freebsd-nq/sys/amd64/include/cpufunc.h
2000-10-12 17:05:33 +00:00

546 lines
12 KiB
C

/*-
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Functions to provide access to special i386 instructions.
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
#define readb(va) (*(volatile u_int8_t *) (va))
#define readw(va) (*(volatile u_int16_t *) (va))
#define readl(va) (*(volatile u_int32_t *) (va))
#define writeb(va, d) (*(volatile u_int8_t *) (va) = (d))
#define writew(va, d) (*(volatile u_int16_t *) (va) = (d))
#define writel(va, d) (*(volatile u_int32_t *) (va) = (d))
#ifdef __GNUC__
#ifdef SWTCH_OPTIM_STATS
extern int tlb_flush_count; /* XXX */
#endif
static __inline void
breakpoint(void)
{
__asm __volatile("int $3");
}
static __inline u_int
bsfl(u_int mask)
{
u_int result;
__asm __volatile("bsfl %0,%0" : "=r" (result) : "0" (mask));
return (result);
}
static __inline u_int
bsrl(u_int mask)
{
u_int result;
__asm __volatile("bsrl %0,%0" : "=r" (result) : "0" (mask));
return (result);
}
static __inline void
disable_intr(void)
{
__asm __volatile("cli" : : : "memory");
}
static __inline void
enable_intr(void)
{
__asm __volatile("sti");
}
static __inline u_int
save_intr(void)
{
u_int ef;
__asm __volatile("pushfl; popl %0" : "=r" (ef));
return (ef);
}
static __inline void
restore_intr(u_int ef)
{
__asm __volatile("pushl %0; popfl" : : "r" (ef) : "memory" );
}
#define HAVE_INLINE_FFS
static __inline int
ffs(int mask)
{
/*
* Note that gcc-2's builtin ffs would be used if we didn't declare
* this inline or turn off the builtin. The builtin is faster but
* broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
* versions.
*/
return (mask == 0 ? mask : bsfl((u_int)mask) + 1);
}
#define HAVE_INLINE_FLS
static __inline int
fls(int mask)
{
return (mask == 0 ? mask : bsrl((u_int)mask) + 1);
}
#if __GNUC__ < 2
#define inb(port) inbv(port)
#define outb(port, data) outbv(port, data)
#else /* __GNUC >= 2 */
/*
* The following complications are to get around gcc not having a
* constraint letter for the range 0..255. We still put "d" in the
* constraint because "i" isn't a valid constraint when the port
* isn't constant. This only matters for -O0 because otherwise
* the non-working version gets optimized away.
*
* Use an expression-statement instead of a conditional expression
* because gcc-2.6.0 would promote the operands of the conditional
* and produce poor code for "if ((inb(var) & const1) == const2)".
*
* The unnecessary test `(port) < 0x10000' is to generate a warning if
* the `port' has type u_short or smaller. Such types are pessimal.
* This actually only works for signed types. The range check is
* careful to avoid generating warnings.
*/
#define inb(port) __extension__ ({ \
u_char _data; \
if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000) \
_data = inbc(port); \
else \
_data = inbv(port); \
_data; })
#define outb(port, data) ( \
__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000 \
? outbc(port, data) : outbv(port, data))
static __inline u_char
inbc(u_int port)
{
u_char data;
__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
return (data);
}
static __inline void
outbc(u_int port, u_char data)
{
__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
}
#endif /* __GNUC <= 2 */
static __inline u_char
inbv(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline u_int
inl(u_int port)
{
u_int data;
__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline void
insb(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insb"
: "=D" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port)
: "memory");
}
static __inline void
insw(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insw"
: "=D" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port)
: "memory");
}
static __inline void
insl(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insl"
: "=D" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port)
: "memory");
}
static __inline void
invd(void)
{
__asm __volatile("invd");
}
#if defined(SMP) && defined(_KERNEL)
/*
* When using APIC IPI's, invlpg() is not simply the invlpg instruction
* (this is a bug) and the inlining cost is prohibitive since the call
* executes into the IPI transmission system.
*/
void invlpg __P((u_int addr));
void invltlb __P((void));
static __inline void
cpu_invlpg(void *addr)
{
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
}
static __inline void
cpu_invltlb(void)
{
u_int temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3()
* is inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
: : "memory");
#if defined(SWTCH_OPTIM_STATS)
++tlb_flush_count;
#endif
}
#else /* !(SMP && _KERNEL) */
static __inline void
invlpg(u_int addr)
{
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
}
static __inline void
invltlb(void)
{
u_int temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3()
* is inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
: : "memory");
#ifdef SWTCH_OPTIM_STATS
++tlb_flush_count;
#endif
}
#endif /* SMP && _KERNEL */
static __inline u_short
inw(u_int port)
{
u_short data;
__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline void
outbv(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
static __inline void
outl(u_int port, u_int data)
{
/*
* outl() and outw() aren't used much so we haven't looked at
* possible micro-optimizations such as the unnecessary
* assignment for them.
*/
__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
}
static __inline void
outsb(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsb"
: "=S" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port));
}
static __inline void
outsw(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsw"
: "=S" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port));
}
static __inline void
outsl(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsl"
: "=S" (addr), "=c" (cnt)
: "0" (addr), "1" (cnt), "d" (port));
}
static __inline void
outw(u_int port, u_short data)
{
__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
}
static __inline u_int
rcr2(void)
{
u_int data;
__asm __volatile("movl %%cr2,%0" : "=r" (data));
return (data);
}
static __inline u_int
read_eflags(void)
{
u_int ef;
__asm __volatile("pushfl; popl %0" : "=r" (ef));
return (ef);
}
static __inline u_int64_t
rdmsr(u_int msr)
{
u_int64_t rv;
__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
return (rv);
}
static __inline u_int64_t
rdpmc(u_int pmc)
{
u_int64_t rv;
__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
return (rv);
}
static __inline u_int64_t
rdtsc(void)
{
u_int64_t rv;
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
return (rv);
}
static __inline void
wbinvd(void)
{
__asm __volatile("wbinvd");
}
static __inline void
write_eflags(u_int ef)
{
__asm __volatile("pushl %0; popfl" : : "r" (ef));
}
static __inline void
wrmsr(u_int msr, u_int64_t newval)
{
__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
}
static __inline u_int
rfs(void)
{
u_int sel;
__asm __volatile("movl %%fs,%0" : "=rm" (sel));
return (sel);
}
static __inline u_int
rgs(void)
{
u_int sel;
__asm __volatile("movl %%gs,%0" : "=rm" (sel));
return (sel);
}
static __inline void
load_fs(u_int sel)
{
__asm __volatile("movl %0,%%fs" : : "rm" (sel));
}
static __inline void
load_gs(u_int sel)
{
__asm __volatile("movl %0,%%gs" : : "rm" (sel));
}
static __inline u_int
rdr0(void)
{
u_int data;
__asm __volatile("movl %%dr0,%0" : "=r" (data));
return (data);
}
static __inline u_int
rdr1(void)
{
u_int data;
__asm __volatile("movl %%dr1,%0" : "=r" (data));
return (data);
}
static __inline u_int
rdr2(void)
{
u_int data;
__asm __volatile("movl %%dr2,%0" : "=r" (data));
return (data);
}
static __inline u_int
rdr3(void)
{
u_int data;
__asm __volatile("movl %%dr3,%0" : "=r" (data));
return (data);
}
static __inline u_int
rdr6(void)
{
u_int data;
__asm __volatile("movl %%dr6,%0" : "=r" (data));
return (data);
}
static __inline u_int
rdr7(void)
{
u_int data;
__asm __volatile("movl %%dr7,%0" : "=r" (data));
return (data);
}
#else /* !__GNUC__ */
int breakpoint __P((void));
u_int bsfl __P((u_int mask));
u_int bsrl __P((u_int mask));
void disable_intr __P((void));
void enable_intr __P((void));
u_char inb __P((u_int port));
u_int inl __P((u_int port));
void insb __P((u_int port, void *addr, size_t cnt));
void insl __P((u_int port, void *addr, size_t cnt));
void insw __P((u_int port, void *addr, size_t cnt));
void invd __P((void));
void invlpg __P((u_int addr));
void invltlb __P((void));
u_short inw __P((u_int port));
void outb __P((u_int port, u_char data));
void outl __P((u_int port, u_int data));
void outsb __P((u_int port, void *addr, size_t cnt));
void outsl __P((u_int port, void *addr, size_t cnt));
void outsw __P((u_int port, void *addr, size_t cnt));
void outw __P((u_int port, u_short data));
u_int rcr2 __P((void));
u_int64_t rdmsr __P((u_int msr));
u_int64_t rdpmc __P((u_int pmc));
u_int64_t rdtsc __P((void));
u_int read_eflags __P((void));
void wbinvd __P((void));
void write_eflags __P((u_int ef));
void wrmsr __P((u_int msr, u_int64_t newval));
u_int rfs __P((void));
u_int rgs __P((void));
void load_fs __P((u_int sel));
void load_gs __P((u_int sel));
#endif /* __GNUC__ */
void load_cr0 __P((u_int cr0));
void load_cr3 __P((u_int cr3));
void load_cr4 __P((u_int cr4));
void ltr __P((u_short sel));
u_int rcr0 __P((void));
u_int rcr3 __P((void));
u_int rcr4 __P((void));
void load_dr6 __P((u_int dr6));
void reset_dbregs __P((void));
#endif /* !_MACHINE_CPUFUNC_H_ */