freebsd-nq/sys/x86/isa/atrtc.c
Roger Pau Monné 4a6d4e7b58 at_rtc: check in ACPI FADT boot flags if the RTC is present
Or else disable the device. Note that the detection can be bypassed by
setting the hw.atrtc.enable option in the loader configuration file.
More information can be found on atrtc(4).

Sponsored by:		Citrix Systems R&D
Reviewed by:		ian
Differential revision:	https://reviews.freebsd.org/D14399
2018-03-13 09:42:33 +00:00

470 lines
12 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008 Poul-Henning Kamp
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_isa.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <isa/rtc.h>
#ifdef DEV_ISA
#include <isa/isareg.h>
#include <isa/isavar.h>
#endif
#include <machine/intr_machdep.h>
#include "clock_if.h"
#ifdef DEV_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#endif
/*
* atrtc_lock protects low-level access to individual hardware registers.
* atrtc_time_lock protects the entire sequence of accessing multiple registers
* to read or write the date and time.
*/
static struct mtx atrtc_lock;
MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
/* Force RTC enabled/disabled. */
static int atrtc_enabled = -1;
TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
struct mtx atrtc_time_lock;
MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
int atrtcclock_disable = 0;
static int rtc_reg = -1;
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static u_char rtc_statusb = RTCSB_24HR;
/*
* RTC support routines
*/
static inline u_char
rtcin_locked(int reg)
{
if (rtc_reg != reg) {
inb(0x84);
outb(IO_RTC, reg);
rtc_reg = reg;
inb(0x84);
}
return (inb(IO_RTC + 1));
}
static inline void
rtcout_locked(int reg, u_char val)
{
if (rtc_reg != reg) {
inb(0x84);
outb(IO_RTC, reg);
rtc_reg = reg;
inb(0x84);
}
outb(IO_RTC + 1, val);
inb(0x84);
}
int
rtcin(int reg)
{
u_char val;
mtx_lock_spin(&atrtc_lock);
val = rtcin_locked(reg);
mtx_unlock_spin(&atrtc_lock);
return (val);
}
void
writertc(int reg, u_char val)
{
mtx_lock_spin(&atrtc_lock);
rtcout_locked(reg, val);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_start(void)
{
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSA, rtc_statusa);
rtcout_locked(RTC_STATUSB, RTCSB_24HR);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_rate(unsigned rate)
{
rtc_statusa = RTCSA_DIVIDER | rate;
writertc(RTC_STATUSA, rtc_statusa);
}
static void
atrtc_enable_intr(void)
{
rtc_statusb |= RTCSB_PINTR;
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_disable_intr(void)
{
rtc_statusb &= ~RTCSB_PINTR;
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
void
atrtc_restore(void)
{
/* Restore all of the RTC's "status" (actually, control) registers. */
mtx_lock_spin(&atrtc_lock);
rtcin_locked(RTC_STATUSA); /* dummy to get rtc_reg set */
rtcout_locked(RTC_STATUSB, RTCSB_24HR);
rtcout_locked(RTC_STATUSA, rtc_statusa);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
/**********************************************************************
* RTC driver for subr_rtc
*/
struct atrtc_softc {
int port_rid, intr_rid;
struct resource *port_res;
struct resource *intr_res;
void *intr_handler;
struct eventtimer et;
};
static int
rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
atrtc_enable_intr();
return (0);
}
static int
rtc_stop(struct eventtimer *et)
{
atrtc_disable_intr();
return (0);
}
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
* Under high interrupt load, rtcintr() can be indefinitely delayed and
* the clock can tick immediately after the read from RTC_INTR. In this
* case, the mc146818A interrupt signal will not drop for long enough
* to register with the 8259 PIC. If an interrupt is missed, the stat
* clock will halt, considerably degrading system performance. This is
* why we use 'while' rather than a more straightforward 'if' below.
* Stat clock ticks can still be lost, causing minor loss of accuracy
* in the statistics, but the stat clock will no longer stop.
*/
static int
rtc_intr(void *arg)
{
struct atrtc_softc *sc = (struct atrtc_softc *)arg;
int flag = 0;
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
flag = 1;
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
}
return(flag ? FILTER_HANDLED : FILTER_STRAY);
}
/*
* Attach to the ISA PnP descriptors for the timer and realtime clock.
*/
static struct isa_pnp_id atrtc_ids[] = {
{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
{ 0 }
};
static bool
atrtc_acpi_disabled(void)
{
#ifdef DEV_ACPI
ACPI_TABLE_FADT *fadt;
vm_paddr_t physaddr;
uint16_t flags;
physaddr = acpi_find_table(ACPI_SIG_FADT);
if (physaddr == 0)
return (false);
fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
if (fadt == NULL) {
printf("at_rtc: unable to map FADT ACPI table\n");
return (false);
}
flags = fadt->BootFlags;
acpi_unmap_table(fadt);
if (flags & ACPI_FADT_NO_CMOS_RTC)
return (true);
#endif
return (false);
}
static int
atrtc_probe(device_t dev)
{
int result;
if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
(atrtc_enabled == 0))
return (ENXIO);
result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
/* ENOENT means no PnP-ID, device is hinted. */
if (result == ENOENT) {
device_set_desc(dev, "AT realtime clock");
return (BUS_PROBE_LOW_PRIORITY);
}
return (result);
}
static int
atrtc_attach(device_t dev)
{
struct atrtc_softc *sc;
rman_res_t s;
int i;
sc = device_get_softc(dev);
sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
if (sc->port_res == NULL)
device_printf(dev, "Warning: Couldn't map I/O.\n");
atrtc_start();
clock_register(dev, 1000000);
bzero(&sc->et, sizeof(struct eventtimer));
if (!atrtcclock_disable &&
(resource_int_value(device_get_name(dev), device_get_unit(dev),
"clock", &i) != 0 || i != 0)) {
sc->intr_rid = 0;
while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
&s, NULL) == 0 && s != 8)
sc->intr_rid++;
sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&sc->intr_rid, 8, 8, 1, RF_ACTIVE);
if (sc->intr_res == NULL) {
device_printf(dev, "Can't map interrupt.\n");
return (0);
} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
rtc_intr, NULL, sc, &sc->intr_handler))) {
device_printf(dev, "Can't setup interrupt.\n");
return (0);
} else {
/* Bind IRQ to BSP to avoid live migration. */
bus_bind_intr(dev, sc->intr_res, 0);
}
sc->et.et_name = "RTC";
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
sc->et.et_quality = 0;
sc->et.et_frequency = 32768;
sc->et.et_min_period = 0x00080000;
sc->et.et_max_period = 0x80000000;
sc->et.et_start = rtc_start;
sc->et.et_stop = rtc_stop;
sc->et.et_priv = dev;
et_register(&sc->et);
}
return(0);
}
static int
atrtc_resume(device_t dev)
{
atrtc_restore();
return(0);
}
static int
atrtc_settime(device_t dev __unused, struct timespec *ts)
{
struct bcd_clocktime bct;
clock_ts_to_bcd(ts, &bct, false);
clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
mtx_lock(&atrtc_time_lock);
mtx_lock_spin(&atrtc_lock);
/* Disable RTC updates and interrupts. */
rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Write all the time registers. */
rtcout_locked(RTC_SEC, bct.sec);
rtcout_locked(RTC_MIN, bct.min);
rtcout_locked(RTC_HRS, bct.hour);
rtcout_locked(RTC_WDAY, bct.dow + 1);
rtcout_locked(RTC_DAY, bct.day);
rtcout_locked(RTC_MONTH, bct.mon);
rtcout_locked(RTC_YEAR, bct.year & 0xff);
#ifdef USE_RTC_CENTURY
rtcout_locked(RTC_CENTURY, bct.year >> 8);
#endif
/*
* Re-enable RTC updates and interrupts.
*/
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
mtx_unlock(&atrtc_time_lock);
return (0);
}
static int
atrtc_gettime(device_t dev, struct timespec *ts)
{
struct bcd_clocktime bct;
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
device_printf(dev, "WARNING: Battery failure indication\n");
return (EINVAL);
}
/*
* wait for time update to complete
* If RTCSA_TUP is zero, we have at least 244us before next update.
* This is fast enough on most hardware, but a refinement would be
* to make sure that no more than 240us pass after we start reading,
* and try again if so.
*/
mtx_lock(&atrtc_time_lock);
while (rtcin(RTC_STATUSA) & RTCSA_TUP)
continue;
mtx_lock_spin(&atrtc_lock);
bct.sec = rtcin_locked(RTC_SEC);
bct.min = rtcin_locked(RTC_MIN);
bct.hour = rtcin_locked(RTC_HRS);
bct.day = rtcin_locked(RTC_DAY);
bct.mon = rtcin_locked(RTC_MONTH);
bct.year = rtcin_locked(RTC_YEAR);
#ifdef USE_RTC_CENTURY
bct.year |= rtcin_locked(RTC_CENTURY) << 8;
#endif
mtx_unlock_spin(&atrtc_lock);
mtx_unlock(&atrtc_time_lock);
/* dow is unused in timespec conversion and we have no nsec info. */
bct.dow = 0;
bct.nsec = 0;
clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
return (clock_bcd_to_ts(&bct, ts, false));
}
static device_method_t atrtc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, atrtc_probe),
DEVMETHOD(device_attach, atrtc_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
/* XXX stop statclock? */
DEVMETHOD(device_resume, atrtc_resume),
/* clock interface */
DEVMETHOD(clock_gettime, atrtc_gettime),
DEVMETHOD(clock_settime, atrtc_settime),
{ 0, 0 }
};
static driver_t atrtc_driver = {
"atrtc",
atrtc_methods,
sizeof(struct atrtc_softc),
};
static devclass_t atrtc_devclass;
DRIVER_MODULE(atrtc, isa, atrtc_driver, atrtc_devclass, 0, 0);
DRIVER_MODULE(atrtc, acpi, atrtc_driver, atrtc_devclass, 0, 0);
ISA_PNP_INFO(atrtc_ids);