freebsd-nq/sys/x86/xen/hvm.c
Justin T. Gibbs 5fdd34ee20 Formalize the concept of virtual CPU ids by adding a per-cpu vcpu_id
field.  Perform vcpu enumeration for Xen PV and HVM environments
and convert all Xen drivers to use vcpu_id instead of a hard coded
assumption of the mapping algorithm (acpi or apic ID) in use.

Submitted by:	Roger Pau Monné
Sponsored by:	Citrix Systems R&D
Reviewed by:	gibbs
Approved by:	re (blanket Xen)

amd64/include/pcpu.h:
i386/include/pcpu.h:
	Add vcpu_id to the amd64 and i386 pcpu structures.

dev/xen/timer/timer.c
x86/xen/xen_intr.c
	Use new vcpu_id instead of assuming acpi_id == vcpu_id.

i386/xen/mp_machdep.c:
i386/xen/mptable.c
x86/xen/hvm.c:
	Perform Xen HVM and Xen full PV vcpu_id mapping.

x86/xen/hvm.c:
x86/acpica/madt.c
	Change SYSINIT ordering of acpi CPU enumeration so that it
	is guaranteed to be available at the time of Xen HVM vcpu
	id mapping.
2013-10-05 23:11:01 +00:00

799 lines
18 KiB
C

/*
* Copyright (c) 2008, 2013 Citrix Systems, Inc.
* Copyright (c) 2012 Spectra Logic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/pci/pcivar.h>
#include <machine/cpufunc.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include <x86/apicreg.h>
#include <xen/xen-os.h>
#include <xen/features.h>
#include <xen/gnttab.h>
#include <xen/hypervisor.h>
#include <xen/hvm.h>
#include <xen/xen_intr.h>
#include <xen/interface/hvm/params.h>
#include <xen/interface/vcpu.h>
/*--------------------------- Forward Declarations ---------------------------*/
#ifdef SMP
static driver_filter_t xen_smp_rendezvous_action;
static driver_filter_t xen_invltlb;
static driver_filter_t xen_invlpg;
static driver_filter_t xen_invlrng;
static driver_filter_t xen_invlcache;
#ifdef __i386__
static driver_filter_t xen_lazypmap;
#endif
static driver_filter_t xen_ipi_bitmap_handler;
static driver_filter_t xen_cpustop_handler;
static driver_filter_t xen_cpususpend_handler;
static driver_filter_t xen_cpustophard_handler;
#endif
static void xen_ipi_vectored(u_int vector, int dest);
static void xen_hvm_cpu_resume(void);
static void xen_hvm_cpu_init(void);
/*---------------------------- Extern Declarations ---------------------------*/
/* Variables used by mp_machdep to perform the MMU related IPIs */
extern volatile int smp_tlb_wait;
extern vm_offset_t smp_tlb_addr2;
#ifdef __i386__
extern vm_offset_t smp_tlb_addr1;
#else
extern struct invpcid_descr smp_tlb_invpcid;
extern uint64_t pcid_cr3;
extern int invpcid_works;
extern int pmap_pcid_enabled;
extern pmap_t smp_tlb_pmap;
#endif
#ifdef __i386__
extern void pmap_lazyfix_action(void);
#endif
/* Variables used by mp_machdep to perform the bitmap IPI */
extern volatile u_int cpu_ipi_pending[MAXCPU];
/*---------------------------------- Macros ----------------------------------*/
#define IPI_TO_IDX(ipi) ((ipi) - APIC_IPI_INTS)
/*-------------------------------- Local Types -------------------------------*/
enum xen_hvm_init_type {
XEN_HVM_INIT_COLD,
XEN_HVM_INIT_CANCELLED_SUSPEND,
XEN_HVM_INIT_RESUME
};
struct xen_ipi_handler
{
driver_filter_t *filter;
const char *description;
};
/*-------------------------------- Global Data -------------------------------*/
enum xen_domain_type xen_domain_type = XEN_NATIVE;
struct cpu_ops xen_hvm_cpu_ops = {
.ipi_vectored = lapic_ipi_vectored,
.cpu_init = xen_hvm_cpu_init,
.cpu_resume = xen_hvm_cpu_resume
};
static MALLOC_DEFINE(M_XENHVM, "xen_hvm", "Xen HVM PV Support");
#ifdef SMP
static struct xen_ipi_handler xen_ipis[] =
{
[IPI_TO_IDX(IPI_RENDEZVOUS)] = { xen_smp_rendezvous_action, "r" },
[IPI_TO_IDX(IPI_INVLTLB)] = { xen_invltlb, "itlb"},
[IPI_TO_IDX(IPI_INVLPG)] = { xen_invlpg, "ipg" },
[IPI_TO_IDX(IPI_INVLRNG)] = { xen_invlrng, "irg" },
[IPI_TO_IDX(IPI_INVLCACHE)] = { xen_invlcache, "ic" },
#ifdef __i386__
[IPI_TO_IDX(IPI_LAZYPMAP)] = { xen_lazypmap, "lp" },
#endif
[IPI_TO_IDX(IPI_BITMAP_VECTOR)] = { xen_ipi_bitmap_handler, "b" },
[IPI_TO_IDX(IPI_STOP)] = { xen_cpustop_handler, "st" },
[IPI_TO_IDX(IPI_SUSPEND)] = { xen_cpususpend_handler, "sp" },
[IPI_TO_IDX(IPI_STOP_HARD)] = { xen_cpustophard_handler, "sth" },
};
#endif
/**
* If non-zero, the hypervisor has been configured to use a direct
* IDT event callback for interrupt injection.
*/
int xen_vector_callback_enabled;
/*------------------------------- Per-CPU Data -------------------------------*/
DPCPU_DEFINE(struct vcpu_info, vcpu_local_info);
DPCPU_DEFINE(struct vcpu_info *, vcpu_info);
#ifdef SMP
DPCPU_DEFINE(xen_intr_handle_t, ipi_handle[nitems(xen_ipis)]);
#endif
/*------------------ Hypervisor Access Shared Memory Regions -----------------*/
/** Hypercall table accessed via HYPERVISOR_*_op() methods. */
char *hypercall_stubs;
shared_info_t *HYPERVISOR_shared_info;
#ifdef SMP
/*---------------------------- XEN PV IPI Handlers ---------------------------*/
/*
* This are C clones of the ASM functions found in apic_vector.s
*/
static int
xen_ipi_bitmap_handler(void *arg)
{
struct trapframe *frame;
frame = arg;
ipi_bitmap_handler(*frame);
return (FILTER_HANDLED);
}
static int
xen_smp_rendezvous_action(void *arg)
{
#ifdef COUNT_IPIS
int cpu;
cpu = PCPU_GET(cpuid);
(*ipi_rendezvous_counts[cpu])++;
#endif /* COUNT_IPIS */
smp_rendezvous_action();
return (FILTER_HANDLED);
}
static int
xen_invltlb(void *arg)
{
#if defined(COUNT_XINVLTLB_HITS) || defined(COUNT_IPIS)
int cpu;
cpu = PCPU_GET(cpuid);
#ifdef COUNT_XINVLTLB_HITS
xhits_gbl[cpu]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invltlb_counts[cpu])++;
#endif /* COUNT_IPIS */
#endif /* COUNT_XINVLTLB_HITS || COUNT_IPIS */
invltlb();
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
#ifdef __amd64__
static int
xen_invltlb_pcid(void *arg)
{
uint64_t cr3;
#if defined(COUNT_XINVLTLB_HITS) || defined(COUNT_IPIS)
int cpu;
cpu = PCPU_GET(cpuid);
#ifdef COUNT_XINVLTLB_HITS
xhits_gbl[cpu]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invltlb_counts[cpu])++;
#endif /* COUNT_IPIS */
#endif /* COUNT_XINVLTLB_HITS || COUNT_IPIS */
cr3 = rcr3();
if (smp_tlb_invpcid.pcid != (uint64_t)-1 &&
smp_tlb_invpcid.pcid != 0) {
if (invpcid_works) {
invpcid(&smp_tlb_invpcid, INVPCID_CTX);
} else {
/* Otherwise reload %cr3 twice. */
if (cr3 != pcid_cr3) {
load_cr3(pcid_cr3);
cr3 |= CR3_PCID_SAVE;
}
load_cr3(cr3);
}
} else {
invltlb_globpcid();
}
if (smp_tlb_pmap != NULL)
CPU_CLR_ATOMIC(PCPU_GET(cpuid), &smp_tlb_pmap->pm_save);
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
#endif
static int
xen_invlpg(void *arg)
{
#if defined(COUNT_XINVLTLB_HITS) || defined(COUNT_IPIS)
int cpu;
cpu = PCPU_GET(cpuid);
#ifdef COUNT_XINVLTLB_HITS
xhits_pg[cpu]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invlpg_counts[cpu])++;
#endif /* COUNT_IPIS */
#endif /* COUNT_XINVLTLB_HITS || COUNT_IPIS */
#ifdef __i386__
invlpg(smp_tlb_addr1);
#else
invlpg(smp_tlb_invpcid.addr);
#endif
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
#ifdef __amd64__
static int
xen_invlpg_pcid(void *arg)
{
#if defined(COUNT_XINVLTLB_HITS) || defined(COUNT_IPIS)
int cpu;
cpu = PCPU_GET(cpuid);
#ifdef COUNT_XINVLTLB_HITS
xhits_pg[cpu]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invlpg_counts[cpu])++;
#endif /* COUNT_IPIS */
#endif /* COUNT_XINVLTLB_HITS || COUNT_IPIS */
if (invpcid_works) {
invpcid(&smp_tlb_invpcid, INVPCID_ADDR);
} else if (smp_tlb_invpcid.pcid == 0) {
invlpg(smp_tlb_invpcid.addr);
} else if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
invltlb_globpcid();
} else {
uint64_t cr3;
/*
* PCID supported, but INVPCID is not.
* Temporarily switch to the target address
* space and do INVLPG.
*/
cr3 = rcr3();
if (cr3 != pcid_cr3)
load_cr3(pcid_cr3 | CR3_PCID_SAVE);
invlpg(smp_tlb_invpcid.addr);
load_cr3(cr3 | CR3_PCID_SAVE);
}
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
#endif
static inline void
invlpg_range(vm_offset_t start, vm_offset_t end)
{
do {
invlpg(start);
start += PAGE_SIZE;
} while (start < end);
}
static int
xen_invlrng(void *arg)
{
vm_offset_t addr;
#if defined(COUNT_XINVLTLB_HITS) || defined(COUNT_IPIS)
int cpu;
cpu = PCPU_GET(cpuid);
#ifdef COUNT_XINVLTLB_HITS
xhits_rng[cpu]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invlrng_counts[cpu])++;
#endif /* COUNT_IPIS */
#endif /* COUNT_XINVLTLB_HITS || COUNT_IPIS */
#ifdef __i386__
addr = smp_tlb_addr1;
invlpg_range(addr, smp_tlb_addr2);
#else
addr = smp_tlb_invpcid.addr;
if (pmap_pcid_enabled) {
if (invpcid_works) {
struct invpcid_descr d;
d = smp_tlb_invpcid;
do {
invpcid(&d, INVPCID_ADDR);
d.addr += PAGE_SIZE;
} while (d.addr < smp_tlb_addr2);
} else if (smp_tlb_invpcid.pcid == 0) {
/*
* kernel pmap - use invlpg to invalidate
* global mapping.
*/
invlpg_range(addr, smp_tlb_addr2);
} else if (smp_tlb_invpcid.pcid != (uint64_t)-1) {
invltlb_globpcid();
if (smp_tlb_pmap != NULL) {
CPU_CLR_ATOMIC(PCPU_GET(cpuid),
&smp_tlb_pmap->pm_save);
}
} else {
uint64_t cr3;
cr3 = rcr3();
if (cr3 != pcid_cr3)
load_cr3(pcid_cr3 | CR3_PCID_SAVE);
invlpg_range(addr, smp_tlb_addr2);
load_cr3(cr3 | CR3_PCID_SAVE);
}
} else {
invlpg_range(addr, smp_tlb_addr2);
}
#endif
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
static int
xen_invlcache(void *arg)
{
#ifdef COUNT_IPIS
int cpu = PCPU_GET(cpuid);
cpu = PCPU_GET(cpuid);
(*ipi_invlcache_counts[cpu])++;
#endif /* COUNT_IPIS */
wbinvd();
atomic_add_int(&smp_tlb_wait, 1);
return (FILTER_HANDLED);
}
#ifdef __i386__
static int
xen_lazypmap(void *arg)
{
pmap_lazyfix_action();
return (FILTER_HANDLED);
}
#endif
static int
xen_cpustop_handler(void *arg)
{
cpustop_handler();
return (FILTER_HANDLED);
}
static int
xen_cpususpend_handler(void *arg)
{
cpususpend_handler();
return (FILTER_HANDLED);
}
static int
xen_cpustophard_handler(void *arg)
{
ipi_nmi_handler();
return (FILTER_HANDLED);
}
/* Xen PV IPI sender */
static void
xen_ipi_vectored(u_int vector, int dest)
{
xen_intr_handle_t *ipi_handle;
int ipi_idx, to_cpu, self;
ipi_idx = IPI_TO_IDX(vector);
if (ipi_idx > nitems(xen_ipis))
panic("IPI out of range");
switch(dest) {
case APIC_IPI_DEST_SELF:
ipi_handle = DPCPU_GET(ipi_handle);
xen_intr_signal(ipi_handle[ipi_idx]);
break;
case APIC_IPI_DEST_ALL:
CPU_FOREACH(to_cpu) {
ipi_handle = DPCPU_ID_GET(to_cpu, ipi_handle);
xen_intr_signal(ipi_handle[ipi_idx]);
}
break;
case APIC_IPI_DEST_OTHERS:
self = PCPU_GET(cpuid);
CPU_FOREACH(to_cpu) {
if (to_cpu != self) {
ipi_handle = DPCPU_ID_GET(to_cpu, ipi_handle);
xen_intr_signal(ipi_handle[ipi_idx]);
}
}
break;
default:
to_cpu = apic_cpuid(dest);
ipi_handle = DPCPU_ID_GET(to_cpu, ipi_handle);
xen_intr_signal(ipi_handle[ipi_idx]);
break;
}
}
/* XEN diverged cpu operations */
static void
xen_hvm_cpu_resume(void)
{
u_int cpuid = PCPU_GET(cpuid);
/*
* Reset pending bitmap IPIs, because Xen doesn't preserve pending
* event channels on migration.
*/
cpu_ipi_pending[cpuid] = 0;
/* register vcpu_info area */
xen_hvm_cpu_init();
}
static void
xen_cpu_ipi_init(int cpu)
{
xen_intr_handle_t *ipi_handle;
const struct xen_ipi_handler *ipi;
device_t dev;
int idx, rc;
ipi_handle = DPCPU_ID_GET(cpu, ipi_handle);
dev = pcpu_find(cpu)->pc_device;
KASSERT((dev != NULL), ("NULL pcpu device_t"));
for (ipi = xen_ipis, idx = 0; idx < nitems(xen_ipis); ipi++, idx++) {
if (ipi->filter == NULL) {
ipi_handle[idx] = NULL;
continue;
}
rc = xen_intr_alloc_and_bind_ipi(dev, cpu, ipi->filter,
INTR_TYPE_TTY, &ipi_handle[idx]);
if (rc != 0)
panic("Unable to allocate a XEN IPI port");
xen_intr_describe(ipi_handle[idx], "%s", ipi->description);
}
}
static void
xen_setup_cpus(void)
{
int i;
if (!xen_hvm_domain() || !xen_vector_callback_enabled)
return;
#ifdef __amd64__
if (pmap_pcid_enabled) {
xen_ipis[IPI_TO_IDX(IPI_INVLTLB)].filter = xen_invltlb_pcid;
xen_ipis[IPI_TO_IDX(IPI_INVLPG)].filter = xen_invlpg_pcid;
}
#endif
CPU_FOREACH(i)
xen_cpu_ipi_init(i);
/* Set the xen pv ipi ops to replace the native ones */
cpu_ops.ipi_vectored = xen_ipi_vectored;
}
#endif
/*---------------------- XEN Hypervisor Probe and Setup ----------------------*/
static uint32_t
xen_hvm_cpuid_base(void)
{
uint32_t base, regs[4];
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
do_cpuid(base, regs);
if (!memcmp("XenVMMXenVMM", &regs[1], 12)
&& (regs[0] - base) >= 2)
return (base);
}
return (0);
}
/*
* Allocate and fill in the hypcall page.
*/
static int
xen_hvm_init_hypercall_stubs(void)
{
uint32_t base, regs[4];
int i;
base = xen_hvm_cpuid_base();
if (base == 0)
return (ENXIO);
if (hypercall_stubs == NULL) {
do_cpuid(base + 1, regs);
printf("XEN: Hypervisor version %d.%d detected.\n",
regs[0] >> 16, regs[0] & 0xffff);
}
/*
* Find the hypercall pages.
*/
do_cpuid(base + 2, regs);
if (hypercall_stubs == NULL) {
size_t call_region_size;
call_region_size = regs[0] * PAGE_SIZE;
hypercall_stubs = malloc(call_region_size, M_XENHVM, M_NOWAIT);
if (hypercall_stubs == NULL)
panic("Unable to allocate Xen hypercall region");
}
for (i = 0; i < regs[0]; i++)
wrmsr(regs[1], vtophys(hypercall_stubs + i * PAGE_SIZE) + i);
return (0);
}
static void
xen_hvm_init_shared_info_page(void)
{
struct xen_add_to_physmap xatp;
if (HYPERVISOR_shared_info == NULL) {
HYPERVISOR_shared_info = malloc(PAGE_SIZE, M_XENHVM, M_NOWAIT);
if (HYPERVISOR_shared_info == NULL)
panic("Unable to allocate Xen shared info page");
}
xatp.domid = DOMID_SELF;
xatp.idx = 0;
xatp.space = XENMAPSPACE_shared_info;
xatp.gpfn = vtophys(HYPERVISOR_shared_info) >> PAGE_SHIFT;
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
panic("HYPERVISOR_memory_op failed");
}
/*
* Tell the hypervisor how to contact us for event channel callbacks.
*/
void
xen_hvm_set_callback(device_t dev)
{
struct xen_hvm_param xhp;
int irq;
if (xen_vector_callback_enabled)
return;
xhp.domid = DOMID_SELF;
xhp.index = HVM_PARAM_CALLBACK_IRQ;
if (xen_feature(XENFEAT_hvm_callback_vector) != 0) {
int error;
xhp.value = HVM_CALLBACK_VECTOR(IDT_EVTCHN);
error = HYPERVISOR_hvm_op(HVMOP_set_param, &xhp);
if (error == 0) {
xen_vector_callback_enabled = 1;
return;
}
printf("Xen HVM callback vector registration failed (%d). "
"Falling back to emulated device interrupt\n", error);
}
xen_vector_callback_enabled = 0;
if (dev == NULL) {
/*
* Called from early boot or resume.
* xenpci will invoke us again later.
*/
return;
}
irq = pci_get_irq(dev);
if (irq < 16) {
xhp.value = HVM_CALLBACK_GSI(irq);
} else {
u_int slot;
u_int pin;
slot = pci_get_slot(dev);
pin = pci_get_intpin(dev) - 1;
xhp.value = HVM_CALLBACK_PCI_INTX(slot, pin);
}
if (HYPERVISOR_hvm_op(HVMOP_set_param, &xhp) != 0)
panic("Can't set evtchn callback");
}
#define XEN_MAGIC_IOPORT 0x10
enum {
XMI_MAGIC = 0x49d2,
XMI_UNPLUG_IDE_DISKS = 0x01,
XMI_UNPLUG_NICS = 0x02,
XMI_UNPLUG_IDE_EXCEPT_PRI_MASTER = 0x04
};
static void
xen_hvm_disable_emulated_devices(void)
{
if (inw(XEN_MAGIC_IOPORT) != XMI_MAGIC)
return;
if (bootverbose)
printf("XEN: Disabling emulated block and network devices\n");
outw(XEN_MAGIC_IOPORT, XMI_UNPLUG_IDE_DISKS|XMI_UNPLUG_NICS);
}
static void
xen_hvm_init(enum xen_hvm_init_type init_type)
{
int error;
int i;
if (init_type == XEN_HVM_INIT_CANCELLED_SUSPEND)
return;
error = xen_hvm_init_hypercall_stubs();
switch (init_type) {
case XEN_HVM_INIT_COLD:
if (error != 0)
return;
setup_xen_features();
cpu_ops = xen_hvm_cpu_ops;
vm_guest = VM_GUEST_XEN;
break;
case XEN_HVM_INIT_RESUME:
if (error != 0)
panic("Unable to init Xen hypercall stubs on resume");
/* Clear stale vcpu_info. */
CPU_FOREACH(i)
DPCPU_ID_SET(i, vcpu_info, NULL);
break;
default:
panic("Unsupported HVM initialization type");
}
xen_vector_callback_enabled = 0;
xen_domain_type = XEN_HVM_DOMAIN;
xen_hvm_init_shared_info_page();
xen_hvm_set_callback(NULL);
xen_hvm_disable_emulated_devices();
}
void
xen_hvm_suspend(void)
{
}
void
xen_hvm_resume(bool suspend_cancelled)
{
xen_hvm_init(suspend_cancelled ?
XEN_HVM_INIT_CANCELLED_SUSPEND : XEN_HVM_INIT_RESUME);
/* Register vcpu_info area for CPU#0. */
xen_hvm_cpu_init();
}
static void
xen_hvm_sysinit(void *arg __unused)
{
xen_hvm_init(XEN_HVM_INIT_COLD);
}
static void
xen_set_vcpu_id(void)
{
struct pcpu *pc;
int i;
/* Set vcpu_id to acpi_id */
CPU_FOREACH(i) {
pc = pcpu_find(i);
pc->pc_vcpu_id = pc->pc_acpi_id;
if (bootverbose)
printf("XEN: CPU %u has VCPU ID %u\n",
i, pc->pc_vcpu_id);
}
}
static void
xen_hvm_cpu_init(void)
{
struct vcpu_register_vcpu_info info;
struct vcpu_info *vcpu_info;
int cpu, rc;
if (!xen_domain())
return;
if (DPCPU_GET(vcpu_info) != NULL) {
/*
* vcpu_info is already set. We're resuming
* from a failed migration and our pre-suspend
* configuration is still valid.
*/
return;
}
vcpu_info = DPCPU_PTR(vcpu_local_info);
cpu = PCPU_GET(vcpu_id);
info.mfn = vtophys(vcpu_info) >> PAGE_SHIFT;
info.offset = vtophys(vcpu_info) - trunc_page(vtophys(vcpu_info));
rc = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
if (rc != 0)
DPCPU_SET(vcpu_info, &HYPERVISOR_shared_info->vcpu_info[cpu]);
else
DPCPU_SET(vcpu_info, vcpu_info);
}
SYSINIT(xen_hvm_init, SI_SUB_HYPERVISOR, SI_ORDER_FIRST, xen_hvm_sysinit, NULL);
#ifdef SMP
SYSINIT(xen_setup_cpus, SI_SUB_SMP, SI_ORDER_FIRST, xen_setup_cpus, NULL);
#endif
SYSINIT(xen_hvm_cpu_init, SI_SUB_INTR, SI_ORDER_FIRST, xen_hvm_cpu_init, NULL);
SYSINIT(xen_set_vcpu_id, SI_SUB_CPU, SI_ORDER_ANY, xen_set_vcpu_id, NULL);