49a2507bd1
to the machine-independent parts of the VM. At the same time, this introduces vm object locking for the non-i386 platforms. Two details: 1. KSTACK_GUARD has been removed in favor of KSTACK_GUARD_PAGES. The different machine-dependent implementations used various combinations of KSTACK_GUARD and KSTACK_GUARD_PAGES. To disable guard page, set KSTACK_GUARD_PAGES to 0. 2. Remove the (unnecessary) clearing of PG_ZERO in vm_thread_new. In 5.x, (but not 4.x,) PG_ZERO can only be set if VM_ALLOC_ZERO is passed to vm_page_alloc() or vm_page_grab().
2335 lines
57 KiB
C
2335 lines
57 KiB
C
/*
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1995, 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
|
|
*/
|
|
/*
|
|
* Copyright (C) 2001 Benno Rice.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* In addition to hardware address maps, this module is called upon to
|
|
* provide software-use-only maps which may or may not be stored in the
|
|
* same form as hardware maps. These pseudo-maps are used to store
|
|
* intermediate results from copy operations to and from address spaces.
|
|
*
|
|
* Since the information managed by this module is also stored by the
|
|
* logical address mapping module, this module may throw away valid virtual
|
|
* to physical mappings at almost any time. However, invalidations of
|
|
* mappings must be done as requested.
|
|
*
|
|
* In order to cope with hardware architectures which make virtual to
|
|
* physical map invalidates expensive, this module may delay invalidate
|
|
* reduced protection operations until such time as they are actually
|
|
* necessary. This module is given full information as to which processors
|
|
* are currently using which maps, and to when physical maps must be made
|
|
* correct.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/powerpc.h>
|
|
#include <machine/bat.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/sr.h>
|
|
|
|
#define PMAP_DEBUG
|
|
|
|
#define TODO panic("%s: not implemented", __func__);
|
|
|
|
#define PMAP_LOCK(pm)
|
|
#define PMAP_UNLOCK(pm)
|
|
|
|
#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
|
|
#define TLBSYNC() __asm __volatile("tlbsync");
|
|
#define SYNC() __asm __volatile("sync");
|
|
#define EIEIO() __asm __volatile("eieio");
|
|
|
|
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
|
|
#define VSID_TO_SR(vsid) ((vsid) & 0xf)
|
|
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
|
|
|
|
#define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
|
|
#define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
|
|
#define PVO_WIRED 0x0010 /* PVO entry is wired */
|
|
#define PVO_MANAGED 0x0020 /* PVO entry is managed */
|
|
#define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */
|
|
#define PVO_BOOTSTRAP 0x0080 /* PVO entry allocated during
|
|
bootstrap */
|
|
#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
|
|
#define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
|
|
#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
|
|
#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
|
|
#define PVO_PTEGIDX_CLR(pvo) \
|
|
((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
|
|
#define PVO_PTEGIDX_SET(pvo, i) \
|
|
((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
|
|
|
|
#define PMAP_PVO_CHECK(pvo)
|
|
|
|
struct ofw_map {
|
|
vm_offset_t om_va;
|
|
vm_size_t om_len;
|
|
vm_offset_t om_pa;
|
|
u_int om_mode;
|
|
};
|
|
|
|
int pmap_bootstrapped = 0;
|
|
|
|
/*
|
|
* Virtual and physical address of message buffer.
|
|
*/
|
|
struct msgbuf *msgbufp;
|
|
vm_offset_t msgbuf_phys;
|
|
|
|
/*
|
|
* Physical addresses of first and last available physical page.
|
|
*/
|
|
vm_offset_t avail_start;
|
|
vm_offset_t avail_end;
|
|
|
|
int pmap_pagedaemon_waken;
|
|
|
|
/*
|
|
* Map of physical memory regions.
|
|
*/
|
|
vm_offset_t phys_avail[128];
|
|
u_int phys_avail_count;
|
|
static struct mem_region *regions;
|
|
static struct mem_region *pregions;
|
|
int regions_sz, pregions_sz;
|
|
static struct ofw_map *translations;
|
|
|
|
/*
|
|
* First and last available kernel virtual addresses.
|
|
*/
|
|
vm_offset_t virtual_avail;
|
|
vm_offset_t virtual_end;
|
|
vm_offset_t kernel_vm_end;
|
|
|
|
/*
|
|
* Kernel pmap.
|
|
*/
|
|
struct pmap kernel_pmap_store;
|
|
extern struct pmap ofw_pmap;
|
|
|
|
/*
|
|
* PTEG data.
|
|
*/
|
|
static struct pteg *pmap_pteg_table;
|
|
u_int pmap_pteg_count;
|
|
u_int pmap_pteg_mask;
|
|
|
|
/*
|
|
* PVO data.
|
|
*/
|
|
struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */
|
|
struct pvo_head pmap_pvo_kunmanaged =
|
|
LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
|
|
struct pvo_head pmap_pvo_unmanaged =
|
|
LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
|
|
|
|
uma_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
|
|
uma_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */
|
|
struct vm_object pmap_upvo_zone_obj;
|
|
struct vm_object pmap_mpvo_zone_obj;
|
|
static vm_object_t pmap_pvo_obj;
|
|
static u_int pmap_pvo_count;
|
|
|
|
#define BPVO_POOL_SIZE 32768
|
|
static struct pvo_entry *pmap_bpvo_pool;
|
|
static int pmap_bpvo_pool_index = 0;
|
|
|
|
#define VSID_NBPW (sizeof(u_int32_t) * 8)
|
|
static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
|
|
|
|
static boolean_t pmap_initialized = FALSE;
|
|
|
|
/*
|
|
* Statistics.
|
|
*/
|
|
u_int pmap_pte_valid = 0;
|
|
u_int pmap_pte_overflow = 0;
|
|
u_int pmap_pte_replacements = 0;
|
|
u_int pmap_pvo_entries = 0;
|
|
u_int pmap_pvo_enter_calls = 0;
|
|
u_int pmap_pvo_remove_calls = 0;
|
|
u_int pmap_pte_spills = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
|
|
0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
|
|
&pmap_pte_overflow, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
|
|
&pmap_pte_replacements, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
|
|
0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
|
|
&pmap_pvo_enter_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
|
|
&pmap_pvo_remove_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
|
|
&pmap_pte_spills, 0, "");
|
|
|
|
struct pvo_entry *pmap_pvo_zeropage;
|
|
|
|
vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
|
|
u_int pmap_rkva_count = 4;
|
|
|
|
/*
|
|
* Allocate physical memory for use in pmap_bootstrap.
|
|
*/
|
|
static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int);
|
|
|
|
/*
|
|
* PTE calls.
|
|
*/
|
|
static int pmap_pte_insert(u_int, struct pte *);
|
|
|
|
/*
|
|
* PVO calls.
|
|
*/
|
|
static int pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
|
|
vm_offset_t, vm_offset_t, u_int, int);
|
|
static void pmap_pvo_remove(struct pvo_entry *, int);
|
|
static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
|
|
static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
static void * pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
|
|
static struct pvo_entry *pmap_rkva_alloc(void);
|
|
static void pmap_pa_map(struct pvo_entry *, vm_offset_t,
|
|
struct pte *, int *);
|
|
static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
|
|
static void pmap_syncicache(vm_offset_t, vm_size_t);
|
|
static boolean_t pmap_query_bit(vm_page_t, int);
|
|
static u_int pmap_clear_bit(vm_page_t, int, int *);
|
|
static void tlbia(void);
|
|
|
|
static __inline int
|
|
va_to_sr(u_int *sr, vm_offset_t va)
|
|
{
|
|
return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
|
|
}
|
|
|
|
static __inline u_int
|
|
va_to_pteg(u_int sr, vm_offset_t addr)
|
|
{
|
|
u_int hash;
|
|
|
|
hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
|
|
ADDR_PIDX_SHFT);
|
|
return (hash & pmap_pteg_mask);
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
|
|
{
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pa);
|
|
|
|
if (pg_p != NULL)
|
|
*pg_p = pg;
|
|
|
|
if (pg == NULL)
|
|
return (&pmap_pvo_unmanaged);
|
|
|
|
return (&pg->md.mdpg_pvoh);
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
vm_page_to_pvoh(vm_page_t m)
|
|
{
|
|
|
|
return (&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_attr_clear(vm_page_t m, int ptebit)
|
|
{
|
|
|
|
m->md.mdpg_attrs &= ~ptebit;
|
|
}
|
|
|
|
static __inline int
|
|
pmap_attr_fetch(vm_page_t m)
|
|
{
|
|
|
|
return (m->md.mdpg_attrs);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_attr_save(vm_page_t m, int ptebit)
|
|
{
|
|
|
|
m->md.mdpg_attrs |= ptebit;
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
|
|
{
|
|
if (pt->pte_hi == pvo_pt->pte_hi)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
|
|
{
|
|
return (pt->pte_hi & ~PTE_VALID) ==
|
|
(((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
|
|
((va >> ADDR_API_SHFT) & PTE_API) | which);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
|
|
{
|
|
/*
|
|
* Construct a PTE. Default to IMB initially. Valid bit only gets
|
|
* set when the real pte is set in memory.
|
|
*
|
|
* Note: Don't set the valid bit for correct operation of tlb update.
|
|
*/
|
|
pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
|
|
(((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
|
|
pt->pte_lo = pte_lo;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
|
|
{
|
|
|
|
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
|
|
{
|
|
|
|
/*
|
|
* As shown in Section 7.6.3.2.3
|
|
*/
|
|
pt->pte_lo &= ~ptebit;
|
|
TLBIE(va);
|
|
EIEIO();
|
|
TLBSYNC();
|
|
SYNC();
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
|
|
{
|
|
|
|
pvo_pt->pte_hi |= PTE_VALID;
|
|
|
|
/*
|
|
* Update the PTE as defined in section 7.6.3.1.
|
|
* Note that the REF/CHG bits are from pvo_pt and thus should havce
|
|
* been saved so this routine can restore them (if desired).
|
|
*/
|
|
pt->pte_lo = pvo_pt->pte_lo;
|
|
EIEIO();
|
|
pt->pte_hi = pvo_pt->pte_hi;
|
|
SYNC();
|
|
pmap_pte_valid++;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
|
|
{
|
|
|
|
pvo_pt->pte_hi &= ~PTE_VALID;
|
|
|
|
/*
|
|
* Force the reg & chg bits back into the PTEs.
|
|
*/
|
|
SYNC();
|
|
|
|
/*
|
|
* Invalidate the pte.
|
|
*/
|
|
pt->pte_hi &= ~PTE_VALID;
|
|
|
|
SYNC();
|
|
TLBIE(va);
|
|
EIEIO();
|
|
TLBSYNC();
|
|
SYNC();
|
|
|
|
/*
|
|
* Save the reg & chg bits.
|
|
*/
|
|
pmap_pte_synch(pt, pvo_pt);
|
|
pmap_pte_valid--;
|
|
}
|
|
|
|
static __inline void
|
|
pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
|
|
{
|
|
|
|
/*
|
|
* Invalidate the PTE
|
|
*/
|
|
pmap_pte_unset(pt, pvo_pt, va);
|
|
pmap_pte_set(pt, pvo_pt);
|
|
}
|
|
|
|
/*
|
|
* Quick sort callout for comparing memory regions.
|
|
*/
|
|
static int mr_cmp(const void *a, const void *b);
|
|
static int om_cmp(const void *a, const void *b);
|
|
|
|
static int
|
|
mr_cmp(const void *a, const void *b)
|
|
{
|
|
const struct mem_region *regiona;
|
|
const struct mem_region *regionb;
|
|
|
|
regiona = a;
|
|
regionb = b;
|
|
if (regiona->mr_start < regionb->mr_start)
|
|
return (-1);
|
|
else if (regiona->mr_start > regionb->mr_start)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
om_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ofw_map *mapa;
|
|
const struct ofw_map *mapb;
|
|
|
|
mapa = a;
|
|
mapb = b;
|
|
if (mapa->om_pa < mapb->om_pa)
|
|
return (-1);
|
|
else if (mapa->om_pa > mapb->om_pa)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
ihandle_t mmui;
|
|
phandle_t chosen, mmu;
|
|
int sz;
|
|
int i, j;
|
|
int ofw_mappings;
|
|
vm_size_t size, physsz;
|
|
vm_offset_t pa, va, off;
|
|
u_int batl, batu;
|
|
|
|
/*
|
|
* Set up BAT0 to map the lowest 256 MB area
|
|
*/
|
|
battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
|
|
battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Map PCI memory space.
|
|
*/
|
|
battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Map obio devices.
|
|
*/
|
|
battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
|
|
|
|
/*
|
|
* Use an IBAT and a DBAT to map the bottom segment of memory
|
|
* where we are.
|
|
*/
|
|
batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
|
|
batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
|
|
__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
|
|
:: "r"(batu), "r"(batl));
|
|
|
|
#if 0
|
|
/* map frame buffer */
|
|
batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
|
|
batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
|
|
:: "r"(batu), "r"(batl));
|
|
#endif
|
|
|
|
#if 1
|
|
/* map pci space */
|
|
batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
|
|
batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
|
|
__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
|
|
:: "r"(batu), "r"(batl));
|
|
#endif
|
|
|
|
/*
|
|
* Set the start and end of kva.
|
|
*/
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
|
|
|
|
qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
vm_offset_t pa;
|
|
vm_offset_t end;
|
|
|
|
CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
|
|
pregions[i].mr_start,
|
|
pregions[i].mr_start + pregions[i].mr_size,
|
|
pregions[i].mr_size);
|
|
/*
|
|
* Install entries into the BAT table to allow all
|
|
* of physmem to be convered by on-demand BAT entries.
|
|
* The loop will sometimes set the same battable element
|
|
* twice, but that's fine since they won't be used for
|
|
* a while yet.
|
|
*/
|
|
pa = pregions[i].mr_start & 0xf0000000;
|
|
end = pregions[i].mr_start + pregions[i].mr_size;
|
|
do {
|
|
u_int n = pa >> ADDR_SR_SHFT;
|
|
|
|
battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
|
|
battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
|
|
pa += SEGMENT_LENGTH;
|
|
} while (pa < end);
|
|
}
|
|
|
|
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
|
|
panic("pmap_bootstrap: phys_avail too small");
|
|
qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
|
|
phys_avail_count = 0;
|
|
physsz = 0;
|
|
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
|
|
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
|
|
regions[i].mr_start + regions[i].mr_size,
|
|
regions[i].mr_size);
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
|
|
phys_avail_count++;
|
|
physsz += regions[i].mr_size;
|
|
}
|
|
physmem = btoc(physsz);
|
|
|
|
/*
|
|
* Allocate PTEG table.
|
|
*/
|
|
#ifdef PTEGCOUNT
|
|
pmap_pteg_count = PTEGCOUNT;
|
|
#else
|
|
pmap_pteg_count = 0x1000;
|
|
|
|
while (pmap_pteg_count < physmem)
|
|
pmap_pteg_count <<= 1;
|
|
|
|
pmap_pteg_count >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
|
|
size = pmap_pteg_count * sizeof(struct pteg);
|
|
CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
|
|
size);
|
|
pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
|
|
CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
|
|
bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
|
|
pmap_pteg_mask = pmap_pteg_count - 1;
|
|
|
|
/*
|
|
* Allocate pv/overflow lists.
|
|
*/
|
|
size = sizeof(struct pvo_head) * pmap_pteg_count;
|
|
pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
|
|
PAGE_SIZE);
|
|
CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
|
|
for (i = 0; i < pmap_pteg_count; i++)
|
|
LIST_INIT(&pmap_pvo_table[i]);
|
|
|
|
/*
|
|
* Allocate the message buffer.
|
|
*/
|
|
msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
|
|
|
|
/*
|
|
* Initialise the unmanaged pvo pool.
|
|
*/
|
|
pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
|
|
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
|
|
pmap_bpvo_pool_index = 0;
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
pmap_vsid_bitmap[0] |= 1;
|
|
|
|
/*
|
|
* Set up the OpenFirmware pmap and add it's mappings.
|
|
*/
|
|
pmap_pinit(&ofw_pmap);
|
|
ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
panic("pmap_bootstrap: can't find /chosen");
|
|
OF_getprop(chosen, "mmu", &mmui, 4);
|
|
if ((mmu = OF_instance_to_package(mmui)) == -1)
|
|
panic("pmap_bootstrap: can't get mmu package");
|
|
if ((sz = OF_getproplen(mmu, "translations")) == -1)
|
|
panic("pmap_bootstrap: can't get ofw translation count");
|
|
translations = NULL;
|
|
for (i = 0; phys_avail[i + 2] != 0; i += 2) {
|
|
if (phys_avail[i + 1] >= sz)
|
|
translations = (struct ofw_map *)phys_avail[i];
|
|
}
|
|
if (translations == NULL)
|
|
panic("pmap_bootstrap: no space to copy translations");
|
|
bzero(translations, sz);
|
|
if (OF_getprop(mmu, "translations", translations, sz) == -1)
|
|
panic("pmap_bootstrap: can't get ofw translations");
|
|
CTR0(KTR_PMAP, "pmap_bootstrap: translations");
|
|
sz /= sizeof(*translations);
|
|
qsort(translations, sz, sizeof (*translations), om_cmp);
|
|
for (i = 0, ofw_mappings = 0; i < sz; i++) {
|
|
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
|
|
translations[i].om_pa, translations[i].om_va,
|
|
translations[i].om_len);
|
|
|
|
/*
|
|
* If the mapping is 1:1, let the RAM and device on-demand
|
|
* BAT tables take care of the translation.
|
|
*/
|
|
if (translations[i].om_va == translations[i].om_pa)
|
|
continue;
|
|
|
|
/* Enter the pages */
|
|
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
|
|
struct vm_page m;
|
|
|
|
m.phys_addr = translations[i].om_pa + off;
|
|
pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
|
|
VM_PROT_ALL, 1);
|
|
ofw_mappings++;
|
|
}
|
|
}
|
|
#ifdef SMP
|
|
TLBSYNC();
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
|
|
}
|
|
kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
|
|
kernel_pmap->pm_active = ~0;
|
|
|
|
/*
|
|
* Allocate a kernel stack with a guard page for thread0 and map it
|
|
* into the kernel page map.
|
|
*/
|
|
pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
|
|
kstack0_phys = pa;
|
|
kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
|
|
CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
|
|
kstack0);
|
|
virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
|
|
for (i = 0; i < KSTACK_PAGES; i++) {
|
|
pa = kstack0_phys + i * PAGE_SIZE;
|
|
va = kstack0 + i * PAGE_SIZE;
|
|
pmap_kenter(va, pa);
|
|
TLBIE(va);
|
|
}
|
|
|
|
/*
|
|
* Calculate the first and last available physical addresses.
|
|
*/
|
|
avail_start = phys_avail[0];
|
|
for (i = 0; phys_avail[i + 2] != 0; i += 2)
|
|
;
|
|
avail_end = phys_avail[i + 1];
|
|
Maxmem = powerpc_btop(avail_end);
|
|
|
|
/*
|
|
* Allocate virtual address space for the message buffer.
|
|
*/
|
|
msgbufp = (struct msgbuf *)virtual_avail;
|
|
virtual_avail += round_page(MSGBUF_SIZE);
|
|
|
|
/*
|
|
* Initialize hardware.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
|
|
}
|
|
__asm __volatile ("mtsr %0,%1"
|
|
:: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
|
|
__asm __volatile ("sync; mtsdr1 %0; isync"
|
|
:: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
|
|
tlbia();
|
|
|
|
pmap_bootstrapped++;
|
|
}
|
|
|
|
/*
|
|
* Activate a user pmap. The pmap must be activated before it's address
|
|
* space can be accessed in any way.
|
|
*/
|
|
void
|
|
pmap_activate(struct thread *td)
|
|
{
|
|
pmap_t pm, pmr;
|
|
|
|
/*
|
|
* Load all the data we need up front to encourage the compiler to
|
|
* not issue any loads while we have interrupts disabled below.
|
|
*/
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
|
|
if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
|
|
pmr = pm;
|
|
|
|
pm->pm_active |= PCPU_GET(cpumask);
|
|
PCPU_SET(curpmap, pmr);
|
|
}
|
|
|
|
void
|
|
pmap_deactivate(struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
pm->pm_active &= ~(PCPU_GET(cpumask));
|
|
PCPU_SET(curpmap, NULL);
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
|
|
{
|
|
|
|
return (va);
|
|
}
|
|
|
|
void
|
|
pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
|
|
if (pvo != NULL) {
|
|
if (wired) {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
pm->pm_stats.wired_count++;
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
} else {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
|
|
pm->pm_stats.wired_count--;
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
|
|
vm_size_t len, vm_offset_t src_addr)
|
|
{
|
|
|
|
/*
|
|
* This is not needed as it's mainly an optimisation.
|
|
* It may want to be implemented later though.
|
|
*/
|
|
}
|
|
|
|
void
|
|
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
vm_offset_t dst;
|
|
vm_offset_t src;
|
|
|
|
dst = VM_PAGE_TO_PHYS(mdst);
|
|
src = VM_PAGE_TO_PHYS(msrc);
|
|
|
|
kcopy((void *)src, (void *)dst, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Zero a page of physical memory by temporarily mapping it into the tlb.
|
|
*/
|
|
void
|
|
pmap_zero_page(vm_page_t m)
|
|
{
|
|
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
|
|
caddr_t va;
|
|
|
|
if (pa < SEGMENT_LENGTH) {
|
|
va = (caddr_t) pa;
|
|
} else if (pmap_initialized) {
|
|
if (pmap_pvo_zeropage == NULL)
|
|
pmap_pvo_zeropage = pmap_rkva_alloc();
|
|
pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
|
|
va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
|
|
} else {
|
|
panic("pmap_zero_page: can't zero pa %#x", pa);
|
|
}
|
|
|
|
bzero(va, PAGE_SIZE);
|
|
|
|
if (pa >= SEGMENT_LENGTH)
|
|
pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
|
|
}
|
|
|
|
void
|
|
pmap_zero_page_area(vm_page_t m, int off, int size)
|
|
{
|
|
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
|
|
caddr_t va;
|
|
|
|
if (pa < SEGMENT_LENGTH) {
|
|
va = (caddr_t) pa;
|
|
} else if (pmap_initialized) {
|
|
if (pmap_pvo_zeropage == NULL)
|
|
pmap_pvo_zeropage = pmap_rkva_alloc();
|
|
pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
|
|
va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
|
|
} else {
|
|
panic("pmap_zero_page: can't zero pa %#x", pa);
|
|
}
|
|
|
|
bzero(va + off, size);
|
|
|
|
if (pa >= SEGMENT_LENGTH)
|
|
pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
|
|
}
|
|
|
|
void
|
|
pmap_zero_page_idle(vm_page_t m)
|
|
{
|
|
|
|
/* XXX this is called outside of Giant, is pmap_zero_page safe? */
|
|
/* XXX maybe have a dedicated mapping for this to avoid the problem? */
|
|
mtx_lock(&Giant);
|
|
pmap_zero_page(m);
|
|
mtx_unlock(&Giant);
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*/
|
|
void
|
|
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
boolean_t wired)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
uma_zone_t zone;
|
|
vm_page_t pg;
|
|
u_int pte_lo, pvo_flags, was_exec, i;
|
|
int error;
|
|
|
|
if (!pmap_initialized) {
|
|
pvo_head = &pmap_pvo_kunmanaged;
|
|
zone = pmap_upvo_zone;
|
|
pvo_flags = 0;
|
|
pg = NULL;
|
|
was_exec = PTE_EXEC;
|
|
} else {
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
pg = m;
|
|
zone = pmap_mpvo_zone;
|
|
pvo_flags = PVO_MANAGED;
|
|
was_exec = 0;
|
|
}
|
|
|
|
/*
|
|
* If this is a managed page, and it's the first reference to the page,
|
|
* clear the execness of the page. Otherwise fetch the execness.
|
|
*/
|
|
if (pg != NULL) {
|
|
if (LIST_EMPTY(pvo_head)) {
|
|
pmap_attr_clear(pg, PTE_EXEC);
|
|
} else {
|
|
was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = PTE_I | PTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
|
|
(VM_PAGE_TO_PHYS(m) <
|
|
(pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo &= ~(PTE_I | PTE_G);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE)
|
|
pte_lo |= PTE_BW;
|
|
else
|
|
pte_lo |= PTE_BR;
|
|
|
|
pvo_flags |= (prot & VM_PROT_EXECUTE);
|
|
|
|
if (wired)
|
|
pvo_flags |= PVO_WIRED;
|
|
|
|
error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
|
|
pte_lo, pvo_flags);
|
|
|
|
/*
|
|
* Flush the real page from the instruction cache if this page is
|
|
* mapped executable and cacheable and was not previously mapped (or
|
|
* was not mapped executable).
|
|
*/
|
|
if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
|
|
(pte_lo & PTE_I) == 0 && was_exec == 0) {
|
|
/*
|
|
* Flush the real memory from the cache.
|
|
*/
|
|
pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
|
|
if (pg != NULL)
|
|
pmap_attr_save(pg, PTE_EXEC);
|
|
}
|
|
|
|
/* XXX syncicache always until problems are sorted */
|
|
pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_extract(pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
|
|
if (pvo != NULL) {
|
|
return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Grow the number of kernel page table entries. Unneeded.
|
|
*/
|
|
void
|
|
pmap_growkernel(vm_offset_t addr)
|
|
{
|
|
}
|
|
|
|
void
|
|
pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
|
|
{
|
|
|
|
CTR0(KTR_PMAP, "pmap_init");
|
|
|
|
pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
|
|
pmap_pvo_count = 0;
|
|
pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
|
|
uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
|
|
pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
|
|
uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
|
|
pmap_initialized = TRUE;
|
|
}
|
|
|
|
void
|
|
pmap_init2(void)
|
|
{
|
|
|
|
CTR0(KTR_PMAP, "pmap_init2");
|
|
}
|
|
|
|
boolean_t
|
|
pmap_is_modified(vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
|
|
return (FALSE);
|
|
|
|
return (pmap_query_bit(m, PTE_CHG));
|
|
}
|
|
|
|
void
|
|
pmap_clear_reference(vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return;
|
|
pmap_clear_bit(m, PTE_REF, NULL);
|
|
}
|
|
|
|
void
|
|
pmap_clear_modify(vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return;
|
|
pmap_clear_bit(m, PTE_CHG, NULL);
|
|
}
|
|
|
|
/*
|
|
* pmap_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* XXX: The exact number of bits to check and clear is a matter that
|
|
* should be tested and standardized at some point in the future for
|
|
* optimal aging of shared pages.
|
|
*/
|
|
int
|
|
pmap_ts_referenced(vm_page_t m)
|
|
{
|
|
int count;
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return (0);
|
|
|
|
count = pmap_clear_bit(m, PTE_REF, NULL);
|
|
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Map a wired page into kernel virtual address space.
|
|
*/
|
|
void
|
|
pmap_kenter(vm_offset_t va, vm_offset_t pa)
|
|
{
|
|
u_int pte_lo;
|
|
int error;
|
|
int i;
|
|
|
|
#if 0
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
panic("pmap_kenter: attempt to enter non-kernel address %#x",
|
|
va);
|
|
#endif
|
|
|
|
pte_lo = PTE_I | PTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((pa >= pregions[i].mr_start) &&
|
|
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo &= ~(PTE_I | PTE_G);
|
|
break;
|
|
}
|
|
}
|
|
|
|
error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
|
|
&pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
|
|
|
|
if (error != 0 && error != ENOENT)
|
|
panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
|
|
pa, error);
|
|
|
|
/*
|
|
* Flush the real memory from the instruction cache.
|
|
*/
|
|
if ((pte_lo & (PTE_I | PTE_G)) == 0) {
|
|
pmap_syncicache(pa, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Extract the physical page address associated with the given kernel virtual
|
|
* address.
|
|
*/
|
|
vm_offset_t
|
|
pmap_kextract(vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
|
|
if (pvo == NULL) {
|
|
return (0);
|
|
}
|
|
|
|
return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
|
|
}
|
|
|
|
/*
|
|
* Remove a wired page from kernel virtual address space.
|
|
*/
|
|
void
|
|
pmap_kremove(vm_offset_t va)
|
|
{
|
|
|
|
pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Map a range of physical addresses into kernel virtual address space.
|
|
*
|
|
* The value passed in *virt is a suggested virtual address for the mapping.
|
|
* Architectures which can support a direct-mapped physical to virtual region
|
|
* can return the appropriate address within that region, leaving '*virt'
|
|
* unchanged. We cannot and therefore do not; *virt is updated with the
|
|
* first usable address after the mapped region.
|
|
*/
|
|
vm_offset_t
|
|
pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
|
|
{
|
|
vm_offset_t sva, va;
|
|
|
|
sva = *virt;
|
|
va = sva;
|
|
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
|
|
pmap_kenter(va, pa_start);
|
|
*virt = va;
|
|
return (sva);
|
|
}
|
|
|
|
int
|
|
pmap_mincore(pmap_t pmap, vm_offset_t addr)
|
|
{
|
|
TODO;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
|
|
vm_pindex_t pindex, vm_size_t size, int limit)
|
|
{
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("pmap_remove_pages: non current pmap"));
|
|
/* XXX */
|
|
}
|
|
|
|
/*
|
|
* Lower the permission for all mappings to a given page.
|
|
*/
|
|
void
|
|
pmap_page_protect(vm_page_t m, vm_prot_t prot)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* Since the routine only downgrades protection, if the
|
|
* maximal protection is desired, there isn't any change
|
|
* to be made.
|
|
*/
|
|
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
|
|
(VM_PROT_READ|VM_PROT_WRITE))
|
|
return;
|
|
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
|
|
next_pvo = LIST_NEXT(pvo, pvo_vlink);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* Downgrading to no mapping at all, we just remove the entry.
|
|
*/
|
|
if ((prot & VM_PROT_READ) == 0) {
|
|
pmap_pvo_remove(pvo, -1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If EXEC permission is being revoked, just clear the flag
|
|
* in the PVO.
|
|
*/
|
|
if ((prot & VM_PROT_EXECUTE) == 0)
|
|
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
|
|
|
|
/*
|
|
* If this entry is already RO, don't diddle with the page
|
|
* table.
|
|
*/
|
|
if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
|
|
PMAP_PVO_CHECK(pvo);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Grab the PTE before we diddle the bits so pvo_to_pte can
|
|
* verify the pte contents are as expected.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
pvo->pvo_pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte_lo |= PTE_BR;
|
|
if (pt != NULL)
|
|
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
|
|
{
|
|
int loops;
|
|
struct pvo_entry *pvo;
|
|
|
|
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
|
|
return FALSE;
|
|
|
|
loops = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (pvo->pvo_pmap == pmap)
|
|
return (TRUE);
|
|
if (++loops >= 16)
|
|
break;
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static u_int pmap_vsidcontext;
|
|
|
|
void
|
|
pmap_pinit(pmap_t pmap)
|
|
{
|
|
int i, mask;
|
|
u_int entropy;
|
|
|
|
entropy = 0;
|
|
__asm __volatile("mftb %0" : "=r"(entropy));
|
|
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
for (i = 0; i < NPMAPS; i += VSID_NBPW) {
|
|
u_int hash, n;
|
|
|
|
/*
|
|
* Create a new value by mutiplying by a prime and adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT hash function collides
|
|
* less often. (Note that the prime casues gcc to do shifts
|
|
* instead of a multiply.)
|
|
*/
|
|
pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
|
|
hash = pmap_vsidcontext & (NPMAPS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW - 1));
|
|
hash = (pmap_vsidcontext & 0xfffff);
|
|
if (pmap_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (pmap_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (pmap_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~pmap_vsid_bitmap[i]) - 1;
|
|
mask = 1 << i;
|
|
hash &= 0xfffff & ~(VSID_NBPW - 1);
|
|
hash |= i;
|
|
}
|
|
pmap_vsid_bitmap[n] |= mask;
|
|
for (i = 0; i < 16; i++)
|
|
pmap->pm_sr[i] = VSID_MAKE(i, hash);
|
|
return;
|
|
}
|
|
|
|
panic("pmap_pinit: out of segments");
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap associated with process 0.
|
|
*/
|
|
void
|
|
pmap_pinit0(pmap_t pm)
|
|
{
|
|
|
|
pmap_pinit(pm);
|
|
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
|
|
}
|
|
|
|
void
|
|
pmap_pinit2(pmap_t pmap)
|
|
{
|
|
/* XXX: Remove this stub when no longer called */
|
|
}
|
|
|
|
void
|
|
pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
|
|
{
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("pmap_prefault: non current pmap"));
|
|
/* XXX */
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
void
|
|
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
int pteidx;
|
|
|
|
CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
|
|
eva, prot);
|
|
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("pmap_protect: non current pmap"));
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
pmap_remove(pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
for (; sva < eva; sva += PAGE_SIZE) {
|
|
pvo = pmap_pvo_find_va(pm, sva, &pteidx);
|
|
if (pvo == NULL)
|
|
continue;
|
|
|
|
if ((prot & VM_PROT_EXECUTE) == 0)
|
|
pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
|
|
|
|
/*
|
|
* Grab the PTE pointer before we diddle with the cached PTE
|
|
* copy.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
pvo->pvo_pte.pte_lo &= ~PTE_PP;
|
|
pvo->pvo_pte.pte_lo |= PTE_BR;
|
|
|
|
/*
|
|
* If the PVO is in the page table, update that pte as well.
|
|
*/
|
|
if (pt != NULL)
|
|
pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map a list of wired pages into kernel virtual address space. This is
|
|
* intended for temporary mappings which do not need page modification or
|
|
* references recorded. Existing mappings in the region are overwritten.
|
|
*/
|
|
void
|
|
pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = sva;
|
|
while (count-- > 0) {
|
|
pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
|
|
va += PAGE_SIZE;
|
|
m++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove page mappings from kernel virtual address space. Intended for
|
|
* temporary mappings entered by pmap_qenter.
|
|
*/
|
|
void
|
|
pmap_qremove(vm_offset_t sva, int count)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = sva;
|
|
while (count-- > 0) {
|
|
pmap_kremove(va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_release(pmap_t pmap)
|
|
{
|
|
int idx, mask;
|
|
|
|
/*
|
|
* Free segment register's VSID
|
|
*/
|
|
if (pmap->pm_sr[0] == 0)
|
|
panic("pmap_release");
|
|
|
|
idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
pmap_vsid_bitmap[idx] &= ~mask;
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*/
|
|
void
|
|
pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int pteidx;
|
|
|
|
for (; sva < eva; sva += PAGE_SIZE) {
|
|
pvo = pmap_pvo_find_va(pm, sva, &pteidx);
|
|
if (pvo != NULL) {
|
|
pmap_pvo_remove(pvo, pteidx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
|
|
* will reflect changes in pte's back to the vm_page.
|
|
*/
|
|
void
|
|
pmap_remove_all(vm_page_t m)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
|
|
KASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0,
|
|
("pv_remove_all: illegal for unmanaged page %#x",
|
|
VM_PAGE_TO_PHYS(m)));
|
|
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
|
|
next_pvo = LIST_NEXT(pvo, pvo_vlink);
|
|
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
pmap_pvo_remove(pvo, -1);
|
|
}
|
|
vm_page_flag_clear(m, PG_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* Remove all pages from specified address space, this aids process exit
|
|
* speeds. This is much faster than pmap_remove in the case of running down
|
|
* an entire address space. Only works for the current pmap.
|
|
*/
|
|
void
|
|
pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("pmap_remove_pages: non current pmap"));
|
|
pmap_remove(pm, sva, eva);
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical page of memory directly from the phys_avail map.
|
|
* Can only be called from pmap_bootstrap before avail start and end are
|
|
* calculated.
|
|
*/
|
|
static vm_offset_t
|
|
pmap_bootstrap_alloc(vm_size_t size, u_int align)
|
|
{
|
|
vm_offset_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (align != 0)
|
|
s = (phys_avail[i] + align - 1) & ~(align - 1);
|
|
else
|
|
s = phys_avail[i];
|
|
e = s + size;
|
|
|
|
if (s < phys_avail[i] || e > phys_avail[i + 1])
|
|
continue;
|
|
|
|
if (s == phys_avail[i]) {
|
|
phys_avail[i] += size;
|
|
} else if (e == phys_avail[i + 1]) {
|
|
phys_avail[i + 1] -= size;
|
|
} else {
|
|
for (j = phys_avail_count * 2; j > i; j -= 2) {
|
|
phys_avail[j] = phys_avail[j - 2];
|
|
phys_avail[j + 1] = phys_avail[j - 1];
|
|
}
|
|
|
|
phys_avail[i + 3] = phys_avail[i + 1];
|
|
phys_avail[i + 1] = s;
|
|
phys_avail[i + 2] = e;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
panic("pmap_bootstrap_alloc: could not allocate memory");
|
|
}
|
|
|
|
/*
|
|
* Return an unmapped pvo for a kernel virtual address.
|
|
* Used by pmap functions that operate on physical pages.
|
|
*/
|
|
static struct pvo_entry *
|
|
pmap_rkva_alloc(void)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
vm_offset_t kva;
|
|
int pteidx;
|
|
|
|
if (pmap_rkva_count == 0)
|
|
panic("pmap_rkva_alloc: no more reserved KVAs");
|
|
|
|
kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
|
|
pmap_kenter(kva, 0);
|
|
|
|
pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
|
|
|
|
if (pvo == NULL)
|
|
panic("pmap_kva_alloc: pmap_pvo_find_va failed");
|
|
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
|
|
if (pt == NULL)
|
|
panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
|
|
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
|
|
pmap_pte_overflow++;
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
static void
|
|
pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
|
|
int *depth_p)
|
|
{
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* If this pvo already has a valid pte, we need to save it so it can
|
|
* be restored later. We then just reload the new PTE over the old
|
|
* slot.
|
|
*/
|
|
if (saved_pt != NULL) {
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
|
|
if (pt != NULL) {
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
pmap_pte_overflow++;
|
|
}
|
|
|
|
*saved_pt = pvo->pvo_pte;
|
|
|
|
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
|
|
}
|
|
|
|
pvo->pvo_pte.pte_lo |= pa;
|
|
|
|
if (!pmap_pte_spill(pvo->pvo_vaddr))
|
|
panic("pmap_pa_map: could not spill pvo %p", pvo);
|
|
|
|
if (depth_p != NULL)
|
|
(*depth_p)++;
|
|
}
|
|
|
|
static void
|
|
pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
|
|
{
|
|
struct pte *pt;
|
|
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
|
|
if (pt != NULL) {
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
pmap_pte_overflow++;
|
|
}
|
|
|
|
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
|
|
|
|
/*
|
|
* If there is a saved PTE and it's valid, restore it and return.
|
|
*/
|
|
if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
|
|
if (depth_p != NULL && --(*depth_p) == 0)
|
|
panic("pmap_pa_unmap: restoring but depth == 0");
|
|
|
|
pvo->pvo_pte = *saved_pt;
|
|
|
|
if (!pmap_pte_spill(pvo->pvo_vaddr))
|
|
panic("pmap_pa_unmap: could not spill pvo %p", pvo);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmap_syncicache(vm_offset_t pa, vm_size_t len)
|
|
{
|
|
__syncicache((void *)pa, len);
|
|
}
|
|
|
|
static void
|
|
tlbia(void)
|
|
{
|
|
caddr_t i;
|
|
|
|
SYNC();
|
|
for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
|
|
TLBIE(i);
|
|
EIEIO();
|
|
}
|
|
TLBSYNC();
|
|
SYNC();
|
|
}
|
|
|
|
static int
|
|
pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
|
|
vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
u_int sr;
|
|
int first;
|
|
u_int ptegidx;
|
|
int i;
|
|
int bootstrap;
|
|
|
|
pmap_pvo_enter_calls++;
|
|
first = 0;
|
|
|
|
bootstrap = 0;
|
|
|
|
/*
|
|
* Compute the PTE Group index.
|
|
*/
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
/*
|
|
* Remove any existing mapping for this page. Reuse the pvo entry if
|
|
* there is a mapping.
|
|
*/
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
|
|
(pvo->pvo_pte.pte_lo & PTE_PP) ==
|
|
(pte_lo & PTE_PP)) {
|
|
return (0);
|
|
}
|
|
pmap_pvo_remove(pvo, -1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we aren't overwriting a mapping, try to allocate.
|
|
*/
|
|
if (pmap_initialized) {
|
|
pvo = uma_zalloc(zone, M_NOWAIT);
|
|
} else {
|
|
if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
|
|
panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
|
|
pmap_bpvo_pool_index, BPVO_POOL_SIZE,
|
|
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
|
|
}
|
|
pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
|
|
pmap_bpvo_pool_index++;
|
|
bootstrap = 1;
|
|
}
|
|
|
|
if (pvo == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
pmap_pvo_entries++;
|
|
pvo->pvo_vaddr = va;
|
|
pvo->pvo_pmap = pm;
|
|
LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
|
|
pvo->pvo_vaddr &= ~ADDR_POFF;
|
|
if (flags & VM_PROT_EXECUTE)
|
|
pvo->pvo_vaddr |= PVO_EXECUTABLE;
|
|
if (flags & PVO_WIRED)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
if (pvo_head != &pmap_pvo_kunmanaged)
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
if (bootstrap)
|
|
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
|
|
pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
|
|
|
|
/*
|
|
* Remember if the list was empty and therefore will be the first
|
|
* item.
|
|
*/
|
|
if (LIST_FIRST(pvo_head) == NULL)
|
|
first = 1;
|
|
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count++;
|
|
pvo->pvo_pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* We hope this succeeds but it isn't required.
|
|
*/
|
|
i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
|
|
if (i >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, i);
|
|
} else {
|
|
panic("pmap_pvo_enter: overflow");
|
|
pmap_pte_overflow++;
|
|
}
|
|
|
|
return (first ? ENOENT : 0);
|
|
}
|
|
|
|
static void
|
|
pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it (and
|
|
* save the ref & cfg bits).
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, pteidx);
|
|
if (pt != NULL) {
|
|
pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
} else {
|
|
pmap_pte_overflow--;
|
|
}
|
|
|
|
/*
|
|
* Update our statistics.
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_pte.pte_lo & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Save the REF/CHG bits into their cache if the page is managed.
|
|
*/
|
|
if (pvo->pvo_vaddr & PVO_MANAGED) {
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
|
|
if (pg != NULL) {
|
|
pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
|
|
(PTE_REF | PTE_CHG));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove this PVO from the PV list.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
|
|
/*
|
|
* Remove this from the overflow list and return it to the pool
|
|
* if we aren't going to reuse it.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_olink);
|
|
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
|
|
uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
|
|
pmap_upvo_zone, pvo);
|
|
pmap_pvo_entries--;
|
|
pmap_pvo_remove_calls++;
|
|
}
|
|
|
|
static __inline int
|
|
pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
|
|
{
|
|
int pteidx;
|
|
|
|
/*
|
|
* We can find the actual pte entry without searching by grabbing
|
|
* the PTEG index from 3 unused bits in pte_lo[11:9] and by
|
|
* noticing the HID bit.
|
|
*/
|
|
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
|
|
if (pvo->pvo_pte.pte_hi & PTE_HID)
|
|
pteidx ^= pmap_pteg_mask * 8;
|
|
|
|
return (pteidx);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int ptegidx;
|
|
u_int sr;
|
|
|
|
va &= ~ADDR_POFF;
|
|
sr = va_to_sr(pm->pm_sr, va);
|
|
ptegidx = va_to_pteg(sr, va);
|
|
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if (pteidx_p)
|
|
*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
|
|
return (pvo);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static struct pte *
|
|
pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct pte *pt;
|
|
|
|
/*
|
|
* If we haven't been supplied the ptegidx, calculate it.
|
|
*/
|
|
if (pteidx == -1) {
|
|
int ptegidx;
|
|
u_int sr;
|
|
|
|
sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
|
|
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
|
|
pteidx = pmap_pvo_pte_index(pvo, ptegidx);
|
|
}
|
|
|
|
pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
|
|
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
|
|
"valid pte index", pvo);
|
|
}
|
|
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
|
|
"pvo but no valid pte", pvo);
|
|
}
|
|
|
|
if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
|
|
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
|
|
panic("pmap_pvo_to_pte: pvo %p has valid pte in "
|
|
"pmap_pteg_table %p but invalid in pvo", pvo, pt);
|
|
}
|
|
|
|
if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
|
|
!= 0) {
|
|
panic("pmap_pvo_to_pte: pvo %p pte does not match "
|
|
"pte %p in pmap_pteg_table", pvo, pt);
|
|
}
|
|
|
|
return (pt);
|
|
}
|
|
|
|
if (pvo->pvo_pte.pte_hi & PTE_VALID) {
|
|
panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
|
|
"pmap_pteg_table but valid in pvo", pvo, pt);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void *
|
|
pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
|
|
{
|
|
vm_page_t m;
|
|
|
|
if (bytes != PAGE_SIZE)
|
|
panic("pmap_pvo_allocf: benno was shortsighted. hit him.");
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
pmap_pvo_count++;
|
|
return ((void *)VM_PAGE_TO_PHYS(m));
|
|
}
|
|
|
|
/*
|
|
* XXX: THIS STUFF SHOULD BE IN pte.c?
|
|
*/
|
|
int
|
|
pmap_pte_spill(vm_offset_t addr)
|
|
{
|
|
struct pvo_entry *source_pvo, *victim_pvo;
|
|
struct pvo_entry *pvo;
|
|
int ptegidx, i, j;
|
|
u_int sr;
|
|
struct pteg *pteg;
|
|
struct pte *pt;
|
|
|
|
pmap_pte_spills++;
|
|
|
|
sr = mfsrin(addr);
|
|
ptegidx = va_to_pteg(sr, addr);
|
|
|
|
/*
|
|
* Have to substitute some entry. Use the primary hash for this.
|
|
* Use low bits of timebase as random generator.
|
|
*/
|
|
pteg = &pmap_pteg_table[ptegidx];
|
|
__asm __volatile("mftb %0" : "=r"(i));
|
|
i &= 7;
|
|
pt = &pteg->pt[i];
|
|
|
|
source_pvo = NULL;
|
|
victim_pvo = NULL;
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
|
|
/*
|
|
* We need to find a pvo entry for this address.
|
|
*/
|
|
PMAP_PVO_CHECK(pvo);
|
|
if (source_pvo == NULL &&
|
|
pmap_pte_match(&pvo->pvo_pte, sr, addr,
|
|
pvo->pvo_pte.pte_hi & PTE_HID)) {
|
|
/*
|
|
* Now found an entry to be spilled into the pteg.
|
|
* The PTE is now valid, so we know it's active.
|
|
*/
|
|
j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
|
|
|
|
if (j >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, j);
|
|
pmap_pte_overflow--;
|
|
PMAP_PVO_CHECK(pvo);
|
|
return (1);
|
|
}
|
|
|
|
source_pvo = pvo;
|
|
|
|
if (victim_pvo != NULL)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We also need the pvo entry of the victim we are replacing
|
|
* so save the R & C bits of the PTE.
|
|
*/
|
|
if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
|
|
pmap_pte_compare(pt, &pvo->pvo_pte)) {
|
|
victim_pvo = pvo;
|
|
if (source_pvo != NULL)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (source_pvo == NULL)
|
|
return (0);
|
|
|
|
if (victim_pvo == NULL) {
|
|
if ((pt->pte_hi & PTE_HID) == 0)
|
|
panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
|
|
"entry", pt);
|
|
|
|
/*
|
|
* If this is a secondary PTE, we need to search it's primary
|
|
* pvo bucket for the matching PVO.
|
|
*/
|
|
LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
|
|
pvo_olink) {
|
|
PMAP_PVO_CHECK(pvo);
|
|
/*
|
|
* We also need the pvo entry of the victim we are
|
|
* replacing so save the R & C bits of the PTE.
|
|
*/
|
|
if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
|
|
victim_pvo = pvo;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (victim_pvo == NULL)
|
|
panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
|
|
"entry", pt);
|
|
}
|
|
|
|
/*
|
|
* We are invalidating the TLB entry for the EA we are replacing even
|
|
* though it's valid. If we don't, we lose any ref/chg bit changes
|
|
* contained in the TLB entry.
|
|
*/
|
|
source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
|
|
|
|
pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
|
|
pmap_pte_set(pt, &source_pvo->pvo_pte);
|
|
|
|
PVO_PTEGIDX_CLR(victim_pvo);
|
|
PVO_PTEGIDX_SET(source_pvo, i);
|
|
pmap_pte_replacements++;
|
|
|
|
PMAP_PVO_CHECK(victim_pvo);
|
|
PMAP_PVO_CHECK(source_pvo);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
|
|
{
|
|
struct pte *pt;
|
|
int i;
|
|
|
|
/*
|
|
* First try primary hash.
|
|
*/
|
|
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi &= ~PTE_HID;
|
|
pmap_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now try secondary hash.
|
|
*/
|
|
ptegidx ^= pmap_pteg_mask;
|
|
ptegidx++;
|
|
for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & PTE_VALID) == 0) {
|
|
pvo_pt->pte_hi |= PTE_HID;
|
|
pmap_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
panic("pmap_pte_insert: overflow");
|
|
return (-1);
|
|
}
|
|
|
|
static boolean_t
|
|
pmap_query_bit(vm_page_t m, int ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
|
|
if (pmap_attr_fetch(m) & ptebit)
|
|
return (TRUE);
|
|
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* See if we saved the bit off. If so, cache it and return
|
|
* success.
|
|
*/
|
|
if (pvo->pvo_pte.pte_lo & ptebit) {
|
|
pmap_attr_save(m, ptebit);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
return (TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No luck, now go through the hard part of looking at the PTEs
|
|
* themselves. Sync so that any pending REF/CHG bits are flushed to
|
|
* the PTEs.
|
|
*/
|
|
SYNC();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* See if this pvo has a valid PTE. if so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, cache it and return success.
|
|
*/
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
pmap_pte_synch(pt, &pvo->pvo_pte);
|
|
if (pvo->pvo_pte.pte_lo & ptebit) {
|
|
pmap_attr_save(m, ptebit);
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
return (TRUE);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static u_int
|
|
pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
|
|
{
|
|
u_int count;
|
|
struct pvo_entry *pvo;
|
|
struct pte *pt;
|
|
int rv;
|
|
|
|
/*
|
|
* Clear the cached value.
|
|
*/
|
|
rv = pmap_attr_fetch(m);
|
|
pmap_attr_clear(m, ptebit);
|
|
|
|
/*
|
|
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
|
|
* we can reset the right ones). note that since the pvo entries and
|
|
* list heads are accessed via BAT0 and are never placed in the page
|
|
* table, we don't have to worry about further accesses setting the
|
|
* REF/CHG bits.
|
|
*/
|
|
SYNC();
|
|
|
|
/*
|
|
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
|
|
* valid pte clear the ptebit from the valid pte.
|
|
*/
|
|
count = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
pt = pmap_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
pmap_pte_synch(pt, &pvo->pvo_pte);
|
|
if (pvo->pvo_pte.pte_lo & ptebit) {
|
|
count++;
|
|
pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
|
|
}
|
|
}
|
|
rv |= pvo->pvo_pte.pte_lo;
|
|
pvo->pvo_pte.pte_lo &= ~ptebit;
|
|
PMAP_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
|
|
if (origbit != NULL) {
|
|
*origbit = rv;
|
|
}
|
|
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Return true if the physical range is encompassed by the battable[idx]
|
|
*/
|
|
static int
|
|
pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
|
|
{
|
|
u_int prot;
|
|
u_int32_t start;
|
|
u_int32_t end;
|
|
u_int32_t bat_ble;
|
|
|
|
/*
|
|
* Return immediately if not a valid mapping
|
|
*/
|
|
if (!battable[idx].batu & BAT_Vs)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* The BAT entry must be cache-inhibited, guarded, and r/w
|
|
* so it can function as an i/o page
|
|
*/
|
|
prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
|
|
if (prot != (BAT_I|BAT_G|BAT_PP_RW))
|
|
return (EPERM);
|
|
|
|
/*
|
|
* The address should be within the BAT range. Assume that the
|
|
* start address in the BAT has the correct alignment (thus
|
|
* not requiring masking)
|
|
*/
|
|
start = battable[idx].batl & BAT_PBS;
|
|
bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
|
|
end = start | (bat_ble << 15) | 0x7fff;
|
|
|
|
if ((pa < start) || ((pa + size) > end))
|
|
return (ERANGE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
pmap_mapdev(vm_offset_t pa, vm_size_t size)
|
|
{
|
|
vm_offset_t va, tmpva, ppa, offset;
|
|
int i;
|
|
|
|
ppa = trunc_page(pa);
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
/*
|
|
* If the physical address lies within a valid BAT table entry,
|
|
* return the 1:1 mapping. This currently doesn't work
|
|
* for regions that overlap 256M BAT segments.
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
if (pmap_bat_mapped(i, pa, size) == 0)
|
|
return ((void *) pa);
|
|
}
|
|
|
|
va = kmem_alloc_pageable(kernel_map, size);
|
|
if (!va)
|
|
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
pmap_kenter(tmpva, ppa);
|
|
TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
ppa += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void
|
|
pmap_unmapdev(vm_offset_t va, vm_size_t size)
|
|
{
|
|
vm_offset_t base, offset;
|
|
|
|
/*
|
|
* If this is outside kernel virtual space, then it's a
|
|
* battable entry and doesn't require unmapping
|
|
*/
|
|
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
kmem_free(kernel_map, base, size);
|
|
}
|
|
}
|