freebsd-nq/sys/alpha/pci/lca.c
Matthew N. Dodd fe0d408987 Remove the 'ivars' arguement to device_add_child() and
device_add_child_ordered().  'ivars' may now be set using the
device_set_ivars() function.

This makes it easier for us to change how arbitrary data structures are
associated with a device_t.  Eventually we won't be modifying device_t
to add additional pointers for ivars, softc data etc.

Despite my best efforts I've probably forgotten something so let me know
if this breaks anything.  I've been running with this change for months
and its been quite involved actually isolating all the changes from
the rest of the local changes in my tree.

Reviewed by:	peter, dfr
1999-12-03 08:41:24 +00:00

509 lines
11 KiB
C

/*-
* Copyright (c) 1998 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <alpha/pci/lcareg.h>
#include <alpha/pci/lcavar.h>
#include <alpha/pci/pcibus.h>
#include <alpha/isa/isavar.h>
#include <machine/intr.h>
#include <machine/resource.h>
#include <machine/cpuconf.h>
#include <machine/swiz.h>
#include <machine/sgmap.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#define KV(pa) ALPHA_PHYS_TO_K0SEG(pa)
static devclass_t lca_devclass;
static device_t lca0; /* XXX only one for now */
struct lca_softc {
int junk;
};
#define LCA_SOFTC(dev) (struct lca_softc*) device_get_softc(dev)
static alpha_chipset_inb_t lca_inb;
static alpha_chipset_inw_t lca_inw;
static alpha_chipset_inl_t lca_inl;
static alpha_chipset_outb_t lca_outb;
static alpha_chipset_outw_t lca_outw;
static alpha_chipset_outl_t lca_outl;
static alpha_chipset_readb_t lca_readb;
static alpha_chipset_readw_t lca_readw;
static alpha_chipset_readl_t lca_readl;
static alpha_chipset_writeb_t lca_writeb;
static alpha_chipset_writew_t lca_writew;
static alpha_chipset_writel_t lca_writel;
static alpha_chipset_maxdevs_t lca_maxdevs;
static alpha_chipset_cfgreadb_t lca_cfgreadb;
static alpha_chipset_cfgreadw_t lca_cfgreadw;
static alpha_chipset_cfgreadl_t lca_cfgreadl;
static alpha_chipset_cfgwriteb_t lca_cfgwriteb;
static alpha_chipset_cfgwritew_t lca_cfgwritew;
static alpha_chipset_cfgwritel_t lca_cfgwritel;
static alpha_chipset_addrcvt_t lca_cvt_dense;
static alpha_chipset_read_hae_t lca_read_hae;
static alpha_chipset_write_hae_t lca_write_hae;
static alpha_chipset_t lca_chipset = {
lca_inb,
lca_inw,
lca_inl,
lca_outb,
lca_outw,
lca_outl,
lca_readb,
lca_readw,
lca_readl,
lca_writeb,
lca_writew,
lca_writel,
lca_maxdevs,
lca_cfgreadb,
lca_cfgreadw,
lca_cfgreadl,
lca_cfgwriteb,
lca_cfgwritew,
lca_cfgwritel,
lca_cvt_dense,
NULL,
lca_read_hae,
lca_write_hae,
};
static u_int8_t
lca_inb(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_BYTE(KV(LCA_PCI_SIO), port);
}
static u_int16_t
lca_inw(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_WORD(KV(LCA_PCI_SIO), port);
}
static u_int32_t
lca_inl(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_LONG(KV(LCA_PCI_SIO), port);
}
static void
lca_outb(u_int32_t port, u_int8_t data)
{
SPARSE_WRITE_BYTE(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
static void
lca_outw(u_int32_t port, u_int16_t data)
{
SPARSE_WRITE_WORD(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
static void
lca_outl(u_int32_t port, u_int32_t data)
{
SPARSE_WRITE_LONG(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
/*
* The LCA HAE is write-only. According to NetBSD, this is where it starts.
*/
static u_int32_t lca_hae_mem = 0x80000000;
/*
* The first 16Mb ignores the HAE. The next 112Mb uses the HAE to set
* the high bits of the PCI address.
*/
#define REG1 (1UL << 24)
static __inline void
lca_set_hae_mem(u_int32_t *pa)
{
int s;
u_int32_t msb;
if(*pa >= REG1){
msb = *pa & 0xf8000000;
*pa -= msb;
s = splhigh();
if (msb != lca_hae_mem) {
lca_hae_mem = msb;
REGVAL(LCA_IOC_HAE) = lca_hae_mem;
alpha_mb();
alpha_mb();
}
splx(s);
}
}
static u_int8_t
lca_readb(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_BYTE(KV(LCA_PCI_SPARSE), pa);
}
static u_int16_t
lca_readw(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_WORD(KV(LCA_PCI_SPARSE), pa);
}
static u_int32_t
lca_readl(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_LONG(KV(LCA_PCI_SPARSE), pa);
}
static void
lca_writeb(u_int32_t pa, u_int8_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_BYTE(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static void
lca_writew(u_int32_t pa, u_int16_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_WORD(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static void
lca_writel(u_int32_t pa, u_int32_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_LONG(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static int
lca_maxdevs(u_int b)
{
return 12; /* XXX */
}
#define LCA_CFGOFF(b, s, f, r) \
((b) ? (((b) << 16) | ((s) << 11) | ((f) << 8) | (r)) \
: ((1 << ((s) + 11)) | ((f) << 8) | (r)))
#define LCA_TYPE1_SETUP(b,s) if ((b)) { \
do { \
(s) = splhigh(); \
alpha_mb(); \
REGVAL(LCA_IOC_CONF) = 1; \
alpha_mb(); \
} while(0); \
}
#define LCA_TYPE1_TEARDOWN(b,s) if ((b)) { \
do { \
alpha_mb(); \
REGVAL(LCA_IOC_CONF) = 0; \
alpha_mb(); \
splx((s)); \
} while(0); \
}
#define CFGREAD(b, s, f, r, width, type) \
type val = ~0; \
int ipl = 0; \
vm_offset_t off = LCA_CFGOFF(b, s, f, r); \
vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \
alpha_mb(); \
LCA_TYPE1_SETUP(b,ipl); \
if (!badaddr((caddr_t)kv, sizeof(type))) { \
val = SPARSE_##width##_EXTRACT(off, SPARSE_READ(kv)); \
} \
LCA_TYPE1_TEARDOWN(b,ipl); \
return val
#define CFGWRITE(b, s, f, r, data, width, type) \
int ipl = 0; \
vm_offset_t off = LCA_CFGOFF(b, s, f, r); \
vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \
alpha_mb(); \
LCA_TYPE1_SETUP(b,ipl); \
if (!badaddr((caddr_t)kv, sizeof(type))) { \
SPARSE_WRITE(kv, SPARSE_##width##_INSERT(off, data)); \
alpha_wmb(); \
} \
LCA_TYPE1_TEARDOWN(b,ipl); \
return
static u_int8_t
lca_cfgreadb(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, BYTE, u_int8_t);
}
static u_int16_t
lca_cfgreadw(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, WORD, u_int16_t);
}
static u_int32_t
lca_cfgreadl(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, LONG, u_int32_t);
}
static void
lca_cfgwriteb(u_int h, u_int b, u_int s, u_int f, u_int r, u_int8_t data)
{
CFGWRITE(b, s, f, r, data, BYTE, u_int8_t);
}
static void
lca_cfgwritew(u_int h, u_int b, u_int s, u_int f, u_int r, u_int16_t data)
{
CFGWRITE(b, s, f, r, data, WORD, u_int16_t);
}
static void
lca_cfgwritel(u_int h, u_int b, u_int s, u_int f, u_int r, u_int32_t data)
{
CFGWRITE(b, s, f, r, data, LONG, u_int16_t);
}
static vm_offset_t
lca_cvt_dense(vm_offset_t addr)
{
addr &= 0xffffffffUL;
return (addr | LCA_PCI_DENSE);
}
static u_int64_t
lca_read_hae(void)
{
return lca_hae_mem & 0xf8000000;
}
static void
lca_write_hae(u_int64_t hae)
{
u_int32_t pa = hae;
lca_set_hae_mem(&pa);
}
static int lca_probe(device_t dev);
static int lca_attach(device_t dev);
static struct resource *lca_alloc_resource(device_t bus, device_t child,
int type, int *rid, u_long start,
u_long end, u_long count,
u_int flags);
static int lca_release_resource(device_t bus, device_t child,
int type, int rid, struct resource *r);
static device_method_t lca_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, lca_probe),
DEVMETHOD(device_attach, lca_attach),
/* Bus interface */
DEVMETHOD(bus_alloc_resource, lca_alloc_resource),
DEVMETHOD(bus_release_resource, lca_release_resource),
DEVMETHOD(bus_activate_resource, pci_activate_resource),
DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
DEVMETHOD(bus_setup_intr, isa_setup_intr),
DEVMETHOD(bus_teardown_intr, isa_teardown_intr),
{ 0, 0 }
};
static driver_t lca_driver = {
"lca",
lca_methods,
sizeof(struct lca_softc),
};
#define LCA_SGMAP_BASE (8*1024*1024)
#define LCA_SGMAP_SIZE (8*1024*1024)
static void
lca_sgmap_invalidate(void)
{
alpha_mb();
REGVAL(LCA_IOC_TBIA) = 0;
alpha_mb();
}
static void
lca_sgmap_map(void *arg, vm_offset_t ba, vm_offset_t pa)
{
u_int64_t *sgtable = arg;
int index = alpha_btop(ba - LCA_SGMAP_BASE);
if (pa) {
if (pa > (1L<<32))
panic("lca_sgmap_map: can't map address 0x%lx", pa);
sgtable[index] = ((pa >> 13) << 1) | 1;
} else {
sgtable[index] = 0;
}
alpha_mb();
lca_sgmap_invalidate();
}
static void
lca_init_sgmap(void)
{
void *sgtable;
/*
* First setup Window 0 to map 8Mb to 16Mb with an
* sgmap. Allocate the map aligned to a 32 boundary.
*/
REGVAL64(LCA_IOC_W_BASE0) = LCA_SGMAP_BASE |
IOC_W_BASE_SG | IOC_W_BASE_WEN;
alpha_mb();
REGVAL64(LCA_IOC_W_MASK0) = IOC_W_MASK_8M;
alpha_mb();
sgtable = contigmalloc(8192, M_DEVBUF, M_NOWAIT,
0, (1L<<34),
32*1024, (1L<<34));
if (!sgtable)
panic("lca_init_sgmap: can't allocate page table");
chipset.sgmap = sgmap_map_create(LCA_SGMAP_BASE,
LCA_SGMAP_BASE + LCA_SGMAP_SIZE,
lca_sgmap_map, sgtable);
REGVAL64(LCA_IOC_W_T_BASE0) = pmap_kextract((vm_offset_t) sgtable);
alpha_mb();
REGVAL64(LCA_IOC_TB_ENA) = IOC_TB_ENA_TEN;
alpha_mb();
lca_sgmap_invalidate();
}
void
lca_init()
{
static int initted = 0;
if (initted) return;
initted = 1;
/* Type 0 PCI conf access. */
REGVAL64(LCA_IOC_CONF) = 0;
if (platform.pci_intr_init)
platform.pci_intr_init();
chipset = lca_chipset;
}
static int
lca_probe(device_t dev)
{
if (lca0)
return ENXIO;
lca0 = dev;
device_set_desc(dev, "21066 Core Logic chipset"); /* XXX */
pci_init_resources();
isa_init_intr();
lca_init_sgmap();
device_add_child(dev, "pcib", 0);
return 0;
}
static int
lca_attach(device_t dev)
{
lca_init();
set_iointr(alpha_dispatch_intr);
snprintf(chipset_type, sizeof(chipset_type), "lca");
chipset_bwx = 0;
chipset_ports = LCA_PCI_SIO;
chipset_memory = LCA_PCI_SPARSE;
chipset_dense = LCA_PCI_DENSE;
chipset_hae_mask = IOC_HAE_ADDREXT;
bus_generic_attach(dev);
return 0;
}
static struct resource *
lca_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
if (type == SYS_RES_IRQ)
return isa_alloc_intr(bus, child, start);
else
return pci_alloc_resource(bus, child, type, rid,
start, end, count, flags);
}
static int
lca_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
if (type == SYS_RES_IRQ)
return isa_release_intr(bus, child, r);
else
return pci_release_resource(bus, child, type, rid, r);
}
DRIVER_MODULE(lca, root, lca_driver, lca_devclass, 0, 0);