Adrian Chadd e113789bdc Bring over my FreeBSD modifications for the AR9300 HAL to make it
work in FreeBSD.

This is still heavily a work in progress but I'd rather it start
shipping in -HEAD sooner rather than later.

This doesn't (yet) link it into the build system either for a static
kernel or as a module; that will come later (after many, many make universe
tests.)
2013-04-28 00:57:47 +00:00

1213 lines
46 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar9300/ar9300.h"
/* shorthands to compact tables for readability */
#define OFDM IEEE80211_T_OFDM
#define CCK IEEE80211_T_CCK
#define TURBO IEEE80211_T_TURBO
#define XR ATHEROS_T_XR
#define HT IEEE80211_T_HT
#define AR9300_NUM_OFDM_RATES 8
#define AR9300_NUM_HT_SS_RATES 8
#define AR9300_NUM_HT_DS_RATES 8
#define AR9300_NUM_HT_TS_RATES 8
/* Array Gain defined for TxBF */
#define AR9300_TXBF_2TX_ARRAY_GAIN 6 /* 2TX/SS 3 */
#define AR9300_TXBF_3TX_ARRAY_GAIN 10 /* 3TX/SS or 3TX/DS 4.8 */
#define AR9300_STBC_3TX_ARRAY_GAIN 10 /* 3TX/SS or 3TX/DS 4.8 */
/* MCS RATE CODES - first and last */
#define AR9300_MCS0_RATE_CODE 0x80
#define AR9300_MCS23_RATE_CODE 0x97
static inline void ar9300_init_rate_txpower_cck(struct ath_hal *ah,
const HAL_RATE_TABLE *rt, u_int8_t rates_array[], u_int8_t chainmask);
static inline void ar9300_init_rate_txpower_ofdm(struct ath_hal* ah,
const HAL_RATE_TABLE *rt, u_int8_t rates_array[], int rt_offset,
u_int8_t chainmask);
static inline void ar9300_init_rate_txpower_ht(struct ath_hal *ah,
const HAL_RATE_TABLE *rt, HAL_BOOL is40, u_int8_t rates_array[],
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask);
static inline void ar9300_init_rate_txpower_stbc(struct ath_hal *ah,
const HAL_RATE_TABLE *rt, HAL_BOOL is40,
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask);
static inline void ar9300_adjust_rate_txpower_cdd(struct ath_hal *ah,
const HAL_RATE_TABLE *rt, HAL_BOOL is40,
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask);
#define AR9300_11A_RT_OFDM_OFFSET 0
HAL_RATE_TABLE ar9300_11a_table = {
8, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 6 Mb */ { AH_TRUE, OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0 },
/* 9 Mb */ { AH_TRUE, OFDM, 9000, 0x0f, 0x00, 18, 0 },
/* 12 Mb */ { AH_TRUE, OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2 },
/* 18 Mb */ { AH_TRUE, OFDM, 18000, 0x0e, 0x00, 36, 2 },
/* 24 Mb */ { AH_TRUE, OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4 },
/* 36 Mb */ { AH_TRUE, OFDM, 36000, 0x0d, 0x00, 72, 4 },
/* 48 Mb */ { AH_TRUE, OFDM, 48000, 0x08, 0x00, 96, 4 },
/* 54 Mb */ { AH_TRUE, OFDM, 54000, 0x0c, 0x00, 108, 4 },
},
};
HAL_RATE_TABLE ar9300_11a_half_table = {
8, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 6 Mb */ { AH_TRUE, OFDM, 3000, 0x0b, 0x00, (0x80 | 6), 0 },
/* 9 Mb */ { AH_TRUE, OFDM, 4500, 0x0f, 0x00, 9, 0 },
/* 12 Mb */ { AH_TRUE, OFDM, 6000, 0x0a, 0x00, (0x80 | 12), 2 },
/* 18 Mb */ { AH_TRUE, OFDM, 9000, 0x0e, 0x00, 18, 2 },
/* 24 Mb */ { AH_TRUE, OFDM, 12000, 0x09, 0x00, (0x80 | 24), 4 },
/* 36 Mb */ { AH_TRUE, OFDM, 18000, 0x0d, 0x00, 36, 4 },
/* 48 Mb */ { AH_TRUE, OFDM, 24000, 0x08, 0x00, 48, 4 },
/* 54 Mb */ { AH_TRUE, OFDM, 27000, 0x0c, 0x00, 54, 4 },
},
};
HAL_RATE_TABLE ar9300_11a_quarter_table = {
8, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 6 Mb */ { AH_TRUE, OFDM, 1500, 0x0b, 0x00, (0x80 | 3), 0 },
/* 9 Mb */ { AH_TRUE, OFDM, 2250, 0x0f, 0x00, 4 , 0 },
/* 12 Mb */ { AH_TRUE, OFDM, 3000, 0x0a, 0x00, (0x80 | 6), 2 },
/* 18 Mb */ { AH_TRUE, OFDM, 4500, 0x0e, 0x00, 9, 2 },
/* 24 Mb */ { AH_TRUE, OFDM, 6000, 0x09, 0x00, (0x80 | 12), 4 },
/* 36 Mb */ { AH_TRUE, OFDM, 9000, 0x0d, 0x00, 18, 4 },
/* 48 Mb */ { AH_TRUE, OFDM, 12000, 0x08, 0x00, 24, 4 },
/* 54 Mb */ { AH_TRUE, OFDM, 13500, 0x0c, 0x00, 27, 4 },
},
};
HAL_RATE_TABLE ar9300_turbo_table = {
8, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 6 Mb */ { AH_TRUE, TURBO, 6000, 0x0b, 0x00, (0x80 | 12), 0 },
/* 9 Mb */ { AH_TRUE, TURBO, 9000, 0x0f, 0x00, 18, 0 },
/* 12 Mb */ { AH_TRUE, TURBO, 12000, 0x0a, 0x00, (0x80 | 24), 2 },
/* 18 Mb */ { AH_TRUE, TURBO, 18000, 0x0e, 0x00, 36, 2 },
/* 24 Mb */ { AH_TRUE, TURBO, 24000, 0x09, 0x00, (0x80 | 48), 4 },
/* 36 Mb */ { AH_TRUE, TURBO, 36000, 0x0d, 0x00, 72, 4 },
/* 48 Mb */ { AH_TRUE, TURBO, 48000, 0x08, 0x00, 96, 4 },
/* 54 Mb */ { AH_TRUE, TURBO, 54000, 0x0c, 0x00, 108, 4 },
},
};
HAL_RATE_TABLE ar9300_11b_table = {
4, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 1 Mb */ { AH_TRUE, CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0 },
/* 2 Mb */ { AH_TRUE, CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1 },
/* 5.5 Mb */ { AH_TRUE, CCK, 5500, 0x19, 0x04, (0x80 | 11), 1 },
/* 11 Mb */ { AH_TRUE, CCK, 11000, 0x18, 0x04, (0x80 | 22), 1 },
},
};
/* Venice TODO: round_up_rate() is broken when the rate table does not represent
* rates in increasing order e.g. 5.5, 11, 6, 9.
* An average rate of 6 Mbps will currently map to 11 Mbps.
*/
#define AR9300_11G_RT_OFDM_OFFSET 4
HAL_RATE_TABLE ar9300_11g_table = {
12, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 1 Mb */ { AH_TRUE, CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0 },
/* 2 Mb */ { AH_TRUE, CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1 },
/* 5.5 Mb */ { AH_TRUE, CCK, 5500, 0x19, 0x04, (0x80 | 11), 2 },
/* 11 Mb */ { AH_TRUE, CCK, 11000, 0x18, 0x04, (0x80 | 22), 3 },
/* Hardware workaround - remove rates 6, 9 from rate ctrl */
/* 6 Mb */ { AH_TRUE, OFDM, 6000, 0x0b, 0x00, 12, 4 },
/* 9 Mb */ { AH_TRUE, OFDM, 9000, 0x0f, 0x00, 18, 4 },
/* 12 Mb */ { AH_TRUE, OFDM, 12000, 0x0a, 0x00, 24, 6 },
/* 18 Mb */ { AH_TRUE, OFDM, 18000, 0x0e, 0x00, 36, 6 },
/* 24 Mb */ { AH_TRUE, OFDM, 24000, 0x09, 0x00, 48, 8 },
/* 36 Mb */ { AH_TRUE, OFDM, 36000, 0x0d, 0x00, 72, 8 },
/* 48 Mb */ { AH_TRUE, OFDM, 48000, 0x08, 0x00, 96, 8 },
/* 54 Mb */ { AH_TRUE, OFDM, 54000, 0x0c, 0x00, 108, 8 },
},
};
#if 0
HAL_RATE_TABLE ar9300_xr_table = {
13, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 0.25 Mb */ {AH_TRUE, XR, 250, 0x03, 0x00, (0x80 | 1), 0, 612, 612 },
/* 0.5 Mb */ {AH_TRUE, XR, 500, 0x07, 0x00, (0x80 | 1), 0, 457, 457 },
/* 1 Mb */ {AH_TRUE, XR, 1000, 0x02, 0x00, (0x80 | 2), 1, 228, 228 },
/* 2 Mb */ {AH_TRUE, XR, 2000, 0x06, 0x00, (0x80 | 4), 2, 160, 160 },
/* 3 Mb */ {AH_TRUE, XR, 3000, 0x01, 0x00, (0x80 | 6), 3, 140, 140 },
/* 6 Mb */ {AH_TRUE, OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 4, 60, 60 },
/* 9 Mb */ {AH_TRUE, OFDM, 9000, 0x0f, 0x00, 18, 4, 60, 60 },
/* 12 Mb */ {AH_TRUE, OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 6, 48, 48 },
/* 18 Mb */ {AH_TRUE, OFDM, 18000, 0x0e, 0x00, 36, 6, 48, 48 },
/* 24 Mb */ {AH_TRUE, OFDM, 24000, 0x09, 0x00, 48, 8, 44, 44 },
/* 36 Mb */ {AH_TRUE, OFDM, 36000, 0x0d, 0x00, 72, 8, 44, 44 },
/* 48 Mb */ {AH_TRUE, OFDM, 48000, 0x08, 0x00, 96, 8, 44, 44 },
/* 54 Mb */ {AH_TRUE, OFDM, 54000, 0x0c, 0x00, 108, 8, 44, 44 },
},
};
#endif
#define AR9300_11NG_RT_OFDM_OFFSET 4
#define AR9300_11NG_RT_HT_SS_OFFSET 12
#define AR9300_11NG_RT_HT_DS_OFFSET 20
#define AR9300_11NG_RT_HT_TS_OFFSET 28
HAL_RATE_TABLE ar9300_11ng_table = {
36, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 1 Mb */ { AH_TRUE, CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0 },
/* 2 Mb */ { AH_TRUE, CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1 },
/* 5.5 Mb */ { AH_TRUE, CCK, 5500, 0x19, 0x04, (0x80 | 11), 2 },
/* 11 Mb */ { AH_TRUE, CCK, 11000, 0x18, 0x04, (0x80 | 22), 3 },
/* Hardware workaround - remove rates 6, 9 from rate ctrl */
/* 6 Mb */ { AH_FALSE, OFDM, 6000, 0x0b, 0x00, 12, 4 },
/* 9 Mb */ { AH_FALSE, OFDM, 9000, 0x0f, 0x00, 18, 4 },
/* 12 Mb */ { AH_TRUE, OFDM, 12000, 0x0a, 0x00, 24, 6 },
/* 18 Mb */ { AH_TRUE, OFDM, 18000, 0x0e, 0x00, 36, 6 },
/* 24 Mb */ { AH_TRUE, OFDM, 24000, 0x09, 0x00, 48, 8 },
/* 36 Mb */ { AH_TRUE, OFDM, 36000, 0x0d, 0x00, 72, 8 },
/* 48 Mb */ { AH_TRUE, OFDM, 48000, 0x08, 0x00, 96, 8 },
/* 54 Mb */ { AH_TRUE, OFDM, 54000, 0x0c, 0x00, 108, 8 },
/*--- HT SS rates ---*/
/* 6.5 Mb */ { AH_TRUE, HT, 6500, 0x80, 0x00, 0, 4 },
/* 13 Mb */ { AH_TRUE, HT, 13000, 0x81, 0x00, 1, 6 },
/*19.5 Mb */ { AH_TRUE, HT, 19500, 0x82, 0x00, 2, 6 },
/* 26 Mb */ { AH_TRUE, HT, 26000, 0x83, 0x00, 3, 8 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x84, 0x00, 4, 8 },
/* 52 Mb */ { AH_TRUE, HT, 52000, 0x85, 0x00, 5, 8 },
/*58.5 Mb */ { AH_TRUE, HT, 58500, 0x86, 0x00, 6, 8 },
/* 65 Mb */ { AH_TRUE, HT, 65000, 0x87, 0x00, 7, 8 },
/*--- HT DS rates ---*/
/* 13 Mb */ { AH_TRUE, HT, 13000, 0x88, 0x00, 8, 4 },
/* 26 Mb */ { AH_TRUE, HT, 26000, 0x89, 0x00, 9, 6 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x8a, 0x00, 10, 6 },
/* 52 Mb */ { AH_TRUE, HT, 52000, 0x8b, 0x00, 11, 8 },
/* 78 Mb */ { AH_TRUE, HT, 78000, 0x8c, 0x00, 12, 8 },
/* 104 Mb */ { AH_TRUE, HT, 104000, 0x8d, 0x00, 13, 8 },
/* 117 Mb */ { AH_TRUE, HT, 117000, 0x8e, 0x00, 14, 8 },
/* 130 Mb */ { AH_TRUE, HT, 130000, 0x8f, 0x00, 15, 8 },
/*--- HT TS rates ---*/
/*19.5 Mb */ { AH_TRUE, HT, 19500, 0x90, 0x00, 16, 4 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x91, 0x00, 17, 6 },
/*58.5 Mb */ { AH_TRUE, HT, 58500, 0x92, 0x00, 18, 6 },
/* 78 Mb */ { AH_TRUE, HT, 78000, 0x93, 0x00, 19, 8 },
/* 117 Mb */ { AH_TRUE, HT, 117000, 0x94, 0x00, 20, 8 },
/* 156 Mb */ { AH_TRUE, HT, 156000, 0x95, 0x00, 21, 8 },
/*175.5Mb */ { AH_TRUE, HT, 175500, 0x96, 0x00, 22, 8 },
/* 195 Mb */ { AH_TRUE, HT, 195000, 0x97, 0x00, 23, 8 },
},
};
#define AR9300_11NA_RT_OFDM_OFFSET 0
#define AR9300_11NA_RT_HT_SS_OFFSET 8
#define AR9300_11NA_RT_HT_DS_OFFSET 16
#define AR9300_11NA_RT_HT_TS_OFFSET 24
static HAL_RATE_TABLE ar9300_11na_table = {
32, /* number of rates */
{ 0 },
{
/* short ctrl */
/* valid rate_code Preamble dot11Rate Rate */
/* 6 Mb */ { AH_TRUE, OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0 },
/* 9 Mb */ { AH_TRUE, OFDM, 9000, 0x0f, 0x00, 18, 0 },
/* 12 Mb */ { AH_TRUE, OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2 },
/* 18 Mb */ { AH_TRUE, OFDM, 18000, 0x0e, 0x00, 36, 2 },
/* 24 Mb */ { AH_TRUE, OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4 },
/* 36 Mb */ { AH_TRUE, OFDM, 36000, 0x0d, 0x00, 72, 4 },
/* 48 Mb */ { AH_TRUE, OFDM, 48000, 0x08, 0x00, 96, 4 },
/* 54 Mb */ { AH_TRUE, OFDM, 54000, 0x0c, 0x00, 108, 4 },
/*--- HT SS rates ---*/
/* 6.5 Mb */ { AH_TRUE, HT, 6500, 0x80, 0x00, 0, 0 },
/* 13 Mb */ { AH_TRUE, HT, 13000, 0x81, 0x00, 1, 2 },
/*19.5 Mb */ { AH_TRUE, HT, 19500, 0x82, 0x00, 2, 2 },
/* 26 Mb */ { AH_TRUE, HT, 26000, 0x83, 0x00, 3, 4 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x84, 0x00, 4, 4 },
/* 52 Mb */ { AH_TRUE, HT, 52000, 0x85, 0x00, 5, 4 },
/*58.5 Mb */ { AH_TRUE, HT, 58500, 0x86, 0x00, 6, 4 },
/* 65 Mb */ { AH_TRUE, HT, 65000, 0x87, 0x00, 7, 4 },
/*--- HT DS rates ---*/
/* 13 Mb */ { AH_TRUE, HT, 13000, 0x88, 0x00, 8, 0 },
/* 26 Mb */ { AH_TRUE, HT, 26000, 0x89, 0x00, 9, 2 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x8a, 0x00, 10, 2 },
/* 52 Mb */ { AH_TRUE, HT, 52000, 0x8b, 0x00, 11, 4 },
/* 78 Mb */ { AH_TRUE, HT, 78000, 0x8c, 0x00, 12, 4 },
/* 104 Mb */ { AH_TRUE, HT, 104000, 0x8d, 0x00, 13, 4 },
/* 117 Mb */ { AH_TRUE, HT, 117000, 0x8e, 0x00, 14, 4 },
/* 130 Mb */ { AH_TRUE, HT, 130000, 0x8f, 0x00, 15, 4 },
/*--- HT TS rates ---*/
/*19.5 Mb */ { AH_TRUE, HT, 19500, 0x90, 0x00, 16, 0 },
/* 39 Mb */ { AH_TRUE, HT, 39000, 0x91, 0x00, 17, 2 },
/*58.5 Mb */ { AH_TRUE, HT, 58500, 0x92, 0x00, 18, 2 },
/* 78 Mb */ { AH_TRUE, HT, 78000, 0x93, 0x00, 19, 4 },
/* 117 Mb */ { AH_TRUE, HT, 117000, 0x94, 0x00, 20, 4 },
/* 156 Mb */ { AH_TRUE, HT, 156000, 0x95, 0x00, 21, 4 },
/*175.5Mb */ { AH_TRUE, HT, 175500, 0x96, 0x00, 22, 4 },
/* 195 Mb */ { AH_TRUE, HT, 195000, 0x97, 0x00, 23, 4 },
},
};
#undef OFDM
#undef CCK
#undef TURBO
#undef XR
#undef HT
#undef HT_HGI
const HAL_RATE_TABLE *
ar9300_get_rate_table(struct ath_hal *ah, u_int mode)
{
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
HAL_CAPABILITIES *p_cap = &ahpriv->ah_caps;
HAL_RATE_TABLE *rt;
switch (mode) {
case HAL_MODE_11A:
rt = &ar9300_11a_table;
break;
case HAL_MODE_11A_HALF_RATE:
if (p_cap->halChanHalfRate) {
rt = &ar9300_11a_half_table;
break;
}
return AH_NULL;
case HAL_MODE_11A_QUARTER_RATE:
if (p_cap->halChanQuarterRate) {
rt = &ar9300_11a_quarter_table;
break;
}
return AH_NULL;
case HAL_MODE_11B:
rt = &ar9300_11b_table;
break;
case HAL_MODE_11G:
rt = &ar9300_11g_table;
break;
case HAL_MODE_TURBO:
case HAL_MODE_108G:
rt = &ar9300_turbo_table;
break;
#if 0
case HAL_MODE_XR:
rt = &ar9300_xr_table;
break;
#endif
case HAL_MODE_11NG_HT20:
case HAL_MODE_11NG_HT40PLUS:
case HAL_MODE_11NG_HT40MINUS:
rt = &ar9300_11ng_table;
break;
case HAL_MODE_11NA_HT20:
case HAL_MODE_11NA_HT40PLUS:
case HAL_MODE_11NA_HT40MINUS:
rt = &ar9300_11na_table;
break;
default:
HALDEBUG(ah, HAL_DEBUG_CHANNEL,
"%s: invalid mode 0x%x\n", __func__, mode);
return AH_NULL;
}
ath_hal_setupratetable(ah, rt);
return rt;
}
static HAL_BOOL
ar9300_invalid_stbc_cfg(int tx_chains, u_int8_t rate_code)
{
switch (tx_chains) {
case 0: /* Single Chain */
return AH_TRUE;
case 1: /* 2 Chains */
if ((rate_code < 0x80) || (rate_code > 0x87)) {
return AH_TRUE;
} else {
return AH_FALSE;
}
case 2: /* 3 Chains */
if ((rate_code < 0x80) || (rate_code > 0x87)) {
return AH_TRUE;
} else {
return AH_FALSE;
}
default:
HALASSERT(0);
break;
}
return AH_TRUE;
}
int16_t
ar9300_get_rate_txpower(struct ath_hal *ah, u_int mode, u_int8_t rate_index,
u_int8_t chainmask, u_int8_t xmit_mode)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int num_chains = ar9300_get_ntxchains(chainmask);
switch (xmit_mode) {
case AR9300_DEF_MODE:
return ahp->txpower[rate_index][num_chains-1];
case AR9300_STBC_MODE:
return ahp->txpower_stbc[rate_index][num_chains-1];
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid mode 0x%x\n",
__func__, xmit_mode);
HALASSERT(0);
break;
}
return ahp->txpower[rate_index][num_chains-1];
}
extern void
ar9300_adjust_reg_txpower_cdd(struct ath_hal *ah,
u_int8_t power_per_rate[])
{
struct ath_hal_9300 *ahp = AH9300(ah);
int16_t twice_array_gain, cdd_power = 0;
int i;
/*
* Adjust the upper limit for CDD factoring in the array gain .
* The array gain is the same as TxBF, hence reuse the same defines.
*/
switch (ahp->ah_tx_chainmask) {
case OSPREY_1_CHAINMASK:
cdd_power = ahp->upper_limit[0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_TXBF_2TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_2TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[1] + twice_array_gain;
/* Adjust OFDM legacy rates as well */
for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
/* 2Tx/(n-1) stream Adjust rates MCS0 through MCS 7 HT 20*/
for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_7; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
/* 2Tx/(n-1) stream Adjust rates MCS0 through MCS 7 HT 40*/
for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_7; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
break;
case OSPREY_3_CHAINMASK:
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_TXBF_3TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_3TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[2] + twice_array_gain;
/* Adjust OFDM legacy rates as well */
for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
/* 3Tx/(n-1)streams Adjust rates MCS0 through MCS 15 HT20 */
for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_15; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
/* 3Tx/(n-1)streams Adjust rates MCS0 through MCS 15 HT40 */
for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_15; i++) {
if (power_per_rate[i] > cdd_power) {
power_per_rate[i] = cdd_power;
}
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, ahp->ah_tx_chainmask);
break;
}
return;
}
extern void
ar9300_init_rate_txpower(struct ath_hal *ah, u_int mode,
const struct ieee80211_channel *chan,
u_int8_t power_per_rate[], u_int8_t chainmask)
{
const HAL_RATE_TABLE *rt;
HAL_BOOL is40 = IEEE80211_IS_CHAN_HT40(chan);
rt = ar9300_get_rate_table(ah, mode);
HALASSERT(rt != NULL);
switch (mode) {
case HAL_MODE_11A:
ar9300_init_rate_txpower_ofdm(ah, rt, power_per_rate,
AR9300_11A_RT_OFDM_OFFSET, chainmask);
break;
case HAL_MODE_11NA_HT20:
case HAL_MODE_11NA_HT40PLUS:
case HAL_MODE_11NA_HT40MINUS:
ar9300_init_rate_txpower_ofdm(ah, rt, power_per_rate,
AR9300_11NA_RT_OFDM_OFFSET, chainmask);
ar9300_init_rate_txpower_ht(ah, rt, is40, power_per_rate,
AR9300_11NA_RT_HT_SS_OFFSET,
AR9300_11NA_RT_HT_DS_OFFSET,
AR9300_11NA_RT_HT_TS_OFFSET, chainmask);
ar9300_init_rate_txpower_stbc(ah, rt, is40,
AR9300_11NA_RT_HT_SS_OFFSET,
AR9300_11NA_RT_HT_DS_OFFSET,
AR9300_11NA_RT_HT_TS_OFFSET, chainmask);
/* For FCC the array gain has to be factored for CDD mode */
if (is_reg_dmn_fcc(ath_hal_getctl(ah, chan))) {
ar9300_adjust_rate_txpower_cdd(ah, rt, is40,
AR9300_11NA_RT_HT_SS_OFFSET,
AR9300_11NA_RT_HT_DS_OFFSET,
AR9300_11NA_RT_HT_TS_OFFSET, chainmask);
}
break;
case HAL_MODE_11G:
ar9300_init_rate_txpower_cck(ah, rt, power_per_rate, chainmask);
ar9300_init_rate_txpower_ofdm(ah, rt, power_per_rate,
AR9300_11G_RT_OFDM_OFFSET, chainmask);
break;
case HAL_MODE_11B:
ar9300_init_rate_txpower_cck(ah, rt, power_per_rate, chainmask);
break;
case HAL_MODE_11NG_HT20:
case HAL_MODE_11NG_HT40PLUS:
case HAL_MODE_11NG_HT40MINUS:
ar9300_init_rate_txpower_cck(ah, rt, power_per_rate, chainmask);
ar9300_init_rate_txpower_ofdm(ah, rt, power_per_rate,
AR9300_11NG_RT_OFDM_OFFSET, chainmask);
ar9300_init_rate_txpower_ht(ah, rt, is40, power_per_rate,
AR9300_11NG_RT_HT_SS_OFFSET,
AR9300_11NG_RT_HT_DS_OFFSET,
AR9300_11NG_RT_HT_TS_OFFSET, chainmask);
ar9300_init_rate_txpower_stbc(ah, rt, is40,
AR9300_11NG_RT_HT_SS_OFFSET,
AR9300_11NG_RT_HT_DS_OFFSET,
AR9300_11NG_RT_HT_TS_OFFSET, chainmask);
/* For FCC the array gain needs to be factored for CDD mode */
if (is_reg_dmn_fcc(ath_hal_getctl(ah, chan))) {
ar9300_adjust_rate_txpower_cdd(ah, rt, is40,
AR9300_11NG_RT_HT_SS_OFFSET,
AR9300_11NG_RT_HT_DS_OFFSET,
AR9300_11NG_RT_HT_TS_OFFSET, chainmask);
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid mode 0x%x\n",
__func__, mode);
HALASSERT(0);
break;
}
}
static inline void
ar9300_init_rate_txpower_cck(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
u_int8_t rates_array[], u_int8_t chainmask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/*
* Pick the lower of the long-preamble txpower, and short-preamble tx power.
* Unfortunately, the rate table doesn't have separate entries for these!.
*/
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower[0][0] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[1][0] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[2][0] = AH_MIN(rates_array[ALL_TARGET_LEGACY_1L_5L],
rates_array[ALL_TARGET_LEGACY_5S]);
ahp->txpower[3][0] = AH_MIN(rates_array[ALL_TARGET_LEGACY_11L],
rates_array[ALL_TARGET_LEGACY_11S]);
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower[0][1] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[1][1] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[2][1] = AH_MIN(rates_array[ALL_TARGET_LEGACY_1L_5L],
rates_array[ALL_TARGET_LEGACY_5S]);
ahp->txpower[3][1] = AH_MIN(rates_array[ALL_TARGET_LEGACY_11L],
rates_array[ALL_TARGET_LEGACY_11S]);
break;
case OSPREY_3_CHAINMASK:
ahp->txpower[0][2] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[1][2] = rates_array[ALL_TARGET_LEGACY_1L_5L];
ahp->txpower[2][2] = AH_MIN(rates_array[ALL_TARGET_LEGACY_1L_5L],
rates_array[ALL_TARGET_LEGACY_5S]);
ahp->txpower[3][2] = AH_MIN(rates_array[ALL_TARGET_LEGACY_11L],
rates_array[ALL_TARGET_LEGACY_11S]);
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
}
static inline void
ar9300_init_rate_txpower_ofdm(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
u_int8_t rates_array[], int rt_offset,
u_int8_t chainmask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int16_t twice_array_gain, cdd_power = 0;
int i, j;
u_int8_t ofdm_rt_2_pwr_idx[8] =
{
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_36,
ALL_TARGET_LEGACY_48,
ALL_TARGET_LEGACY_54,
};
/*
* For FCC adjust the upper limit for CDD factoring in the array gain.
* The array gain is the same as TxBF, hence reuse the same defines.
*/
for (i = rt_offset; i < rt_offset + AR9300_NUM_OFDM_RATES; i++) {
/* Get the correct OFDM rate to Power table Index */
j = ofdm_rt_2_pwr_idx[i- rt_offset];
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower[i][0] = rates_array[j];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower[i][1] = rates_array[j];
if (is_reg_dmn_fcc(ahp->reg_dmn)){
twice_array_gain = (ahp->twice_antenna_gain >=
ahp->twice_antenna_reduction)?
-(AR9300_TXBF_2TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_2TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[1] + twice_array_gain;
if (ahp->txpower[i][1] > cdd_power){
ahp->txpower[i][1] = cdd_power;
}
}
break;
case OSPREY_3_CHAINMASK:
ahp->txpower[i][2] = rates_array[j];
if (is_reg_dmn_fcc(ahp->reg_dmn)) {
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_TXBF_3TX_ARRAY_GAIN):
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_3TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[2] + twice_array_gain;
if (ahp->txpower[i][2] > cdd_power){
ahp->txpower[i][2] = cdd_power;
}
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
}
}
static u_int8_t mcs_rate_2_pwr_idx_ht20[24] =
{
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_4,
ALL_TARGET_HT20_5,
ALL_TARGET_HT20_6,
ALL_TARGET_HT20_7,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_12,
ALL_TARGET_HT20_13,
ALL_TARGET_HT20_14,
ALL_TARGET_HT20_15,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_20,
ALL_TARGET_HT20_21,
ALL_TARGET_HT20_22,
ALL_TARGET_HT20_23
};
static u_int8_t mcs_rate_2_pwr_idx_ht40[24] =
{
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_4,
ALL_TARGET_HT40_5,
ALL_TARGET_HT40_6,
ALL_TARGET_HT40_7,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_12,
ALL_TARGET_HT40_13,
ALL_TARGET_HT40_14,
ALL_TARGET_HT40_15,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_20,
ALL_TARGET_HT40_21,
ALL_TARGET_HT40_22,
ALL_TARGET_HT40_23,
};
static inline void
ar9300_init_rate_txpower_ht(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
HAL_BOOL is40,
u_int8_t rates_array[],
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int i, j;
u_int8_t mcs_index = 0;
for (i = rt_ss_offset; i < rt_ss_offset + AR9300_NUM_HT_SS_RATES; i++) {
/* Get the correct MCS rate to Power table Index */
j = (is40) ? mcs_rate_2_pwr_idx_ht40[mcs_index] :
mcs_rate_2_pwr_idx_ht20[mcs_index];
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower[i][0] = rates_array[j];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower[i][1] = rates_array[j];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower[i][2] = rates_array[j];
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
for (i = rt_ds_offset; i < rt_ds_offset + AR9300_NUM_HT_DS_RATES; i++) {
/* Get the correct MCS rate to Power table Index */
j = (is40) ? mcs_rate_2_pwr_idx_ht40[mcs_index] :
mcs_rate_2_pwr_idx_ht20[mcs_index];
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower[i][0] = rates_array[j];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower[i][1] = rates_array[j];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower[i][2] = rates_array[j];
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
for (i = rt_ts_offset; i < rt_ts_offset + AR9300_NUM_HT_TS_RATES; i++) {
/* Get the correct MCS rate to Power table Index */
j = (is40) ? mcs_rate_2_pwr_idx_ht40[mcs_index] :
mcs_rate_2_pwr_idx_ht20[mcs_index];
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower[i][0] = rates_array[j];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower[i][1] = rates_array[j];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower[i][2] = rates_array[j];
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
}
static inline void
ar9300_init_rate_txpower_stbc(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
HAL_BOOL is40,
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int i;
int16_t twice_array_gain, stbc_power = 0;
u_int8_t mcs_index = 0;
/* Upper Limit with STBC */
switch (chainmask) {
case OSPREY_1_CHAINMASK:
stbc_power = ahp->upper_limit[0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
stbc_power = ahp->upper_limit[1];
break;
case OSPREY_3_CHAINMASK:
stbc_power = ahp->upper_limit[2];
/* Ony FCC requires that we back off with 3 transmit chains */
if (is_reg_dmn_fcc(ahp->reg_dmn)) {
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_STBC_3TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_STBC_3TX_ARRAY_GAIN)), 0));
stbc_power = ahp->upper_limit[2] + twice_array_gain;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
for (i = rt_ss_offset; i < rt_ss_offset + AR9300_NUM_HT_SS_RATES; i++) {
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower_stbc[i][0] = ahp->txpower[i][0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower_stbc[i][1] = ahp->txpower[i][1];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower_stbc[i][2] = ahp->txpower[i][2];
/* 3 TX/1 stream STBC gain adjustment */
if (ahp->txpower_stbc[i][2] > stbc_power){
ahp->txpower_stbc[i][2] = stbc_power;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
for (i = rt_ds_offset; i < rt_ds_offset + AR9300_NUM_HT_DS_RATES; i++) {
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower_stbc[i][0] = ahp->txpower[i][0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower_stbc[i][1] = ahp->txpower[i][1];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower_stbc[i][2] = ahp->txpower[i][2];
/* 3 TX/2 stream STBC gain adjustment */
if (ahp->txpower_stbc[i][2] > stbc_power){
ahp->txpower_stbc[i][2] = stbc_power;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
for (i = rt_ts_offset; i < rt_ts_offset + AR9300_NUM_HT_TS_RATES; i++) {
switch (chainmask) {
case OSPREY_1_CHAINMASK:
ahp->txpower_stbc[i][0] = ahp->txpower[i][0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
ahp->txpower_stbc[i][1] = ahp->txpower[i][1];
break;
case OSPREY_3_CHAINMASK:
ahp->txpower_stbc[i][2] = ahp->txpower[i][2];
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
return;
}
static inline void
ar9300_adjust_rate_txpower_cdd(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
HAL_BOOL is40,
int rt_ss_offset, int rt_ds_offset,
int rt_ts_offset, u_int8_t chainmask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int i;
int16_t twice_array_gain, cdd_power = 0;
u_int8_t mcs_index = 0;
/*
* Adjust the upper limit for CDD factoring in the array gain .
* The array gain is the same as TxBF, hence reuse the same defines.
*/
switch (chainmask) {
case OSPREY_1_CHAINMASK:
cdd_power = ahp->upper_limit[0];
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_TXBF_2TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_2TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[1] + twice_array_gain;
break;
case OSPREY_3_CHAINMASK:
twice_array_gain =
(ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)?
-(AR9300_TXBF_3TX_ARRAY_GAIN) :
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + AR9300_TXBF_3TX_ARRAY_GAIN)), 0));
cdd_power = ahp->upper_limit[2] + twice_array_gain;
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
for (i = rt_ss_offset; i < rt_ss_offset + AR9300_NUM_HT_SS_RATES; i++) {
switch (chainmask) {
case OSPREY_1_CHAINMASK:
break;
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
/* 2 TX/1 stream CDD gain adjustment */
if (ahp->txpower[i][1] > cdd_power){
ahp->txpower[i][1] = cdd_power;
}
break;
case OSPREY_3_CHAINMASK:
/* 3 TX/1 stream CDD gain adjustment */
if (ahp->txpower[i][2] > cdd_power){
ahp->txpower[i][2] = cdd_power;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
for (i = rt_ds_offset; i < rt_ds_offset + AR9300_NUM_HT_DS_RATES; i++) {
switch (chainmask) {
case OSPREY_1_CHAINMASK:
case OSPREY_2LOHI_CHAINMASK:
case OSPREY_2LOMID_CHAINMASK:
break;
case OSPREY_3_CHAINMASK:
/* 3 TX/2 stream TxBF gain adjustment */
if (ahp->txpower[i][2] > cdd_power){
ahp->txpower[i][2] = cdd_power;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "%s: invalid chainmask 0x%x\n",
__func__, chainmask);
break;
}
mcs_index++;
}
return;
}
void ar9300_disp_tpc_tables(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
u_int mode = ath_hal_get_curmode(ah, chan);
const HAL_RATE_TABLE *rt;
int i, j;
/* Check whether TPC is enabled */
if (!ah->ah_config.ath_hal_desc_tpc) {
ath_hal_printf(ah, "\n TPC Register method in use\n");
return;
}
rt = ar9300_get_rate_table(ah, mode);
HALASSERT(rt != NULL);
ath_hal_printf(ah, "\n===TARGET POWER TABLE===\n");
for (j = 0 ; j < ar9300_get_ntxchains(ahp->ah_tx_chainmask) ; j++ ) {
for (i = 0; i < rt->rateCount; i++) {
int16_t txpower[AR9300_MAX_CHAINS];
txpower[j] = ahp->txpower[i][j];
ath_hal_printf(ah, " Index[%2d] Rate[0x%02x] %6d kbps "
"Power (%d Chain) [%2d.%1d dBm]\n",
i, rt->info[i].rateCode, rt->info[i].rateKbps,
j + 1, txpower[j] / 2, txpower[j]%2 * 5);
}
}
ath_hal_printf(ah, "\n");
ath_hal_printf(ah, "\n\n===TARGET POWER TABLE with STBC===\n");
for ( j = 0 ; j < ar9300_get_ntxchains(ahp->ah_tx_chainmask) ; j++ ) {
for (i = 0; i < rt->rateCount; i++) {
int16_t txpower[AR9300_MAX_CHAINS];
txpower[j] = ahp->txpower_stbc[i][j];
/* Do not display invalid configurations */
if ((rt->info[i].rateCode < AR9300_MCS0_RATE_CODE) ||
(rt->info[i].rateCode > AR9300_MCS23_RATE_CODE) ||
ar9300_invalid_stbc_cfg(j, rt->info[i].rateCode) == AH_TRUE) {
continue;
}
ath_hal_printf(ah, " Index[%2d] Rate[0x%02x] %6d kbps "
"Power (%d Chain) [%2d.%1d dBm]\n",
i, rt->info[i].rateCode , rt->info[i].rateKbps,
j + 1, txpower[j] / 2, txpower[j]%2 * 5);
}
}
ath_hal_printf(ah, "\n");
}
/*
* The followings are customer specific APIs for querying power limit.
* Power limit is based on regulatory domain, chipset, and transmission rate.
* Here we only consider EEPROM values, no array gain/CTL considered here.
*/
struct rate_power_tbl {
u_int8_t rateIdx; /* rate index in the rate table */
u_int32_t rateKbps; /* transfer rate in kbs */
u_int8_t rateCode; /* rate for h/w descriptors */
u_int8_t txbf: 1, /* txbf eligible */
stbc: 1, /* stbc eligible */
chain1: 1, /* one-chain eligible */
chain2: 1, /* two-chain eligible */
chain3: 1; /* three-chain eligible */
int16_t txpower[AR9300_MAX_CHAINS]; /* txpower for different chainmasks */
int16_t txpower_stbc[AR9300_MAX_CHAINS];
};
u_int8_t *ar9300_get_tpc_tables(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
u_int mode = ath_hal_get_curmode(ah, chan);
const HAL_RATE_TABLE *rt;
u_int8_t *data;
struct rate_power_tbl *table;
int i, j;
/* Check whether TPC is enabled */
if (! ah->ah_config.ath_hal_desc_tpc) {
ath_hal_printf(ah, "\n TPC Register method in use\n");
return NULL;
}
rt = (const HAL_RATE_TABLE *)ar9300_get_rate_table(ah, mode);
HALASSERT(rt != NULL);
data = (u_int8_t *)ath_hal_malloc(
1 + rt->rateCount * sizeof(struct rate_power_tbl));
if (data == NULL)
return NULL;
OS_MEMZERO(data, 1 + rt->rateCount * sizeof(struct rate_power_tbl));
/* store the rate count at the beginning */
*data = rt->rateCount;
table = (struct rate_power_tbl *)&data[1];
for (j = 0 ; j < ar9300_get_ntxchains(ahp->ah_tx_chainmask) ; j++ ) {
for (i = 0; i < rt->rateCount; i++) {
table[i].rateIdx = i;
table[i].rateCode = rt->info[i].rateCode;
table[i].rateKbps = rt->info[i].rateKbps;
switch (j) {
case 0:
table[i].chain1 = rt->info[i].rateCode <= 0x87 ? 1 : 0;
break;
case 1:
table[i].chain2 = rt->info[i].rateCode <= 0x8f ? 1 : 0;
break;
case 2:
table[i].chain3 = 1;
break;
default:
break;
}
if ((j == 0 && table[i].chain1) ||
(j == 1 && table[i].chain2) ||
(j == 2 && table[i].chain3))
table[i].txpower[j] = ahp->txpower[i][j];
}
}
for ( j = 0 ; j < ar9300_get_ntxchains(ahp->ah_tx_chainmask) ; j++ ) {
for (i = 0; i < rt->rateCount; i++) {
/* Do not display invalid configurations */
if ((rt->info[i].rateCode < AR9300_MCS0_RATE_CODE) ||
(rt->info[i].rateCode > AR9300_MCS23_RATE_CODE) ||
ar9300_invalid_stbc_cfg(j, rt->info[i].rateCode) == AH_TRUE) {
continue;
}
table[i].stbc = 1;
table[i].txpower_stbc[j] = ahp->txpower_stbc[i][j];
}
}
return data;
/* the caller is responsible to free data */
}
HAL_STATUS
ath_hal_get_rate_power_limit_from_eeprom(struct ath_hal *ah, u_int16_t freq,
int8_t *max_rate_power, int8_t *min_rate_power)
{
/*
* Used for AR9300 series chip only
*/
if (ah->ah_magic == AR9300_MAGIC) {
u_int8_t target_rate_power_limit_val_t2[ar9300_rate_size];
int i;
*max_rate_power = 0;
*min_rate_power = AR9300_MAX_RATE_POWER;
ar9300_set_target_power_from_eeprom(ah, freq, target_rate_power_limit_val_t2);
for (i=0; i<ar9300_rate_size; i++) {
if (target_rate_power_limit_val_t2[i] > *max_rate_power)
*max_rate_power = target_rate_power_limit_val_t2[i];
if (target_rate_power_limit_val_t2[i] < *min_rate_power)
*min_rate_power = target_rate_power_limit_val_t2[i];
}
} else {
*max_rate_power = 0;
*min_rate_power = 0;
}
return HAL_OK;
}