freebsd-nq/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_interrupts.c
Adrian Chadd e113789bdc Bring over my FreeBSD modifications for the AR9300 HAL to make it
work in FreeBSD.

This is still heavily a work in progress but I'd rather it start
shipping in -HEAD sooner rather than later.

This doesn't (yet) link it into the build system either for a static
kernel or as a module; that will come later (after many, many make universe
tests.)
2013-04-28 00:57:47 +00:00

774 lines
26 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
/*
* Checks to see if an interrupt is pending on our NIC
*
* Returns: TRUE if an interrupt is pending
* FALSE if not
*/
HAL_BOOL
ar9300_is_interrupt_pending(struct ath_hal *ah)
{
u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT;
u_int32_t host_isr;
/*
* Some platforms trigger our ISR before applying power to
* the card, so make sure.
*/
host_isr = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_CAUSE));
if ((host_isr & AR_INTR_ASYNC_USED) && (host_isr != AR_INTR_SPURIOUS)) {
return AH_TRUE;
}
host_isr = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE));
if (AR_SREV_POSEIDON(ah)) {
sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR;
}
else if (AR_SREV_WASP(ah)) {
sync_en_def = AR9340_INTR_SYNC_DEFAULT;
}
if ((host_isr & (sync_en_def | AR_INTR_SYNC_MASK_GPIO)) &&
(host_isr != AR_INTR_SPURIOUS)) {
return AH_TRUE;
}
return AH_FALSE;
}
/*
* Reads the Interrupt Status Register value from the NIC, thus deasserting
* the interrupt line, and returns both the masked and unmasked mapped ISR
* values. The value returned is mapped to abstract the hw-specific bit
* locations in the Interrupt Status Register.
*
* Returns: A hardware-abstracted bitmap of all non-masked-out
* interrupts pending, as well as an unmasked value
*/
#define MAP_ISR_S2_HAL_CST 6 /* Carrier sense timeout */
#define MAP_ISR_S2_HAL_GTT 6 /* Global transmit timeout */
#define MAP_ISR_S2_HAL_TIM 3 /* TIM */
#define MAP_ISR_S2_HAL_CABEND 0 /* CABEND */
#define MAP_ISR_S2_HAL_DTIMSYNC 7 /* DTIMSYNC */
#define MAP_ISR_S2_HAL_DTIM 7 /* DTIM */
#define MAP_ISR_S2_HAL_TSFOOR 4 /* Rx TSF out of range */
#define MAP_ISR_S2_HAL_BBPANIC 6 /* Panic watchdog IRQ from BB */
HAL_BOOL
ar9300_get_pending_interrupts(
struct ath_hal *ah,
HAL_INT *masked,
HAL_INT_TYPE type,
u_int8_t msi,
HAL_BOOL nortc)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_BOOL ret_val = AH_TRUE;
u_int32_t isr = 0;
u_int32_t mask2 = 0;
u_int32_t sync_cause = 0;
u_int32_t async_cause;
u_int32_t msi_pend_addr_mask = 0;
u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT;
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
*masked = 0;
if (!nortc) {
if (HAL_INT_MSI == type) {
if (msi == HAL_MSIVEC_RXHP) {
OS_REG_WRITE(ah, AR_ISR, AR_ISR_HP_RXOK);
*masked = HAL_INT_RXHP;
goto end;
} else if (msi == HAL_MSIVEC_RXLP) {
OS_REG_WRITE(ah, AR_ISR,
(AR_ISR_LP_RXOK | AR_ISR_RXMINTR | AR_ISR_RXINTM));
*masked = HAL_INT_RXLP;
goto end;
} else if (msi == HAL_MSIVEC_TX) {
OS_REG_WRITE(ah, AR_ISR, AR_ISR_TXOK);
*masked = HAL_INT_TX;
goto end;
} else if (msi == HAL_MSIVEC_MISC) {
/*
* For the misc MSI event fall through and determine the cause.
*/
}
}
}
/* Make sure mac interrupt is pending in async interrupt cause register */
async_cause = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_CAUSE));
if (async_cause & AR_INTR_ASYNC_USED) {
/*
* RTC may not be on since it runs on a slow 32khz clock
* so check its status to be sure
*/
if (!nortc &&
(OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
AR_RTC_STATUS_ON)
{
isr = OS_REG_READ(ah, AR_ISR);
}
}
if (AR_SREV_POSEIDON(ah)) {
sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR;
}
else if (AR_SREV_WASP(ah)) {
sync_en_def = AR9340_INTR_SYNC_DEFAULT;
}
sync_cause =
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE)) &
(sync_en_def | AR_INTR_SYNC_MASK_GPIO);
if (!isr && !sync_cause && !async_cause) {
ret_val = AH_FALSE;
goto end;
}
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: isr=0x%x, sync_cause=0x%x, async_cause=0x%x\n",
__func__,
isr,
sync_cause,
async_cause);
if (isr) {
if (isr & AR_ISR_BCNMISC) {
u_int32_t isr2;
isr2 = OS_REG_READ(ah, AR_ISR_S2);
/* Translate ISR bits to HAL values */
mask2 |= ((isr2 & AR_ISR_S2_TIM) >> MAP_ISR_S2_HAL_TIM);
mask2 |= ((isr2 & AR_ISR_S2_DTIM) >> MAP_ISR_S2_HAL_DTIM);
mask2 |= ((isr2 & AR_ISR_S2_DTIMSYNC) >> MAP_ISR_S2_HAL_DTIMSYNC);
mask2 |= ((isr2 & AR_ISR_S2_CABEND) >> MAP_ISR_S2_HAL_CABEND);
mask2 |= ((isr2 & AR_ISR_S2_GTT) << MAP_ISR_S2_HAL_GTT);
mask2 |= ((isr2 & AR_ISR_S2_CST) << MAP_ISR_S2_HAL_CST);
mask2 |= ((isr2 & AR_ISR_S2_TSFOOR) >> MAP_ISR_S2_HAL_TSFOOR);
mask2 |= ((isr2 & AR_ISR_S2_BBPANIC) >> MAP_ISR_S2_HAL_BBPANIC);
if (!p_cap->halIsrRacSupport) {
/*
* EV61133 (missing interrupts due to ISR_RAC):
* If not using ISR_RAC, clear interrupts by writing to ISR_S2.
* This avoids a race condition where a new BCNMISC interrupt
* could come in between reading the ISR and clearing the
* interrupt via the primary ISR. We therefore clear the
* interrupt via the secondary, which avoids this race.
*/
OS_REG_WRITE(ah, AR_ISR_S2, isr2);
isr &= ~AR_ISR_BCNMISC;
}
}
/* Use AR_ISR_RAC only if chip supports it.
* See EV61133 (missing interrupts due to ISR_RAC)
*/
if (p_cap->halIsrRacSupport) {
isr = OS_REG_READ(ah, AR_ISR_RAC);
}
if (isr == 0xffffffff) {
*masked = 0;
ret_val = AH_FALSE;
goto end;
}
*masked = isr & HAL_INT_COMMON;
/*
* When interrupt mitigation is switched on, we fake a normal RX or TX
* interrupt when we received a mitigated interrupt. This way, the upper
* layer do not need to know about feature.
*/
if (ahp->ah_intr_mitigation_rx) {
/* Only Rx interrupt mitigation. No Tx intr. mitigation. */
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) {
*masked |= HAL_INT_RXLP;
}
}
if (ahp->ah_intr_mitigation_tx) {
if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM)) {
*masked |= HAL_INT_TX;
}
}
if (isr & (AR_ISR_LP_RXOK | AR_ISR_RXERR)) {
*masked |= HAL_INT_RXLP;
}
if (isr & AR_ISR_HP_RXOK) {
*masked |= HAL_INT_RXHP;
}
if (isr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL)) {
*masked |= HAL_INT_TX;
if (!p_cap->halIsrRacSupport) {
u_int32_t s0, s1;
/*
* EV61133 (missing interrupts due to ISR_RAC):
* If not using ISR_RAC, clear interrupts by writing to
* ISR_S0/S1.
* This avoids a race condition where a new interrupt
* could come in between reading the ISR and clearing the
* interrupt via the primary ISR. We therefore clear the
* interrupt via the secondary, which avoids this race.
*/
s0 = OS_REG_READ(ah, AR_ISR_S0);
OS_REG_WRITE(ah, AR_ISR_S0, s0);
s1 = OS_REG_READ(ah, AR_ISR_S1);
OS_REG_WRITE(ah, AR_ISR_S1, s1);
isr &= ~(AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL);
}
}
/*
* Do not treat receive overflows as fatal for owl.
*/
if (isr & AR_ISR_RXORN) {
#if __PKT_SERIOUS_ERRORS__
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: receive FIFO overrun interrupt\n", __func__);
#endif
}
#if 0
/* XXX Verify if this is fixed for Osprey */
if (!p_cap->halAutoSleepSupport) {
u_int32_t isr5 = OS_REG_READ(ah, AR_ISR_S5_S);
if (isr5 & AR_ISR_S5_TIM_TIMER) {
*masked |= HAL_INT_TIM_TIMER;
}
}
#endif
if (isr & AR_ISR_GENTMR) {
u_int32_t s5;
if (p_cap->halIsrRacSupport) {
/* Use secondary shadow registers if using ISR_RAC */
s5 = OS_REG_READ(ah, AR_ISR_S5_S);
} else {
s5 = OS_REG_READ(ah, AR_ISR_S5);
}
if (isr & AR_ISR_GENTMR) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: GENTIMER, ISR_RAC=0x%x ISR_S2_S=0x%x\n", __func__,
isr, s5);
ahp->ah_intr_gen_timer_trigger =
MS(s5, AR_ISR_S5_GENTIMER_TRIG);
ahp->ah_intr_gen_timer_thresh =
MS(s5, AR_ISR_S5_GENTIMER_THRESH);
if (ahp->ah_intr_gen_timer_trigger) {
*masked |= HAL_INT_GENTIMER;
}
}
if (!p_cap->halIsrRacSupport) {
/*
* EV61133 (missing interrupts due to ISR_RAC):
* If not using ISR_RAC, clear interrupts by writing to ISR_S5.
* This avoids a race condition where a new interrupt
* could come in between reading the ISR and clearing the
* interrupt via the primary ISR. We therefore clear the
* interrupt via the secondary, which avoids this race.
*/
OS_REG_WRITE(ah, AR_ISR_S5, s5);
isr &= ~AR_ISR_GENTMR;
}
}
*masked |= mask2;
if (!p_cap->halIsrRacSupport) {
/*
* EV61133 (missing interrupts due to ISR_RAC):
* If not using ISR_RAC, clear the interrupts we've read by
* writing back ones in these locations to the primary ISR
* (except for interrupts that have a secondary isr register -
* see above).
*/
OS_REG_WRITE(ah, AR_ISR, isr);
/* Flush prior write */
(void) OS_REG_READ(ah, AR_ISR);
}
#ifdef AH_SUPPORT_AR9300
if (*masked & HAL_INT_BBPANIC) {
ar9300_handle_bb_panic(ah);
}
#endif
}
if (async_cause) {
if (nortc) {
OS_REG_WRITE(ah,
AR_HOSTIF_REG(ah, AR_INTR_ASYNC_CAUSE_CLR), async_cause);
/* Flush prior write */
(void) OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_CAUSE_CLR));
} else {
#ifdef ATH_GPIO_USE_ASYNC_CAUSE
if (async_cause & AR_INTR_ASYNC_CAUSE_GPIO) {
ahp->ah_gpio_cause = (async_cause & AR_INTR_ASYNC_CAUSE_GPIO) >>
AR_INTR_ASYNC_ENABLE_GPIO_S;
*masked |= HAL_INT_GPIO;
}
#endif
}
#if ATH_SUPPORT_MCI
if ((async_cause & AR_INTR_ASYNC_CAUSE_MCI) &&
p_cap->halMciSupport)
{
u_int32_t int_raw, int_rx_msg;
int_rx_msg = OS_REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
int_raw = OS_REG_READ(ah, AR_MCI_INTERRUPT_RAW);
if ((int_raw == 0xdeadbeef) || (int_rx_msg == 0xdeadbeef))
{
HALDEBUG(ah, HAL_DEBUG_BT_COEX,
"(MCI) Get 0xdeadbeef during MCI int processing"
"new int_raw=0x%08x, new rx_msg_raw=0x%08x, "
"int_raw=0x%08x, rx_msg_raw=0x%08x\n",
int_raw, int_rx_msg, ahp->ah_mci_int_raw,
ahp->ah_mci_int_rx_msg);
}
else {
if (ahp->ah_mci_int_raw || ahp->ah_mci_int_rx_msg) {
ahp->ah_mci_int_rx_msg |= int_rx_msg;
ahp->ah_mci_int_raw |= int_raw;
}
else {
ahp->ah_mci_int_rx_msg = int_rx_msg;
ahp->ah_mci_int_raw = int_raw;
}
*masked |= HAL_INT_MCI;
ahp->ah_mci_rx_status = OS_REG_READ(ah, AR_MCI_RX_STATUS);
if (int_rx_msg & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO) {
ahp->ah_mci_cont_status =
OS_REG_READ(ah, AR_MCI_CONT_STATUS);
}
OS_REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
int_rx_msg);
OS_REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, int_raw);
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s:AR_INTR_SYNC_MCI\n", __func__);
}
}
#endif
}
if (sync_cause) {
int host1_fatal, host1_perr, radm_cpl_timeout, local_timeout;
host1_fatal = AR_SREV_WASP(ah) ?
AR9340_INTR_SYNC_HOST1_FATAL : AR9300_INTR_SYNC_HOST1_FATAL;
host1_perr = AR_SREV_WASP(ah) ?
AR9340_INTR_SYNC_HOST1_PERR : AR9300_INTR_SYNC_HOST1_PERR;
radm_cpl_timeout = AR_SREV_WASP(ah) ?
0x0 : AR9300_INTR_SYNC_RADM_CPL_TIMEOUT;
local_timeout = AR_SREV_WASP(ah) ?
AR9340_INTR_SYNC_LOCAL_TIMEOUT : AR9300_INTR_SYNC_LOCAL_TIMEOUT;
if (sync_cause & host1_fatal) {
#if __PKT_SERIOUS_ERRORS__
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s: received PCI FATAL interrupt\n", __func__);
#endif
*masked |= HAL_INT_FATAL; /* Set FATAL INT flag here;*/
}
if (sync_cause & host1_perr) {
#if __PKT_SERIOUS_ERRORS__
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s: received PCI PERR interrupt\n", __func__);
#endif
}
if (sync_cause & radm_cpl_timeout) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
__func__);
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF);
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), 0);
*masked |= HAL_INT_FATAL;
}
if (sync_cause & local_timeout) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
__func__);
}
#ifndef ATH_GPIO_USE_ASYNC_CAUSE
if (sync_cause & AR_INTR_SYNC_MASK_GPIO) {
ahp->ah_gpio_cause = (sync_cause & AR_INTR_SYNC_MASK_GPIO) >>
AR_INTR_SYNC_ENABLE_GPIO_S;
*masked |= HAL_INT_GPIO;
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: AR_INTR_SYNC_GPIO\n", __func__);
}
#endif
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE_CLR), sync_cause);
/* Flush prior write */
(void) OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE_CLR));
}
end:
if (HAL_INT_MSI == type) {
/*
* WAR for Bug EV#75887
* In normal case, SW read HOST_INTF_PCIE_MSI (0x40A4) and write
* into ah_msi_reg. Then use value of ah_msi_reg to set bit#25
* when want to enable HW write the cfg_msi_pending.
* Sometimes, driver get MSI interrupt before read 0x40a4 and
* ah_msi_reg is initialization value (0x0).
* We don't know why "MSI interrupt earlier than driver read" now...
*/
if (!ahp->ah_msi_reg) {
ahp->ah_msi_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI));
}
if (AR_SREV_POSEIDON(ah)) {
msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
} else {
msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR;
}
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI),
((ahp->ah_msi_reg | AR_PCIE_MSI_ENABLE) & msi_pend_addr_mask));
}
return ret_val;
}
HAL_INT
ar9300_get_interrupts(struct ath_hal *ah)
{
return AH9300(ah)->ah_mask_reg;
}
/*
* Atomically enables NIC interrupts. Interrupts are passed in
* via the enumerated bitmask in ints.
*/
HAL_INT
ar9300_set_interrupts(struct ath_hal *ah, HAL_INT ints, HAL_BOOL nortc)
{
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t omask = ahp->ah_mask_reg;
u_int32_t mask, mask2, msi_mask = 0;
u_int32_t msi_pend_addr_mask = 0;
u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT;
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: 0x%x => 0x%x\n", __func__, omask, ints);
if (omask & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__);
if (ah->ah_config.ath_hal_enable_msi) {
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE), 0);
/* flush write to HW */
(void)OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE));
}
if (!nortc) {
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) OS_REG_READ(ah, AR_IER); /* flush write to HW */
}
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0);
/* flush write to HW */
(void) OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE));
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_ENABLE), 0);
/* flush write to HW */
(void) OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_ENABLE));
}
if (!nortc) {
/* reference count for global IER */
if (ints & HAL_INT_GLOBAL) {
#ifdef AH_DEBUG
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: Request HAL_INT_GLOBAL ENABLED\n", __func__);
#if 0
if (OS_ATOMIC_READ(&ahp->ah_ier_ref_count) == 0) {
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s: WARNING: ah_ier_ref_count is 0 "
"and attempting to enable IER\n",
__func__);
}
#endif
#endif
#if 0
if (OS_ATOMIC_READ(&ahp->ah_ier_ref_count) > 0) {
OS_ATOMIC_DEC(&ahp->ah_ier_ref_count);
}
#endif
} else {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: Request HAL_INT_GLOBAL DISABLED\n", __func__);
OS_ATOMIC_INC(&ahp->ah_ier_ref_count);
}
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: ah_ier_ref_count = %d\n", __func__, ahp->ah_ier_ref_count);
mask = ints & HAL_INT_COMMON;
mask2 = 0;
msi_mask = 0;
if (ints & HAL_INT_TX) {
if (ahp->ah_intr_mitigation_tx) {
mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
} else if (ahp->ah_tx_ok_interrupt_mask) {
mask |= AR_IMR_TXOK;
}
msi_mask |= AR_INTR_PRIO_TX;
if (ahp->ah_tx_err_interrupt_mask) {
mask |= AR_IMR_TXERR;
}
if (ahp->ah_tx_eol_interrupt_mask) {
mask |= AR_IMR_TXEOL;
}
}
if (ints & HAL_INT_RX) {
mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
if (ahp->ah_intr_mitigation_rx) {
mask &= ~(AR_IMR_RXOK_LP);
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
} else {
mask |= AR_IMR_RXOK_LP;
}
msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP;
if (! p_cap->halAutoSleepSupport) {
mask |= AR_IMR_GENTMR;
}
}
if (ints & (HAL_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_TIM) {
mask2 |= AR_IMR_S2_TIM;
}
if (ints & HAL_INT_DTIM) {
mask2 |= AR_IMR_S2_DTIM;
}
if (ints & HAL_INT_DTIMSYNC) {
mask2 |= AR_IMR_S2_DTIMSYNC;
}
if (ints & HAL_INT_CABEND) {
mask2 |= (AR_IMR_S2_CABEND);
}
if (ints & HAL_INT_TSFOOR) {
mask2 |= AR_IMR_S2_TSFOOR;
}
}
if (ints & (HAL_INT_GTT | HAL_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_GTT) {
mask2 |= AR_IMR_S2_GTT;
}
if (ints & HAL_INT_CST) {
mask2 |= AR_IMR_S2_CST;
}
}
if (ints & HAL_INT_BBPANIC) {
/* EV92527 - MAC secondary interrupt must enable AR_IMR_BCNMISC */
mask |= AR_IMR_BCNMISC;
mask2 |= AR_IMR_S2_BBPANIC;
}
if (ints & HAL_INT_GENTIMER) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: enabling gen timer\n", __func__);
mask |= AR_IMR_GENTMR;
}
/* Write the new IMR and store off our SW copy. */
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask);
OS_REG_WRITE(ah, AR_IMR, mask);
ahp->ah_mask2Reg &= ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST |
AR_IMR_S2_BBPANIC);
ahp->ah_mask2Reg |= mask2;
OS_REG_WRITE(ah, AR_IMR_S2, ahp->ah_mask2Reg );
ahp->ah_mask_reg = ints;
if (! p_cap->halAutoSleepSupport) {
if (ints & HAL_INT_TIM_TIMER) {
OS_REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
else {
OS_REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
}
}
/* Re-enable interrupts if they were enabled before. */
#if HAL_INTR_REFCOUNT_DISABLE
if ((ints & HAL_INT_GLOBAL)) {
#else
if ((ints & HAL_INT_GLOBAL) && (OS_ATOMIC_READ(&ahp->ah_ier_ref_count) == 0)) {
#endif
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__);
if (!nortc) {
OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
}
mask = AR_INTR_MAC_IRQ;
#ifdef ATH_GPIO_USE_ASYNC_CAUSE
if (ints & HAL_INT_GPIO) {
if (ahp->ah_gpio_mask) {
mask |= SM(ahp->ah_gpio_mask, AR_INTR_ASYNC_MASK_GPIO);
}
}
#endif
#if ATH_SUPPORT_MCI
if (ints & HAL_INT_MCI) {
mask |= AR_INTR_ASYNC_MASK_MCI;
}
#endif
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_ENABLE), mask);
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_MASK), mask);
if (ah->ah_config.ath_hal_enable_msi) {
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE),
msi_mask);
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_MASK),
msi_mask);
if (AR_SREV_POSEIDON(ah)) {
msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
} else {
msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR;
}
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI),
((ahp->ah_msi_reg | AR_PCIE_MSI_ENABLE) & msi_pend_addr_mask));
}
/*
* debug - enable to see all synchronous interrupts status
* Enable synchronous GPIO interrupts as well, since some async
* GPIO interrupts don't wake the chip up.
*/
mask = 0;
#ifndef ATH_GPIO_USE_ASYNC_CAUSE
if (ints & HAL_INT_GPIO) {
mask |= SM(ahp->ah_gpio_mask, AR_INTR_SYNC_MASK_GPIO);
}
#endif
if (AR_SREV_POSEIDON(ah)) {
sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR;
}
else if (AR_SREV_WASP(ah)) {
sync_en_def = AR9340_INTR_SYNC_DEFAULT;
}
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE),
(sync_en_def | mask));
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK),
(sync_en_def | mask));
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"AR_IMR 0x%x IER 0x%x\n",
OS_REG_READ(ah, AR_IMR), OS_REG_READ(ah, AR_IER));
}
return omask;
}
void
ar9300_set_intr_mitigation_timer(
struct ath_hal* ah,
HAL_INT_MITIGATION reg,
u_int32_t value)
{
#ifdef AR5416_INT_MITIGATION
switch (reg) {
case HAL_INT_THRESHOLD:
OS_REG_WRITE(ah, AR_MIRT, 0);
break;
case HAL_INT_RX_LASTPKT:
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, value);
break;
case HAL_INT_RX_FIRSTPKT:
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, value);
break;
case HAL_INT_TX_LASTPKT:
OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, value);
break;
case HAL_INT_TX_FIRSTPKT:
OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, value);
break;
default:
break;
}
#endif
}
u_int32_t
ar9300_get_intr_mitigation_timer(struct ath_hal* ah, HAL_INT_MITIGATION reg)
{
u_int32_t val = 0;
#ifdef AR5416_INT_MITIGATION
switch (reg) {
case HAL_INT_THRESHOLD:
val = OS_REG_READ(ah, AR_MIRT);
break;
case HAL_INT_RX_LASTPKT:
val = OS_REG_READ(ah, AR_RIMT) & 0xFFFF;
break;
case HAL_INT_RX_FIRSTPKT:
val = OS_REG_READ(ah, AR_RIMT) >> 16;
break;
case HAL_INT_TX_LASTPKT:
val = OS_REG_READ(ah, AR_TIMT) & 0xFFFF;
break;
case HAL_INT_TX_FIRSTPKT:
val = OS_REG_READ(ah, AR_TIMT) >> 16;
break;
default:
break;
}
#endif
return val;
}