Ariff Abdullah
bba4862c64
Last major commit and updates for RELENG_7:
- Rework the entire pcm_channel structure: * Remove rarely used link placeholder, instead, make each pcm_channel as head/link of each own/each other. Unlock - Lock sequence due to sleep malloc has been reduced. * Implement "busy" queue which will contain list of busy/active channels. This greatly reduce locking contention for example while servicing interrupt for hardware with many channels or when virtual channels reach its 256 peak channels. - So I heard you like v chan ... O RLY? Welcome to Virtual **Record** Channels (vrec, rec vchans, vchans for recording, Rec-Chan, you decide), the ultimate solutions for your nagging O_RDWR full-duplex wannabe (note: flash plugins) monopolizing single record channel causing EBUSY. Vrec works exactly like Vchans (or, should I rename it to "Vplay" :) , except that it operates on the opposite direction (recording). Up to 256 vrecs (like vchans) are possible. Notes: * Relocate dev.pcm.%d.{vchans,vchanformat,vchanrate} to each of its respective node/direction: dev.pcm.%d.play.* for "play" (cdev = dsp%d.vp%d) dev.pcm.%d.rec.* for "record" (cdev = dsp%d.vr%d) * Don't expect that it will magically give you ability to split "recording source" (eg: 1 channel for cdrom, 1 channel for mic, etc). Just admit that you only have a *single* recording source / channel. Please bug your hardware vendor instead :) - Bump maxautovchans from 4 to 16. For a full-fledged multimedia desktop/workstation with too many soundservers installed (esound, artsd, jackd, pulse/polypaudio, ding-dong pling plong mudkip fuh fuh, etc), 4 seems inadequate. There will be no memory penalty here, since virtual channels are allocate only by demand. - Nuke/Rework the entire statically created cdev entries. Everything is clonable through snd own clone manager which designed to withstand many kind of abusive devfs droids such as: * while : ; do /bin/test -e /dev/dsp ; done * jot 16777216 0 | while read x ; do ls /dev/dsp0.$x ; done * hundreds (could be thousands) concurrent threads/process opening "/dev/dsp" (previously, this might result EBUSY even with just 3 contesting threads/procs). o Reusable clone objects (instead of creating new one like there's no tomorrow) after certain expiration deadline. The clone allocator will decide whether to reuse, share, or creating new clone. o Automatic garbage collector. - Dynamic unit magic allocator. Maximum attached soundcards can be tuned using tunable "hw.snd.maxunit" (Default to 512). Minimum is 16, and maximum is 2048. - ..other fixes, mostly related to concurrency issues. joel@ will do the manpage updates on sound(4). Have fun.
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``world'' target should only be used in cases where the source tree has not changed from the currently running version. See: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html for more information, including setting make(1) variables. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. rescue Build system for statically linked /rescue utilities. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
Languages
C
60.1%
C++
26.1%
Roff
4.9%
Shell
3%
Assembly
1.7%
Other
3.7%