b8d06fca08
Differences between how paging is done on Solaris and Linux can cause deadlocks if KM_SLEEP is used in any the following contexts. * The txg_sync thread * The zvol write/discard threads * The zpl_putpage() VFS callback This is because KM_SLEEP will allow for direct reclaim which may result in the VM calling back in to the filesystem or block layer to write out pages. If a lock is held over this operation the potential exists to deadlock the system. To ensure forward progress all memory allocations in these contexts must us KM_PUSHPAGE which disables performing any I/O to accomplish the memory allocation. Previously, this behavior was acheived by setting PF_MEMALLOC on the thread. However, that resulted in unexpected side effects such as the exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs code, but it is more consistent with the right way to handle these cases under Linux. This is patch lays the ground work for being able to safely revert the following commits which used PF_MEMALLOC: 21ade34 Disable direct reclaim for z_wr_* threads cfc9a5c Fix zpl_writepage() deadlock eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool)) Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #726
1475 lines
35 KiB
C
1475 lines
35 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*/
|
|
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zvol.h>
|
|
#include <linux/blkdev_compat.h>
|
|
|
|
unsigned int zvol_inhibit_dev = 0;
|
|
unsigned int zvol_major = ZVOL_MAJOR;
|
|
unsigned int zvol_threads = 32;
|
|
unsigned long zvol_max_discard_blocks = 16384;
|
|
|
|
static taskq_t *zvol_taskq;
|
|
static kmutex_t zvol_state_lock;
|
|
static list_t zvol_state_list;
|
|
static char *zvol_tag = "zvol_tag";
|
|
|
|
/*
|
|
* The in-core state of each volume.
|
|
*/
|
|
typedef struct zvol_state {
|
|
char zv_name[MAXNAMELEN]; /* name */
|
|
uint64_t zv_volsize; /* advertised space */
|
|
uint64_t zv_volblocksize;/* volume block size */
|
|
objset_t *zv_objset; /* objset handle */
|
|
uint32_t zv_flags; /* ZVOL_* flags */
|
|
uint32_t zv_open_count; /* open counts */
|
|
uint32_t zv_changed; /* disk changed */
|
|
zilog_t *zv_zilog; /* ZIL handle */
|
|
znode_t zv_znode; /* for range locking */
|
|
dmu_buf_t *zv_dbuf; /* bonus handle */
|
|
dev_t zv_dev; /* device id */
|
|
struct gendisk *zv_disk; /* generic disk */
|
|
struct request_queue *zv_queue; /* request queue */
|
|
spinlock_t zv_lock; /* request queue lock */
|
|
list_node_t zv_next; /* next zvol_state_t linkage */
|
|
} zvol_state_t;
|
|
|
|
#define ZVOL_RDONLY 0x1
|
|
|
|
/*
|
|
* Find the next available range of ZVOL_MINORS minor numbers. The
|
|
* zvol_state_list is kept in ascending minor order so we simply need
|
|
* to scan the list for the first gap in the sequence. This allows us
|
|
* to recycle minor number as devices are created and removed.
|
|
*/
|
|
static int
|
|
zvol_find_minor(unsigned *minor)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
*minor = 0;
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
|
|
if (MINOR(zv->zv_dev) != MINOR(*minor))
|
|
break;
|
|
}
|
|
|
|
/* All minors are in use */
|
|
if (*minor >= (1 << MINORBITS))
|
|
return ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the full major+minor dev_t.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_dev(dev_t dev)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (zv->zv_dev == dev)
|
|
return zv;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name provided at zvol_alloc() time.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (!strncmp(zv->zv_name, name, MAXNAMELEN))
|
|
return zv;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (error);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (EINVAL);
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (EINVAL);
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > MAXOFFSET_T)
|
|
return (EOVERFLOW);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(zvol_state_t *zv, uint64_t volsize, objset_t *os)
|
|
{
|
|
struct block_device *bdev;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (error);
|
|
}
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error)
|
|
return (error);
|
|
|
|
error = dmu_free_long_range(os,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
if (error)
|
|
return (error);
|
|
|
|
bdev = bdget_disk(zv->zv_disk, 0);
|
|
if (!bdev)
|
|
return (EIO);
|
|
/*
|
|
* 2.6.28 API change
|
|
* Added check_disk_size_change() helper function.
|
|
*/
|
|
#ifdef HAVE_CHECK_DISK_SIZE_CHANGE
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
check_disk_size_change(zv->zv_disk, bdev);
|
|
#else
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_changed = 1;
|
|
(void) check_disk_change(bdev);
|
|
#endif /* HAVE_CHECK_DISK_SIZE_CHANGE */
|
|
|
|
bdput(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_object_info_t *doi;
|
|
objset_t *os = NULL;
|
|
uint64_t readonly;
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_hold(name, FTAG, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
|
|
(error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
|
|
goto out_doi;
|
|
|
|
VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
|
|
if (readonly) {
|
|
error = EROFS;
|
|
goto out_doi;
|
|
}
|
|
|
|
if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = EROFS;
|
|
goto out_doi;
|
|
}
|
|
|
|
error = zvol_update_volsize(zv, volsize, os);
|
|
out_doi:
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
out:
|
|
if (os)
|
|
dmu_objset_rele(os, FTAG);
|
|
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(uint64_t volblocksize)
|
|
{
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (EDOM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLBLOCKSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
|
|
volblocksize, 0, tx);
|
|
if (error == ENOTSUP)
|
|
error = EBUSY;
|
|
dmu_tx_commit(tx);
|
|
if (error == 0)
|
|
zv->zv_volblocksize = volblocksize;
|
|
}
|
|
out:
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t off = lr->lr_offset;
|
|
uint64_t len = lr->lr_length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, off, len, data, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
|
|
{
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE is needed for zvol.
|
|
*/
|
|
zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
|
|
(zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
|
|
(zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
static void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
|
|
uint64_t offset, uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
boolean_t slogging;
|
|
ssize_t immediate_write_sz;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
|
|
? 0 : zvol_immediate_write_sz;
|
|
slogging = spa_has_slogs(zilog->zl_spa) &&
|
|
(zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
ssize_t len;
|
|
itx_wr_state_t write_state;
|
|
|
|
/*
|
|
* Unlike zfs_log_write() we can be called with
|
|
* up to DMU_MAX_ACCESS/2 (5MB) writes.
|
|
*/
|
|
if (blocksize > immediate_write_sz && !slogging &&
|
|
size >= blocksize && offset % blocksize == 0) {
|
|
write_state = WR_INDIRECT; /* uses dmu_sync */
|
|
len = blocksize;
|
|
} else if (sync) {
|
|
write_state = WR_COPIED;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
} else {
|
|
write_state = WR_NEED_COPY;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
}
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(write_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
|
|
ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
write_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = write_state;
|
|
if (write_state == WR_NEED_COPY)
|
|
itx->itx_sod += len;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common write path running under the zvol taskq context. This function
|
|
* is responsible for copying the request structure data in to the DMU and
|
|
* signaling the request queue with the result of the copy.
|
|
*/
|
|
static void
|
|
zvol_write(void *arg)
|
|
{
|
|
struct request *req = (struct request *)arg;
|
|
struct request_queue *q = req->q;
|
|
zvol_state_t *zv = q->queuedata;
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
uint64_t size = blk_rq_bytes(req);
|
|
int error = 0;
|
|
dmu_tx_t *tx;
|
|
rl_t *rl;
|
|
|
|
/*
|
|
* Annotate this call path with a flag that indicates that it is
|
|
* unsafe to use KM_SLEEP during memory allocations due to the
|
|
* potential for a deadlock. KM_PUSHPAGE should be used instead.
|
|
*/
|
|
ASSERT(!(current->flags & PF_NOFS));
|
|
current->flags |= PF_NOFS;
|
|
|
|
if (req->cmd_flags & VDEV_REQ_FLUSH)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
/*
|
|
* Some requests are just for flush and nothing else.
|
|
*/
|
|
if (size == 0) {
|
|
blk_end_request(req, 0, size);
|
|
goto out;
|
|
}
|
|
|
|
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
|
|
|
|
/* This will only fail for ENOSPC */
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
zfs_range_unlock(rl);
|
|
blk_end_request(req, -error, size);
|
|
goto out;
|
|
}
|
|
|
|
error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
|
|
if (error == 0)
|
|
zvol_log_write(zv, tx, offset, size,
|
|
req->cmd_flags & VDEV_REQ_FUA);
|
|
|
|
dmu_tx_commit(tx);
|
|
zfs_range_unlock(rl);
|
|
|
|
if ((req->cmd_flags & VDEV_REQ_FUA) ||
|
|
zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
blk_end_request(req, -error, size);
|
|
out:
|
|
current->flags &= ~PF_NOFS;
|
|
}
|
|
|
|
#ifdef HAVE_BLK_QUEUE_DISCARD
|
|
static void
|
|
zvol_discard(void *arg)
|
|
{
|
|
struct request *req = (struct request *)arg;
|
|
struct request_queue *q = req->q;
|
|
zvol_state_t *zv = q->queuedata;
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
uint64_t size = blk_rq_bytes(req);
|
|
int error;
|
|
rl_t *rl;
|
|
|
|
/*
|
|
* Annotate this call path with a flag that indicates that it is
|
|
* unsafe to use KM_SLEEP during memory allocations due to the
|
|
* potential for a deadlock. KM_PUSHPAGE should be used instead.
|
|
*/
|
|
ASSERT(!(current->flags & PF_NOFS));
|
|
current->flags |= PF_NOFS;
|
|
|
|
if (offset + size > zv->zv_volsize) {
|
|
blk_end_request(req, -EIO, size);
|
|
goto out;
|
|
}
|
|
|
|
if (size == 0) {
|
|
blk_end_request(req, 0, size);
|
|
goto out;
|
|
}
|
|
|
|
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
|
|
|
|
error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, size);
|
|
|
|
/*
|
|
* TODO: maybe we should add the operation to the log.
|
|
*/
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
blk_end_request(req, -error, size);
|
|
out:
|
|
current->flags &= ~PF_NOFS;
|
|
}
|
|
#endif /* HAVE_BLK_QUEUE_DISCARD */
|
|
|
|
/*
|
|
* Common read path running under the zvol taskq context. This function
|
|
* is responsible for copying the requested data out of the DMU and in to
|
|
* a linux request structure. It then must signal the request queue with
|
|
* an error code describing the result of the copy.
|
|
*/
|
|
static void
|
|
zvol_read(void *arg)
|
|
{
|
|
struct request *req = (struct request *)arg;
|
|
struct request_queue *q = req->q;
|
|
zvol_state_t *zv = q->queuedata;
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
uint64_t size = blk_rq_bytes(req);
|
|
int error;
|
|
rl_t *rl;
|
|
|
|
if (size == 0) {
|
|
blk_end_request(req, 0, size);
|
|
return;
|
|
}
|
|
|
|
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
|
|
|
|
error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = EIO;
|
|
|
|
blk_end_request(req, -error, size);
|
|
}
|
|
|
|
/*
|
|
* Request will be added back to the request queue and retried if
|
|
* it cannot be immediately dispatched to the taskq for handling
|
|
*/
|
|
static inline void
|
|
zvol_dispatch(task_func_t func, struct request *req)
|
|
{
|
|
if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
|
|
blk_requeue_request(req->q, req);
|
|
}
|
|
|
|
/*
|
|
* Common request path. Rather than registering a custom make_request()
|
|
* function we use the generic Linux version. This is done because it allows
|
|
* us to easily merge read requests which would otherwise we performed
|
|
* synchronously by the DMU. This is less critical in write case where the
|
|
* DMU will perform the correct merging within a transaction group. Using
|
|
* the generic make_request() also let's use leverage the fact that the
|
|
* elevator with ensure correct ordering in regards to barrior IOs. On
|
|
* the downside it means that in the write case we end up doing request
|
|
* merging twice once in the elevator and once in the DMU.
|
|
*
|
|
* The request handler is called under a spin lock so all the real work
|
|
* is handed off to be done in the context of the zvol taskq. This function
|
|
* simply performs basic request sanity checking and hands off the request.
|
|
*/
|
|
static void
|
|
zvol_request(struct request_queue *q)
|
|
{
|
|
zvol_state_t *zv = q->queuedata;
|
|
struct request *req;
|
|
unsigned int size;
|
|
|
|
while ((req = blk_fetch_request(q)) != NULL) {
|
|
size = blk_rq_bytes(req);
|
|
|
|
if (size != 0 && blk_rq_pos(req) + blk_rq_sectors(req) >
|
|
get_capacity(zv->zv_disk)) {
|
|
printk(KERN_INFO
|
|
"%s: bad access: block=%llu, count=%lu\n",
|
|
req->rq_disk->disk_name,
|
|
(long long unsigned)blk_rq_pos(req),
|
|
(long unsigned)blk_rq_sectors(req));
|
|
__blk_end_request(req, -EIO, size);
|
|
continue;
|
|
}
|
|
|
|
if (!blk_fs_request(req)) {
|
|
printk(KERN_INFO "%s: non-fs cmd\n",
|
|
req->rq_disk->disk_name);
|
|
__blk_end_request(req, -EIO, size);
|
|
continue;
|
|
}
|
|
|
|
switch (rq_data_dir(req)) {
|
|
case READ:
|
|
zvol_dispatch(zvol_read, req);
|
|
break;
|
|
case WRITE:
|
|
if (unlikely(get_disk_ro(zv->zv_disk)) ||
|
|
unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
|
__blk_end_request(req, -EROFS, size);
|
|
break;
|
|
}
|
|
|
|
#ifdef HAVE_BLK_QUEUE_DISCARD
|
|
if (req->cmd_flags & VDEV_REQ_DISCARD) {
|
|
zvol_dispatch(zvol_discard, req);
|
|
break;
|
|
}
|
|
#endif /* HAVE_BLK_QUEUE_DISCARD */
|
|
|
|
zvol_dispatch(zvol_write, req);
|
|
break;
|
|
default:
|
|
printk(KERN_INFO "%s: unknown cmd: %d\n",
|
|
req->rq_disk->disk_name, (int)rq_data_dir(req));
|
|
__blk_end_request(req, -EIO, size);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_range_unlock(zgd->zgd_rl);
|
|
|
|
if (error == 0 && zgd->zgd_bp)
|
|
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
static int
|
|
zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
objset_t *os = zv->zv_objset;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT(zio != NULL);
|
|
ASSERT(size != 0);
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_PUSHPAGE);
|
|
zgd->zgd_zilog = zv->zv_zilog;
|
|
zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else {
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (error == 0) {
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = &lr->lr_blkptr;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
|
|
*/
|
|
static void
|
|
zvol_insert(zvol_state_t *zv_insert)
|
|
{
|
|
zvol_state_t *zv = NULL;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
|
|
break;
|
|
}
|
|
|
|
list_insert_before(&zvol_state_list, zv, zv_insert);
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv_remove)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv_remove);
|
|
}
|
|
|
|
static int
|
|
zvol_first_open(zvol_state_t *zv)
|
|
{
|
|
objset_t *os;
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
|
|
/* lie and say we're read-only */
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
|
|
if (error)
|
|
return (-error);
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error) {
|
|
dmu_objset_disown(os, zvol_tag);
|
|
return (-error);
|
|
}
|
|
|
|
zv->zv_objset = os;
|
|
error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
|
|
if (error) {
|
|
dmu_objset_disown(os, zvol_tag);
|
|
return (-error);
|
|
}
|
|
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_zilog = zil_open(os, zvol_get_data);
|
|
|
|
VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
|
|
if (ro || dmu_objset_is_snapshot(os)) {
|
|
set_disk_ro(zv->zv_disk, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
set_disk_ro(zv->zv_disk, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
|
|
return (-error);
|
|
}
|
|
|
|
static void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
zil_close(zv->zv_zilog);
|
|
zv->zv_zilog = NULL;
|
|
dmu_buf_rele(zv->zv_dbuf, zvol_tag);
|
|
zv->zv_dbuf = NULL;
|
|
dmu_objset_disown(zv->zv_objset, zvol_tag);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
static int
|
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0, drop_mutex = 0;
|
|
|
|
/*
|
|
* If the caller is already holding the mutex do not take it
|
|
* again, this will happen as part of zvol_create_minor().
|
|
* Once add_disk() is called the device is live and the kernel
|
|
* will attempt to open it to read the partition information.
|
|
*/
|
|
if (!mutex_owned(&zvol_state_lock)) {
|
|
mutex_enter(&zvol_state_lock);
|
|
drop_mutex = 1;
|
|
}
|
|
|
|
ASSERT3P(zv, !=, NULL);
|
|
|
|
if (zv->zv_open_count == 0) {
|
|
error = zvol_first_open(zv);
|
|
if (error)
|
|
goto out_mutex;
|
|
}
|
|
|
|
if ((flag & FMODE_WRITE) &&
|
|
(get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
|
|
error = -EROFS;
|
|
goto out_open_count;
|
|
}
|
|
|
|
zv->zv_open_count++;
|
|
|
|
out_open_count:
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
out_mutex:
|
|
if (drop_mutex)
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
check_disk_change(bdev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
int drop_mutex = 0;
|
|
|
|
if (!mutex_owned(&zvol_state_lock)) {
|
|
mutex_enter(&zvol_state_lock);
|
|
drop_mutex = 1;
|
|
}
|
|
|
|
ASSERT3P(zv, !=, NULL);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
zv->zv_open_count--;
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
if (drop_mutex)
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
if (zv == NULL)
|
|
return (-ENXIO);
|
|
|
|
switch (cmd) {
|
|
case BLKFLSBUF:
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
break;
|
|
case BLKZNAME:
|
|
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
break;
|
|
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int
|
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
return zvol_ioctl(bdev, mode, cmd, arg);
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl NULL
|
|
#endif
|
|
|
|
static int zvol_media_changed(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
return zv->zv_changed;
|
|
}
|
|
|
|
static int zvol_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
zv->zv_changed = 0;
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
|
* is used to keep the cylinders count reasonable.
|
|
*/
|
|
static int
|
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
sector_t sectors = get_capacity(zv->zv_disk);
|
|
|
|
if (sectors > 2048) {
|
|
geo->heads = 16;
|
|
geo->sectors = 63;
|
|
} else {
|
|
geo->heads = 2;
|
|
geo->sectors = 4;
|
|
}
|
|
|
|
geo->start = 0;
|
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kobject *
|
|
zvol_probe(dev_t dev, int *part, void *arg)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct kobject *kobj;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
zv = zvol_find_by_dev(dev);
|
|
kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return kobj;
|
|
}
|
|
|
|
#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
static int
|
|
zvol_open_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return zvol_open(inode->i_bdev, file->f_mode);
|
|
}
|
|
|
|
static int
|
|
zvol_release_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl_by_inode(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
if (file == NULL || inode == NULL)
|
|
return -EINVAL;
|
|
return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
|
|
}
|
|
|
|
# ifdef CONFIG_COMPAT
|
|
static long
|
|
zvol_compat_ioctl_by_inode(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
if (file == NULL)
|
|
return -EINVAL;
|
|
return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
|
|
file->f_mode, cmd, arg);
|
|
}
|
|
# else
|
|
# define zvol_compat_ioctl_by_inode NULL
|
|
# endif
|
|
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open_by_inode,
|
|
.release = zvol_release_by_inode,
|
|
.ioctl = zvol_ioctl_by_inode,
|
|
.compat_ioctl = zvol_compat_ioctl_by_inode,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
/*
|
|
* Allocate memory for a new zvol_state_t and setup the required
|
|
* request queue and generic disk structures for the block device.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_alloc(dev_t dev, const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
|
if (zv == NULL)
|
|
goto out;
|
|
|
|
zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
|
|
if (zv->zv_queue == NULL)
|
|
goto out_kmem;
|
|
|
|
#ifdef HAVE_BLK_QUEUE_FLUSH
|
|
blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA);
|
|
#else
|
|
blk_queue_ordered(zv->zv_queue, QUEUE_ORDERED_DRAIN, NULL);
|
|
#endif /* HAVE_BLK_QUEUE_FLUSH */
|
|
|
|
zv->zv_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zv->zv_disk == NULL)
|
|
goto out_queue;
|
|
|
|
zv->zv_queue->queuedata = zv;
|
|
zv->zv_dev = dev;
|
|
zv->zv_open_count = 0;
|
|
strlcpy(zv->zv_name, name, MAXNAMELEN);
|
|
|
|
mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
|
|
sizeof (rl_t), offsetof(rl_t, r_node));
|
|
zv->zv_znode.z_is_zvol = TRUE;
|
|
|
|
spin_lock_init(&zv->zv_lock);
|
|
list_link_init(&zv->zv_next);
|
|
|
|
zv->zv_disk->major = zvol_major;
|
|
zv->zv_disk->first_minor = (dev & MINORMASK);
|
|
zv->zv_disk->fops = &zvol_ops;
|
|
zv->zv_disk->private_data = zv;
|
|
zv->zv_disk->queue = zv->zv_queue;
|
|
snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
|
|
ZVOL_DEV_NAME, (dev & MINORMASK));
|
|
|
|
return zv;
|
|
|
|
out_queue:
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
out_kmem:
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
|
*/
|
|
static void
|
|
zvol_free(zvol_state_t *zv)
|
|
{
|
|
avl_destroy(&zv->zv_znode.z_range_avl);
|
|
mutex_destroy(&zv->zv_znode.z_range_lock);
|
|
|
|
del_gendisk(zv->zv_disk);
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
put_disk(zv->zv_disk);
|
|
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
}
|
|
|
|
static int
|
|
__zvol_create_minor(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
objset_t *os;
|
|
dmu_object_info_t *doi;
|
|
uint64_t volsize;
|
|
unsigned minor = 0;
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv) {
|
|
error = EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zvol_find_minor(&minor);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
|
|
if (zv == NULL) {
|
|
error = EAGAIN;
|
|
goto out_dmu_objset_disown;
|
|
}
|
|
|
|
if (dmu_objset_is_snapshot(os))
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
|
|
zv->zv_volblocksize = doi->doi_data_block_size;
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_objset = os;
|
|
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
blk_queue_max_hw_sectors(zv->zv_queue, UINT_MAX);
|
|
blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
|
|
blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
|
|
blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
|
|
#ifdef HAVE_BLK_QUEUE_DISCARD
|
|
blk_queue_max_discard_sectors(zv->zv_queue,
|
|
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
|
|
blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
|
|
#endif
|
|
#ifdef HAVE_BLK_QUEUE_NONROT
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
|
|
#endif
|
|
|
|
if (zil_replay_disable)
|
|
zil_destroy(dmu_objset_zil(os), B_FALSE);
|
|
else
|
|
zil_replay(os, zv, zvol_replay_vector);
|
|
|
|
out_dmu_objset_disown:
|
|
dmu_objset_disown(os, zvol_tag);
|
|
zv->zv_objset = NULL;
|
|
out_doi:
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
out:
|
|
|
|
if (error == 0) {
|
|
zvol_insert(zv);
|
|
add_disk(zv->zv_disk);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create a block device minor node and setup the linkage between it
|
|
* and the specified volume. Once this function returns the block
|
|
* device is live and ready for use.
|
|
*/
|
|
int
|
|
zvol_create_minor(const char *name)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
error = __zvol_create_minor(name);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__zvol_remove_minor(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL)
|
|
return (ENXIO);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
return (EBUSY);
|
|
|
|
zvol_remove(zv);
|
|
zvol_free(zv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a block device minor node for the specified volume.
|
|
*/
|
|
int
|
|
zvol_remove_minor(const char *name)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
error = __zvol_remove_minor(name);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
|
|
const char *dsname, void *arg)
|
|
{
|
|
if (strchr(dsname, '/') == NULL)
|
|
return 0;
|
|
|
|
(void) __zvol_create_minor(dsname);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create minors for specified pool, if pool is NULL create minors
|
|
* for all available pools.
|
|
*/
|
|
int
|
|
zvol_create_minors(const char *pool)
|
|
{
|
|
spa_t *spa = NULL;
|
|
int error = 0;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return (0);
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
if (pool) {
|
|
error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
|
|
NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
|
|
} else {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
error = dmu_objset_find_spa(NULL,
|
|
spa_name(spa), zvol_create_minors_cb, NULL,
|
|
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
|
|
if (error)
|
|
break;
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified pool, if pool is NULL remove all minors.
|
|
*/
|
|
void
|
|
zvol_remove_minors(const char *pool)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
char *str;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
|
|
if (pool) {
|
|
(void) strncpy(str, pool, strlen(pool));
|
|
(void) strcat(str, "/");
|
|
}
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
|
|
zvol_remove(zv);
|
|
zvol_free(zv);
|
|
}
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
kmem_free(str, MAXNAMELEN);
|
|
}
|
|
|
|
int
|
|
zvol_init(void)
|
|
{
|
|
int error;
|
|
|
|
zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
|
|
zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
|
|
if (zvol_taskq == NULL) {
|
|
printk(KERN_INFO "ZFS: taskq_create() failed\n");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
|
if (error) {
|
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
|
taskq_destroy(zvol_taskq);
|
|
return (error);
|
|
}
|
|
|
|
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
|
|
THIS_MODULE, zvol_probe, NULL, NULL);
|
|
|
|
mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
|
|
(void) zvol_create_minors(NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_fini(void)
|
|
{
|
|
zvol_remove_minors(NULL);
|
|
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
taskq_destroy(zvol_taskq);
|
|
mutex_destroy(&zvol_state_lock);
|
|
list_destroy(&zvol_state_list);
|
|
}
|
|
|
|
module_param(zvol_inhibit_dev, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
|
|
|
|
module_param(zvol_major, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
|
|
|
module_param(zvol_threads, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");
|
|
|
|
module_param(zvol_max_discard_blocks, ulong, 0444);
|
|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard at once");
|