freebsd-nq/sys/net/if_vlan.c
Sam Leffler 5016de40e1 backout the switch to use a zone for vlan tags; this requires
vlans be present if any driver with h/w vlan tagging is configured
2004-01-03 03:33:39 +00:00

815 lines
20 KiB
C

/*
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
* Might be extended some day to also handle IEEE 802.1p priority
* tagging. This is sort of sneaky in the implementation, since
* we need to pretend to be enough of an Ethernet implementation
* to make arp work. The way we do this is by telling everyone
* that we are an Ethernet, and then catch the packets that
* ether_output() left on our output queue when it calls
* if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*/
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#define VLANNAME "vlan"
struct vlan_mc_entry {
struct ether_addr mc_addr;
SLIST_ENTRY(vlan_mc_entry) mc_entries;
};
struct ifvlan {
struct arpcom ifv_ac; /* make this an interface */
struct ifnet *ifv_p; /* parent inteface of this vlan */
struct ifv_linkmib {
int ifvm_parent;
int ifvm_encaplen; /* encapsulation length */
int ifvm_mtufudge; /* MTU fudged by this much */
int ifvm_mintu; /* min transmission unit */
u_int16_t ifvm_proto; /* encapsulation ethertype */
u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
} ifv_mib;
SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
LIST_ENTRY(ifvlan) ifv_list;
int ifv_flags;
};
#define ifv_if ifv_ac.ac_if
#define ifv_tag ifv_mib.ifvm_tag
#define ifv_encaplen ifv_mib.ifvm_encaplen
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
#define ifv_mintu ifv_mib.ifvm_mintu
#define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
SYSCTL_DECL(_net_link);
SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
static LIST_HEAD(, ifvlan) ifv_list;
/*
* Locking: one lock is used to guard both the ifv_list and modification
* to vlan data structures. We are rather conservative here; probably
* more than necessary.
*/
static struct mtx ifv_mtx;
#define VLAN_LOCK_INIT() mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
#define VLAN_LOCK_DESTROY() mtx_destroy(&ifv_mtx)
#define VLAN_LOCK_ASSERT() mtx_assert(&ifv_mtx, MA_OWNED)
#define VLAN_LOCK() mtx_lock(&ifv_mtx)
#define VLAN_UNLOCK() mtx_unlock(&ifv_mtx)
static int vlan_clone_create(struct if_clone *, int);
static void vlan_clone_destroy(struct ifnet *);
static void vlan_start(struct ifnet *ifp);
static void vlan_ifinit(void *foo);
static void vlan_input(struct ifnet *ifp, struct mbuf *m);
static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
static int vlan_setmulti(struct ifnet *ifp);
static int vlan_unconfig(struct ifnet *ifp);
static int vlan_config(struct ifvlan *ifv, struct ifnet *p);
struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
/*
* Program our multicast filter. What we're actually doing is
* programming the multicast filter of the parent. This has the
* side effect of causing the parent interface to receive multicast
* traffic that it doesn't really want, which ends up being discarded
* later by the upper protocol layers. Unfortunately, there's no way
* to avoid this: there really is only one physical interface.
*/
static int
vlan_setmulti(struct ifnet *ifp)
{
struct ifnet *ifp_p;
struct ifmultiaddr *ifma, *rifma = NULL;
struct ifvlan *sc;
struct vlan_mc_entry *mc = NULL;
struct sockaddr_dl sdl;
int error;
/* Find the parent. */
sc = ifp->if_softc;
ifp_p = sc->ifv_p;
/*
* If we don't have a parent, just remember the membership for
* when we do.
*/
if (ifp_p == NULL)
return(0);
bzero((char *)&sdl, sizeof sdl);
sdl.sdl_len = sizeof sdl;
sdl.sdl_family = AF_LINK;
sdl.sdl_index = ifp_p->if_index;
sdl.sdl_type = IFT_ETHER;
sdl.sdl_alen = ETHER_ADDR_LEN;
/* First, remove any existing filter entries. */
while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
mc = SLIST_FIRST(&sc->vlan_mc_listhead);
bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
if (error)
return(error);
SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
free(mc, M_VLAN);
}
/* Now program new ones. */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
LLADDR(&sdl), ETHER_ADDR_LEN);
error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
if (error)
return(error);
}
return(0);
}
/*
* VLAN support can be loaded as a module. The only place in the
* system that's intimately aware of this is ether_input. We hook
* into this code through vlan_input_p which is defined there and
* set here. Noone else in the system should be aware of this so
* we use an explicit reference here.
*
* NB: Noone should ever need to check if vlan_input_p is null or
* not. This is because interfaces have a count of the number
* of active vlans (if_nvlans) and this should never be bumped
* except by vlan_config--which is in this module so therefore
* the module must be loaded and vlan_input_p must be non-NULL.
*/
extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
static int
vlan_modevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
LIST_INIT(&ifv_list);
VLAN_LOCK_INIT();
vlan_input_p = vlan_input;
if_clone_attach(&vlan_cloner);
break;
case MOD_UNLOAD:
if_clone_detach(&vlan_cloner);
vlan_input_p = NULL;
while (!LIST_EMPTY(&ifv_list))
vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
VLAN_LOCK_DESTROY();
break;
}
return 0;
}
static moduledata_t vlan_mod = {
"if_vlan",
vlan_modevent,
0
};
DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
static int
vlan_clone_create(struct if_clone *ifc, int unit)
{
struct ifvlan *ifv;
struct ifnet *ifp;
ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
ifp = &ifv->ifv_if;
SLIST_INIT(&ifv->vlan_mc_listhead);
ifp->if_softc = ifv;
if_initname(ifp, ifc->ifc_name, unit);
/* NB: flags are not set here */
ifp->if_linkmib = &ifv->ifv_mib;
ifp->if_linkmiblen = sizeof ifv->ifv_mib;
/* NB: mtu is not set here */
ifp->if_init = vlan_ifinit;
ifp->if_start = vlan_start;
ifp->if_ioctl = vlan_ioctl;
ifp->if_snd.ifq_maxlen = ifqmaxlen;
ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
/* Now undo some of the damage... */
ifp->if_baudrate = 0;
ifp->if_type = IFT_L2VLAN;
ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
VLAN_LOCK();
LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
VLAN_UNLOCK();
return (0);
}
static void
vlan_clone_destroy(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
VLAN_LOCK();
LIST_REMOVE(ifv, ifv_list);
vlan_unconfig(ifp);
VLAN_UNLOCK();
ether_ifdetach(ifp);
free(ifv, M_VLAN);
}
static void
vlan_ifinit(void *foo)
{
return;
}
static void
vlan_start(struct ifnet *ifp)
{
struct ifvlan *ifv;
struct ifnet *p;
struct ether_vlan_header *evl;
struct mbuf *m;
ifv = ifp->if_softc;
p = ifv->ifv_p;
ifp->if_flags |= IFF_OACTIVE;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
BPF_MTAP(ifp, m);
/*
* Do not run parent's if_start() if the parent is not up,
* or parent's driver will cause a system crash.
*/
if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING)) {
m_freem(m);
ifp->if_collisions++;
continue;
}
/*
* If underlying interface can do VLAN tag insertion itself,
* just pass the packet along. However, we need some way to
* tell the interface where the packet came from so that it
* knows how to find the VLAN tag to use, so we attach a
* packet tag that holds it.
*/
if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) {
struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
MTAG_VLAN_TAG,
sizeof (u_int),
M_NOWAIT);
if (mtag == NULL) {
ifp->if_oerrors++;
m_freem(m);
continue;
}
*(u_int*)(mtag+1) = ifv->ifv_tag;
m_tag_prepend(m, mtag);
} else {
M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
if (m == NULL) {
if_printf(ifp, "unable to prepend VLAN header");
ifp->if_oerrors++;
continue;
}
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
if (m->m_len < sizeof(*evl)) {
m = m_pullup(m, sizeof(*evl));
if (m == NULL) {
if_printf(ifp,
"cannot pullup VLAN header");
ifp->if_oerrors++;
continue;
}
}
/*
* Transform the Ethernet header into an Ethernet header
* with 802.1Q encapsulation.
*/
bcopy(mtod(m, char *) + ifv->ifv_encaplen,
mtod(m, char *), ETHER_HDR_LEN);
evl = mtod(m, struct ether_vlan_header *);
evl->evl_proto = evl->evl_encap_proto;
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
evl->evl_tag = htons(ifv->ifv_tag);
#ifdef DEBUG
printf("vlan_start: %*D\n", (int)sizeof *evl,
(unsigned char *)evl, ":");
#endif
}
/*
* Send it, precisely as ether_output() would have.
* We are already running at splimp.
*/
if (IF_HANDOFF(&p->if_snd, m, p))
ifp->if_opackets++;
else
ifp->if_oerrors++;
}
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
struct ether_vlan_header *evl;
struct ifvlan *ifv;
struct m_tag *mtag;
u_int tag;
mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
if (mtag != NULL) {
/*
* Packet is tagged, m contains a normal
* Ethernet frame; the tag is stored out-of-band.
*/
tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
m_tag_delete(m, mtag);
} else {
switch (ifp->if_type) {
case IFT_ETHER:
if (m->m_len < sizeof (*evl) &&
(m = m_pullup(m, sizeof (*evl))) == NULL) {
if_printf(ifp, "cannot pullup VLAN header\n");
return;
}
evl = mtod(m, struct ether_vlan_header *);
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
("vlan_input: bad encapsulated protocols (%u)",
ntohs(evl->evl_encap_proto)));
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
/*
* Restore the original ethertype. We'll remove
* the encapsulation after we've found the vlan
* interface corresponding to the tag.
*/
evl->evl_encap_proto = evl->evl_proto;
break;
default:
tag = (u_int) -1;
#ifdef DIAGNOSTIC
panic("vlan_input: unsupported if type %u", ifp->if_type);
#endif
break;
}
}
VLAN_LOCK();
LIST_FOREACH(ifv, &ifv_list, ifv_list)
if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
break;
if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
VLAN_UNLOCK();
m_freem(m);
ifp->if_noproto++;
return;
}
VLAN_UNLOCK(); /* XXX extend below? */
if (mtag == NULL) {
/*
* Packet had an in-line encapsulation header;
* remove it. The original header has already
* been fixed up above.
*/
bcopy(mtod(m, caddr_t),
mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
}
m->m_pkthdr.rcvif = &ifv->ifv_if;
ifv->ifv_if.if_ipackets++;
/* Pass it back through the parent's input routine. */
(*ifp->if_input)(&ifv->ifv_if, m);
}
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p)
{
struct ifaddr *ifa1, *ifa2;
struct sockaddr_dl *sdl1, *sdl2;
VLAN_LOCK_ASSERT();
if (p->if_data.ifi_type != IFT_ETHER)
return EPROTONOSUPPORT;
if (ifv->ifv_p)
return EBUSY;
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
ifv->ifv_mintu = ETHERMIN;
ifv->ifv_flags = 0;
/*
* If the parent supports the VLAN_MTU capability,
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
* enable it.
*/
p->if_nvlans++;
if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) != 0) {
/*
* Enable Tx/Rx of VLAN-sized frames.
*/
p->if_capenable |= IFCAP_VLAN_MTU;
if (p->if_flags & IFF_UP) {
struct ifreq ifr;
int error;
ifr.ifr_flags = p->if_flags;
error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
(caddr_t) &ifr);
if (error) {
p->if_nvlans--;
if (p->if_nvlans == 0)
p->if_capenable &= ~IFCAP_VLAN_MTU;
return (error);
}
}
ifv->ifv_mtufudge = 0;
} else if ((p->if_capabilities & IFCAP_VLAN_MTU) == 0) {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD implementations,
* which might still be useful.
*/
ifv->ifv_mtufudge = ifv->ifv_encaplen;
}
ifv->ifv_p = p;
ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
/*
* Copy only a selected subset of flags from the parent.
* Other flags are none of our business.
*/
ifv->ifv_if.if_flags = (p->if_flags &
(IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
/*
* If the parent interface can do hardware-assisted
* VLAN encapsulation, then propagate its hardware-
* assisted checksumming flags.
*/
if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
/*
* Set up our ``Ethernet address'' to reflect the underlying
* physical interface's.
*/
ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
ifa2 = ifaddr_byindex(p->if_index);
sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
sdl1->sdl_type = IFT_ETHER;
sdl1->sdl_alen = ETHER_ADDR_LEN;
bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
/*
* Configure multicast addresses that may already be
* joined on the vlan device.
*/
(void)vlan_setmulti(&ifv->ifv_if);
return 0;
}
static int
vlan_unconfig(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
struct vlan_mc_entry *mc;
struct ifvlan *ifv;
struct ifnet *p;
int error;
VLAN_LOCK_ASSERT();
ifv = ifp->if_softc;
p = ifv->ifv_p;
if (p) {
struct sockaddr_dl sdl;
/*
* Since the interface is being unconfigured, we need to
* empty the list of multicast groups that we may have joined
* while we were alive from the parent's list.
*/
bzero((char *)&sdl, sizeof sdl);
sdl.sdl_len = sizeof sdl;
sdl.sdl_family = AF_LINK;
sdl.sdl_index = p->if_index;
sdl.sdl_type = IFT_ETHER;
sdl.sdl_alen = ETHER_ADDR_LEN;
while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
error = if_delmulti(p, (struct sockaddr *)&sdl);
if (error)
return(error);
SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
free(mc, M_VLAN);
}
p->if_nvlans--;
if (p->if_nvlans == 0) {
/*
* Disable Tx/Rx of VLAN-sized frames.
*/
p->if_capenable &= ~IFCAP_VLAN_MTU;
if (p->if_flags & IFF_UP) {
struct ifreq ifr;
ifr.ifr_flags = p->if_flags;
(*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
}
}
}
/* Disconnect from parent. */
ifv->ifv_p = NULL;
ifv->ifv_if.if_mtu = ETHERMTU; /* XXX why not 0? */
ifv->ifv_flags = 0;
/* Clear our MAC address. */
ifa = ifaddr_byindex(ifv->ifv_if.if_index);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ETHER_ADDR_LEN;
bzero(LLADDR(sdl), ETHER_ADDR_LEN);
bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
return 0;
}
static int
vlan_set_promisc(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
int error = 0;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
error = ifpromisc(ifv->ifv_p, 1);
if (error == 0)
ifv->ifv_flags |= IFVF_PROMISC;
}
} else {
if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
error = ifpromisc(ifv->ifv_p, 0);
if (error == 0)
ifv->ifv_flags &= ~IFVF_PROMISC;
}
}
return (error);
}
static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ifaddr *ifa;
struct ifnet *p;
struct ifreq *ifr;
struct ifvlan *ifv;
struct vlanreq vlr;
int error = 0;
ifr = (struct ifreq *)data;
ifa = (struct ifaddr *)data;
ifv = ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(&ifv->ifv_if, ifa);
break;
#endif
default:
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) &ifr->ifr_data;
bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
}
break;
case SIOCGIFMEDIA:
VLAN_LOCK();
if (ifv->ifv_p != NULL) {
error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
SIOCGIFMEDIA, data);
VLAN_UNLOCK();
/* Limit the result to the parent's current config. */
if (error == 0) {
struct ifmediareq *ifmr;
ifmr = (struct ifmediareq *) data;
if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
ifmr->ifm_count = 1;
error = copyout(&ifmr->ifm_current,
ifmr->ifm_ulist,
sizeof(int));
}
}
} else {
VLAN_UNLOCK();
error = EINVAL;
}
break;
case SIOCSIFMEDIA:
error = EINVAL;
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
VLAN_LOCK();
if (ifv->ifv_p != NULL) {
if (ifr->ifr_mtu >
(ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
ifr->ifr_mtu <
(ifv->ifv_mintu - ifv->ifv_mtufudge))
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
} else
error = EINVAL;
VLAN_UNLOCK();
break;
case SIOCSETVLAN:
error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
if (error)
break;
if (vlr.vlr_parent[0] == '\0') {
VLAN_LOCK();
vlan_unconfig(ifp);
if (ifp->if_flags & IFF_UP)
if_down(ifp);
ifp->if_flags &= ~IFF_RUNNING;
VLAN_UNLOCK();
break;
}
p = ifunit(vlr.vlr_parent);
if (p == 0) {
error = ENOENT;
break;
}
/*
* Don't let the caller set up a VLAN tag with
* anything except VLID bits.
*/
if (vlr.vlr_tag & ~EVL_VLID_MASK) {
error = EINVAL;
break;
}
VLAN_LOCK();
error = vlan_config(ifv, p);
if (error) {
VLAN_UNLOCK();
break;
}
ifv->ifv_tag = vlr.vlr_tag;
ifp->if_flags |= IFF_RUNNING;
VLAN_UNLOCK();
/* Update promiscuous mode, if necessary. */
vlan_set_promisc(ifp);
break;
case SIOCGETVLAN:
bzero(&vlr, sizeof vlr);
VLAN_LOCK();
if (ifv->ifv_p) {
strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
sizeof(vlr.vlr_parent));
vlr.vlr_tag = ifv->ifv_tag;
}
VLAN_UNLOCK();
error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
break;
case SIOCSIFFLAGS:
/*
* For promiscuous mode, we enable promiscuous mode on
* the parent if we need promiscuous on the VLAN interface.
*/
if (ifv->ifv_p != NULL)
error = vlan_set_promisc(ifp);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = vlan_setmulti(ifp);
break;
default:
error = EINVAL;
}
return error;
}