASHVAL pktinfo on TX path.
*/
if (bootverbose)
if_printf(sc->hn_ifp, "support HASHVAL pktinfo\n");
for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
sc->hn_tx_ring[i].hn_tx_flags |= HN_TX_FLAG_HASHVAL;
}
}
static void
hn_fixup_rx_data(struct hn_softc *sc)
{
if (sc->hn_caps & HN_CAP_UDPHASH) {
int i;
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_UDP_HASH;
}
}
static void
hn_destroy_tx_data(struct hn_softc *sc)
{
int i;
if (sc->hn_chim != NULL) {
if ((sc->hn_flags & HN_FLAG_CHIM_REF) == 0) {
hyperv_dmamem_free(&sc->hn_chim_dma, sc->hn_chim);
} else {
device_printf(sc->hn_dev,
"chimney sending buffer is referenced");
}
sc->hn_chim = NULL;
}
if (sc->hn_tx_ring_cnt == 0)
return;
for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
hn_tx_ring_destroy(&sc->hn_tx_ring[i]);
free(sc->hn_tx_ring, M_DEVBUF);
sc->hn_tx_ring = NULL;
sc->hn_tx_ring_cnt = 0;
sc->hn_tx_ring_inuse = 0;
}
#ifdef HN_IFSTART_SUPPORT
static void
hn_start_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
hn_start_locked(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static int
hn_start_locked(struct hn_tx_ring *txr, int len)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
int sched = 0;
KASSERT(hn_use_if_start,
("hn_start_locked is called, when if_start is disabled"));
KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
mtx_assert(&txr->hn_tx_lock, MA_OWNED);
KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
if (__predict_false(txr->hn_suspended))
return (0);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return (0);
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
struct hn_txdesc *txd;
struct mbuf *m_head;
int error;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (len > 0 && m_head->m_pkthdr.len > len) {
/*
* This sending could be time consuming; let callers
* dispatch this packet sending (and sending of any
* following up packets) to tx taskqueue.
*/
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
sched = 1;
break;
}
#if defined(INET6) || defined(INET)
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
m_head = hn_tso_fixup(m_head);
if (__predict_false(m_head == NULL)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
continue;
}
} else if (m_head->m_pkthdr.csum_flags &
(CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) {
m_head = hn_set_hlen(m_head);
if (__predict_false(m_head == NULL)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
continue;
}
}
#endif
txd = hn_txdesc_get(txr);
if (txd == NULL) {
txr->hn_no_txdescs++;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
break;
}
error = hn_encap(ifp, txr, txd, &m_head);
if (error) {
/* Both txd and m_head are freed */
KASSERT(txr->hn_agg_txd == NULL,
("encap failed w/ pending aggregating txdesc"));
continue;
}
if (txr->hn_agg_pktleft == 0) {
if (txr->hn_agg_txd != NULL) {
KASSERT(m_head == NULL,
("pending mbuf for aggregating txdesc"));
error = hn_flush_txagg(ifp, txr);
if (__predict_false(error)) {
atomic_set_int(&ifp->if_drv_flags,
IFF_DRV_OACTIVE);
break;
}
} else {
KASSERT(m_head != NULL, ("mbuf was freed"));
error = hn_txpkt(ifp, txr, txd);
if (__predict_false(error)) {
/* txd is freed, but m_head is not */
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
atomic_set_int(&ifp->if_drv_flags,
IFF_DRV_OACTIVE);
break;
}
}
}
#ifdef INVARIANTS
else {
KASSERT(txr->hn_agg_txd != NULL,
("no aggregating txdesc"));
KASSERT(m_head == NULL,
("pending mbuf for aggregating txdesc"));
}
#endif
}
/* Flush pending aggerated transmission. */
if (txr->hn_agg_txd != NULL)
hn_flush_txagg(ifp, txr);
return (sched);
}
static void
hn_start(struct ifnet *ifp)
{
struct hn_softc *sc = ifp->if_softc;
struct hn_tx_ring *txr = &sc->hn_tx_ring[0];
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
sched = hn_start_locked(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (!sched)
return;
}
do_sched:
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
}
static void
hn_start_txeof_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
atomic_clear_int(&txr->hn_sc->hn_ifp->if_drv_flags, IFF_DRV_OACTIVE);
hn_start_locked(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_start_txeof(struct hn_tx_ring *txr)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
sched = hn_start_locked(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (sched) {
taskqueue_enqueue(txr->hn_tx_taskq,
&txr->hn_tx_task);
}
} else {
do_sched:
/*
* Release the OACTIVE earlier, with the hope, that
* others could catch up. The task will clear the
* flag again with the hn_tx_lock to avoid possible
* races.
*/
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
#endif /* HN_IFSTART_SUPPORT */
static int
hn_xmit(struct hn_tx_ring *txr, int len)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
struct mbuf *m_head;
int sched = 0;
mtx_assert(&txr->hn_tx_lock, MA_OWNED);
#ifdef HN_IFSTART_SUPPORT
KASSERT(hn_use_if_start == 0,
("hn_xmit is called, when if_start is enabled"));
#endif
KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc"));
if (__predict_false(txr->hn_suspended))
return (0);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || txr->hn_oactive)
return (0);
while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) {
struct hn_txdesc *txd;
int error;
if (len > 0 && m_head->m_pkthdr.len > len) {
/*
* This sending could be time consuming; let callers
* dispatch this packet sending (and sending of any
* following up packets) to tx taskqueue.
*/
drbr_putback(ifp, txr->hn_mbuf_br, m_head);
sched = 1;
break;
}
txd = hn_txdesc_get(txr);
if (txd == NULL) {
txr->hn_no_txdescs++;
drbr_putback(ifp, txr->hn_mbuf_br, m_head);
txr->hn_oactive = 1;
break;
}
error = hn_encap(ifp, txr, txd, &m_head);
if (error) {
/* Both txd and m_head are freed; discard */
KASSERT(txr->hn_agg_txd == NULL,
("encap failed w/ pending aggregating txdesc"));
drbr_advance(ifp, txr->hn_mbuf_br);
continue;
}
if (txr->hn_agg_pktleft == 0) {
if (txr->hn_agg_txd != NULL) {
KASSERT(m_head == NULL,
("pending mbuf for aggregating txdesc"));
error = hn_flush_txagg(ifp, txr);
if (__predict_false(error)) {
txr->hn_oactive = 1;
break;
}
} else {
KASSERT(m_head != NULL, ("mbuf was freed"));
error = hn_txpkt(ifp, txr, txd);
if (__predict_false(error)) {
/* txd is freed, but m_head is not */
drbr_putback(ifp, txr->hn_mbuf_br,
m_head);
txr->hn_oactive = 1;
break;
}
}
}
#ifdef INVARIANTS
else {
KASSERT(txr->hn_agg_txd != NULL,
("no aggregating txdesc"));
KASSERT(m_head == NULL,
("pending mbuf for aggregating txdesc"));
}
#endif
/* Sent */
drbr_advance(ifp, txr->hn_mbuf_br);
}
/* Flush pending aggerated transmission. */
if (txr->hn_agg_txd != NULL)
hn_flush_txagg(ifp, txr);
return (sched);
}
static int
hn_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct hn_softc *sc = ifp->if_softc;
struct hn_tx_ring *txr;
int error, idx = 0;
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) {
struct rm_priotracker pt;
rm_rlock(&sc->hn_vf_lock, &pt);
if (__predict_true(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
struct mbuf *m_bpf = NULL;
int obytes, omcast;
obytes = m->m_pkthdr.len;
omcast = (m->m_flags & M_MCAST) != 0;
if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF) {
if (bpf_peers_present(ifp->if_bpf)) {
m_bpf = m_copypacket(m, M_NOWAIT);
if (m_bpf == NULL) {
/*
* Failed to grab a shallow
* copy; tap now.
*/
ETHER_BPF_MTAP(ifp, m);
}
}
} else {
ETHER_BPF_MTAP(ifp, m);
}
error = sc->hn_vf_ifp->if_transmit(sc->hn_vf_ifp, m);
rm_runlock(&sc->hn_vf_lock, &pt);
if (m_bpf != NULL) {
if (!error)
ETHER_BPF_MTAP(ifp, m_bpf);
m_freem(m_bpf);
}
if (error == ENOBUFS) {
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
} else if (error) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else {
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_OBYTES, obytes);
if (omcast) {
if_inc_counter(ifp, IFCOUNTER_OMCASTS,
omcast);
}
}
return (error);
}
rm_runlock(&sc->hn_vf_lock, &pt);
}
#if defined(INET6) || defined(INET)
/*
* Perform TSO packet header fixup or get l2/l3 header length now,
* since packet headers should be cache-hot.
*/
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
m = hn_tso_fixup(m);
if (__predict_false(m == NULL)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return EIO;
}
} else if (m->m_pkthdr.csum_flags &
(CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) {
m = hn_set_hlen(m);
if (__predict_false(m == NULL)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return EIO;
}
}
#endif
/*
* Select the TX ring based on flowid
*/
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
#ifdef RSS
uint32_t bid;
if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
&bid) == 0)
idx = bid % sc->hn_tx_ring_inuse;
else
#endif
{
#if defined(INET6) || defined(INET)
int tcpsyn = 0;
if (m->m_pkthdr.len < 128 &&
(m->m_pkthdr.csum_flags &
(CSUM_IP_TCP | CSUM_IP6_TCP)) &&
(m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
m = hn_check_tcpsyn(m, &tcpsyn);
if (__predict_false(m == NULL)) {
if_inc_counter(ifp,
IFCOUNTER_OERRORS, 1);
return (EIO);
}
}
#else
const int tcpsyn = 0;
#endif
if (tcpsyn)
idx = 0;
else
idx = m->m_pkthdr.flowid % sc->hn_tx_ring_inuse;
}
}
txr = &sc->hn_tx_ring[idx];
error = drbr_enqueue(ifp, txr->hn_mbuf_br, m);
if (error) {
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
return error;
}
if (txr->hn_oactive)
return 0;
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
sched = hn_xmit(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (!sched)
return 0;
}
do_sched:
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
return 0;
}
static void
hn_tx_ring_qflush(struct hn_tx_ring *txr)
{
struct mbuf *m;
mtx_lock(&txr->hn_tx_lock);
while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL)
m_freem(m);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_xmit_qflush(struct ifnet *ifp)
{
struct hn_softc *sc = ifp->if_softc;
struct rm_priotracker pt;
int i;
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
hn_tx_ring_qflush(&sc->hn_tx_ring[i]);
if_qflush(ifp);
rm_rlock(&sc->hn_vf_lock, &pt);
if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)
sc->hn_vf_ifp->if_qflush(sc->hn_vf_ifp);
rm_runlock(&sc->hn_vf_lock, &pt);
}
static void
hn_xmit_txeof(struct hn_tx_ring *txr)
{
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
txr->hn_oactive = 0;
sched = hn_xmit(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (sched) {
taskqueue_enqueue(txr->hn_tx_taskq,
&txr->hn_tx_task);
}
} else {
do_sched:
/*
* Release the oactive earlier, with the hope, that
* others could catch up. The task will clear the
* oactive again with the hn_tx_lock to avoid possible
* races.
*/
txr->hn_oactive = 0;
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
static void
hn_xmit_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
hn_xmit(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
txr->hn_oactive = 0;
hn_xmit(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static int
hn_chan_attach(struct hn_softc *sc, struct vmbus_channel *chan)
{
struct vmbus_chan_br cbr;
struct hn_rx_ring *rxr;
struct hn_tx_ring *txr = NULL;
int idx, error;
idx = vmbus_chan_subidx(chan);
/*
* Link this channel to RX/TX ring.
*/
KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse,
("invalid channel index %d, should > 0 && < %d",
idx, sc->hn_rx_ring_inuse));
rxr = &sc->hn_rx_ring[idx];
KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0,
("RX ring %d already attached", idx));
rxr->hn_rx_flags |= HN_RX_FLAG_ATTACHED;
rxr->hn_chan = chan;
if (bootverbose) {
if_printf(sc->hn_ifp, "link RX ring %d to chan%u\n",
idx, vmbus_chan_id(chan));
}
if (idx < sc->hn_tx_ring_inuse) {
txr = &sc->hn_tx_ring[idx];
KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0,
("TX ring %d already attached", idx));
txr->hn_tx_flags |= HN_TX_FLAG_ATTACHED;
txr->hn_chan = chan;
if (bootverbose) {
if_printf(sc->hn_ifp, "link TX ring %d to chan%u\n",
idx, vmbus_chan_id(chan));
}
}
/* Bind this channel to a proper CPU. */
vmbus_chan_cpu_set(chan, HN_RING_IDX2CPU(sc, idx));
/*
* Open this channel
*/
cbr.cbr = rxr->hn_br;
cbr.cbr_paddr = rxr->hn_br_dma.hv_paddr;
cbr.cbr_txsz = HN_TXBR_SIZE;
cbr.cbr_rxsz = HN_RXBR_SIZE;
error = vmbus_chan_open_br(chan, &cbr, NULL, 0, hn_chan_callback, rxr);
if (error) {
if (error == EISCONN) {
if_printf(sc->hn_ifp, "bufring is connected after "
"chan%u open failure\n", vmbus_chan_id(chan));
rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF;
} else {
if_printf(sc->hn_ifp, "open chan%u failed: %d\n",
vmbus_chan_id(chan), error);
}
}
return (error);
}
static void
hn_chan_detach(struct hn_softc *sc, struct vmbus_channel *chan)
{
struct hn_rx_ring *rxr;
int idx, error;
idx = vmbus_chan_subidx(chan);
/*
* Link this channel to RX/TX ring.
*/
KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse,
("invalid channel index %d, should > 0 && < %d",
idx, sc->hn_rx_ring_inuse));
rxr = &sc->hn_rx_ring[idx];
KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED),
("RX ring %d is not attached", idx));
rxr->hn_rx_flags &= ~HN_RX_FLAG_ATTACHED;
if (idx < sc->hn_tx_ring_inuse) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[idx];
KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED),
("TX ring %d is not attached attached", idx));
txr->hn_tx_flags &= ~HN_TX_FLAG_ATTACHED;
}
/*
* Close this channel.
*
* NOTE:
* Channel closing does _not_ destroy the target channel.
*/
error = vmbus_chan_close_direct(chan);
if (error == EISCONN) {
if_printf(sc->hn_ifp, "chan%u bufring is connected "
"after being closed\n", vmbus_chan_id(chan));
rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF;
} else if (error) {
if_printf(sc->hn_ifp, "chan%u close failed: %d\n",
vmbus_chan_id(chan), error);
}
}
static int
hn_attach_subchans(struct hn_softc *sc)
{
struct vmbus_channel **subchans;
int subchan_cnt = sc->hn_rx_ring_inuse - 1;
int i, error = 0;
KASSERT(subchan_cnt > 0, ("no sub-channels"));
/* Attach the sub-channels. */
subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt);
for (i = 0; i < subchan_cnt; ++i) {
int error1;
error1 = hn_chan_attach(sc, subchans[i]);
if (error1) {
error = error1;
/* Move on; all channels will be detached later. */
}
}
vmbus_subchan_rel(subchans, subchan_cnt);
if (error) {
if_printf(sc->hn_ifp, "sub-channels attach failed: %d\n", error);
} else {
if (bootverbose) {
if_printf(sc->hn_ifp, "%d sub-channels attached\n",
subchan_cnt);
}
}
return (error);
}
static void
hn_detach_allchans(struct hn_softc *sc)
{
struct vmbus_channel **subchans;
int subchan_cnt = sc->hn_rx_ring_inuse - 1;
int i;
if (subchan_cnt == 0)
goto back;
/* Detach the sub-channels. */
subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt);
for (i = 0; i < subchan_cnt; ++i)
hn_chan_detach(sc, subchans[i]);
vmbus_subchan_rel(subchans, subchan_cnt);
back:
/*
* Detach the primary channel, _after_ all sub-channels
* are detached.
*/
hn_chan_detach(sc, sc->hn_prichan);
/* Wait for sub-channels to be destroyed, if any. */
vmbus_subchan_drain(sc->hn_prichan);
#ifdef INVARIANTS
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
KASSERT((sc->hn_rx_ring[i].hn_rx_flags &
HN_RX_FLAG_ATTACHED) == 0,
("%dth RX ring is still attached", i));
}
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
KASSERT((sc->hn_tx_ring[i].hn_tx_flags &
HN_TX_FLAG_ATTACHED) == 0,
("%dth TX ring is still attached", i));
}
#endif
}
static int
hn_synth_alloc_subchans(struct hn_softc *sc, int *nsubch)
{
struct vmbus_channel **subchans;
int nchan, rxr_cnt, error;
nchan = *nsubch + 1;
if (nchan == 1) {
/*
* Multiple RX/TX rings are not requested.
*/
*nsubch = 0;
return (0);
}
/*
* Query RSS capabilities, e.g. # of RX rings, and # of indirect
* table entries.
*/
error = hn_rndis_query_rsscaps(sc, &rxr_cnt);
if (error) {
/* No RSS; this is benign. */
*nsubch = 0;
return (0);
}
if (bootverbose) {
if_printf(sc->hn_ifp, "RX rings offered %u, requested %d\n",
rxr_cnt, nchan);
}
if (nchan > rxr_cnt)
nchan = rxr_cnt;
if (nchan == 1) {
if_printf(sc->hn_ifp, "only 1 channel is supported, no vRSS\n");
*nsubch = 0;
return (0);
}
/*
* Allocate sub-channels from NVS.
*/
*nsubch = nchan - 1;
error = hn_nvs_alloc_subchans(sc, nsubch);
if (error || *nsubch == 0) {
/* Failed to allocate sub-channels. */
*nsubch = 0;
return (0);
}
/*
* Wait for all sub-channels to become ready before moving on.
*/
subchans = vmbus_subchan_get(sc->hn_prichan, *nsubch);
vmbus_subchan_rel(subchans, *nsubch);
return (0);
}
static bool
hn_synth_attachable(const struct hn_softc *sc)
{
int i;
if (sc->hn_flags & HN_FLAG_ERRORS)
return (false);
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
const struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
if (rxr->hn_rx_flags & HN_RX_FLAG_BR_REF)
return (false);
}
return (true);
}
/*
* Make sure that the RX filter is zero after the successful
* RNDIS initialization.
*
* NOTE:
* Under certain conditions on certain versions of Hyper-V,
* the RNDIS rxfilter is _not_ zero on the hypervisor side
* after the successful RNDIS initialization, which breaks
* the assumption of any following code (well, it breaks the
* RNDIS API contract actually). Clear the RNDIS rxfilter
* explicitly, drain packets sneaking through, and drain the
* interrupt taskqueues scheduled due to the stealth packets.
*/
static void
hn_rndis_init_fixat(struct hn_softc *sc, int nchan)
{
hn_disable_rx(sc);
hn_drain_rxtx(sc, nchan);
}
static int
hn_synth_attach(struct hn_softc *sc, int mtu)
{
#define ATTACHED_NVS 0x0002
#define ATTACHED_RNDIS 0x0004
struct ndis_rssprm_toeplitz *rss = &sc->hn_rss;
int error, nsubch, nchan = 1, i, rndis_inited;
uint32_t old_caps, attached = 0;
KASSERT((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0,
("synthetic parts were attached"));
if (!hn_synth_attachable(sc))
return (ENXIO);
/* Save capabilities for later verification. */
old_caps = sc->hn_caps;
sc->hn_caps = 0;
/* Clear RSS stuffs. */
sc->hn_rss_ind_size = 0;
sc->hn_rss_hash = 0;
sc->hn_rss_hcap = 0;
/*
* Attach the primary channel _before_ attaching NVS and RNDIS.
*/
error = hn_chan_attach(sc, sc->hn_prichan);
if (error)
goto failed;
/*
* Attach NVS.
*/
error = hn_nvs_attach(sc, mtu);
if (error)
goto failed;
attached |= ATTACHED_NVS;
/*
* Attach RNDIS _after_ NVS is attached.
*/
error = hn_rndis_attach(sc, mtu, &rndis_inited);
if (rndis_inited)
attached |= ATTACHED_RNDIS;
if (error)
goto failed;
/*
* Make sure capabilities are not changed.
*/
if (device_is_attached(sc->hn_dev) && old_caps != sc->hn_caps) {
if_printf(sc->hn_ifp, "caps mismatch old 0x%08x, new 0x%08x\n",
old_caps, sc->hn_caps);
error = ENXIO;
goto failed;
}
/*
* Allocate sub-channels for multi-TX/RX rings.
*
* NOTE:
* The # of RX rings that can be used is equivalent to the # of
* channels to be requested.
*/
nsubch = sc->hn_rx_ring_cnt - 1;
error = hn_synth_alloc_subchans(sc, &nsubch);
if (error)
goto failed;
/* NOTE: _Full_ synthetic parts detach is required now. */
sc->hn_flags |= HN_FLAG_SYNTH_ATTACHED;
/*
* Set the # of TX/RX rings that could be used according to
* the # of channels that NVS offered.
*/
nchan = nsubch + 1;
hn_set_ring_inuse(sc, nchan);
if (nchan == 1) {
/* Only the primary channel can be used; done */
goto back;
}
/*
* Attach the sub-channels.
*
* NOTE: hn_set_ring_inuse() _must_ have been called.
*/
error = hn_attach_subchans(sc);
if (error)
goto failed;
/*
* Configure RSS key and indirect table _after_ all sub-channels
* are attached.
*/
if ((sc->hn_flags & HN_FLAG_HAS_RSSKEY) == 0) {
/*
* RSS key is not set yet; set it to the default RSS key.
*/
if (bootverbose)
if_printf(sc->hn_ifp, "setup default RSS key\n");
#ifdef RSS
rss_getkey(rss->rss_key);
#else
memcpy(rss->rss_key, hn_rss_key_default, sizeof(rss->rss_key));
#endif
sc->hn_flags |= HN_FLAG_HAS_RSSKEY;
}
if ((sc->hn_flags & HN_FLAG_HAS_RSSIND) == 0) {
/*
* RSS indirect table is not set yet; set it up in round-
* robin fashion.
*/
if (bootverbose) {
if_printf(sc->hn_ifp, "setup default RSS indirect "
"table\n");
}
for (i = 0; i < NDIS_HASH_INDCNT; ++i) {
uint32_t subidx;
#ifdef RSS
subidx = rss_get_indirection_to_bucket(i);
#else
subidx = i;
#endif
rss->rss_ind[i] = subidx % nchan;
}
sc->hn_flags |= HN_FLAG_HAS_RSSIND;
} else {
/*
* # of usable channels may be changed, so we have to
* make sure that all entries in RSS indirect table
* are valid.
*
* NOTE: hn_set_ring_inuse() _must_ have been called.
*/
hn_rss_ind_fixup(sc);
}
sc->hn_rss_hash = sc->hn_rss_hcap;
if ((sc->hn_flags & HN_FLAG_RXVF) ||
(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) {
/* NOTE: Don't reconfigure RSS; will do immediately. */
hn_vf_rss_fixup(sc, false);
}
error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE);
if (error)
goto failed;
back:
/*
* Fixup transmission aggregation setup.
*/
hn_set_txagg(sc);
hn_rndis_init_fixat(sc, nchan);
return (0);
failed:
if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) {
hn_rndis_init_fixat(sc, nchan);
hn_synth_detach(sc);
} else {
if (attached & ATTACHED_RNDIS) {
hn_rndis_init_fixat(sc, nchan);
hn_rndis_detach(sc);
}
if (attached & ATTACHED_NVS)
hn_nvs_detach(sc);
hn_chan_detach(sc, sc->hn_prichan);
/* Restore old capabilities. */
sc->hn_caps = old_caps;
}
return (error);
#undef ATTACHED_RNDIS
#undef ATTACHED_NVS
}
/*
* NOTE:
* The interface must have been suspended though hn_suspend(), before
* this function get called.
*/
static void
hn_synth_detach(struct hn_softc *sc)
{
KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED,
("synthetic parts were not attached"));
/* Detach the RNDIS first. */
hn_rndis_detach(sc);
/* Detach NVS. */
hn_nvs_detach(sc);
/* Detach all of the channels. */
hn_detach_allchans(sc);
if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_rxbuf_gpadl != 0) {
/*
* Host is post-Win2016, disconnect RXBUF from primary channel here.
*/
int error;
error = vmbus_chan_gpadl_disconnect(sc->hn_prichan,
sc->hn_rxbuf_gpadl);
if (error) {
if_printf(sc->hn_ifp,
"rxbuf gpadl disconn failed: %d\n", error);
sc->hn_flags |= HN_FLAG_RXBUF_REF;
}
sc->hn_rxbuf_gpadl = 0;
}
if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_chim_gpadl != 0) {
/*
* Host is post-Win2016, disconnect chimney sending buffer from
* primary channel here.
*/
int error;
error = vmbus_chan_gpadl_disconnect(sc->hn_prichan,
sc->hn_chim_gpadl);
if (error) {
if_printf(sc->hn_ifp,
"chim gpadl disconn failed: %d\n", error);
sc->hn_flags |= HN_FLAG_CHIM_REF;
}
sc->hn_chim_gpadl = 0;
}
sc->hn_flags &= ~HN_FLAG_SYNTH_ATTACHED;
}
static void
hn_set_ring_inuse(struct hn_softc *sc, int ring_cnt)
{
KASSERT(ring_cnt > 0 && ring_cnt <= sc->hn_rx_ring_cnt,
("invalid ring count %d", ring_cnt));
if (sc->hn_tx_ring_cnt > ring_cnt)
sc->hn_tx_ring_inuse = ring_cnt;
else
sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt;
sc->hn_rx_ring_inuse = ring_cnt;
#ifdef RSS
if (sc->hn_rx_ring_inuse != rss_getnumbuckets()) {
if_printf(sc->hn_ifp, "# of RX rings (%d) does not match "
"# of RSS buckets (%d)\n", sc->hn_rx_ring_inuse,
rss_getnumbuckets());
}
#endif
if (bootverbose) {
if_printf(sc->hn_ifp, "%d TX ring, %d RX ring\n",
sc->hn_tx_ring_inuse, sc->hn_rx_ring_inuse);
}
}
static void
hn_chan_drain(struct hn_softc *sc, struct vmbus_channel *chan)
{
/*
* NOTE:
* The TX bufring will not be drained by the hypervisor,
* if the primary channel is revoked.
*/
while (!vmbus_chan_rx_empty(chan) ||
(!vmbus_chan_is_revoked(sc->hn_prichan) &&
!vmbus_chan_tx_empty(chan)))
pause("waitch", 1);
vmbus_chan_intr_drain(chan);
}
static void
hn_disable_rx(struct hn_softc *sc)
{
/*
* Disable RX by clearing RX filter forcefully.
*/
sc->hn_rx_filter = NDIS_PACKET_TYPE_NONE;
hn_rndis_set_rxfilter(sc, sc->hn_rx_filter); /* ignore error */
/*
* Give RNDIS enough time to flush all pending data packets.
*/
pause("waitrx", (200 * hz) / 1000);
}
/*
* NOTE:
* RX/TX _must_ have been suspended/disabled, before this function
* is called.
*/
static void
hn_drain_rxtx(struct hn_softc *sc, int nchan)
{
struct vmbus_channel **subch = NULL;
int nsubch;
/*
* Drain RX/TX bufrings and interrupts.
*/
nsubch = nchan - 1;
if (nsubch > 0)
subch = vmbus_subchan_get(sc->hn_prichan, nsubch);
if (subch != NULL) {
int i;
for (i = 0; i < nsubch; ++i)
hn_chan_drain(sc, subch[i]);
}
hn_chan_drain(sc, sc->hn_prichan);
if (subch != NULL)
vmbus_subchan_rel(subch, nsubch);
}
static void
hn_suspend_data(struct hn_softc *sc)
{
struct hn_tx_ring *txr;
int i;
HN_LOCK_ASSERT(sc);
/*
* Suspend TX.
*/
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
txr = &sc->hn_tx_ring[i];
mtx_lock(&txr->hn_tx_lock);
txr->hn_suspended = 1;
mtx_unlock(&txr->hn_tx_lock);
/* No one is able send more packets now. */
/*
* Wait for all pending sends to finish.
*
* NOTE:
* We will _not_ receive all pending send-done, if the
* primary channel is revoked.
*/
while (hn_tx_ring_pending(txr) &&
!vmbus_chan_is_revoked(sc->hn_prichan))
pause("hnwtx", 1 /* 1 tick */);
}
/*
* Disable RX.
*/
hn_disable_rx(sc);
/*
* Drain RX/TX.
*/
hn_drain_rxtx(sc, sc->hn_rx_ring_inuse);
/*
* Drain any pending TX tasks.
*
* NOTE:
* The above hn_drain_rxtx() can dispatch TX tasks, so the TX
* tasks will have to be drained _after_ the above hn_drain_rxtx().
*/
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
txr = &sc->hn_tx_ring[i];
taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task);
taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
static void
hn_suspend_mgmt_taskfunc(void *xsc, int pending __unused)
{
((struct hn_softc *)xsc)->hn_mgmt_taskq = NULL;
}
static void
hn_suspend_mgmt(struct hn_softc *sc)
{
struct task task;
HN_LOCK_ASSERT(sc);
/*
* Make sure that hn_mgmt_taskq0 can nolonger be accessed
* through hn_mgmt_taskq.
*/
TASK_INIT(&task, 0, hn_suspend_mgmt_taskfunc, sc);
vmbus_chan_run_task(sc->hn_prichan, &task);
/*
* Make sure that all pending management tasks are completed.
*/
taskqueue_drain(sc->hn_mgmt_taskq0, &sc->hn_netchg_init);
taskqueue_drain_timeout(sc->hn_mgmt_taskq0, &sc->hn_netchg_status);
taskqueue_drain_all(sc->hn_mgmt_taskq0);
}
static void
hn_suspend(struct hn_softc *sc)
{
/* Disable polling. */
hn_polling(sc, 0);
/*
* If the non-transparent mode VF is activated, the synthetic
* device is receiving packets, so the data path of the
* synthetic device must be suspended.
*/
if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) ||
(sc->hn_flags & HN_FLAG_RXVF))
hn_suspend_data(sc);
hn_suspend_mgmt(sc);
}
static void
hn_resume_tx(struct hn_softc *sc, int tx_ring_cnt)
{
int i;
KASSERT(tx_ring_cnt <= sc->hn_tx_ring_cnt,
("invalid TX ring count %d", tx_ring_cnt));
for (i = 0; i < tx_ring_cnt; ++i) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
mtx_lock(&txr->hn_tx_lock);
txr->hn_suspended = 0;
mtx_unlock(&txr->hn_tx_lock);
}
}
static void
hn_resume_data(struct hn_softc *sc)
{
int i;
HN_LOCK_ASSERT(sc);
/*
* Re-enable RX.
*/
hn_rxfilter_config(sc);
/*
* Make sure to clear suspend status on "all" TX rings,
* since hn_tx_ring_inuse can be changed after
* hn_suspend_data().
*/
hn_resume_tx(sc, sc->hn_tx_ring_cnt);
#ifdef HN_IFSTART_SUPPORT
if (!hn_use_if_start)
#endif
{
/*
* Flush unused drbrs, since hn_tx_ring_inuse may be
* reduced.
*/
for (i = sc->hn_tx_ring_inuse; i < sc->hn_tx_ring_cnt; ++i)
hn_tx_ring_qflush(&sc->hn_tx_ring[i]);
}
/*
* Kick start TX.
*/
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
/*
* Use txeof task, so that any pending oactive can be
* cleared properly.
*/
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
static void
hn_resume_mgmt(struct hn_softc *sc)
{
sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0;
/*
* Kick off network change detection, if it was pending.
* If no network change was pending, start link status
* checks, which is more lightweight than network change
* detection.
*/
if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG)
hn_change_network(sc);
else
hn_update_link_status(sc);
}
static void
hn_resume(struct hn_softc *sc)
{
/*
* If the non-transparent mode VF is activated, the synthetic
* device have to receive packets, so the data path of the
* synthetic device must be resumed.
*/
if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) ||
(sc->hn_flags & HN_FLAG_RXVF))
hn_resume_data(sc);
/*
* Don't resume link status change if VF is attached/activated.
* - In the non-transparent VF mode, the synthetic device marks
* link down until the VF is deactivated; i.e. VF is down.
* - In transparent VF mode, VF's media status is used until
* the VF is detached.
*/
if ((sc->hn_flags & HN_FLAG_RXVF) == 0 &&
!(hn_xpnt_vf && sc->hn_vf_ifp != NULL))
hn_resume_mgmt(sc);
/*
* Re-enable polling if this interface is running and
* the polling is requested.
*/
if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->hn_pollhz > 0)
hn_polling(sc, sc->hn_pollhz);
}
static void
hn_rndis_rx_status(struct hn_softc *sc, const void *data, int dlen)
{
const struct rndis_status_msg *msg;
int ofs;
if (dlen < sizeof(*msg)) {
if_printf(sc->hn_ifp, "invalid RNDIS status\n");
return;
}
msg = data;
switch (msg->rm_status) {
case RNDIS_STATUS_MEDIA_CONNECT:
case RNDIS_STATUS_MEDIA_DISCONNECT:
hn_update_link_status(sc);
break;
case RNDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG:
case RNDIS_STATUS_LINK_SPEED_CHANGE:
/* Not really useful; ignore. */
break;
case RNDIS_STATUS_NETWORK_CHANGE:
ofs = RNDIS_STBUFOFFSET_ABS(msg->rm_stbufoffset);
if (dlen < ofs + msg->rm_stbuflen ||
msg->rm_stbuflen < sizeof(uint32_t)) {
if_printf(sc->hn_ifp, "network changed\n");
} else {
uint32_t change;
memcpy(&change, ((const uint8_t *)msg) + ofs,
sizeof(change));
if_printf(sc->hn_ifp, "network changed, change %u\n",
change);
}
hn_change_network(sc);
break;
default:
if_printf(sc->hn_ifp, "unknown RNDIS status 0x%08x\n",
msg->rm_status);
break;
}
}
static int
hn_rndis_rxinfo(const void *info_data, int info_dlen, struct hn_rxinfo *info)
{
const struct rndis_pktinfo *pi = info_data;
uint32_t mask = 0;
while (info_dlen != 0) {
const void *data;
uint32_t dlen;
if (__predict_false(info_dlen < sizeof(*pi)))
return (EINVAL);
if (__predict_false(info_dlen < pi->rm_size))
return (EINVAL);
info_dlen -= pi->rm_size;
if (__predict_false(pi->rm_size & RNDIS_PKTINFO_SIZE_ALIGNMASK))
return (EINVAL);
if (__predict_false(pi->rm_size < pi->rm_pktinfooffset))
return (EINVAL);
dlen = pi->rm_size - pi->rm_pktinfooffset;
data = pi->rm_data;
if (pi->rm_internal == 1) {
switch (pi->rm_type) {
case NDIS_PKTINFO_IT_PKTINFO_ID:
if (__predict_false(dlen < NDIS_PKTINFOID_SZ))
return (EINVAL);
info->pktinfo_id =
(const struct packet_info_id *)data;
mask |= HN_RXINFO_PKTINFO_ID;
break;
default:
goto next;
}
} else {
switch (pi->rm_type) {
case NDIS_PKTINFO_TYPE_VLAN:
if (__predict_false(dlen
< NDIS_VLAN_INFO_SIZE))
return (EINVAL);
info->vlan_info = (const uint32_t *)data;
mask |= HN_RXINFO_VLAN;
break;
case NDIS_PKTINFO_TYPE_CSUM:
if (__predict_false(dlen
< NDIS_RXCSUM_INFO_SIZE))
return (EINVAL);
info->csum_info = (const uint32_t *)data;
mask |= HN_RXINFO_CSUM;
break;
case HN_NDIS_PKTINFO_TYPE_HASHVAL:
if (__predict_false(dlen
< HN_NDIS_HASH_VALUE_SIZE))
return (EINVAL);
info->hash_value = (const uint32_t *)data;
mask |= HN_RXINFO_HASHVAL;
break;
case HN_NDIS_PKTINFO_TYPE_HASHINF:
if (__predict_false(dlen
< HN_NDIS_HASH_INFO_SIZE))
return (EINVAL);
info->hash_info = (const uint32_t *)data;
mask |= HN_RXINFO_HASHINF;
break;
default:
goto next;
}
}
if (mask == HN_RXINFO_ALL) {
/* All found; done */
break;
}
next:
pi = (const struct rndis_pktinfo *)
((const uint8_t *)pi + pi->rm_size);
}
/*
* Final fixup.
* - If there is no hash value, invalidate the hash info.
*/
if ((mask & HN_RXINFO_HASHVAL) == 0)
info->hash_info = NULL;
return (0);
}
static __inline bool
hn_rndis_check_overlap(int off, int len, int check_off, int check_len)
{
if (off < check_off) {
if (__predict_true(off + len <= check_off))
return (false);
} else if (off > check_off) {
if (__predict_true(check_off + check_len <= off))
return (false);
}
return (true);
}
static __inline void
hn_rsc_add_data(struct hn_rx_ring *rxr, const void *data,
uint32_t len, struct hn_rxinfo *info)
{
uint32_t cnt = rxr->rsc.cnt;
if (cnt) {
rxr->rsc.pktlen += len;
} else {
rxr->rsc.vlan_info = info->vlan_info;
rxr->rsc.csum_info = info->csum_info;
rxr->rsc.hash_info = info->hash_info;
rxr->rsc.hash_value = info->hash_value;
rxr->rsc.pktlen = len;
}
rxr->rsc.frag_data[cnt] = data;
rxr->rsc.frag_len[cnt] = len;
rxr->rsc.cnt++;
}
static void
hn_rndis_rx_data(struct hn_rx_ring *rxr, const void *data, int dlen)
{
const struct rndis_packet_msg *pkt;
struct hn_rxinfo info;
int data_off, pktinfo_off, data_len, pktinfo_len;
bool rsc_more= false;
/*
* Check length.
*/
if (__predict_false(dlen < sizeof(*pkt))) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg\n");
return;
}
pkt = data;
if (__predict_false(dlen < pkt->rm_len)) {
if_printf(rxr->hn_ifp, "truncated RNDIS packet msg, "
"dlen %d, msglen %u\n", dlen, pkt->rm_len);
return;
}
if (__predict_false(pkt->rm_len <
pkt->rm_datalen + pkt->rm_oobdatalen + pkt->rm_pktinfolen)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msglen, "
"msglen %u, data %u, oob %u, pktinfo %u\n",
pkt->rm_len, pkt->rm_datalen, pkt->rm_oobdatalen,
pkt->rm_pktinfolen);
return;
}
if (__predict_false(pkt->rm_datalen == 0)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, no data\n");
return;
}
/*
* Check offests.
*/
#define IS_OFFSET_INVALID(ofs) \
((ofs) < RNDIS_PACKET_MSG_OFFSET_MIN || \
((ofs) & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK))
/* XXX Hyper-V does not meet data offset alignment requirement */
if (__predict_false(pkt->rm_dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"data offset %u\n", pkt->rm_dataoffset);
return;
}
if (__predict_false(pkt->rm_oobdataoffset > 0 &&
IS_OFFSET_INVALID(pkt->rm_oobdataoffset))) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"oob offset %u\n", pkt->rm_oobdataoffset);
return;
}
if (__predict_true(pkt->rm_pktinfooffset > 0) &&
__predict_false(IS_OFFSET_INVALID(pkt->rm_pktinfooffset))) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"pktinfo offset %u\n", pkt->rm_pktinfooffset);
return;
}
#undef IS_OFFSET_INVALID
data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_dataoffset);
data_len = pkt->rm_datalen;
pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_pktinfooffset);
pktinfo_len = pkt->rm_pktinfolen;
/*
* Check OOB coverage.
*/
if (__predict_false(pkt->rm_oobdatalen != 0)) {
int oob_off, oob_len;
if_printf(rxr->hn_ifp, "got oobdata\n");
oob_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_oobdataoffset);
oob_len = pkt->rm_oobdatalen;
if (__predict_false(oob_off + oob_len > pkt->rm_len)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"oob overflow, msglen %u, oob abs %d len %d\n",
pkt->rm_len, oob_off, oob_len);
return;
}
/*
* Check against data.
*/
if (hn_rndis_check_overlap(oob_off, oob_len,
data_off, data_len)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"oob overlaps data, oob abs %d len %d, "
"data abs %d len %d\n",
oob_off, oob_len, data_off, data_len);
return;
}
/*
* Check against pktinfo.
*/
if (pktinfo_len != 0 &&
hn_rndis_check_overlap(oob_off, oob_len,
pktinfo_off, pktinfo_len)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"oob overlaps pktinfo, oob abs %d len %d, "
"pktinfo abs %d len %d\n",
oob_off, oob_len, pktinfo_off, pktinfo_len);
return;
}
}
/*
* Check per-packet-info coverage and find useful per-packet-info.
*/
info.vlan_info = NULL;
info.csum_info = NULL;
info.hash_info = NULL;
info.pktinfo_id = NULL;
if (__predict_true(pktinfo_len != 0)) {
bool overlap;
int error;
if (__predict_false(pktinfo_off + pktinfo_len > pkt->rm_len)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"pktinfo overflow, msglen %u, "
"pktinfo abs %d len %d\n",
pkt->rm_len, pktinfo_off, pktinfo_len);
return;
}
/*
* Check packet info coverage.
*/
overlap = hn_rndis_check_overlap(pktinfo_off, pktinfo_len,
data_off, data_len);
if (__predict_false(overlap)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"pktinfo overlap data, pktinfo abs %d len %d, "
"data abs %d len %d\n",
pktinfo_off, pktinfo_len, data_off, data_len);
return;
}
/*
* Find useful per-packet-info.
*/
error = hn_rndis_rxinfo(((const uint8_t *)pkt) + pktinfo_off,
pktinfo_len, &info);
if (__predict_false(error)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg "
"pktinfo\n");
return;
}
}
if (__predict_false(data_off + data_len > pkt->rm_len)) {
if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, "
"data overflow, msglen %u, data abs %d len %d\n",
pkt->rm_len, data_off, data_len);
return;
}
/* Identify RSC fragments, drop invalid packets */
if ((info.pktinfo_id != NULL) &&
(info.pktinfo_id->flag & HN_NDIS_PKTINFO_SUBALLOC)) {
if (info.pktinfo_id->flag & HN_NDIS_PKTINFO_1ST_FRAG) {
rxr->rsc.cnt = 0;
rxr->hn_rsc_pkts++;
} else if (rxr->rsc.cnt == 0)
goto drop;
rsc_more = true;
if (info.pktinfo_id->flag & HN_NDIS_PKTINFO_LAST_FRAG)
rsc_more = false;
if (rsc_more && rxr->rsc.is_last)
goto drop;
} else {
rxr->rsc.cnt = 0;
}
if (__predict_false(rxr->rsc.cnt >= HN_NVS_RSC_MAX))
goto drop;
/* Store data in per rx ring structure */
hn_rsc_add_data(rxr,((const uint8_t *)pkt) + data_off,
data_len, &info);
if (rsc_more)
return;
hn_rxpkt(rxr);
rxr->rsc.cnt = 0;
return;
drop:
rxr->hn_rsc_drop++;
return;
}
static __inline void
hn_rndis_rxpkt(struct hn_rx_ring *rxr, const void *data, int dlen)
{
const struct rndis_msghdr *hdr;
if (__predict_false(dlen < sizeof(*hdr))) {
if_printf(rxr->hn_ifp, "invalid RNDIS msg\n");
return;
}
hdr = data;
if (__predict_true(hdr->rm_type == REMOTE_NDIS_PACKET_MSG)) {
/* Hot data path. */
hn_rndis_rx_data(rxr, data, dlen);
/* Done! */
return;
}
if (hdr->rm_type == REMOTE_NDIS_INDICATE_STATUS_MSG)
hn_rndis_rx_status(rxr->hn_ifp->if_softc, data, dlen);
else
hn_rndis_rx_ctrl(rxr->hn_ifp->if_softc, data, dlen);
}
static void
hn_nvs_handle_notify(struct hn_softc *sc, const struct vmbus_chanpkt_hdr *pkt)
{
const struct hn_nvs_hdr *hdr;
if (VMBUS_CHANPKT_DATALEN(pkt) < sizeof(*hdr)) {
if_printf(sc->hn_ifp, "invalid nvs notify\n");
return;
}
hdr = VMBUS_CHANPKT_CONST_DATA(pkt);
if (hdr->nvs_type == HN_NVS_TYPE_TXTBL_NOTE) {
/* Useless; ignore */
return;
}
if_printf(sc->hn_ifp, "got notify, nvs type %u\n", hdr->nvs_type);
}
static void
hn_nvs_handle_comp(struct hn_softc *sc, struct vmbus_channel *chan,
const struct vmbus_chanpkt_hdr *pkt)
{
struct hn_nvs_sendctx *sndc;
sndc = (struct hn_nvs_sendctx *)(uintptr_t)pkt->cph_xactid;
sndc->hn_cb(sndc, sc, chan, VMBUS_CHANPKT_CONST_DATA(pkt),
VMBUS_CHANPKT_DATALEN(pkt));
/*
* NOTE:
* 'sndc' CAN NOT be accessed anymore, since it can be freed by
* its callback.
*/
}
static void
hn_nvs_handle_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan,
const struct vmbus_chanpkt_hdr *pkthdr)
{
struct epoch_tracker et;
const struct vmbus_chanpkt_rxbuf *pkt;
const struct hn_nvs_hdr *nvs_hdr;
int count, i, hlen;
if (__predict_false(VMBUS_CHANPKT_DATALEN(pkthdr) < sizeof(*nvs_hdr))) {
if_printf(rxr->hn_ifp, "invalid nvs RNDIS\n");
return;
}
nvs_hdr = VMBUS_CHANPKT_CONST_DATA(pkthdr);
/* Make sure that this is a RNDIS message. */
if (__predict_false(nvs_hdr->nvs_type != HN_NVS_TYPE_RNDIS)) {
if_printf(rxr->hn_ifp, "nvs type %u, not RNDIS\n",
nvs_hdr->nvs_type);
return;
}
hlen = VMBUS_CHANPKT_GETLEN(pkthdr->cph_hlen);
if (__predict_false(hlen < sizeof(*pkt))) {
if_printf(rxr->hn_ifp, "invalid rxbuf chanpkt\n");
return;
}
pkt = (const struct vmbus_chanpkt_rxbuf *)pkthdr;
if (__predict_false(pkt->cp_rxbuf_id != HN_NVS_RXBUF_SIG)) {
if_printf(rxr->hn_ifp, "invalid rxbuf_id 0x%08x\n",
pkt->cp_rxbuf_id);
return;
}
count = pkt->cp_rxbuf_cnt;
if (__predict_false(hlen <
__offsetof(struct vmbus_chanpkt_rxbuf, cp_rxbuf[count]))) {
if_printf(rxr->hn_ifp, "invalid rxbuf_cnt %d\n", count);
return;
}
NET_EPOCH_ENTER(et);
/* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */
for (i = 0; i < count; ++i) {
int ofs, len;
ofs = pkt->cp_rxbuf[i].rb_ofs;
len = pkt->cp_rxbuf[i].rb_len;
if (__predict_false(ofs + len > HN_RXBUF_SIZE)) {
if_printf(rxr->hn_ifp, "%dth RNDIS msg overflow rxbuf, "
"ofs %d, len %d\n", i, ofs, len);
continue;
}
rxr->rsc.is_last = (i == (count - 1));
hn_rndis_rxpkt(rxr, rxr->hn_rxbuf + ofs, len);
}
NET_EPOCH_EXIT(et);
/*
* Ack the consumed RXBUF associated w/ this channel packet,
* so that this RXBUF can be recycled by the hypervisor.
*/
hn_nvs_ack_rxbuf(rxr, chan, pkt->cp_hdr.cph_xactid);
}
static void
hn_nvs_ack_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan,
uint64_t tid)
{
struct hn_nvs_rndis_ack ack;
int retries, error;
ack.nvs_type = HN_NVS_TYPE_RNDIS_ACK;
ack.nvs_status = HN_NVS_STATUS_OK;
retries = 0;
again:
error = vmbus_chan_send(chan, VMBUS_CHANPKT_TYPE_COMP,
VMBUS_CHANPKT_FLAG_NONE, &ack, sizeof(ack), tid);
if (__predict_false(error == EAGAIN)) {
/*
* NOTE:
* This should _not_ happen in real world, since the
* consumption of the TX bufring from the TX path is
* controlled.
*/
if (rxr->hn_ack_failed == 0)
if_printf(rxr->hn_ifp, "RXBUF ack retry\n");
rxr->hn_ack_failed++;
retries++;
if (retries < 10) {
DELAY(100);
goto again;
}
/* RXBUF leaks! */
if_printf(rxr->hn_ifp, "RXBUF ack failed\n");
}
}
static void
hn_chan_callback(struct vmbus_channel *chan, void *xrxr)
{
struct hn_rx_ring *rxr = xrxr;
struct hn_softc *sc = rxr->hn_ifp->if_softc;
for (;;) {
struct vmbus_chanpkt_hdr *pkt = rxr->hn_pktbuf;
int error, pktlen;
pktlen = rxr->hn_pktbuf_len;
error = vmbus_chan_recv_pkt(chan, pkt, &pktlen);
if (__predict_false(error == ENOBUFS)) {
void *nbuf;
int nlen;
/*
* Expand channel packet buffer.
*
* XXX
* Use M_WAITOK here, since allocation failure
* is fatal.
*/
nlen = rxr->hn_pktbuf_len * 2;
while (nlen < pktlen)
nlen *= 2;
nbuf = malloc(nlen, M_DEVBUF, M_WAITOK);
if_printf(rxr->hn_ifp, "expand pktbuf %d -> %d\n",
rxr->hn_pktbuf_len, nlen);
free(rxr->hn_pktbuf, M_DEVBUF);
rxr->hn_pktbuf = nbuf;
rxr->hn_pktbuf_len = nlen;
/* Retry! */
continue;
} else if (__predict_false(error == EAGAIN)) {
/* No more channel packets; done! */
break;
}
KASSERT(!error, ("vmbus_chan_recv_pkt failed: %d", error));
switch (pkt->cph_type) {
case VMBUS_CHANPKT_TYPE_COMP:
hn_nvs_handle_comp(sc, chan, pkt);
break;
case VMBUS_CHANPKT_TYPE_RXBUF:
hn_nvs_handle_rxbuf(rxr, chan, pkt);
break;
case VMBUS_CHANPKT_TYPE_INBAND:
hn_nvs_handle_notify(sc, pkt);
break;
default:
if_printf(rxr->hn_ifp, "unknown chan pkt %u\n",
pkt->cph_type);
break;
}
}
hn_chan_rollup(rxr, rxr->hn_txr);
}
static void
hn_sysinit(void *arg __unused)
{
int i;
hn_udpcs_fixup = counter_u64_alloc(M_WAITOK);
#ifdef HN_IFSTART_SUPPORT
/*
* Don't use ifnet.if_start if transparent VF mode is requested;
* mainly due to the IFF_DRV_OACTIVE flag.
*/
if (hn_xpnt_vf && hn_use_if_start) {
hn_use_if_start = 0;
printf("hn: tranparent VF mode, if_transmit will be used, "
"instead of if_start\n");
}
#endif
if (hn_xpnt_vf_attwait < HN_XPNT_VF_ATTWAIT_MIN) {
printf("hn: invalid transparent VF attach routing "
"wait timeout %d, reset to %d\n",
hn_xpnt_vf_attwait, HN_XPNT_VF_ATTWAIT_MIN);
hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN;
}
/*
* Initialize VF map.
*/
rm_init_flags(&hn_vfmap_lock, "hn_vfmap", RM_SLEEPABLE);
hn_vfmap_size = HN_VFMAP_SIZE_DEF;
hn_vfmap = malloc(sizeof(struct ifnet *) * hn_vfmap_size, M_DEVBUF,
M_WAITOK | M_ZERO);
/*
* Fix the # of TX taskqueues.
*/
if (hn_tx_taskq_cnt <= 0)
hn_tx_taskq_cnt = 1;
else if (hn_tx_taskq_cnt > mp_ncpus)
hn_tx_taskq_cnt = mp_ncpus;
/*
* Fix the TX taskqueue mode.
*/
switch (hn_tx_taskq_mode) {
case HN_TX_TASKQ_M_INDEP:
case HN_TX_TASKQ_M_GLOBAL:
case HN_TX_TASKQ_M_EVTTQ:
break;
default:
hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP;
break;
}
if (vm_guest != VM_GUEST_HV)
return;
if (hn_tx_taskq_mode != HN_TX_TASKQ_M_GLOBAL)
return;
hn_tx_taskque = malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *),
M_DEVBUF, M_WAITOK);
for (i = 0; i < hn_tx_taskq_cnt; ++i) {
hn_tx_taskque[i] = taskqueue_create("hn_tx", M_WAITOK,
taskqueue_thread_enqueue, &hn_tx_taskque[i]);
taskqueue_start_threads(&hn_tx_taskque[i], 1, PI_NET,
"hn tx%d", i);
}
}
SYSINIT(hn_sysinit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysinit, NULL);
static void
hn_sysuninit(void *arg __unused)
{
if (hn_tx_taskque != NULL) {
int i;
for (i = 0; i < hn_tx_taskq_cnt; ++i)
taskqueue_free(hn_tx_taskque[i]);
free(hn_tx_taskque, M_DEVBUF);
}
if (hn_vfmap != NULL)
free(hn_vfmap, M_DEVBUF);
rm_destroy(&hn_vfmap_lock);
counter_u64_free(hn_udpcs_fixup);
}
SYSUNINIT(hn_sysuninit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysuninit, NULL);