freebsd-nq/sys/dev/sec/sec.c
Marius Strobl 4b7ec27007 - There's no need to overwrite the default device method with the default
one. Interestingly, these are actually the default for quite some time
  (bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
  since r52045) but even recently added device drivers do this unnecessarily.
  Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
  Discussed with: jhb
- Also while at it, use __FBSDID.
2011-11-22 21:28:20 +00:00

1869 lines
43 KiB
C

/*-
* Copyright (C) 2008-2009 Semihalf, Piotr Ziecik
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Freescale integrated Security Engine (SEC) driver. Currently SEC 2.0 and
* 3.0 are supported.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <opencrypto/cryptodev.h>
#include "cryptodev_if.h"
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/sec/sec.h>
static int sec_probe(device_t dev);
static int sec_attach(device_t dev);
static int sec_detach(device_t dev);
static int sec_suspend(device_t dev);
static int sec_resume(device_t dev);
static int sec_shutdown(device_t dev);
static void sec_primary_intr(void *arg);
static void sec_secondary_intr(void *arg);
static int sec_setup_intr(struct sec_softc *sc, struct resource **ires,
void **ihand, int *irid, driver_intr_t handler, const char *iname);
static void sec_release_intr(struct sec_softc *sc, struct resource *ires,
void *ihand, int irid, const char *iname);
static int sec_controller_reset(struct sec_softc *sc);
static int sec_channel_reset(struct sec_softc *sc, int channel, int full);
static int sec_init(struct sec_softc *sc);
static int sec_alloc_dma_mem(struct sec_softc *sc,
struct sec_dma_mem *dma_mem, bus_size_t size);
static int sec_desc_map_dma(struct sec_softc *sc,
struct sec_dma_mem *dma_mem, void *mem, bus_size_t size, int type,
struct sec_desc_map_info *sdmi);
static void sec_free_dma_mem(struct sec_dma_mem *dma_mem);
static void sec_enqueue(struct sec_softc *sc);
static int sec_enqueue_desc(struct sec_softc *sc, struct sec_desc *desc,
int channel);
static int sec_eu_channel(struct sec_softc *sc, int eu);
static int sec_make_pointer(struct sec_softc *sc, struct sec_desc *desc,
u_int n, void *data, bus_size_t doffset, bus_size_t dsize, int dtype);
static int sec_make_pointer_direct(struct sec_softc *sc,
struct sec_desc *desc, u_int n, bus_addr_t data, bus_size_t dsize);
static int sec_alloc_session(struct sec_softc *sc);
static int sec_newsession(device_t dev, u_int32_t *sidp,
struct cryptoini *cri);
static int sec_freesession(device_t dev, uint64_t tid);
static int sec_process(device_t dev, struct cryptop *crp, int hint);
static int sec_split_cri(struct cryptoini *cri, struct cryptoini **enc,
struct cryptoini **mac);
static int sec_split_crp(struct cryptop *crp, struct cryptodesc **enc,
struct cryptodesc **mac);
static int sec_build_common_ns_desc(struct sec_softc *sc,
struct sec_desc *desc, struct sec_session *ses, struct cryptop *crp,
struct cryptodesc *enc, int buftype);
static int sec_build_common_s_desc(struct sec_softc *sc,
struct sec_desc *desc, struct sec_session *ses, struct cryptop *crp,
struct cryptodesc *enc, struct cryptodesc *mac, int buftype);
static struct sec_session *sec_get_session(struct sec_softc *sc, u_int sid);
static struct sec_desc *sec_find_desc(struct sec_softc *sc, bus_addr_t paddr);
/* AESU */
static int sec_aesu_newsession(struct sec_softc *sc,
struct sec_session *ses, struct cryptoini *enc, struct cryptoini *mac);
static int sec_aesu_make_desc(struct sec_softc *sc,
struct sec_session *ses, struct sec_desc *desc, struct cryptop *crp,
int buftype);
/* DEU */
static int sec_deu_newsession(struct sec_softc *sc,
struct sec_session *ses, struct cryptoini *enc, struct cryptoini *mac);
static int sec_deu_make_desc(struct sec_softc *sc,
struct sec_session *ses, struct sec_desc *desc, struct cryptop *crp,
int buftype);
/* MDEU */
static int sec_mdeu_can_handle(u_int alg);
static int sec_mdeu_config(struct cryptodesc *crd,
u_int *eu, u_int *mode, u_int *hashlen);
static int sec_mdeu_newsession(struct sec_softc *sc,
struct sec_session *ses, struct cryptoini *enc, struct cryptoini *mac);
static int sec_mdeu_make_desc(struct sec_softc *sc,
struct sec_session *ses, struct sec_desc *desc, struct cryptop *crp,
int buftype);
static device_method_t sec_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sec_probe),
DEVMETHOD(device_attach, sec_attach),
DEVMETHOD(device_detach, sec_detach),
DEVMETHOD(device_suspend, sec_suspend),
DEVMETHOD(device_resume, sec_resume),
DEVMETHOD(device_shutdown, sec_shutdown),
/* Crypto methods */
DEVMETHOD(cryptodev_newsession, sec_newsession),
DEVMETHOD(cryptodev_freesession,sec_freesession),
DEVMETHOD(cryptodev_process, sec_process),
DEVMETHOD_END
};
static driver_t sec_driver = {
"sec",
sec_methods,
sizeof(struct sec_softc),
};
static devclass_t sec_devclass;
DRIVER_MODULE(sec, simplebus, sec_driver, sec_devclass, 0, 0);
MODULE_DEPEND(sec, crypto, 1, 1, 1);
static struct sec_eu_methods sec_eus[] = {
{
sec_aesu_newsession,
sec_aesu_make_desc,
},
{
sec_deu_newsession,
sec_deu_make_desc,
},
{
sec_mdeu_newsession,
sec_mdeu_make_desc,
},
{ NULL, NULL }
};
static inline void
sec_sync_dma_mem(struct sec_dma_mem *dma_mem, bus_dmasync_op_t op)
{
/* Sync only if dma memory is valid */
if (dma_mem->dma_vaddr != NULL)
bus_dmamap_sync(dma_mem->dma_tag, dma_mem->dma_map, op);
}
static inline void
sec_free_session(struct sec_softc *sc, struct sec_session *ses)
{
SEC_LOCK(sc, sessions);
ses->ss_used = 0;
SEC_UNLOCK(sc, sessions);
}
static inline void *
sec_get_pointer_data(struct sec_desc *desc, u_int n)
{
return (desc->sd_ptr_dmem[n].dma_vaddr);
}
static int
sec_probe(device_t dev)
{
struct sec_softc *sc;
uint64_t id;
if (!ofw_bus_is_compatible(dev, "fsl,sec2.0"))
return (ENXIO);
sc = device_get_softc(dev);
sc->sc_rrid = 0;
sc->sc_rres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rrid,
RF_ACTIVE);
if (sc->sc_rres == NULL)
return (ENXIO);
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
id = SEC_READ(sc, SEC_ID);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid, sc->sc_rres);
switch (id) {
case SEC_20_ID:
device_set_desc(dev, "Freescale Security Engine 2.0");
sc->sc_version = 2;
break;
case SEC_30_ID:
device_set_desc(dev, "Freescale Security Engine 3.0");
sc->sc_version = 3;
break;
default:
device_printf(dev, "unknown SEC ID 0x%016llx!\n", id);
return (ENXIO);
}
return (0);
}
static int
sec_attach(device_t dev)
{
struct sec_softc *sc;
struct sec_hw_lt *lt;
int error = 0;
int i;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_blocked = 0;
sc->sc_shutdown = 0;
sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(dev, "could not get crypto driver ID!\n");
return (ENXIO);
}
/* Init locks */
mtx_init(&sc->sc_controller_lock, device_get_nameunit(dev),
"SEC Controller lock", MTX_DEF);
mtx_init(&sc->sc_descriptors_lock, device_get_nameunit(dev),
"SEC Descriptors lock", MTX_DEF);
mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
"SEC Sessions lock", MTX_DEF);
/* Allocate I/O memory for SEC registers */
sc->sc_rrid = 0;
sc->sc_rres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rrid,
RF_ACTIVE);
if (sc->sc_rres == NULL) {
device_printf(dev, "could not allocate I/O memory!\n");
goto fail1;
}
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
/* Setup interrupts */
sc->sc_pri_irid = 0;
error = sec_setup_intr(sc, &sc->sc_pri_ires, &sc->sc_pri_ihand,
&sc->sc_pri_irid, sec_primary_intr, "primary");
if (error)
goto fail2;
if (sc->sc_version == 3) {
sc->sc_sec_irid = 1;
error = sec_setup_intr(sc, &sc->sc_sec_ires, &sc->sc_sec_ihand,
&sc->sc_sec_irid, sec_secondary_intr, "secondary");
if (error)
goto fail3;
}
/* Alloc DMA memory for descriptors and link tables */
error = sec_alloc_dma_mem(sc, &(sc->sc_desc_dmem),
SEC_DESCRIPTORS * sizeof(struct sec_hw_desc));
if (error)
goto fail4;
error = sec_alloc_dma_mem(sc, &(sc->sc_lt_dmem),
(SEC_LT_ENTRIES + 1) * sizeof(struct sec_hw_lt));
if (error)
goto fail5;
/* Fill in descriptors and link tables */
for (i = 0; i < SEC_DESCRIPTORS; i++) {
sc->sc_desc[i].sd_desc =
(struct sec_hw_desc*)(sc->sc_desc_dmem.dma_vaddr) + i;
sc->sc_desc[i].sd_desc_paddr = sc->sc_desc_dmem.dma_paddr +
(i * sizeof(struct sec_hw_desc));
}
for (i = 0; i < SEC_LT_ENTRIES + 1; i++) {
sc->sc_lt[i].sl_lt =
(struct sec_hw_lt*)(sc->sc_lt_dmem.dma_vaddr) + i;
sc->sc_lt[i].sl_lt_paddr = sc->sc_lt_dmem.dma_paddr +
(i * sizeof(struct sec_hw_lt));
}
/* Last entry in link table is used to create a circle */
lt = sc->sc_lt[SEC_LT_ENTRIES].sl_lt;
lt->shl_length = 0;
lt->shl_r = 0;
lt->shl_n = 1;
lt->shl_ptr = sc->sc_lt[0].sl_lt_paddr;
/* Init descriptor and link table queues pointers */
SEC_CNT_INIT(sc, sc_free_desc_get_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_free_desc_put_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_ready_desc_get_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_ready_desc_put_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_queued_desc_get_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_queued_desc_put_cnt, SEC_DESCRIPTORS);
SEC_CNT_INIT(sc, sc_lt_alloc_cnt, SEC_LT_ENTRIES);
SEC_CNT_INIT(sc, sc_lt_free_cnt, SEC_LT_ENTRIES);
/* Create masks for fast checks */
sc->sc_int_error_mask = 0;
for (i = 0; i < SEC_CHANNELS; i++)
sc->sc_int_error_mask |= (~0ULL & SEC_INT_CH_ERR(i));
switch (sc->sc_version) {
case 2:
sc->sc_channel_idle_mask =
(SEC_CHAN_CSR2_FFLVL_M << SEC_CHAN_CSR2_FFLVL_S) |
(SEC_CHAN_CSR2_MSTATE_M << SEC_CHAN_CSR2_MSTATE_S) |
(SEC_CHAN_CSR2_PSTATE_M << SEC_CHAN_CSR2_PSTATE_S) |
(SEC_CHAN_CSR2_GSTATE_M << SEC_CHAN_CSR2_GSTATE_S);
break;
case 3:
sc->sc_channel_idle_mask =
(SEC_CHAN_CSR3_FFLVL_M << SEC_CHAN_CSR3_FFLVL_S) |
(SEC_CHAN_CSR3_MSTATE_M << SEC_CHAN_CSR3_MSTATE_S) |
(SEC_CHAN_CSR3_PSTATE_M << SEC_CHAN_CSR3_PSTATE_S) |
(SEC_CHAN_CSR3_GSTATE_M << SEC_CHAN_CSR3_GSTATE_S);
break;
}
/* Init hardware */
error = sec_init(sc);
if (error)
goto fail6;
/* Register in OCF (AESU) */
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
/* Register in OCF (DEU) */
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
/* Register in OCF (MDEU) */
crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0);
if (sc->sc_version >= 3) {
crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0);
}
return (0);
fail6:
sec_free_dma_mem(&(sc->sc_lt_dmem));
fail5:
sec_free_dma_mem(&(sc->sc_desc_dmem));
fail4:
sec_release_intr(sc, sc->sc_sec_ires, sc->sc_sec_ihand,
sc->sc_sec_irid, "secondary");
fail3:
sec_release_intr(sc, sc->sc_pri_ires, sc->sc_pri_ihand,
sc->sc_pri_irid, "primary");
fail2:
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid, sc->sc_rres);
fail1:
mtx_destroy(&sc->sc_controller_lock);
mtx_destroy(&sc->sc_descriptors_lock);
mtx_destroy(&sc->sc_sessions_lock);
return (ENXIO);
}
static int
sec_detach(device_t dev)
{
struct sec_softc *sc = device_get_softc(dev);
int i, error, timeout = SEC_TIMEOUT;
/* Prepare driver to shutdown */
SEC_LOCK(sc, descriptors);
sc->sc_shutdown = 1;
SEC_UNLOCK(sc, descriptors);
/* Wait until all queued processing finishes */
while (1) {
SEC_LOCK(sc, descriptors);
i = SEC_READY_DESC_CNT(sc) + SEC_QUEUED_DESC_CNT(sc);
SEC_UNLOCK(sc, descriptors);
if (i == 0)
break;
if (timeout < 0) {
device_printf(dev, "queue flush timeout!\n");
/* DMA can be still active - stop it */
for (i = 0; i < SEC_CHANNELS; i++)
sec_channel_reset(sc, i, 1);
break;
}
timeout -= 1000;
DELAY(1000);
}
/* Disable interrupts */
SEC_WRITE(sc, SEC_IER, 0);
/* Unregister from OCF */
crypto_unregister_all(sc->sc_cid);
/* Free DMA memory */
for (i = 0; i < SEC_DESCRIPTORS; i++)
SEC_DESC_FREE_POINTERS(&(sc->sc_desc[i]));
sec_free_dma_mem(&(sc->sc_lt_dmem));
sec_free_dma_mem(&(sc->sc_desc_dmem));
/* Release interrupts */
sec_release_intr(sc, sc->sc_pri_ires, sc->sc_pri_ihand,
sc->sc_pri_irid, "primary");
sec_release_intr(sc, sc->sc_sec_ires, sc->sc_sec_ihand,
sc->sc_sec_irid, "secondary");
/* Release memory */
if (sc->sc_rres) {
error = bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid,
sc->sc_rres);
if (error)
device_printf(dev, "bus_release_resource() failed for"
" I/O memory, error %d\n", error);
sc->sc_rres = NULL;
}
mtx_destroy(&sc->sc_controller_lock);
mtx_destroy(&sc->sc_descriptors_lock);
mtx_destroy(&sc->sc_sessions_lock);
return (0);
}
static int
sec_suspend(device_t dev)
{
return (0);
}
static int
sec_resume(device_t dev)
{
return (0);
}
static int
sec_shutdown(device_t dev)
{
return (0);
}
static int
sec_setup_intr(struct sec_softc *sc, struct resource **ires, void **ihand,
int *irid, driver_intr_t handler, const char *iname)
{
int error;
(*ires) = bus_alloc_resource_any(sc->sc_dev, SYS_RES_IRQ, irid,
RF_ACTIVE);
if ((*ires) == NULL) {
device_printf(sc->sc_dev, "could not allocate %s IRQ\n", iname);
return (ENXIO);
}
error = bus_setup_intr(sc->sc_dev, *ires, INTR_MPSAFE | INTR_TYPE_NET,
NULL, handler, sc, ihand);
if (error) {
device_printf(sc->sc_dev, "failed to set up %s IRQ\n", iname);
if (bus_release_resource(sc->sc_dev, SYS_RES_IRQ, *irid, *ires))
device_printf(sc->sc_dev, "could not release %s IRQ\n",
iname);
(*ires) = NULL;
return (error);
}
return (0);
}
static void
sec_release_intr(struct sec_softc *sc, struct resource *ires, void *ihand,
int irid, const char *iname)
{
int error;
if (ires == NULL)
return;
error = bus_teardown_intr(sc->sc_dev, ires, ihand);
if (error)
device_printf(sc->sc_dev, "bus_teardown_intr() failed for %s"
" IRQ, error %d\n", iname, error);
error = bus_release_resource(sc->sc_dev, SYS_RES_IRQ, irid, ires);
if (error)
device_printf(sc->sc_dev, "bus_release_resource() failed for %s"
" IRQ, error %d\n", iname, error);
}
static void
sec_primary_intr(void *arg)
{
struct sec_softc *sc = arg;
struct sec_desc *desc;
uint64_t isr;
int i, wakeup = 0;
SEC_LOCK(sc, controller);
/* Check for errors */
isr = SEC_READ(sc, SEC_ISR);
if (isr & sc->sc_int_error_mask) {
/* Check each channel for error */
for (i = 0; i < SEC_CHANNELS; i++) {
if ((isr & SEC_INT_CH_ERR(i)) == 0)
continue;
device_printf(sc->sc_dev,
"I/O error on channel %i!\n", i);
/* Find and mark problematic descriptor */
desc = sec_find_desc(sc, SEC_READ(sc,
SEC_CHAN_CDPR(i)));
if (desc != NULL)
desc->sd_error = EIO;
/* Do partial channel reset */
sec_channel_reset(sc, i, 0);
}
}
/* ACK interrupt */
SEC_WRITE(sc, SEC_ICR, 0xFFFFFFFFFFFFFFFFULL);
SEC_UNLOCK(sc, controller);
SEC_LOCK(sc, descriptors);
/* Handle processed descriptors */
SEC_DESC_SYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
while (SEC_QUEUED_DESC_CNT(sc) > 0) {
desc = SEC_GET_QUEUED_DESC(sc);
if (desc->sd_desc->shd_done != 0xFF && desc->sd_error == 0) {
SEC_PUT_BACK_QUEUED_DESC(sc);
break;
}
SEC_DESC_SYNC_POINTERS(desc, BUS_DMASYNC_PREREAD |
BUS_DMASYNC_PREWRITE);
desc->sd_crp->crp_etype = desc->sd_error;
crypto_done(desc->sd_crp);
SEC_DESC_FREE_POINTERS(desc);
SEC_DESC_FREE_LT(sc, desc);
SEC_DESC_QUEUED2FREE(sc);
}
SEC_DESC_SYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (!sc->sc_shutdown) {
wakeup = sc->sc_blocked;
sc->sc_blocked = 0;
}
SEC_UNLOCK(sc, descriptors);
/* Enqueue ready descriptors in hardware */
sec_enqueue(sc);
if (wakeup)
crypto_unblock(sc->sc_cid, wakeup);
}
static void
sec_secondary_intr(void *arg)
{
struct sec_softc *sc = arg;
device_printf(sc->sc_dev, "spurious secondary interrupt!\n");
sec_primary_intr(arg);
}
static int
sec_controller_reset(struct sec_softc *sc)
{
int timeout = SEC_TIMEOUT;
/* Reset Controller */
SEC_WRITE(sc, SEC_MCR, SEC_MCR_SWR);
while (SEC_READ(sc, SEC_MCR) & SEC_MCR_SWR) {
DELAY(1000);
timeout -= 1000;
if (timeout < 0) {
device_printf(sc->sc_dev, "timeout while waiting for "
"device reset!\n");
return (ETIMEDOUT);
}
}
return (0);
}
static int
sec_channel_reset(struct sec_softc *sc, int channel, int full)
{
int timeout = SEC_TIMEOUT;
uint64_t bit = (full) ? SEC_CHAN_CCR_R : SEC_CHAN_CCR_CON;
uint64_t reg;
/* Reset Channel */
reg = SEC_READ(sc, SEC_CHAN_CCR(channel));
SEC_WRITE(sc, SEC_CHAN_CCR(channel), reg | bit);
while (SEC_READ(sc, SEC_CHAN_CCR(channel)) & bit) {
DELAY(1000);
timeout -= 1000;
if (timeout < 0) {
device_printf(sc->sc_dev, "timeout while waiting for "
"channel reset!\n");
return (ETIMEDOUT);
}
}
if (full) {
reg = SEC_CHAN_CCR_CDIE | SEC_CHAN_CCR_NT | SEC_CHAN_CCR_BS;
switch(sc->sc_version) {
case 2:
reg |= SEC_CHAN_CCR_CDWE;
break;
case 3:
reg |= SEC_CHAN_CCR_AWSE | SEC_CHAN_CCR_WGN;
break;
}
SEC_WRITE(sc, SEC_CHAN_CCR(channel), reg);
}
return (0);
}
static int
sec_init(struct sec_softc *sc)
{
uint64_t reg;
int error, i;
/* Reset controller twice to clear all pending interrupts */
error = sec_controller_reset(sc);
if (error)
return (error);
error = sec_controller_reset(sc);
if (error)
return (error);
/* Reset channels */
for (i = 0; i < SEC_CHANNELS; i++) {
error = sec_channel_reset(sc, i, 1);
if (error)
return (error);
}
/* Enable Interrupts */
reg = SEC_INT_ITO;
for (i = 0; i < SEC_CHANNELS; i++)
reg |= SEC_INT_CH_DN(i) | SEC_INT_CH_ERR(i);
SEC_WRITE(sc, SEC_IER, reg);
return (error);
}
static void
sec_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct sec_dma_mem *dma_mem = arg;
if (error)
return;
KASSERT(nseg == 1, ("Wrong number of segments, should be 1"));
dma_mem->dma_paddr = segs->ds_addr;
}
static void
sec_dma_map_desc_cb(void *arg, bus_dma_segment_t *segs, int nseg,
int error)
{
struct sec_desc_map_info *sdmi = arg;
struct sec_softc *sc = sdmi->sdmi_sc;
struct sec_lt *lt = NULL;
bus_addr_t addr;
bus_size_t size;
int i;
SEC_LOCK_ASSERT(sc, descriptors);
if (error)
return;
for (i = 0; i < nseg; i++) {
addr = segs[i].ds_addr;
size = segs[i].ds_len;
/* Skip requested offset */
if (sdmi->sdmi_offset >= size) {
sdmi->sdmi_offset -= size;
continue;
}
addr += sdmi->sdmi_offset;
size -= sdmi->sdmi_offset;
sdmi->sdmi_offset = 0;
/* Do not link more than requested */
if (sdmi->sdmi_size < size)
size = sdmi->sdmi_size;
lt = SEC_ALLOC_LT_ENTRY(sc);
lt->sl_lt->shl_length = size;
lt->sl_lt->shl_r = 0;
lt->sl_lt->shl_n = 0;
lt->sl_lt->shl_ptr = addr;
if (sdmi->sdmi_lt_first == NULL)
sdmi->sdmi_lt_first = lt;
sdmi->sdmi_lt_used += 1;
if ((sdmi->sdmi_size -= size) == 0)
break;
}
sdmi->sdmi_lt_last = lt;
}
static void
sec_dma_map_desc_cb2(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t size, int error)
{
sec_dma_map_desc_cb(arg, segs, nseg, error);
}
static int
sec_alloc_dma_mem(struct sec_softc *sc, struct sec_dma_mem *dma_mem,
bus_size_t size)
{
int error;
if (dma_mem->dma_vaddr != NULL)
return (EBUSY);
error = bus_dma_tag_create(NULL, /* parent */
SEC_DMA_ALIGNMENT, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
size, 1, /* maxsize, nsegments */
size, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&(dma_mem->dma_tag)); /* dmat */
if (error) {
device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
" %i!\n", error);
goto err1;
}
error = bus_dmamem_alloc(dma_mem->dma_tag, &(dma_mem->dma_vaddr),
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &(dma_mem->dma_map));
if (error) {
device_printf(sc->sc_dev, "failed to allocate DMA safe"
" memory, error %i!\n", error);
goto err2;
}
error = bus_dmamap_load(dma_mem->dma_tag, dma_mem->dma_map,
dma_mem->dma_vaddr, size, sec_alloc_dma_mem_cb, dma_mem,
BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev, "cannot get address of the DMA"
" memory, error %i\n", error);
goto err3;
}
dma_mem->dma_is_map = 0;
return (0);
err3:
bus_dmamem_free(dma_mem->dma_tag, dma_mem->dma_vaddr, dma_mem->dma_map);
err2:
bus_dma_tag_destroy(dma_mem->dma_tag);
err1:
dma_mem->dma_vaddr = NULL;
return(error);
}
static int
sec_desc_map_dma(struct sec_softc *sc, struct sec_dma_mem *dma_mem, void *mem,
bus_size_t size, int type, struct sec_desc_map_info *sdmi)
{
int error;
if (dma_mem->dma_vaddr != NULL)
return (EBUSY);
switch (type) {
case SEC_MEMORY:
break;
case SEC_UIO:
size = SEC_FREE_LT_CNT(sc) * SEC_MAX_DMA_BLOCK_SIZE;
break;
case SEC_MBUF:
size = m_length((struct mbuf*)mem, NULL);
break;
default:
return (EINVAL);
}
error = bus_dma_tag_create(NULL, /* parent */
SEC_DMA_ALIGNMENT, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
size, /* maxsize */
SEC_FREE_LT_CNT(sc), /* nsegments */
SEC_MAX_DMA_BLOCK_SIZE, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&(dma_mem->dma_tag)); /* dmat */
if (error) {
device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
" %i!\n", error);
dma_mem->dma_vaddr = NULL;
return (error);
}
error = bus_dmamap_create(dma_mem->dma_tag, 0, &(dma_mem->dma_map));
if (error) {
device_printf(sc->sc_dev, "failed to create DMA map, error %i!"
"\n", error);
bus_dma_tag_destroy(dma_mem->dma_tag);
return (error);
}
switch (type) {
case SEC_MEMORY:
error = bus_dmamap_load(dma_mem->dma_tag, dma_mem->dma_map,
mem, size, sec_dma_map_desc_cb, sdmi, BUS_DMA_NOWAIT);
break;
case SEC_UIO:
error = bus_dmamap_load_uio(dma_mem->dma_tag, dma_mem->dma_map,
mem, sec_dma_map_desc_cb2, sdmi, BUS_DMA_NOWAIT);
break;
case SEC_MBUF:
error = bus_dmamap_load_mbuf(dma_mem->dma_tag, dma_mem->dma_map,
mem, sec_dma_map_desc_cb2, sdmi, BUS_DMA_NOWAIT);
break;
}
if (error) {
device_printf(sc->sc_dev, "cannot get address of the DMA"
" memory, error %i!\n", error);
bus_dmamap_destroy(dma_mem->dma_tag, dma_mem->dma_map);
bus_dma_tag_destroy(dma_mem->dma_tag);
return (error);
}
dma_mem->dma_is_map = 1;
dma_mem->dma_vaddr = mem;
return (0);
}
static void
sec_free_dma_mem(struct sec_dma_mem *dma_mem)
{
/* Check for double free */
if (dma_mem->dma_vaddr == NULL)
return;
bus_dmamap_unload(dma_mem->dma_tag, dma_mem->dma_map);
if (dma_mem->dma_is_map)
bus_dmamap_destroy(dma_mem->dma_tag, dma_mem->dma_map);
else
bus_dmamem_free(dma_mem->dma_tag, dma_mem->dma_vaddr,
dma_mem->dma_map);
bus_dma_tag_destroy(dma_mem->dma_tag);
dma_mem->dma_vaddr = NULL;
}
static int
sec_eu_channel(struct sec_softc *sc, int eu)
{
uint64_t reg;
int channel = 0;
SEC_LOCK_ASSERT(sc, controller);
reg = SEC_READ(sc, SEC_EUASR);
switch (eu) {
case SEC_EU_AFEU:
channel = SEC_EUASR_AFEU(reg);
break;
case SEC_EU_DEU:
channel = SEC_EUASR_DEU(reg);
break;
case SEC_EU_MDEU_A:
case SEC_EU_MDEU_B:
channel = SEC_EUASR_MDEU(reg);
break;
case SEC_EU_RNGU:
channel = SEC_EUASR_RNGU(reg);
break;
case SEC_EU_PKEU:
channel = SEC_EUASR_PKEU(reg);
break;
case SEC_EU_AESU:
channel = SEC_EUASR_AESU(reg);
break;
case SEC_EU_KEU:
channel = SEC_EUASR_KEU(reg);
break;
case SEC_EU_CRCU:
channel = SEC_EUASR_CRCU(reg);
break;
}
return (channel - 1);
}
static int
sec_enqueue_desc(struct sec_softc *sc, struct sec_desc *desc, int channel)
{
u_int fflvl = SEC_MAX_FIFO_LEVEL;
uint64_t reg;
int i;
SEC_LOCK_ASSERT(sc, controller);
/* Find free channel if have not got one */
if (channel < 0) {
for (i = 0; i < SEC_CHANNELS; i++) {
reg = SEC_READ(sc, SEC_CHAN_CSR(channel));
if ((reg & sc->sc_channel_idle_mask) == 0) {
channel = i;
break;
}
}
}
/* There is no free channel */
if (channel < 0)
return (-1);
/* Check FIFO level on selected channel */
reg = SEC_READ(sc, SEC_CHAN_CSR(channel));
switch(sc->sc_version) {
case 2:
fflvl = (reg >> SEC_CHAN_CSR2_FFLVL_S) & SEC_CHAN_CSR2_FFLVL_M;
break;
case 3:
fflvl = (reg >> SEC_CHAN_CSR3_FFLVL_S) & SEC_CHAN_CSR3_FFLVL_M;
break;
}
if (fflvl >= SEC_MAX_FIFO_LEVEL)
return (-1);
/* Enqueue descriptor in channel */
SEC_WRITE(sc, SEC_CHAN_FF(channel), desc->sd_desc_paddr);
return (channel);
}
static void
sec_enqueue(struct sec_softc *sc)
{
struct sec_desc *desc;
int ch0, ch1;
SEC_LOCK(sc, descriptors);
SEC_LOCK(sc, controller);
while (SEC_READY_DESC_CNT(sc) > 0) {
desc = SEC_GET_READY_DESC(sc);
ch0 = sec_eu_channel(sc, desc->sd_desc->shd_eu_sel0);
ch1 = sec_eu_channel(sc, desc->sd_desc->shd_eu_sel1);
/*
* Both EU are used by the same channel.
* Enqueue descriptor in channel used by busy EUs.
*/
if (ch0 >= 0 && ch0 == ch1) {
if (sec_enqueue_desc(sc, desc, ch0) >= 0) {
SEC_DESC_READY2QUEUED(sc);
continue;
}
}
/*
* Only one EU is free.
* Enqueue descriptor in channel used by busy EU.
*/
if ((ch0 >= 0 && ch1 < 0) || (ch1 >= 0 && ch0 < 0)) {
if (sec_enqueue_desc(sc, desc, (ch0 >= 0) ? ch0 : ch1)
>= 0) {
SEC_DESC_READY2QUEUED(sc);
continue;
}
}
/*
* Both EU are free.
* Enqueue descriptor in first free channel.
*/
if (ch0 < 0 && ch1 < 0) {
if (sec_enqueue_desc(sc, desc, -1) >= 0) {
SEC_DESC_READY2QUEUED(sc);
continue;
}
}
/* Current descriptor can not be queued at the moment */
SEC_PUT_BACK_READY_DESC(sc);
break;
}
SEC_UNLOCK(sc, controller);
SEC_UNLOCK(sc, descriptors);
}
static struct sec_desc *
sec_find_desc(struct sec_softc *sc, bus_addr_t paddr)
{
struct sec_desc *desc = NULL;
int i;
SEC_LOCK_ASSERT(sc, descriptors);
for (i = 0; i < SEC_CHANNELS; i++) {
if (sc->sc_desc[i].sd_desc_paddr == paddr) {
desc = &(sc->sc_desc[i]);
break;
}
}
return (desc);
}
static int
sec_make_pointer_direct(struct sec_softc *sc, struct sec_desc *desc, u_int n,
bus_addr_t data, bus_size_t dsize)
{
struct sec_hw_desc_ptr *ptr;
SEC_LOCK_ASSERT(sc, descriptors);
ptr = &(desc->sd_desc->shd_pointer[n]);
ptr->shdp_length = dsize;
ptr->shdp_extent = 0;
ptr->shdp_j = 0;
ptr->shdp_ptr = data;
return (0);
}
static int
sec_make_pointer(struct sec_softc *sc, struct sec_desc *desc,
u_int n, void *data, bus_size_t doffset, bus_size_t dsize, int dtype)
{
struct sec_desc_map_info sdmi = { sc, dsize, doffset, NULL, NULL, 0 };
struct sec_hw_desc_ptr *ptr;
int error;
SEC_LOCK_ASSERT(sc, descriptors);
/* For flat memory map only requested region */
if (dtype == SEC_MEMORY) {
data = (uint8_t*)(data) + doffset;
sdmi.sdmi_offset = 0;
}
error = sec_desc_map_dma(sc, &(desc->sd_ptr_dmem[n]), data, dsize,
dtype, &sdmi);
if (error)
return (error);
sdmi.sdmi_lt_last->sl_lt->shl_r = 1;
desc->sd_lt_used += sdmi.sdmi_lt_used;
ptr = &(desc->sd_desc->shd_pointer[n]);
ptr->shdp_length = dsize;
ptr->shdp_extent = 0;
ptr->shdp_j = 1;
ptr->shdp_ptr = sdmi.sdmi_lt_first->sl_lt_paddr;
return (0);
}
static int
sec_split_cri(struct cryptoini *cri, struct cryptoini **enc,
struct cryptoini **mac)
{
struct cryptoini *e, *m;
e = cri;
m = cri->cri_next;
/* We can haldle only two operations */
if (m && m->cri_next)
return (EINVAL);
if (sec_mdeu_can_handle(e->cri_alg)) {
cri = m;
m = e;
e = cri;
}
if (m && !sec_mdeu_can_handle(m->cri_alg))
return (EINVAL);
*enc = e;
*mac = m;
return (0);
}
static int
sec_split_crp(struct cryptop *crp, struct cryptodesc **enc,
struct cryptodesc **mac)
{
struct cryptodesc *e, *m, *t;
e = crp->crp_desc;
m = e->crd_next;
/* We can haldle only two operations */
if (m && m->crd_next)
return (EINVAL);
if (sec_mdeu_can_handle(e->crd_alg)) {
t = m;
m = e;
e = t;
}
if (m && !sec_mdeu_can_handle(m->crd_alg))
return (EINVAL);
*enc = e;
*mac = m;
return (0);
}
static int
sec_alloc_session(struct sec_softc *sc)
{
struct sec_session *ses = NULL;
int sid = -1;
u_int i;
SEC_LOCK(sc, sessions);
for (i = 0; i < SEC_MAX_SESSIONS; i++) {
if (sc->sc_sessions[i].ss_used == 0) {
ses = &(sc->sc_sessions[i]);
ses->ss_used = 1;
ses->ss_ivlen = 0;
ses->ss_klen = 0;
ses->ss_mklen = 0;
sid = i;
break;
}
}
SEC_UNLOCK(sc, sessions);
return (sid);
}
static struct sec_session *
sec_get_session(struct sec_softc *sc, u_int sid)
{
struct sec_session *ses;
if (sid >= SEC_MAX_SESSIONS)
return (NULL);
SEC_LOCK(sc, sessions);
ses = &(sc->sc_sessions[sid]);
if (ses->ss_used == 0)
ses = NULL;
SEC_UNLOCK(sc, sessions);
return (ses);
}
static int
sec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct sec_softc *sc = device_get_softc(dev);
struct sec_eu_methods *eu = sec_eus;
struct cryptoini *enc = NULL;
struct cryptoini *mac = NULL;
struct sec_session *ses;
int error = -1;
int sid;
error = sec_split_cri(cri, &enc, &mac);
if (error)
return (error);
/* Check key lengths */
if (enc && enc->cri_key && (enc->cri_klen / 8) > SEC_MAX_KEY_LEN)
return (E2BIG);
if (mac && mac->cri_key && (mac->cri_klen / 8) > SEC_MAX_KEY_LEN)
return (E2BIG);
/* Only SEC 3.0 supports digests larger than 256 bits */
if (sc->sc_version < 3 && mac && mac->cri_klen > 256)
return (E2BIG);
sid = sec_alloc_session(sc);
if (sid < 0)
return (ENOMEM);
ses = sec_get_session(sc, sid);
/* Find EU for this session */
while (eu->sem_make_desc != NULL) {
error = eu->sem_newsession(sc, ses, enc, mac);
if (error >= 0)
break;
eu++;
}
/* If not found, return EINVAL */
if (error < 0) {
sec_free_session(sc, ses);
return (EINVAL);
}
/* Save cipher key */
if (enc && enc->cri_key) {
ses->ss_klen = enc->cri_klen / 8;
memcpy(ses->ss_key, enc->cri_key, ses->ss_klen);
}
/* Save digest key */
if (mac && mac->cri_key) {
ses->ss_mklen = mac->cri_klen / 8;
memcpy(ses->ss_mkey, mac->cri_key, ses->ss_mklen);
}
ses->ss_eu = eu;
*sidp = sid;
return (0);
}
static int
sec_freesession(device_t dev, uint64_t tid)
{
struct sec_softc *sc = device_get_softc(dev);
struct sec_session *ses;
int error = 0;
ses = sec_get_session(sc, CRYPTO_SESID2LID(tid));
if (ses == NULL)
return (EINVAL);
sec_free_session(sc, ses);
return (error);
}
static int
sec_process(device_t dev, struct cryptop *crp, int hint)
{
struct sec_softc *sc = device_get_softc(dev);
struct sec_desc *desc = NULL;
struct cryptodesc *mac, *enc;
struct sec_session *ses;
int buftype, error = 0;
/* Check Session ID */
ses = sec_get_session(sc, CRYPTO_SESID2LID(crp->crp_sid));
if (ses == NULL) {
crp->crp_etype = EINVAL;
crypto_done(crp);
return (0);
}
/* Check for input length */
if (crp->crp_ilen > SEC_MAX_DMA_BLOCK_SIZE) {
crp->crp_etype = E2BIG;
crypto_done(crp);
return (0);
}
/* Get descriptors */
if (sec_split_crp(crp, &enc, &mac)) {
crp->crp_etype = EINVAL;
crypto_done(crp);
return (0);
}
SEC_LOCK(sc, descriptors);
SEC_DESC_SYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Block driver if there is no free descriptors or we are going down */
if (SEC_FREE_DESC_CNT(sc) == 0 || sc->sc_shutdown) {
sc->sc_blocked |= CRYPTO_SYMQ;
SEC_UNLOCK(sc, descriptors);
return (ERESTART);
}
/* Prepare descriptor */
desc = SEC_GET_FREE_DESC(sc);
desc->sd_lt_used = 0;
desc->sd_error = 0;
desc->sd_crp = crp;
if (crp->crp_flags & CRYPTO_F_IOV)
buftype = SEC_UIO;
else if (crp->crp_flags & CRYPTO_F_IMBUF)
buftype = SEC_MBUF;
else
buftype = SEC_MEMORY;
if (enc && enc->crd_flags & CRD_F_ENCRYPT) {
if (enc->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(desc->sd_desc->shd_iv, enc->crd_iv,
ses->ss_ivlen);
else
arc4rand(desc->sd_desc->shd_iv, ses->ss_ivlen, 0);
if ((enc->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
enc->crd_inject, ses->ss_ivlen,
desc->sd_desc->shd_iv);
} else if (enc) {
if (enc->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(desc->sd_desc->shd_iv, enc->crd_iv,
ses->ss_ivlen);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
enc->crd_inject, ses->ss_ivlen,
desc->sd_desc->shd_iv);
}
if (enc && enc->crd_flags & CRD_F_KEY_EXPLICIT) {
if ((enc->crd_klen / 8) <= SEC_MAX_KEY_LEN) {
ses->ss_klen = enc->crd_klen / 8;
memcpy(ses->ss_key, enc->crd_key, ses->ss_klen);
} else
error = E2BIG;
}
if (!error && mac && mac->crd_flags & CRD_F_KEY_EXPLICIT) {
if ((mac->crd_klen / 8) <= SEC_MAX_KEY_LEN) {
ses->ss_mklen = mac->crd_klen / 8;
memcpy(ses->ss_mkey, mac->crd_key, ses->ss_mklen);
} else
error = E2BIG;
}
if (!error) {
memcpy(desc->sd_desc->shd_key, ses->ss_key, ses->ss_klen);
memcpy(desc->sd_desc->shd_mkey, ses->ss_mkey, ses->ss_mklen);
error = ses->ss_eu->sem_make_desc(sc, ses, desc, crp, buftype);
}
if (error) {
SEC_DESC_FREE_POINTERS(desc);
SEC_DESC_PUT_BACK_LT(sc, desc);
SEC_PUT_BACK_FREE_DESC(sc);
SEC_UNLOCK(sc, descriptors);
crp->crp_etype = error;
crypto_done(crp);
return (0);
}
/*
* Skip DONE interrupt if this is not last request in burst, but only
* if we are running on SEC 3.X. On SEC 2.X we have to enable DONE
* signaling on each descriptor.
*/
if ((hint & CRYPTO_HINT_MORE) && sc->sc_version == 3)
desc->sd_desc->shd_dn = 0;
else
desc->sd_desc->shd_dn = 1;
SEC_DESC_SYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
SEC_DESC_SYNC_POINTERS(desc, BUS_DMASYNC_POSTREAD |
BUS_DMASYNC_POSTWRITE);
SEC_DESC_FREE2READY(sc);
SEC_UNLOCK(sc, descriptors);
/* Enqueue ready descriptors in hardware */
sec_enqueue(sc);
return (0);
}
static int
sec_build_common_ns_desc(struct sec_softc *sc, struct sec_desc *desc,
struct sec_session *ses, struct cryptop *crp, struct cryptodesc *enc,
int buftype)
{
struct sec_hw_desc *hd = desc->sd_desc;
int error;
hd->shd_desc_type = SEC_DT_COMMON_NONSNOOP;
hd->shd_eu_sel1 = SEC_EU_NONE;
hd->shd_mode1 = 0;
/* Pointer 0: NULL */
error = sec_make_pointer_direct(sc, desc, 0, 0, 0);
if (error)
return (error);
/* Pointer 1: IV IN */
error = sec_make_pointer_direct(sc, desc, 1, desc->sd_desc_paddr +
offsetof(struct sec_hw_desc, shd_iv), ses->ss_ivlen);
if (error)
return (error);
/* Pointer 2: Cipher Key */
error = sec_make_pointer_direct(sc, desc, 2, desc->sd_desc_paddr +
offsetof(struct sec_hw_desc, shd_key), ses->ss_klen);
if (error)
return (error);
/* Pointer 3: Data IN */
error = sec_make_pointer(sc, desc, 3, crp->crp_buf, enc->crd_skip,
enc->crd_len, buftype);
if (error)
return (error);
/* Pointer 4: Data OUT */
error = sec_make_pointer(sc, desc, 4, crp->crp_buf, enc->crd_skip,
enc->crd_len, buftype);
if (error)
return (error);
/* Pointer 5: IV OUT (Not used: NULL) */
error = sec_make_pointer_direct(sc, desc, 5, 0, 0);
if (error)
return (error);
/* Pointer 6: NULL */
error = sec_make_pointer_direct(sc, desc, 6, 0, 0);
return (error);
}
static int
sec_build_common_s_desc(struct sec_softc *sc, struct sec_desc *desc,
struct sec_session *ses, struct cryptop *crp, struct cryptodesc *enc,
struct cryptodesc *mac, int buftype)
{
struct sec_hw_desc *hd = desc->sd_desc;
u_int eu, mode, hashlen;
int error;
if (mac->crd_len < enc->crd_len)
return (EINVAL);
if (mac->crd_skip + mac->crd_len != enc->crd_skip + enc->crd_len)
return (EINVAL);
error = sec_mdeu_config(mac, &eu, &mode, &hashlen);
if (error)
return (error);
hd->shd_desc_type = SEC_DT_HMAC_SNOOP;
hd->shd_eu_sel1 = eu;
hd->shd_mode1 = mode;
/* Pointer 0: HMAC Key */
error = sec_make_pointer_direct(sc, desc, 0, desc->sd_desc_paddr +
offsetof(struct sec_hw_desc, shd_mkey), ses->ss_mklen);
if (error)
return (error);
/* Pointer 1: HMAC-Only Data IN */
error = sec_make_pointer(sc, desc, 1, crp->crp_buf, mac->crd_skip,
mac->crd_len - enc->crd_len, buftype);
if (error)
return (error);
/* Pointer 2: Cipher Key */
error = sec_make_pointer_direct(sc, desc, 2, desc->sd_desc_paddr +
offsetof(struct sec_hw_desc, shd_key), ses->ss_klen);
if (error)
return (error);
/* Pointer 3: IV IN */
error = sec_make_pointer_direct(sc, desc, 3, desc->sd_desc_paddr +
offsetof(struct sec_hw_desc, shd_iv), ses->ss_ivlen);
if (error)
return (error);
/* Pointer 4: Data IN */
error = sec_make_pointer(sc, desc, 4, crp->crp_buf, enc->crd_skip,
enc->crd_len, buftype);
if (error)
return (error);
/* Pointer 5: Data OUT */
error = sec_make_pointer(sc, desc, 5, crp->crp_buf, enc->crd_skip,
enc->crd_len, buftype);
if (error)
return (error);
/* Pointer 6: HMAC OUT */
error = sec_make_pointer(sc, desc, 6, crp->crp_buf, mac->crd_inject,
hashlen, buftype);
return (error);
}
/* AESU */
static int
sec_aesu_newsession(struct sec_softc *sc, struct sec_session *ses,
struct cryptoini *enc, struct cryptoini *mac)
{
if (enc == NULL)
return (-1);
if (enc->cri_alg != CRYPTO_AES_CBC)
return (-1);
ses->ss_ivlen = AES_BLOCK_LEN;
return (0);
}
static int
sec_aesu_make_desc(struct sec_softc *sc, struct sec_session *ses,
struct sec_desc *desc, struct cryptop *crp, int buftype)
{
struct sec_hw_desc *hd = desc->sd_desc;
struct cryptodesc *enc, *mac;
int error;
error = sec_split_crp(crp, &enc, &mac);
if (error)
return (error);
if (!enc)
return (EINVAL);
hd->shd_eu_sel0 = SEC_EU_AESU;
hd->shd_mode0 = SEC_AESU_MODE_CBC;
if (enc->crd_alg != CRYPTO_AES_CBC)
return (EINVAL);
if (enc->crd_flags & CRD_F_ENCRYPT) {
hd->shd_mode0 |= SEC_AESU_MODE_ED;
hd->shd_dir = 0;
} else
hd->shd_dir = 1;
if (mac)
error = sec_build_common_s_desc(sc, desc, ses, crp, enc, mac,
buftype);
else
error = sec_build_common_ns_desc(sc, desc, ses, crp, enc,
buftype);
return (error);
}
/* DEU */
static int
sec_deu_newsession(struct sec_softc *sc, struct sec_session *ses,
struct cryptoini *enc, struct cryptoini *mac)
{
if (enc == NULL)
return (-1);
switch (enc->cri_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
break;
default:
return (-1);
}
ses->ss_ivlen = DES_BLOCK_LEN;
return (0);
}
static int
sec_deu_make_desc(struct sec_softc *sc, struct sec_session *ses,
struct sec_desc *desc, struct cryptop *crp, int buftype)
{
struct sec_hw_desc *hd = desc->sd_desc;
struct cryptodesc *enc, *mac;
int error;
error = sec_split_crp(crp, &enc, &mac);
if (error)
return (error);
if (!enc)
return (EINVAL);
hd->shd_eu_sel0 = SEC_EU_DEU;
hd->shd_mode0 = SEC_DEU_MODE_CBC;
switch (enc->crd_alg) {
case CRYPTO_3DES_CBC:
hd->shd_mode0 |= SEC_DEU_MODE_TS;
break;
case CRYPTO_DES_CBC:
break;
default:
return (EINVAL);
}
if (enc->crd_flags & CRD_F_ENCRYPT) {
hd->shd_mode0 |= SEC_DEU_MODE_ED;
hd->shd_dir = 0;
} else
hd->shd_dir = 1;
if (mac)
error = sec_build_common_s_desc(sc, desc, ses, crp, enc, mac,
buftype);
else
error = sec_build_common_ns_desc(sc, desc, ses, crp, enc,
buftype);
return (error);
}
/* MDEU */
static int
sec_mdeu_can_handle(u_int alg)
{
switch (alg) {
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
return (1);
default:
return (0);
}
}
static int
sec_mdeu_config(struct cryptodesc *crd, u_int *eu, u_int *mode, u_int *hashlen)
{
*mode = SEC_MDEU_MODE_PD | SEC_MDEU_MODE_INIT;
*eu = SEC_EU_NONE;
switch (crd->crd_alg) {
case CRYPTO_MD5_HMAC:
*mode |= SEC_MDEU_MODE_HMAC;
/* FALLTHROUGH */
case CRYPTO_MD5:
*eu = SEC_EU_MDEU_A;
*mode |= SEC_MDEU_MODE_MD5;
*hashlen = MD5_HASH_LEN;
break;
case CRYPTO_SHA1_HMAC:
*mode |= SEC_MDEU_MODE_HMAC;
/* FALLTHROUGH */
case CRYPTO_SHA1:
*eu = SEC_EU_MDEU_A;
*mode |= SEC_MDEU_MODE_SHA1;
*hashlen = SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
*mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA256;
*eu = SEC_EU_MDEU_A;
break;
case CRYPTO_SHA2_384_HMAC:
*mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA384;
*eu = SEC_EU_MDEU_B;
break;
case CRYPTO_SHA2_512_HMAC:
*mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA512;
*eu = SEC_EU_MDEU_B;
break;
default:
return (EINVAL);
}
if (*mode & SEC_MDEU_MODE_HMAC)
*hashlen = SEC_HMAC_HASH_LEN;
return (0);
}
static int
sec_mdeu_newsession(struct sec_softc *sc, struct sec_session *ses,
struct cryptoini *enc, struct cryptoini *mac)
{
if (mac && sec_mdeu_can_handle(mac->cri_alg))
return (0);
return (-1);
}
static int
sec_mdeu_make_desc(struct sec_softc *sc, struct sec_session *ses,
struct sec_desc *desc, struct cryptop *crp, int buftype)
{
struct cryptodesc *enc, *mac;
struct sec_hw_desc *hd = desc->sd_desc;
u_int eu, mode, hashlen;
int error;
error = sec_split_crp(crp, &enc, &mac);
if (error)
return (error);
if (enc)
return (EINVAL);
error = sec_mdeu_config(mac, &eu, &mode, &hashlen);
if (error)
return (error);
hd->shd_desc_type = SEC_DT_COMMON_NONSNOOP;
hd->shd_eu_sel0 = eu;
hd->shd_mode0 = mode;
hd->shd_eu_sel1 = SEC_EU_NONE;
hd->shd_mode1 = 0;
/* Pointer 0: NULL */
error = sec_make_pointer_direct(sc, desc, 0, 0, 0);
if (error)
return (error);
/* Pointer 1: Context In (Not used: NULL) */
error = sec_make_pointer_direct(sc, desc, 1, 0, 0);
if (error)
return (error);
/* Pointer 2: HMAC Key (or NULL, depending on digest type) */
if (hd->shd_mode0 & SEC_MDEU_MODE_HMAC)
error = sec_make_pointer_direct(sc, desc, 2,
desc->sd_desc_paddr + offsetof(struct sec_hw_desc,
shd_mkey), ses->ss_mklen);
else
error = sec_make_pointer_direct(sc, desc, 2, 0, 0);
if (error)
return (error);
/* Pointer 3: Input Data */
error = sec_make_pointer(sc, desc, 3, crp->crp_buf, mac->crd_skip,
mac->crd_len, buftype);
if (error)
return (error);
/* Pointer 4: NULL */
error = sec_make_pointer_direct(sc, desc, 4, 0, 0);
if (error)
return (error);
/* Pointer 5: Hash out */
error = sec_make_pointer(sc, desc, 5, crp->crp_buf,
mac->crd_inject, hashlen, buftype);
if (error)
return (error);
/* Pointer 6: NULL */
error = sec_make_pointer_direct(sc, desc, 6, 0, 0);
return (0);
}