freebsd-nq/sys/dev/mpr/mpr_sas.c
Scott Long c11c484f15 Rework the debug print API. Event printing no longer gets special handling.
All of the printing from the tables file now has wrappers so that the
handling is cleaner and it's possible to print something out (say, during
development) without having to fight the global debug flags. This re-org
will also make it easier to have the tables be compiled out at build time
if desired.

Other than fixing some minor bugs, there are no user-visible changes from
this change

Sponsored by:	Netflix, Inc.
Differential Revision:	D9238
2017-01-19 21:47:50 +00:00

3566 lines
104 KiB
C

/*-
* Copyright (c) 2009 Yahoo! Inc.
* Copyright (c) 2011-2015 LSI Corp.
* Copyright (c) 2013-2016 Avago Technologies
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Communications core for Avago Technologies (LSI) MPT3 */
/* TODO Move headers to mprvar */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/queue.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/sbuf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <machine/stdarg.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#if __FreeBSD_version >= 900026
#include <cam/scsi/smp_all.h>
#endif
#include <dev/mpr/mpi/mpi2_type.h>
#include <dev/mpr/mpi/mpi2.h>
#include <dev/mpr/mpi/mpi2_ioc.h>
#include <dev/mpr/mpi/mpi2_sas.h>
#include <dev/mpr/mpi/mpi2_cnfg.h>
#include <dev/mpr/mpi/mpi2_init.h>
#include <dev/mpr/mpi/mpi2_tool.h>
#include <dev/mpr/mpr_ioctl.h>
#include <dev/mpr/mprvar.h>
#include <dev/mpr/mpr_table.h>
#include <dev/mpr/mpr_sas.h>
#define MPRSAS_DISCOVERY_TIMEOUT 20
#define MPRSAS_MAX_DISCOVERY_TIMEOUTS 10 /* 200 seconds */
/*
* static array to check SCSI OpCode for EEDP protection bits
*/
#define PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
#define PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
#define PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
static uint8_t op_code_prot[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory");
static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *);
static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *);
static void mprsas_action(struct cam_sim *sim, union ccb *ccb);
static void mprsas_poll(struct cam_sim *sim);
static void mprsas_scsiio_timeout(void *data);
static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm);
static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *);
static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *);
static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *);
static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *);
static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
struct mpr_command *cm);
static void mprsas_async(void *callback_arg, uint32_t code,
struct cam_path *path, void *arg);
#if (__FreeBSD_version < 901503) || \
((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
static void mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path,
struct ccb_getdev *cgd);
static void mprsas_read_cap_done(struct cam_periph *periph,
union ccb *done_ccb);
#endif
static int mprsas_send_portenable(struct mpr_softc *sc);
static void mprsas_portenable_complete(struct mpr_softc *sc,
struct mpr_command *cm);
#if __FreeBSD_version >= 900026
static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm);
static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb,
uint64_t sasaddr);
static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb);
#endif //FreeBSD_version >= 900026
struct mprsas_target *
mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start,
uint16_t handle)
{
struct mprsas_target *target;
int i;
for (i = start; i < sassc->maxtargets; i++) {
target = &sassc->targets[i];
if (target->handle == handle)
return (target);
}
return (NULL);
}
/* we need to freeze the simq during attach and diag reset, to avoid failing
* commands before device handles have been found by discovery. Since
* discovery involves reading config pages and possibly sending commands,
* discovery actions may continue even after we receive the end of discovery
* event, so refcount discovery actions instead of assuming we can unfreeze
* the simq when we get the event.
*/
void
mprsas_startup_increment(struct mprsas_softc *sassc)
{
MPR_FUNCTRACE(sassc->sc);
if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
if (sassc->startup_refcount++ == 0) {
/* just starting, freeze the simq */
mpr_dprint(sassc->sc, MPR_INIT,
"%s freezing simq\n", __func__);
#if (__FreeBSD_version >= 1000039) || \
((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
xpt_hold_boot();
#endif
xpt_freeze_simq(sassc->sim, 1);
}
mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
sassc->startup_refcount);
}
}
void
mprsas_release_simq_reinit(struct mprsas_softc *sassc)
{
if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
xpt_release_simq(sassc->sim, 1);
mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n");
}
}
void
mprsas_startup_decrement(struct mprsas_softc *sassc)
{
MPR_FUNCTRACE(sassc->sc);
if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
if (--sassc->startup_refcount == 0) {
/* finished all discovery-related actions, release
* the simq and rescan for the latest topology.
*/
mpr_dprint(sassc->sc, MPR_INIT,
"%s releasing simq\n", __func__);
sassc->flags &= ~MPRSAS_IN_STARTUP;
xpt_release_simq(sassc->sim, 1);
#if (__FreeBSD_version >= 1000039) || \
((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
xpt_release_boot();
#else
mprsas_rescan_target(sassc->sc, NULL);
#endif
}
mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
sassc->startup_refcount);
}
}
/* The firmware requires us to stop sending commands when we're doing task
* management, so refcount the TMs and keep the simq frozen when any are in
* use.
*/
struct mpr_command *
mprsas_alloc_tm(struct mpr_softc *sc)
{
struct mpr_command *tm;
MPR_FUNCTRACE(sc);
tm = mpr_alloc_high_priority_command(sc);
return tm;
}
void
mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm)
{
int target_id = 0xFFFFFFFF;
MPR_FUNCTRACE(sc);
if (tm == NULL)
return;
/*
* For TM's the devq is frozen for the device. Unfreeze it here and
* free the resources used for freezing the devq. Must clear the
* INRESET flag as well or scsi I/O will not work.
*/
if (tm->cm_targ != NULL) {
tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET;
target_id = tm->cm_targ->tid;
}
if (tm->cm_ccb) {
mpr_dprint(sc, MPR_INFO, "Unfreezing devq for target ID %d\n",
target_id);
xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
xpt_free_path(tm->cm_ccb->ccb_h.path);
xpt_free_ccb(tm->cm_ccb);
}
mpr_free_high_priority_command(sc, tm);
}
void
mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ)
{
struct mprsas_softc *sassc = sc->sassc;
path_id_t pathid;
target_id_t targetid;
union ccb *ccb;
MPR_FUNCTRACE(sc);
pathid = cam_sim_path(sassc->sim);
if (targ == NULL)
targetid = CAM_TARGET_WILDCARD;
else
targetid = targ - sassc->targets;
/*
* Allocate a CCB and schedule a rescan.
*/
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n");
xpt_free_ccb(ccb);
return;
}
if (targetid == CAM_TARGET_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_BUS;
else
ccb->ccb_h.func_code = XPT_SCAN_TGT;
mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid);
xpt_rescan(ccb);
}
static void
mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...)
{
struct sbuf sb;
va_list ap;
char str[192];
char path_str[64];
if (cm == NULL)
return;
/* No need to be in here if debugging isn't enabled */
if ((cm->cm_sc->mpr_debug & level) == 0)
return;
sbuf_new(&sb, str, sizeof(str), 0);
va_start(ap, fmt);
if (cm->cm_ccb != NULL) {
xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
sizeof(path_str));
sbuf_cat(&sb, path_str);
if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
scsi_command_string(&cm->cm_ccb->csio, &sb);
sbuf_printf(&sb, "length %d ",
cm->cm_ccb->csio.dxfer_len);
}
} else {
sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
cam_sim_name(cm->cm_sc->sassc->sim),
cam_sim_unit(cm->cm_sc->sassc->sim),
cam_sim_bus(cm->cm_sc->sassc->sim),
cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
cm->cm_lun);
}
sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
sbuf_vprintf(&sb, fmt, ap);
sbuf_finish(&sb);
mpr_print_field(cm->cm_sc, "%s", sbuf_data(&sb));
va_end(ap);
}
static void
mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
struct mprsas_target *targ;
uint16_t handle;
MPR_FUNCTRACE(sc);
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
targ = tm->cm_targ;
if (reply == NULL) {
/* XXX retry the remove after the diag reset completes? */
mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
"0x%04x\n", __func__, handle);
mprsas_free_tm(sc, tm);
return;
}
if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
MPI2_IOCSTATUS_SUCCESS) {
mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
"device 0x%x\n", le16toh(reply->IOCStatus), handle);
}
mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
le32toh(reply->TerminationCount));
mpr_free_reply(sc, tm->cm_reply_data);
tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */
mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n",
targ->tid, handle);
/*
* Don't clear target if remove fails because things will get confusing.
* Leave the devname and sasaddr intact so that we know to avoid reusing
* this target id if possible, and so we can assign the same target id
* to this device if it comes back in the future.
*/
if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SUCCESS) {
targ = tm->cm_targ;
targ->handle = 0x0;
targ->encl_handle = 0x0;
targ->encl_level_valid = 0x0;
targ->encl_level = 0x0;
targ->connector_name[0] = ' ';
targ->connector_name[1] = ' ';
targ->connector_name[2] = ' ';
targ->connector_name[3] = ' ';
targ->encl_slot = 0x0;
targ->exp_dev_handle = 0x0;
targ->phy_num = 0x0;
targ->linkrate = 0x0;
targ->devinfo = 0x0;
targ->flags = 0x0;
targ->scsi_req_desc_type = 0;
}
mprsas_free_tm(sc, tm);
}
/*
* No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
* Otherwise Volume Delete is same as Bare Drive Removal.
*/
void
mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mpr_softc *sc;
struct mpr_command *cm;
struct mprsas_target *targ = NULL;
MPR_FUNCTRACE(sassc->sc);
sc = sassc->sc;
targ = mprsas_find_target_by_handle(sassc, 0, handle);
if (targ == NULL) {
/* FIXME: what is the action? */
/* We don't know about this device? */
mpr_dprint(sc, MPR_ERROR,
"%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
return;
}
targ->flags |= MPRSAS_TARGET_INREMOVAL;
cm = mprsas_alloc_tm(sc);
if (cm == NULL) {
mpr_dprint(sc, MPR_ERROR,
"%s: command alloc failure\n", __func__);
return;
}
mprsas_rescan_target(sc, targ);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
req->DevHandle = targ->handle;
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
/* SAS Hard Link Reset / SATA Link Reset */
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
cm->cm_targ = targ;
cm->cm_data = NULL;
cm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
cm->cm_complete = mprsas_remove_volume;
cm->cm_complete_data = (void *)(uintptr_t)handle;
mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
__func__, targ->tid);
mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
mpr_map_command(sc, cm);
}
/*
* The MPT3 firmware performs debounce on the link to avoid transient link
* errors and false removals. When it does decide that link has been lost
* and a device needs to go away, it expects that the host will perform a
* target reset and then an op remove. The reset has the side-effect of
* aborting any outstanding requests for the device, which is required for
* the op-remove to succeed. It's not clear if the host should check for
* the device coming back alive after the reset.
*/
void
mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mpr_softc *sc;
struct mpr_command *cm;
struct mprsas_target *targ = NULL;
MPR_FUNCTRACE(sassc->sc);
sc = sassc->sc;
targ = mprsas_find_target_by_handle(sassc, 0, handle);
if (targ == NULL) {
/* FIXME: what is the action? */
/* We don't know about this device? */
mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n",
__func__, handle);
return;
}
targ->flags |= MPRSAS_TARGET_INREMOVAL;
cm = mprsas_alloc_tm(sc);
if (cm == NULL) {
mpr_dprint(sc, MPR_ERROR, "%s: command alloc failure\n",
__func__);
return;
}
mprsas_rescan_target(sc, targ);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
memset(req, 0, sizeof(*req));
req->DevHandle = htole16(targ->handle);
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
/* SAS Hard Link Reset / SATA Link Reset */
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
cm->cm_targ = targ;
cm->cm_data = NULL;
cm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
cm->cm_complete = mprsas_remove_device;
cm->cm_complete_data = (void *)(uintptr_t)handle;
mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
__func__, targ->tid);
mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
mpr_map_command(sc, cm);
}
static void
mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
struct mprsas_target *targ;
struct mpr_command *next_cm;
uint16_t handle;
MPR_FUNCTRACE(sc);
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
targ = tm->cm_targ;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of "
"handle %#04x! This should not happen!\n", __func__,
tm->cm_flags, handle);
}
if (reply == NULL) {
/* XXX retry the remove after the diag reset completes? */
mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
"0x%04x\n", __func__, handle);
mprsas_free_tm(sc, tm);
return;
}
if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
MPI2_IOCSTATUS_SUCCESS) {
mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
"device 0x%x\n", le16toh(reply->IOCStatus), handle);
}
mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
le32toh(reply->TerminationCount));
mpr_free_reply(sc, tm->cm_reply_data);
tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */
/* Reuse the existing command */
req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
memset(req, 0, sizeof(*req));
req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
req->DevHandle = htole16(handle);
tm->cm_data = NULL;
tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
tm->cm_complete = mprsas_remove_complete;
tm->cm_complete_data = (void *)(uintptr_t)handle;
mpr_map_command(sc, tm);
mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n",
targ->tid, handle);
if (targ->encl_level_valid) {
mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
"connector name (%4s)\n", targ->encl_level, targ->encl_slot,
targ->connector_name);
}
TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) {
union ccb *ccb;
mpr_dprint(sc, MPR_XINFO, "Completing missed command %p\n", tm);
ccb = tm->cm_complete_data;
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
mprsas_scsiio_complete(sc, tm);
}
}
static void
mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
uint16_t handle;
struct mprsas_target *targ;
struct mprsas_lun *lun;
MPR_FUNCTRACE(sc);
reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of "
"handle %#04x! This should not happen!\n", __func__,
tm->cm_flags, handle);
mprsas_free_tm(sc, tm);
return;
}
if (reply == NULL) {
/* most likely a chip reset */
mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device "
"0x%04x\n", __func__, handle);
mprsas_free_tm(sc, tm);
return;
}
mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n",
__func__, handle, le16toh(reply->IOCStatus));
/*
* Don't clear target if remove fails because things will get confusing.
* Leave the devname and sasaddr intact so that we know to avoid reusing
* this target id if possible, and so we can assign the same target id
* to this device if it comes back in the future.
*/
if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SUCCESS) {
targ = tm->cm_targ;
targ->handle = 0x0;
targ->encl_handle = 0x0;
targ->encl_level_valid = 0x0;
targ->encl_level = 0x0;
targ->connector_name[0] = ' ';
targ->connector_name[1] = ' ';
targ->connector_name[2] = ' ';
targ->connector_name[3] = ' ';
targ->encl_slot = 0x0;
targ->exp_dev_handle = 0x0;
targ->phy_num = 0x0;
targ->linkrate = 0x0;
targ->devinfo = 0x0;
targ->flags = 0x0;
targ->scsi_req_desc_type = 0;
while (!SLIST_EMPTY(&targ->luns)) {
lun = SLIST_FIRST(&targ->luns);
SLIST_REMOVE_HEAD(&targ->luns, lun_link);
free(lun, M_MPR);
}
}
mprsas_free_tm(sc, tm);
}
static int
mprsas_register_events(struct mpr_softc *sc)
{
uint8_t events[16];
bzero(events, 16);
setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
setbit(events, MPI2_EVENT_SAS_DISCOVERY);
setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
setbit(events, MPI2_EVENT_IR_VOLUME);
setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
setbit(events, MPI2_EVENT_TEMP_THRESHOLD);
setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
mpr_register_events(sc, events, mprsas_evt_handler, NULL,
&sc->sassc->mprsas_eh);
return (0);
}
int
mpr_attach_sas(struct mpr_softc *sc)
{
struct mprsas_softc *sassc;
cam_status status;
int unit, error = 0;
MPR_FUNCTRACE(sc);
sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO);
if (!sassc) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
/*
* XXX MaxTargets could change during a reinit. Since we don't
* resize the targets[] array during such an event, cache the value
* of MaxTargets here so that we don't get into trouble later. This
* should move into the reinit logic.
*/
sassc->maxtargets = sc->facts->MaxTargets;
sassc->targets = malloc(sizeof(struct mprsas_target) *
sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO);
if (!sassc->targets) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
free(sassc, M_MPR);
return (ENOMEM);
}
sc->sassc = sassc;
sassc->sc = sc;
if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) {
mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIMQ\n");
error = ENOMEM;
goto out;
}
unit = device_get_unit(sc->mpr_dev);
sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc,
unit, &sc->mpr_mtx, sc->num_reqs, sc->num_reqs, sassc->devq);
if (sassc->sim == NULL) {
mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIM\n");
error = EINVAL;
goto out;
}
TAILQ_INIT(&sassc->ev_queue);
/* Initialize taskqueue for Event Handling */
TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc);
sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO,
taskqueue_thread_enqueue, &sassc->ev_tq);
taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
device_get_nameunit(sc->mpr_dev));
mpr_lock(sc);
/*
* XXX There should be a bus for every port on the adapter, but since
* we're just going to fake the topology for now, we'll pretend that
* everything is just a target on a single bus.
*/
if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) {
mpr_dprint(sc, MPR_ERROR, "Error %d registering SCSI bus\n",
error);
mpr_unlock(sc);
goto out;
}
/*
* Assume that discovery events will start right away.
*
* Hold off boot until discovery is complete.
*/
sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY;
sc->sassc->startup_refcount = 0;
mprsas_startup_increment(sassc);
callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
/*
* Register for async events so we can determine the EEDP
* capabilities of devices.
*/
status = xpt_create_path(&sassc->path, /*periph*/NULL,
cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP) {
mpr_printf(sc, "Error %#x creating sim path\n", status);
sassc->path = NULL;
} else {
int event;
#if (__FreeBSD_version >= 1000006) || \
((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
event = AC_ADVINFO_CHANGED | AC_FOUND_DEVICE;
#else
event = AC_FOUND_DEVICE;
#endif
/*
* Prior to the CAM locking improvements, we can't call
* xpt_register_async() with a particular path specified.
*
* If a path isn't specified, xpt_register_async() will
* generate a wildcard path and acquire the XPT lock while
* it calls xpt_action() to execute the XPT_SASYNC_CB CCB.
* It will then drop the XPT lock once that is done.
*
* If a path is specified for xpt_register_async(), it will
* not acquire and drop the XPT lock around the call to
* xpt_action(). xpt_action() asserts that the caller
* holds the SIM lock, so the SIM lock has to be held when
* calling xpt_register_async() when the path is specified.
*
* But xpt_register_async calls xpt_for_all_devices(),
* which calls xptbustraverse(), which will acquire each
* SIM lock. When it traverses our particular bus, it will
* necessarily acquire the SIM lock, which will lead to a
* recursive lock acquisition.
*
* The CAM locking changes fix this problem by acquiring
* the XPT topology lock around bus traversal in
* xptbustraverse(), so the caller can hold the SIM lock
* and it does not cause a recursive lock acquisition.
*
* These __FreeBSD_version values are approximate, especially
* for stable/10, which is two months later than the actual
* change.
*/
#if (__FreeBSD_version < 1000703) || \
((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
mpr_unlock(sc);
status = xpt_register_async(event, mprsas_async, sc,
NULL);
mpr_lock(sc);
#else
status = xpt_register_async(event, mprsas_async, sc,
sassc->path);
#endif
if (status != CAM_REQ_CMP) {
mpr_dprint(sc, MPR_ERROR,
"Error %#x registering async handler for "
"AC_ADVINFO_CHANGED events\n", status);
xpt_free_path(sassc->path);
sassc->path = NULL;
}
}
if (status != CAM_REQ_CMP) {
/*
* EEDP use is the exception, not the rule.
* Warn the user, but do not fail to attach.
*/
mpr_printf(sc, "EEDP capabilities disabled.\n");
}
mpr_unlock(sc);
mprsas_register_events(sc);
out:
if (error)
mpr_detach_sas(sc);
return (error);
}
int
mpr_detach_sas(struct mpr_softc *sc)
{
struct mprsas_softc *sassc;
struct mprsas_lun *lun, *lun_tmp;
struct mprsas_target *targ;
int i;
MPR_FUNCTRACE(sc);
if (sc->sassc == NULL)
return (0);
sassc = sc->sassc;
mpr_deregister_events(sc, sassc->mprsas_eh);
/*
* Drain and free the event handling taskqueue with the lock
* unheld so that any parallel processing tasks drain properly
* without deadlocking.
*/
if (sassc->ev_tq != NULL)
taskqueue_free(sassc->ev_tq);
/* Make sure CAM doesn't wedge if we had to bail out early. */
mpr_lock(sc);
/* Deregister our async handler */
if (sassc->path != NULL) {
xpt_register_async(0, mprsas_async, sc, sassc->path);
xpt_free_path(sassc->path);
sassc->path = NULL;
}
if (sassc->flags & MPRSAS_IN_STARTUP)
xpt_release_simq(sassc->sim, 1);
if (sassc->sim != NULL) {
xpt_bus_deregister(cam_sim_path(sassc->sim));
cam_sim_free(sassc->sim, FALSE);
}
mpr_unlock(sc);
if (sassc->devq != NULL)
cam_simq_free(sassc->devq);
for (i = 0; i < sassc->maxtargets; i++) {
targ = &sassc->targets[i];
SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
free(lun, M_MPR);
}
}
free(sassc->targets, M_MPR);
free(sassc, M_MPR);
sc->sassc = NULL;
return (0);
}
void
mprsas_discovery_end(struct mprsas_softc *sassc)
{
struct mpr_softc *sc = sassc->sc;
MPR_FUNCTRACE(sc);
if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING)
callout_stop(&sassc->discovery_callout);
}
static void
mprsas_action(struct cam_sim *sim, union ccb *ccb)
{
struct mprsas_softc *sassc;
sassc = cam_sim_softc(sim);
MPR_FUNCTRACE(sassc->sc);
mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n",
ccb->ccb_h.func_code);
mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
struct mpr_softc *sc = sassc->sc;
uint8_t sges_per_frame;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->target_sprt = 0;
#if (__FreeBSD_version >= 1000039) || \
((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
#else
cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
#endif
cpi->hba_eng_cnt = 0;
cpi->max_target = sassc->maxtargets - 1;
cpi->max_lun = 255;
cpi->initiator_id = sassc->maxtargets - 1;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "Avago Tech", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
/*
* XXXSLM-I think this needs to change based on config page or
* something instead of hardcoded to 150000.
*/
cpi->base_transfer_speed = 150000;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC;
/*
* Max IO Size is Page Size * the following:
* ((SGEs per frame - 1 for chain element) *
* Max Chain Depth) + 1 for no chain needed in last frame
*
* If user suggests a Max IO size to use, use the smaller of the
* user's value and the calculated value as long as the user's
* value is larger than 0. The user's value is in pages.
*/
sges_per_frame = (sc->chain_frame_size /
sizeof(MPI2_IEEE_SGE_SIMPLE64)) - 1;
cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1;
cpi->maxio *= PAGE_SIZE;
if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE <
cpi->maxio))
cpi->maxio = sc->max_io_pages * PAGE_SIZE;
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
struct ccb_trans_settings_sas *sas;
struct ccb_trans_settings_scsi *scsi;
struct mprsas_target *targ;
cts = &ccb->cts;
sas = &cts->xport_specific.sas;
scsi = &cts->proto_specific.scsi;
KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n",
cts->ccb_h.target_id));
targ = &sassc->targets[cts->ccb_h.target_id];
if (targ->handle == 0x0) {
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
break;
}
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
sas->valid = CTS_SAS_VALID_SPEED;
switch (targ->linkrate) {
case 0x08:
sas->bitrate = 150000;
break;
case 0x09:
sas->bitrate = 300000;
break;
case 0x0a:
sas->bitrate = 600000;
break;
case 0x0b:
sas->bitrate = 1200000;
break;
default:
sas->valid = 0;
}
cts->protocol = PROTO_SCSI;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
break;
}
case XPT_CALC_GEOMETRY:
cam_calc_geometry(&ccb->ccg, /*extended*/1);
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
break;
case XPT_RESET_DEV:
mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action "
"XPT_RESET_DEV\n");
mprsas_action_resetdev(sassc, ccb);
return;
case XPT_RESET_BUS:
case XPT_ABORT:
case XPT_TERM_IO:
mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success "
"for abort or reset\n");
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
break;
case XPT_SCSI_IO:
mprsas_action_scsiio(sassc, ccb);
return;
#if __FreeBSD_version >= 900026
case XPT_SMP_IO:
mprsas_action_smpio(sassc, ccb);
return;
#endif
default:
mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
break;
}
xpt_done(ccb);
}
static void
mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code,
target_id_t target_id, lun_id_t lun_id)
{
path_id_t path_id = cam_sim_path(sc->sassc->sim);
struct cam_path *path;
mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__,
ac_code, target_id, (uintmax_t)lun_id);
if (xpt_create_path(&path, NULL,
path_id, target_id, lun_id) != CAM_REQ_CMP) {
mpr_dprint(sc, MPR_ERROR, "unable to create path for reset "
"notification\n");
return;
}
xpt_async(ac_code, path, NULL);
xpt_free_path(path);
}
static void
mprsas_complete_all_commands(struct mpr_softc *sc)
{
struct mpr_command *cm;
int i;
int completed;
MPR_FUNCTRACE(sc);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
/* complete all commands with a NULL reply */
for (i = 1; i < sc->num_reqs; i++) {
cm = &sc->commands[i];
cm->cm_reply = NULL;
completed = 0;
if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
if (cm->cm_complete != NULL) {
mprsas_log_command(cm, MPR_RECOVERY,
"completing cm %p state %x ccb %p for diag reset\n",
cm, cm->cm_state, cm->cm_ccb);
cm->cm_complete(sc, cm);
completed = 1;
}
if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
mprsas_log_command(cm, MPR_RECOVERY,
"waking up cm %p state %x ccb %p for diag reset\n",
cm, cm->cm_state, cm->cm_ccb);
wakeup(cm);
completed = 1;
}
if (cm->cm_sc->io_cmds_active != 0) {
cm->cm_sc->io_cmds_active--;
} else {
mpr_dprint(cm->cm_sc, MPR_INFO, "Warning: "
"io_cmds_active is out of sync - resynching to "
"0\n");
}
if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) {
/* this should never happen, but if it does, log */
mprsas_log_command(cm, MPR_RECOVERY,
"cm %p state %x flags 0x%x ccb %p during diag "
"reset\n", cm, cm->cm_state, cm->cm_flags,
cm->cm_ccb);
}
}
}
void
mprsas_handle_reinit(struct mpr_softc *sc)
{
int i;
/* Go back into startup mode and freeze the simq, so that CAM
* doesn't send any commands until after we've rediscovered all
* targets and found the proper device handles for them.
*
* After the reset, portenable will trigger discovery, and after all
* discovery-related activities have finished, the simq will be
* released.
*/
mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__);
sc->sassc->flags |= MPRSAS_IN_STARTUP;
sc->sassc->flags |= MPRSAS_IN_DISCOVERY;
mprsas_startup_increment(sc->sassc);
/* notify CAM of a bus reset */
mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
/* complete and cleanup after all outstanding commands */
mprsas_complete_all_commands(sc);
mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n",
__func__, sc->sassc->startup_refcount);
/* zero all the target handles, since they may change after the
* reset, and we have to rediscover all the targets and use the new
* handles.
*/
for (i = 0; i < sc->sassc->maxtargets; i++) {
if (sc->sassc->targets[i].outstanding != 0)
mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n",
i, sc->sassc->targets[i].outstanding);
sc->sassc->targets[i].handle = 0x0;
sc->sassc->targets[i].exp_dev_handle = 0x0;
sc->sassc->targets[i].outstanding = 0;
sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET;
}
}
static void
mprsas_tm_timeout(void *data)
{
struct mpr_command *tm = data;
struct mpr_softc *sc = tm->cm_sc;
mtx_assert(&sc->mpr_mtx, MA_OWNED);
mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed "
"out\n", tm);
mpr_reinit(sc);
}
static void
mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
unsigned int cm_count = 0;
struct mpr_command *cm;
struct mprsas_target *targ;
callout_stop(&tm->cm_callout);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
targ = tm->cm_targ;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for LUN reset! "
"This should not happen!\n", __func__, tm->cm_flags);
mprsas_free_tm(sc, tm);
return;
}
if (reply == NULL) {
mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm "
"%p\n", tm);
if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
/* this completion was due to a reset, just cleanup */
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
else {
/* we should have gotten a reply. */
mpr_reinit(sc);
}
return;
}
mprsas_log_command(tm, MPR_RECOVERY,
"logical unit reset status 0x%x code 0x%x count %u\n",
le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
le32toh(reply->TerminationCount));
/* See if there are any outstanding commands for this LUN.
* This could be made more efficient by using a per-LU data
* structure of some sort.
*/
TAILQ_FOREACH(cm, &targ->commands, cm_link) {
if (cm->cm_lun == tm->cm_lun)
cm_count++;
}
if (cm_count == 0) {
mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
"logical unit %u finished recovery after reset\n",
tm->cm_lun, tm);
mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
tm->cm_lun);
/* we've finished recovery for this logical unit. check and
* see if some other logical unit has a timedout command
* that needs to be processed.
*/
cm = TAILQ_FIRST(&targ->timedout_commands);
if (cm) {
mprsas_send_abort(sc, tm, cm);
}
else {
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
}
else {
/* if we still have commands for this LUN, the reset
* effectively failed, regardless of the status reported.
* Escalate to a target reset.
*/
mprsas_log_command(tm, MPR_RECOVERY,
"logical unit reset complete for tm %p, but still have %u "
"command(s)\n", tm, cm_count);
mprsas_send_reset(sc, tm,
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
}
}
static void
mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mprsas_target *targ;
callout_stop(&tm->cm_callout);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
targ = tm->cm_targ;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target "
"reset! This should not happen!\n", __func__, tm->cm_flags);
mprsas_free_tm(sc, tm);
return;
}
if (reply == NULL) {
mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm "
"%p\n", tm);
if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
/* this completion was due to a reset, just cleanup */
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
else {
/* we should have gotten a reply. */
mpr_reinit(sc);
}
return;
}
mprsas_log_command(tm, MPR_RECOVERY,
"target reset status 0x%x code 0x%x count %u\n",
le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
le32toh(reply->TerminationCount));
if (targ->outstanding == 0) {
/* we've finished recovery for this target and all
* of its logical units.
*/
mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
"recovery finished after target reset\n");
mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
CAM_LUN_WILDCARD);
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
else {
/* after a target reset, if this target still has
* outstanding commands, the reset effectively failed,
* regardless of the status reported. escalate.
*/
mprsas_log_command(tm, MPR_RECOVERY,
"target reset complete for tm %p, but still have %u "
"command(s)\n", tm, targ->outstanding);
mpr_reinit(sc);
}
}
#define MPR_RESET_TIMEOUT 30
int
mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mprsas_target *target;
int err;
target = tm->cm_targ;
if (target->handle == 0) {
mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id "
"%d\n", __func__, target->tid);
return -1;
}
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
req->DevHandle = htole16(target->handle);
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = type;
if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
/* XXX Need to handle invalid LUNs */
MPR_SET_LUN(req->LUN, tm->cm_lun);
tm->cm_targ->logical_unit_resets++;
mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
"sending logical unit reset\n");
tm->cm_complete = mprsas_logical_unit_reset_complete;
mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun);
}
else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
/*
* Target reset method =
* SAS Hard Link Reset / SATA Link Reset
*/
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
tm->cm_targ->target_resets++;
mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
"sending target reset\n");
tm->cm_complete = mprsas_target_reset_complete;
mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
}
else {
mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type);
return -1;
}
mpr_dprint(sc, MPR_INFO, "to target %u handle 0x%04x\n", target->tid,
target->handle);
if (target->encl_level_valid) {
mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
"connector name (%4s)\n", target->encl_level,
target->encl_slot, target->connector_name);
}
tm->cm_data = NULL;
tm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
tm->cm_complete_data = (void *)tm;
callout_reset(&tm->cm_callout, MPR_RESET_TIMEOUT * hz,
mprsas_tm_timeout, tm);
err = mpr_map_command(sc, tm);
if (err)
mprsas_log_command(tm, MPR_RECOVERY,
"error %d sending reset type %u\n", err, type);
return err;
}
static void
mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm)
{
struct mpr_command *cm;
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mprsas_target *targ;
callout_stop(&tm->cm_callout);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
targ = tm->cm_targ;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mprsas_log_command(tm, MPR_RECOVERY,
"cm_flags = %#x for abort %p TaskMID %u!\n",
tm->cm_flags, tm, le16toh(req->TaskMID));
mprsas_free_tm(sc, tm);
return;
}
if (reply == NULL) {
mprsas_log_command(tm, MPR_RECOVERY,
"NULL abort reply for tm %p TaskMID %u\n",
tm, le16toh(req->TaskMID));
if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
/* this completion was due to a reset, just cleanup */
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
else {
/* we should have gotten a reply. */
mpr_reinit(sc);
}
return;
}
mprsas_log_command(tm, MPR_RECOVERY,
"abort TaskMID %u status 0x%x code 0x%x count %u\n",
le16toh(req->TaskMID),
le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
le32toh(reply->TerminationCount));
cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
if (cm == NULL) {
/* if there are no more timedout commands, we're done with
* error recovery for this target.
*/
mprsas_log_command(tm, MPR_RECOVERY,
"finished recovery after aborting TaskMID %u\n",
le16toh(req->TaskMID));
targ->tm = NULL;
mprsas_free_tm(sc, tm);
}
else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
/* abort success, but we have more timedout commands to abort */
mprsas_log_command(tm, MPR_RECOVERY,
"continuing recovery after aborting TaskMID %u\n",
le16toh(req->TaskMID));
mprsas_send_abort(sc, tm, cm);
}
else {
/* we didn't get a command completion, so the abort
* failed as far as we're concerned. escalate.
*/
mprsas_log_command(tm, MPR_RECOVERY,
"abort failed for TaskMID %u tm %p\n",
le16toh(req->TaskMID), tm);
mprsas_send_reset(sc, tm,
MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
}
}
#define MPR_ABORT_TIMEOUT 5
static int
mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
struct mpr_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mprsas_target *targ;
int err;
targ = cm->cm_targ;
if (targ->handle == 0) {
mpr_dprint(sc, MPR_ERROR,"%s null devhandle for target_id %d\n",
__func__, cm->cm_ccb->ccb_h.target_id);
return -1;
}
mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
"Aborting command %p\n", cm);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
req->DevHandle = htole16(targ->handle);
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
/* XXX Need to handle invalid LUNs */
MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
req->TaskMID = htole16(cm->cm_desc.Default.SMID);
tm->cm_data = NULL;
tm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
tm->cm_complete = mprsas_abort_complete;
tm->cm_complete_data = (void *)tm;
tm->cm_targ = cm->cm_targ;
tm->cm_lun = cm->cm_lun;
callout_reset(&tm->cm_callout, MPR_ABORT_TIMEOUT * hz,
mprsas_tm_timeout, tm);
targ->aborts++;
mpr_dprint(sc, MPR_INFO, "Sending reset from %s for target ID %d\n",
__func__, targ->tid);
mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
err = mpr_map_command(sc, tm);
if (err)
mprsas_log_command(tm, MPR_RECOVERY,
"error %d sending abort for cm %p SMID %u\n",
err, cm, req->TaskMID);
return err;
}
static void
mprsas_scsiio_timeout(void *data)
{
struct mpr_softc *sc;
struct mpr_command *cm;
struct mprsas_target *targ;
cm = (struct mpr_command *)data;
sc = cm->cm_sc;
MPR_FUNCTRACE(sc);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
mpr_dprint(sc, MPR_XINFO, "Timeout checking cm %p\n", cm);
/*
* Run the interrupt handler to make sure it's not pending. This
* isn't perfect because the command could have already completed
* and been re-used, though this is unlikely.
*/
mpr_intr_locked(sc);
if (cm->cm_state == MPR_CM_STATE_FREE) {
mprsas_log_command(cm, MPR_XINFO,
"SCSI command %p almost timed out\n", cm);
return;
}
if (cm->cm_ccb == NULL) {
mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n");
return;
}
targ = cm->cm_targ;
targ->timeouts++;
mprsas_log_command(cm, MPR_ERROR, "command timeout cm %p ccb %p target "
"%u, handle(0x%04x)\n", cm, cm->cm_ccb, targ->tid, targ->handle);
if (targ->encl_level_valid) {
mpr_dprint(sc, MPR_ERROR, "At enclosure level %d, slot %d, "
"connector name (%4s)\n", targ->encl_level, targ->encl_slot,
targ->connector_name);
}
/* XXX first, check the firmware state, to see if it's still
* operational. if not, do a diag reset.
*/
mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
cm->cm_state = MPR_CM_STATE_TIMEDOUT;
TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
if (targ->tm != NULL) {
/* target already in recovery, just queue up another
* timedout command to be processed later.
*/
mpr_dprint(sc, MPR_RECOVERY, "queued timedout cm %p for "
"processing by tm %p\n", cm, targ->tm);
}
else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) {
mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n",
cm, targ->tm);
/* start recovery by aborting the first timedout command */
mprsas_send_abort(sc, targ->tm, cm);
}
else {
/* XXX queue this target up for recovery once a TM becomes
* available. The firmware only has a limited number of
* HighPriority credits for the high priority requests used
* for task management, and we ran out.
*
* Isilon: don't worry about this for now, since we have
* more credits than disks in an enclosure, and limit
* ourselves to one TM per target for recovery.
*/
mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p failed to "
"allocate a tm\n", cm);
}
}
static void
mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb)
{
MPI2_SCSI_IO_REQUEST *req;
struct ccb_scsiio *csio;
struct mpr_softc *sc;
struct mprsas_target *targ;
struct mprsas_lun *lun;
struct mpr_command *cm;
uint8_t i, lba_byte, *ref_tag_addr;
uint16_t eedp_flags;
uint32_t mpi_control;
sc = sassc->sc;
MPR_FUNCTRACE(sc);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
csio = &ccb->csio;
KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
("Target %d out of bounds in XPT_SCSI_IO\n",
csio->ccb_h.target_id));
targ = &sassc->targets[csio->ccb_h.target_id];
mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
if (targ->handle == 0x0) {
mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n",
__func__, csio->ccb_h.target_id);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) {
mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO "
"supported %u\n", __func__, csio->ccb_h.target_id);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
/*
* Sometimes, it is possible to get a command that is not "In
* Progress" and was actually aborted by the upper layer. Check for
* this here and complete the command without error.
*/
if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for "
"target %u\n", __func__, csio->ccb_h.target_id);
xpt_done(ccb);
return;
}
/*
* If devinfo is 0 this will be a volume. In that case don't tell CAM
* that the volume has timed out. We want volumes to be enumerated
* until they are deleted/removed, not just failed.
*/
if (targ->flags & MPRSAS_TARGET_INREMOVAL) {
if (targ->devinfo == 0)
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
else
mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
xpt_done(ccb);
return;
}
if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) {
mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
xpt_done(ccb);
return;
}
/*
* If target has a reset in progress, freeze the devq and return. The
* devq will be released when the TM reset is finished.
*/
if (targ->flags & MPRSAS_TARGET_INRESET) {
ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN;
mpr_dprint(sc, MPR_INFO, "%s: Freezing devq for target ID %d\n",
__func__, targ->tid);
xpt_freeze_devq(ccb->ccb_h.path, 1);
xpt_done(ccb);
return;
}
cm = mpr_alloc_command(sc);
if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) {
if (cm != NULL) {
mpr_free_command(sc, cm);
}
if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
xpt_freeze_simq(sassc->sim, 1);
sassc->flags |= MPRSAS_QUEUE_FROZEN;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
bzero(req, sizeof(*req));
req->DevHandle = htole16(targ->handle);
req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
req->MsgFlags = 0;
req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
req->SenseBufferLength = MPR_SENSE_LEN;
req->SGLFlags = 0;
req->ChainOffset = 0;
req->SGLOffset0 = 24; /* 32bit word offset to the SGL */
req->SGLOffset1= 0;
req->SGLOffset2= 0;
req->SGLOffset3= 0;
req->SkipCount = 0;
req->DataLength = htole32(csio->dxfer_len);
req->BidirectionalDataLength = 0;
req->IoFlags = htole16(csio->cdb_len);
req->EEDPFlags = 0;
/* Note: BiDirectional transfers are not supported */
switch (csio->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
mpi_control = MPI2_SCSIIO_CONTROL_READ;
cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
break;
case CAM_DIR_OUT:
mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
break;
case CAM_DIR_NONE:
default:
mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
break;
}
if (csio->cdb_len == 32)
mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
/*
* It looks like the hardware doesn't require an explicit tag
* number for each transaction. SAM Task Management not supported
* at the moment.
*/
switch (csio->tag_action) {
case MSG_HEAD_OF_Q_TAG:
mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ORDERED_Q_TAG:
mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
break;
case MSG_ACA_TASK:
mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
break;
case CAM_TAG_ACTION_NONE:
case MSG_SIMPLE_Q_TAG:
default:
mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
break;
}
mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
req->Control = htole32(mpi_control);
if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
mpr_free_command(sc, cm);
mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID);
xpt_done(ccb);
return;
}
if (csio->ccb_h.flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
else {
KASSERT(csio->cdb_len <= IOCDBLEN,
("cdb_len %d is greater than IOCDBLEN but CAM_CDB_POINTER is not set",
csio->cdb_len));
bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
}
req->IoFlags = htole16(csio->cdb_len);
/*
* Check if EEDP is supported and enabled. If it is then check if the
* SCSI opcode could be using EEDP. If so, make sure the LUN exists and
* is formatted for EEDP support. If all of this is true, set CDB up
* for EEDP transfer.
*/
eedp_flags = op_code_prot[req->CDB.CDB32[0]];
if (sc->eedp_enabled && eedp_flags) {
SLIST_FOREACH(lun, &targ->luns, lun_link) {
if (lun->lun_id == csio->ccb_h.target_lun) {
break;
}
}
if ((lun != NULL) && (lun->eedp_formatted)) {
req->EEDPBlockSize = htole16(lun->eedp_block_size);
eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
req->EEDPFlags = htole16(eedp_flags);
/*
* If CDB less than 32, fill in Primary Ref Tag with
* low 4 bytes of LBA. If CDB is 32, tag stuff is
* already there. Also, set protection bit. FreeBSD
* currently does not support CDBs bigger than 16, but
* the code doesn't hurt, and will be here for the
* future.
*/
if (csio->cdb_len != 32) {
lba_byte = (csio->cdb_len == 16) ? 6 : 2;
ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
PrimaryReferenceTag;
for (i = 0; i < 4; i++) {
*ref_tag_addr =
req->CDB.CDB32[lba_byte + i];
ref_tag_addr++;
}
req->CDB.EEDP32.PrimaryReferenceTag =
htole32(req->
CDB.EEDP32.PrimaryReferenceTag);
req->CDB.EEDP32.PrimaryApplicationTagMask =
0xFFFF;
req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) |
0x20;
} else {
eedp_flags |=
MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
req->EEDPFlags = htole16(eedp_flags);
req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
0x1F) | 0x20;
}
}
}
cm->cm_length = csio->dxfer_len;
if (cm->cm_length != 0) {
cm->cm_data = ccb;
cm->cm_flags |= MPR_CM_FLAGS_USE_CCB;
} else {
cm->cm_data = NULL;
}
cm->cm_sge = &req->SGL;
cm->cm_sglsize = (32 - 24) * 4;
cm->cm_complete = mprsas_scsiio_complete;
cm->cm_complete_data = ccb;
cm->cm_targ = targ;
cm->cm_lun = csio->ccb_h.target_lun;
cm->cm_ccb = ccb;
/*
* If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0)
* and set descriptor type.
*/
if (targ->scsi_req_desc_type ==
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH;
cm->cm_desc.FastPathSCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
cm->cm_desc.FastPathSCSIIO.DevHandle = htole16(targ->handle);
} else {
cm->cm_desc.SCSIIO.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
}
#if __FreeBSD_version >= 1000029
callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
mprsas_scsiio_timeout, cm, 0);
#else //__FreeBSD_version < 1000029
callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000,
mprsas_scsiio_timeout, cm);
#endif //__FreeBSD_version >= 1000029
targ->issued++;
targ->outstanding++;
TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
__func__, cm, ccb, targ->outstanding);
mpr_map_command(sc, cm);
return;
}
static void
mpr_response_code(struct mpr_softc *sc, u8 response_code)
{
char *desc;
switch (response_code) {
case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
desc = "task management request completed";
break;
case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
desc = "invalid frame";
break;
case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
desc = "task management request not supported";
break;
case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
desc = "task management request failed";
break;
case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
desc = "task management request succeeded";
break;
case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
desc = "invalid lun";
break;
case 0xA:
desc = "overlapped tag attempted";
break;
case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
desc = "task queued, however not sent to target";
break;
default:
desc = "unknown";
break;
}
mpr_dprint(sc, MPR_XINFO, "response_code(0x%01x): %s\n", response_code,
desc);
}
/**
* mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request
*/
static void
mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio,
Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ)
{
u32 response_info;
u8 *response_bytes;
u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
u8 scsi_state = mpi_reply->SCSIState;
u8 scsi_status = mpi_reply->SCSIStatus;
char *desc_ioc_state = NULL;
char *desc_scsi_status = NULL;
char *desc_scsi_state = sc->tmp_string;
u32 log_info = le32toh(mpi_reply->IOCLogInfo);
if (log_info == 0x31170000)
return;
switch (ioc_status) {
case MPI2_IOCSTATUS_SUCCESS:
desc_ioc_state = "success";
break;
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc_ioc_state = "invalid function";
break;
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
desc_ioc_state = "scsi recovered error";
break;
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
desc_ioc_state = "scsi invalid dev handle";
break;
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
desc_ioc_state = "scsi device not there";
break;
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
desc_ioc_state = "scsi data overrun";
break;
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
desc_ioc_state = "scsi data underrun";
break;
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
desc_ioc_state = "scsi io data error";
break;
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
desc_ioc_state = "scsi protocol error";
break;
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
desc_ioc_state = "scsi task terminated";
break;
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
desc_ioc_state = "scsi residual mismatch";
break;
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
desc_ioc_state = "scsi task mgmt failed";
break;
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
desc_ioc_state = "scsi ioc terminated";
break;
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
desc_ioc_state = "scsi ext terminated";
break;
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
desc_ioc_state = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
desc_ioc_state = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
desc_ioc_state = "eedp app tag error";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
desc_ioc_state = "insufficient power";
break;
default:
desc_ioc_state = "unknown";
break;
}
switch (scsi_status) {
case MPI2_SCSI_STATUS_GOOD:
desc_scsi_status = "good";
break;
case MPI2_SCSI_STATUS_CHECK_CONDITION:
desc_scsi_status = "check condition";
break;
case MPI2_SCSI_STATUS_CONDITION_MET:
desc_scsi_status = "condition met";
break;
case MPI2_SCSI_STATUS_BUSY:
desc_scsi_status = "busy";
break;
case MPI2_SCSI_STATUS_INTERMEDIATE:
desc_scsi_status = "intermediate";
break;
case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET:
desc_scsi_status = "intermediate condmet";
break;
case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
desc_scsi_status = "reservation conflict";
break;
case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
desc_scsi_status = "command terminated";
break;
case MPI2_SCSI_STATUS_TASK_SET_FULL:
desc_scsi_status = "task set full";
break;
case MPI2_SCSI_STATUS_ACA_ACTIVE:
desc_scsi_status = "aca active";
break;
case MPI2_SCSI_STATUS_TASK_ABORTED:
desc_scsi_status = "task aborted";
break;
default:
desc_scsi_status = "unknown";
break;
}
desc_scsi_state[0] = '\0';
if (!scsi_state)
desc_scsi_state = " ";
if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
strcat(desc_scsi_state, "response info ");
if (scsi_state & MPI2_SCSI_STATE_TERMINATED)
strcat(desc_scsi_state, "state terminated ");
if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS)
strcat(desc_scsi_state, "no status ");
if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
strcat(desc_scsi_state, "autosense failed ");
if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID)
strcat(desc_scsi_state, "autosense valid ");
mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
if (targ->encl_level_valid) {
mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, "
"connector name (%4s)\n", targ->encl_level, targ->encl_slot,
targ->connector_name);
}
/* We can add more detail about underflow data here
* TO-DO
* */
mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), "
"scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status,
desc_scsi_state, scsi_state);
if (sc->mpr_debug & MPR_XINFO &&
scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n");
scsi_sense_print(csio);
mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n");
}
if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
response_info = le32toh(mpi_reply->ResponseInfo);
response_bytes = (u8 *)&response_info;
mpr_response_code(sc,response_bytes[0]);
}
}
static void
mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm)
{
MPI2_SCSI_IO_REPLY *rep;
union ccb *ccb;
struct ccb_scsiio *csio;
struct mprsas_softc *sassc;
struct scsi_vpd_supported_page_list *vpd_list = NULL;
u8 *TLR_bits, TLR_on;
int dir = 0, i;
u16 alloc_len;
struct mprsas_target *target;
target_id_t target_id;
MPR_FUNCTRACE(sc);
mpr_dprint(sc, MPR_TRACE,
"cm %p SMID %u ccb %p reply %p outstanding %u\n", cm,
cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
cm->cm_targ->outstanding);
callout_stop(&cm->cm_callout);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
sassc = sc->sassc;
ccb = cm->cm_complete_data;
csio = &ccb->csio;
target_id = csio->ccb_h.target_id;
rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
/*
* XXX KDM if the chain allocation fails, does it matter if we do
* the sync and unload here? It is simpler to do it in every case,
* assuming it doesn't cause problems.
*/
if (cm->cm_data != NULL) {
if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
dir = BUS_DMASYNC_POSTREAD;
else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
dir = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
}
cm->cm_targ->completed++;
cm->cm_targ->outstanding--;
TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) {
TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
if (cm->cm_reply != NULL)
mprsas_log_command(cm, MPR_RECOVERY,
"completed timedout cm %p ccb %p during recovery "
"ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb,
le16toh(rep->IOCStatus), rep->SCSIStatus,
rep->SCSIState, le32toh(rep->TransferCount));
else
mprsas_log_command(cm, MPR_RECOVERY,
"completed timedout cm %p ccb %p during recovery\n",
cm, cm->cm_ccb);
} else if (cm->cm_targ->tm != NULL) {
if (cm->cm_reply != NULL)
mprsas_log_command(cm, MPR_RECOVERY,
"completed cm %p ccb %p during recovery "
"ioc %x scsi %x state %x xfer %u\n",
cm, cm->cm_ccb, le16toh(rep->IOCStatus),
rep->SCSIStatus, rep->SCSIState,
le32toh(rep->TransferCount));
else
mprsas_log_command(cm, MPR_RECOVERY,
"completed cm %p ccb %p during recovery\n",
cm, cm->cm_ccb);
} else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
mprsas_log_command(cm, MPR_RECOVERY,
"reset completed cm %p ccb %p\n", cm, cm->cm_ccb);
}
if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
/*
* We ran into an error after we tried to map the command,
* so we're getting a callback without queueing the command
* to the hardware. So we set the status here, and it will
* be retained below. We'll go through the "fast path",
* because there can be no reply when we haven't actually
* gone out to the hardware.
*/
mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
/*
* Currently the only error included in the mask is
* MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of
* chain frames. We need to freeze the queue until we get
* a command that completed without this error, which will
* hopefully have some chain frames attached that we can
* use. If we wanted to get smarter about it, we would
* only unfreeze the queue in this condition when we're
* sure that we're getting some chain frames back. That's
* probably unnecessary.
*/
if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
xpt_freeze_simq(sassc->sim, 1);
sassc->flags |= MPRSAS_QUEUE_FROZEN;
mpr_dprint(sc, MPR_INFO, "Error sending command, "
"freezing SIM queue\n");
}
}
/*
* If this is a Start Stop Unit command and it was issued by the driver
* during shutdown, decrement the refcount to account for all of the
* commands that were sent. All SSU commands should be completed before
* shutdown completes, meaning SSU_refcount will be 0 after SSU_started
* is TRUE.
*/
if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) {
mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n");
sc->SSU_refcount--;
}
/* Take the fast path to completion */
if (cm->cm_reply == NULL) {
if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0)
mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
else {
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
csio->scsi_status = SCSI_STATUS_OK;
}
if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
mpr_dprint(sc, MPR_XINFO,
"Unfreezing SIM queue\n");
}
}
/*
* There are two scenarios where the status won't be
* CAM_REQ_CMP. The first is if MPR_CM_FLAGS_ERROR_MASK is
* set, the second is in the MPR_FLAGS_DIAGRESET above.
*/
if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
/*
* Freeze the dev queue so that commands are
* executed in the correct order after error
* recovery.
*/
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
mpr_free_command(sc, cm);
xpt_done(ccb);
return;
}
mprsas_log_command(cm, MPR_XINFO,
"ioc %x scsi %x state %x xfer %u\n",
le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
le32toh(rep->TransferCount));
switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
csio->resid = cm->cm_length - le32toh(rep->TransferCount);
/* FALLTHROUGH */
case MPI2_IOCSTATUS_SUCCESS:
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
mprsas_log_command(cm, MPR_XINFO, "recovered error\n");
/* Completion failed at the transport level. */
if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
MPI2_SCSI_STATE_TERMINATED)) {
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
break;
}
/* In a modern packetized environment, an autosense failure
* implies that there's not much else that can be done to
* recover the command.
*/
if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
break;
}
/*
* CAM doesn't care about SAS Response Info data, but if this is
* the state check if TLR should be done. If not, clear the
* TLR_bits for the target.
*/
if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE)
== MPR_SCSI_RI_INVALID_FRAME)) {
sc->mapping_table[target_id].TLR_bits =
(u8)MPI2_SCSIIO_CONTROL_NO_TLR;
}
/*
* Intentionally override the normal SCSI status reporting
* for these two cases. These are likely to happen in a
* multi-initiator environment, and we want to make sure that
* CAM retries these commands rather than fail them.
*/
if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
(rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
break;
}
/* Handle normal status and sense */
csio->scsi_status = rep->SCSIStatus;
if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
else
mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
int sense_len, returned_sense_len;
returned_sense_len = min(le32toh(rep->SenseCount),
sizeof(struct scsi_sense_data));
if (returned_sense_len < csio->sense_len)
csio->sense_resid = csio->sense_len -
returned_sense_len;
else
csio->sense_resid = 0;
sense_len = min(returned_sense_len,
csio->sense_len - csio->sense_resid);
bzero(&csio->sense_data, sizeof(csio->sense_data));
bcopy(cm->cm_sense, &csio->sense_data, sense_len);
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
}
/*
* Check if this is an INQUIRY command. If it's a VPD inquiry,
* and it's page code 0 (Supported Page List), and there is
* inquiry data, and this is for a sequential access device, and
* the device is an SSP target, and TLR is supported by the
* controller, turn the TLR_bits value ON if page 0x90 is
* supported.
*/
if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
(csio->cdb_io.cdb_bytes[1] & SI_EVPD) &&
(csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) &&
((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
(csio->data_ptr != NULL) &&
((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
(sc->control_TLR) &&
(sc->mapping_table[target_id].device_info &
MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
vpd_list = (struct scsi_vpd_supported_page_list *)
csio->data_ptr;
TLR_bits = &sc->mapping_table[target_id].TLR_bits;
*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) +
csio->cdb_io.cdb_bytes[4];
alloc_len -= csio->resid;
for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
if (vpd_list->list[i] == 0x90) {
*TLR_bits = TLR_on;
break;
}
}
}
/*
* If this is a SATA direct-access end device, mark it so that
* a SCSI StartStopUnit command will be sent to it when the
* driver is being shutdown.
*/
if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
(csio->data_ptr != NULL) &&
((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
(sc->mapping_table[target_id].device_info &
MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
((sc->mapping_table[target_id].device_info &
MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
target = &sassc->targets[target_id];
target->supports_SSU = TRUE;
mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n",
target_id);
}
break;
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
/*
* If devinfo is 0 this will be a volume. In that case don't
* tell CAM that the volume is not there. We want volumes to
* be enumerated until they are deleted/removed, not just
* failed.
*/
if (cm->cm_targ->devinfo == 0)
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
else
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
break;
case MPI2_IOCSTATUS_INVALID_SGL:
mpr_print_scsiio_cmd(sc, cm);
mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
break;
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
/*
* This is one of the responses that comes back when an I/O
* has been aborted. If it is because of a timeout that we
* initiated, just set the status to CAM_CMD_TIMEOUT.
* Otherwise set it to CAM_REQ_ABORTED. The effect on the
* command is the same (it gets retried, subject to the
* retry counter), the only difference is what gets printed
* on the console.
*/
if (cm->cm_state == MPR_CM_STATE_TIMEDOUT)
mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
else
mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
break;
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
/* resid is ignored for this condition */
csio->resid = 0;
mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
break;
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
/*
* These can sometimes be transient transport-related
* errors, and sometimes persistent drive-related errors.
* We used to retry these without decrementing the retry
* count by returning CAM_REQUEUE_REQ. Unfortunately, if
* we hit a persistent drive problem that returns one of
* these error codes, we would retry indefinitely. So,
* return CAM_REQ_CMP_ERROR so that we decrement the retry
* count and avoid infinite retries. We're taking the
* potential risk of flagging false failures in the event
* of a topology-related error (e.g. a SAS expander problem
* causes a command addressed to a drive to fail), but
* avoiding getting into an infinite retry loop.
*/
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
mprsas_log_command(cm, MPR_INFO,
"terminated ioc %x loginfo %x scsi %x state %x xfer %u\n",
le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
rep->SCSIStatus, rep->SCSIState,
le32toh(rep->TransferCount));
break;
case MPI2_IOCSTATUS_INVALID_FUNCTION:
case MPI2_IOCSTATUS_INTERNAL_ERROR:
case MPI2_IOCSTATUS_INVALID_VPID:
case MPI2_IOCSTATUS_INVALID_FIELD:
case MPI2_IOCSTATUS_INVALID_STATE:
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
default:
mprsas_log_command(cm, MPR_XINFO,
"completed ioc %x loginfo %x scsi %x state %x xfer %u\n",
le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
rep->SCSIStatus, rep->SCSIState,
le32toh(rep->TransferCount));
csio->resid = cm->cm_length;
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
break;
}
mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ);
if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
mpr_dprint(sc, MPR_XINFO, "Command completed, unfreezing SIM "
"queue\n");
}
if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
mpr_free_command(sc, cm);
xpt_done(ccb);
}
#if __FreeBSD_version >= 900026
static void
mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm)
{
MPI2_SMP_PASSTHROUGH_REPLY *rpl;
MPI2_SMP_PASSTHROUGH_REQUEST *req;
uint64_t sasaddr;
union ccb *ccb;
ccb = cm->cm_complete_data;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and SMP
* commands require two S/G elements only. That should be handled
* in the standard request size.
*/
if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP "
"request!\n", __func__, cm->cm_flags);
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
goto bailout;
}
rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
if (rpl == NULL) {
mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__);
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
goto bailout;
}
req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
sasaddr = le32toh(req->SASAddress.Low);
sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
MPI2_IOCSTATUS_SUCCESS ||
rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
__func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
goto bailout;
}
mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx "
"completed successfully\n", __func__, (uintmax_t)sasaddr);
if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
else
mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
bailout:
/*
* We sync in both directions because we had DMAs in the S/G list
* in both directions.
*/
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
mpr_free_command(sc, cm);
xpt_done(ccb);
}
static void
mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
{
struct mpr_command *cm;
uint8_t *request, *response;
MPI2_SMP_PASSTHROUGH_REQUEST *req;
struct mpr_softc *sc;
struct sglist *sg;
int error;
sc = sassc->sc;
sg = NULL;
error = 0;
#if (__FreeBSD_version >= 1000028) || \
((__FreeBSD_version >= 902001) && (__FreeBSD_version < 1000000))
switch (ccb->ccb_h.flags & CAM_DATA_MASK) {
case CAM_DATA_PADDR:
case CAM_DATA_SG_PADDR:
/*
* XXX We don't yet support physical addresses here.
*/
mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
"supported\n", __func__);
mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
return;
case CAM_DATA_SG:
/*
* The chip does not support more than one buffer for the
* request or response.
*/
if ((ccb->smpio.smp_request_sglist_cnt > 1)
|| (ccb->smpio.smp_response_sglist_cnt > 1)) {
mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
"response buffer segments not supported for SMP\n",
__func__);
mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
return;
}
/*
* The CAM_SCATTER_VALID flag was originally implemented
* for the XPT_SCSI_IO CCB, which only has one data pointer.
* We have two. So, just take that flag to mean that we
* might have S/G lists, and look at the S/G segment count
* to figure out whether that is the case for each individual
* buffer.
*/
if (ccb->smpio.smp_request_sglist_cnt != 0) {
bus_dma_segment_t *req_sg;
req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
} else
request = ccb->smpio.smp_request;
if (ccb->smpio.smp_response_sglist_cnt != 0) {
bus_dma_segment_t *rsp_sg;
rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
} else
response = ccb->smpio.smp_response;
break;
case CAM_DATA_VADDR:
request = ccb->smpio.smp_request;
response = ccb->smpio.smp_response;
break;
default:
mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
return;
}
#else /* __FreeBSD_version < 1000028 */
/*
* XXX We don't yet support physical addresses here.
*/
if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) {
mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
"supported\n", __func__);
mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
return;
}
/*
* If the user wants to send an S/G list, check to make sure they
* have single buffers.
*/
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
/*
* The chip does not support more than one buffer for the
* request or response.
*/
if ((ccb->smpio.smp_request_sglist_cnt > 1)
|| (ccb->smpio.smp_response_sglist_cnt > 1)) {
mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
"response buffer segments not supported for SMP\n",
__func__);
mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
xpt_done(ccb);
return;
}
/*
* The CAM_SCATTER_VALID flag was originally implemented
* for the XPT_SCSI_IO CCB, which only has one data pointer.
* We have two. So, just take that flag to mean that we
* might have S/G lists, and look at the S/G segment count
* to figure out whether that is the case for each individual
* buffer.
*/
if (ccb->smpio.smp_request_sglist_cnt != 0) {
bus_dma_segment_t *req_sg;
req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
} else
request = ccb->smpio.smp_request;
if (ccb->smpio.smp_response_sglist_cnt != 0) {
bus_dma_segment_t *rsp_sg;
rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
} else
response = ccb->smpio.smp_response;
} else {
request = ccb->smpio.smp_request;
response = ccb->smpio.smp_response;
}
#endif /* __FreeBSD_version < 1000028 */
cm = mpr_alloc_command(sc);
if (cm == NULL) {
mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n",
__func__);
mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
xpt_done(ccb);
return;
}
req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
bzero(req, sizeof(*req));
req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
/* Allow the chip to use any route to this SAS address. */
req->PhysicalPort = 0xff;
req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
req->SGLFlags =
MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address "
"%#jx\n", __func__, (uintmax_t)sasaddr);
mpr_init_sge(cm, req, &req->SGL);
/*
* Set up a uio to pass into mpr_map_command(). This allows us to
* do one map command, and one busdma call in there.
*/
cm->cm_uio.uio_iov = cm->cm_iovec;
cm->cm_uio.uio_iovcnt = 2;
cm->cm_uio.uio_segflg = UIO_SYSSPACE;
/*
* The read/write flag isn't used by busdma, but set it just in
* case. This isn't exactly accurate, either, since we're going in
* both directions.
*/
cm->cm_uio.uio_rw = UIO_WRITE;
cm->cm_iovec[0].iov_base = request;
cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
cm->cm_iovec[1].iov_base = response;
cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
cm->cm_iovec[1].iov_len;
/*
* Trigger a warning message in mpr_data_cb() for the user if we
* wind up exceeding two S/G segments. The chip expects one
* segment for the request and another for the response.
*/
cm->cm_max_segs = 2;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete = mprsas_smpio_complete;
cm->cm_complete_data = ccb;
/*
* Tell the mapping code that we're using a uio, and that this is
* an SMP passthrough request. There is a little special-case
* logic there (in mpr_data_cb()) to handle the bidirectional
* transfer.
*/
cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS |
MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT;
/* The chip data format is little endian. */
req->SASAddress.High = htole32(sasaddr >> 32);
req->SASAddress.Low = htole32(sasaddr);
/*
* XXX Note that we don't have a timeout/abort mechanism here.
* From the manual, it looks like task management requests only
* work for SCSI IO and SATA passthrough requests. We may need to
* have a mechanism to retry requests in the event of a chip reset
* at least. Hopefully the chip will insure that any errors short
* of that are relayed back to the driver.
*/
error = mpr_map_command(sc, cm);
if ((error != 0) && (error != EINPROGRESS)) {
mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from "
"mpr_map_command()\n", __func__, error);
goto bailout_error;
}
return;
bailout_error:
mpr_free_command(sc, cm);
mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
xpt_done(ccb);
return;
}
static void
mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb)
{
struct mpr_softc *sc;
struct mprsas_target *targ;
uint64_t sasaddr = 0;
sc = sassc->sc;
/*
* Make sure the target exists.
*/
KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
targ = &sassc->targets[ccb->ccb_h.target_id];
if (targ->handle == 0x0) {
mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n",
__func__, ccb->ccb_h.target_id);
mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
xpt_done(ccb);
return;
}
/*
* If this device has an embedded SMP target, we'll talk to it
* directly.
* figure out what the expander's address is.
*/
if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
sasaddr = targ->sasaddr;
/*
* If we don't have a SAS address for the expander yet, try
* grabbing it from the page 0x83 information cached in the
* transport layer for this target. LSI expanders report the
* expander SAS address as the port-associated SAS address in
* Inquiry VPD page 0x83. Maxim expanders don't report it in page
* 0x83.
*
* XXX KDM disable this for now, but leave it commented out so that
* it is obvious that this is another possible way to get the SAS
* address.
*
* The parent handle method below is a little more reliable, and
* the other benefit is that it works for devices other than SES
* devices. So you can send a SMP request to a da(4) device and it
* will get routed to the expander that device is attached to.
* (Assuming the da(4) device doesn't contain an SMP target...)
*/
#if 0
if (sasaddr == 0)
sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
#endif
/*
* If we still don't have a SAS address for the expander, look for
* the parent device of this device, which is probably the expander.
*/
if (sasaddr == 0) {
#ifdef OLD_MPR_PROBE
struct mprsas_target *parent_target;
#endif
if (targ->parent_handle == 0x0) {
mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
"a valid parent handle!\n", __func__, targ->handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
#ifdef OLD_MPR_PROBE
parent_target = mprsas_find_target_by_handle(sassc, 0,
targ->parent_handle);
if (parent_target == NULL) {
mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
"a valid parent target!\n", __func__, targ->handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
if ((parent_target->devinfo &
MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
"does not have an SMP target!\n", __func__,
targ->handle, parent_target->handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
sasaddr = parent_target->sasaddr;
#else /* OLD_MPR_PROBE */
if ((targ->parent_devinfo &
MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
"does not have an SMP target!\n", __func__,
targ->handle, targ->parent_handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
if (targ->parent_sasaddr == 0x0) {
mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle "
"%d does not have a valid SAS address!\n", __func__,
targ->handle, targ->parent_handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
sasaddr = targ->parent_sasaddr;
#endif /* OLD_MPR_PROBE */
}
if (sasaddr == 0) {
mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for "
"handle %d\n", __func__, targ->handle);
mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
goto bailout;
}
mprsas_send_smpcmd(sassc, ccb, sasaddr);
return;
bailout:
xpt_done(ccb);
}
#endif //__FreeBSD_version >= 900026
static void
mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mpr_softc *sc;
struct mpr_command *tm;
struct mprsas_target *targ;
MPR_FUNCTRACE(sassc->sc);
mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of "
"bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id));
sc = sassc->sc;
tm = mpr_alloc_command(sc);
if (tm == NULL) {
mpr_dprint(sc, MPR_ERROR, "command alloc failure in "
"mprsas_action_resetdev\n");
mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
xpt_done(ccb);
return;
}
targ = &sassc->targets[ccb->ccb_h.target_id];
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
req->DevHandle = htole16(targ->handle);
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
/* SAS Hard Link Reset / SATA Link Reset */
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
tm->cm_data = NULL;
tm->cm_desc.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
tm->cm_complete = mprsas_resetdev_complete;
tm->cm_complete_data = ccb;
mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
__func__, targ->tid);
tm->cm_targ = targ;
targ->flags |= MPRSAS_TARGET_INRESET;
mpr_map_command(sc, tm);
}
static void
mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *resp;
union ccb *ccb;
MPR_FUNCTRACE(sc);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
ccb = tm->cm_complete_data;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of "
"handle %#04x! This should not happen!\n", __func__,
tm->cm_flags, req->DevHandle);
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
goto bailout;
}
mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n",
__func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
CAM_LUN_WILDCARD);
}
else
mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
bailout:
mprsas_free_tm(sc, tm);
xpt_done(ccb);
}
static void
mprsas_poll(struct cam_sim *sim)
{
struct mprsas_softc *sassc;
sassc = cam_sim_softc(sim);
if (sassc->sc->mpr_debug & MPR_TRACE) {
/* frequent debug messages during a panic just slow
* everything down too much.
*/
mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n",
__func__);
sassc->sc->mpr_debug &= ~MPR_TRACE;
}
mpr_intr_locked(sassc->sc);
}
static void
mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path,
void *arg)
{
struct mpr_softc *sc;
sc = (struct mpr_softc *)callback_arg;
switch (code) {
#if (__FreeBSD_version >= 1000006) || \
((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
case AC_ADVINFO_CHANGED: {
struct mprsas_target *target;
struct mprsas_softc *sassc;
struct scsi_read_capacity_data_long rcap_buf;
struct ccb_dev_advinfo cdai;
struct mprsas_lun *lun;
lun_id_t lunid;
int found_lun;
uintptr_t buftype;
buftype = (uintptr_t)arg;
found_lun = 0;
sassc = sc->sassc;
/*
* We're only interested in read capacity data changes.
*/
if (buftype != CDAI_TYPE_RCAPLONG)
break;
/*
* See the comment in mpr_attach_sas() for a detailed
* explanation. In these versions of FreeBSD we register
* for all events and filter out the events that don't
* apply to us.
*/
#if (__FreeBSD_version < 1000703) || \
((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
if (xpt_path_path_id(path) != sassc->sim->path_id)
break;
#endif
/*
* We should have a handle for this, but check to make sure.
*/
KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
("Target %d out of bounds in mprsas_async\n",
xpt_path_target_id(path)));
target = &sassc->targets[xpt_path_target_id(path)];
if (target->handle == 0)
break;
lunid = xpt_path_lun_id(path);
SLIST_FOREACH(lun, &target->luns, lun_link) {
if (lun->lun_id == lunid) {
found_lun = 1;
break;
}
}
if (found_lun == 0) {
lun = malloc(sizeof(struct mprsas_lun), M_MPR,
M_NOWAIT | M_ZERO);
if (lun == NULL) {
mpr_dprint(sc, MPR_ERROR, "Unable to alloc "
"LUN for EEDP support.\n");
break;
}
lun->lun_id = lunid;
SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
}
bzero(&rcap_buf, sizeof(rcap_buf));
xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
cdai.ccb_h.flags = CAM_DIR_IN;
cdai.buftype = CDAI_TYPE_RCAPLONG;
#if (__FreeBSD_version >= 1100061) || \
((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000))
cdai.flags = CDAI_FLAG_NONE;
#else
cdai.flags = 0;
#endif
cdai.bufsiz = sizeof(rcap_buf);
cdai.buf = (uint8_t *)&rcap_buf;
xpt_action((union ccb *)&cdai);
if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
&& (rcap_buf.prot & SRC16_PROT_EN)) {
lun->eedp_formatted = TRUE;
lun->eedp_block_size = scsi_4btoul(rcap_buf.length);
} else {
lun->eedp_formatted = FALSE;
lun->eedp_block_size = 0;
}
break;
}
#endif
case AC_FOUND_DEVICE: {
struct ccb_getdev *cgd;
/*
* See the comment in mpr_attach_sas() for a detailed
* explanation. In these versions of FreeBSD we register
* for all events and filter out the events that don't
* apply to us.
*/
#if (__FreeBSD_version < 1000703) || \
((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
if (xpt_path_path_id(path) != sc->sassc->sim->path_id)
break;
#endif
cgd = arg;
#if (__FreeBSD_version < 901503) || \
((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
mprsas_check_eedp(sc, path, cgd);
#endif
break;
}
default:
break;
}
}
#if (__FreeBSD_version < 901503) || \
((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
static void
mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path,
struct ccb_getdev *cgd)
{
struct mprsas_softc *sassc = sc->sassc;
struct ccb_scsiio *csio;
struct scsi_read_capacity_16 *scsi_cmd;
struct scsi_read_capacity_eedp *rcap_buf;
path_id_t pathid;
target_id_t targetid;
lun_id_t lunid;
union ccb *ccb;
struct cam_path *local_path;
struct mprsas_target *target;
struct mprsas_lun *lun;
uint8_t found_lun;
char path_str[64];
pathid = cam_sim_path(sassc->sim);
targetid = xpt_path_target_id(path);
lunid = xpt_path_lun_id(path);
KASSERT(targetid < sassc->maxtargets, ("Target %d out of bounds in "
"mprsas_check_eedp\n", targetid));
target = &sassc->targets[targetid];
if (target->handle == 0x0)
return;
/*
* Determine if the device is EEDP capable.
*
* If this flag is set in the inquiry data, the device supports
* protection information, and must support the 16 byte read capacity
* command, otherwise continue without sending read cap 16.
*/
if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0)
return;
/*
* Issue a READ CAPACITY 16 command. This info is used to determine if
* the LUN is formatted for EEDP support.
*/
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
mpr_dprint(sc, MPR_ERROR, "Unable to alloc CCB for EEDP "
"support.\n");
return;
}
if (xpt_create_path(&local_path, xpt_periph, pathid, targetid, lunid) !=
CAM_REQ_CMP) {
mpr_dprint(sc, MPR_ERROR, "Unable to create path for EEDP "
"support.\n");
xpt_free_ccb(ccb);
return;
}
/*
* If LUN is already in list, don't create a new one.
*/
found_lun = FALSE;
SLIST_FOREACH(lun, &target->luns, lun_link) {
if (lun->lun_id == lunid) {
found_lun = TRUE;
break;
}
}
if (!found_lun) {
lun = malloc(sizeof(struct mprsas_lun), M_MPR,
M_NOWAIT | M_ZERO);
if (lun == NULL) {
mpr_dprint(sc, MPR_ERROR, "Unable to alloc LUN for "
"EEDP support.\n");
xpt_free_path(local_path);
xpt_free_ccb(ccb);
return;
}
lun->lun_id = lunid;
SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
}
xpt_path_string(local_path, path_str, sizeof(path_str));
mpr_dprint(sc, MPR_INFO, "Sending read cap: path %s handle %d\n",
path_str, target->handle);
/*
* Issue a READ CAPACITY 16 command for the LUN. The
* mprsas_read_cap_done function will load the read cap info into the
* LUN struct.
*/
rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp), M_MPR,
M_NOWAIT | M_ZERO);
if (rcap_buf == NULL) {
mpr_dprint(sc, MPR_ERROR, "Unable to alloc read capacity "
"buffer for EEDP support.\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT);
csio = &ccb->csio;
csio->ccb_h.func_code = XPT_SCSI_IO;
csio->ccb_h.flags = CAM_DIR_IN;
csio->ccb_h.retry_count = 4;
csio->ccb_h.cbfcnp = mprsas_read_cap_done;
csio->ccb_h.timeout = 60000;
csio->data_ptr = (uint8_t *)rcap_buf;
csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp);
csio->sense_len = MPR_SENSE_LEN;
csio->cdb_len = sizeof(*scsi_cmd);
csio->tag_action = MSG_SIMPLE_Q_TAG;
scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = 0x9E;
scsi_cmd->service_action = SRC16_SERVICE_ACTION;
((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp);
ccb->ccb_h.ppriv_ptr1 = sassc;
xpt_action(ccb);
}
static void
mprsas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb)
{
struct mprsas_softc *sassc;
struct mprsas_target *target;
struct mprsas_lun *lun;
struct scsi_read_capacity_eedp *rcap_buf;
if (done_ccb == NULL)
return;
/* Driver need to release devq, it Scsi command is
* generated by driver internally.
* Currently there is a single place where driver
* calls scsi command internally. In future if driver
* calls more scsi command internally, it needs to release
* devq internally, since those command will not go back to
* cam_periph.
*/
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) {
done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
xpt_release_devq(done_ccb->ccb_h.path,
/*count*/ 1, /*run_queue*/TRUE);
}
rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr;
/*
* Get the LUN ID for the path and look it up in the LUN list for the
* target.
*/
sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1;
KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out "
"of bounds in mprsas_read_cap_done\n", done_ccb->ccb_h.target_id));
target = &sassc->targets[done_ccb->ccb_h.target_id];
SLIST_FOREACH(lun, &target->luns, lun_link) {
if (lun->lun_id != done_ccb->ccb_h.target_lun)
continue;
/*
* Got the LUN in the target's LUN list. Fill it in with EEDP
* info. If the READ CAP 16 command had some SCSI error (common
* if command is not supported), mark the lun as not supporting
* EEDP and set the block size to 0.
*/
if ((mprsas_get_ccbstatus(done_ccb) != CAM_REQ_CMP) ||
(done_ccb->csio.scsi_status != SCSI_STATUS_OK)) {
lun->eedp_formatted = FALSE;
lun->eedp_block_size = 0;
break;
}
if (rcap_buf->protect & 0x01) {
mpr_dprint(sassc->sc, MPR_INFO, "LUN %d for target ID "
"%d is formatted for EEDP support.\n",
done_ccb->ccb_h.target_lun,
done_ccb->ccb_h.target_id);
lun->eedp_formatted = TRUE;
lun->eedp_block_size = scsi_4btoul(rcap_buf->length);
}
break;
}
// Finished with this CCB and path.
free(rcap_buf, M_MPR);
xpt_free_path(done_ccb->ccb_h.path);
xpt_free_ccb(done_ccb);
}
#endif /* (__FreeBSD_version < 901503) || \
((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */
void
mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm,
struct mprsas_target *target, lun_id_t lun_id)
{
union ccb *ccb;
path_id_t path_id;
/*
* Set the INRESET flag for this target so that no I/O will be sent to
* the target until the reset has completed. If an I/O request does
* happen, the devq will be frozen. The CCB holds the path which is
* used to release the devq. The devq is released and the CCB is freed
* when the TM completes.
*/
ccb = xpt_alloc_ccb_nowait();
if (ccb) {
path_id = cam_sim_path(sc->sassc->sim);
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
target->tid, lun_id) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
} else {
tm->cm_ccb = ccb;
tm->cm_targ = target;
target->flags |= MPRSAS_TARGET_INRESET;
}
}
}
int
mprsas_startup(struct mpr_softc *sc)
{
/*
* Send the port enable message and set the wait_for_port_enable flag.
* This flag helps to keep the simq frozen until all discovery events
* are processed.
*/
sc->wait_for_port_enable = 1;
mprsas_send_portenable(sc);
return (0);
}
static int
mprsas_send_portenable(struct mpr_softc *sc)
{
MPI2_PORT_ENABLE_REQUEST *request;
struct mpr_command *cm;
MPR_FUNCTRACE(sc);
if ((cm = mpr_alloc_command(sc)) == NULL)
return (EBUSY);
request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
request->Function = MPI2_FUNCTION_PORT_ENABLE;
request->MsgFlags = 0;
request->VP_ID = 0;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete = mprsas_portenable_complete;
cm->cm_data = NULL;
cm->cm_sge = NULL;
mpr_map_command(sc, cm);
mpr_dprint(sc, MPR_XINFO,
"mpr_send_portenable finished cm %p req %p complete %p\n",
cm, cm->cm_req, cm->cm_complete);
return (0);
}
static void
mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm)
{
MPI2_PORT_ENABLE_REPLY *reply;
struct mprsas_softc *sassc;
MPR_FUNCTRACE(sc);
sassc = sc->sassc;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* port enable commands don't have S/G lists.
*/
if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! "
"This should not happen!\n", __func__, cm->cm_flags);
}
reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
if (reply == NULL)
mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n");
else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
MPI2_IOCSTATUS_SUCCESS)
mpr_dprint(sc, MPR_FAULT, "Portenable failed\n");
mpr_free_command(sc, cm);
if (sc->mpr_ich.ich_arg != NULL) {
mpr_dprint(sc, MPR_XINFO, "disestablish config intrhook\n");
config_intrhook_disestablish(&sc->mpr_ich);
sc->mpr_ich.ich_arg = NULL;
}
/*
* Done waiting for port enable to complete. Decrement the refcount.
* If refcount is 0, discovery is complete and a rescan of the bus can
* take place.
*/
sc->wait_for_port_enable = 0;
sc->port_enable_complete = 1;
wakeup(&sc->port_enable_complete);
mprsas_startup_decrement(sassc);
}
int
mprsas_check_id(struct mprsas_softc *sassc, int id)
{
struct mpr_softc *sc = sassc->sc;
char *ids;
char *name;
ids = &sc->exclude_ids[0];
while((name = strsep(&ids, ",")) != NULL) {
if (name[0] == '\0')
continue;
if (strtol(name, NULL, 0) == (long)id)
return (1);
}
return (0);
}
void
mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets)
{
struct mprsas_softc *sassc;
struct mprsas_lun *lun, *lun_tmp;
struct mprsas_target *targ;
int i;
sassc = sc->sassc;
/*
* The number of targets is based on IOC Facts, so free all of
* the allocated LUNs for each target and then the target buffer
* itself.
*/
for (i=0; i< maxtargets; i++) {
targ = &sassc->targets[i];
SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
free(lun, M_MPR);
}
}
free(sassc->targets, M_MPR);
sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets,
M_MPR, M_WAITOK|M_ZERO);
if (!sassc->targets) {
panic("%s failed to alloc targets with error %d\n",
__func__, ENOMEM);
}
}