freebsd-nq/sys/boot/i386/zfsboot/zfsldr.S
2011-06-27 21:43:56 +00:00

267 lines
8.1 KiB
ArmAsm

/*
* Copyright (c) 1998 Robert Nordier
* All rights reserved.
*
* Redistribution and use in source and binary forms are freely
* permitted provided that the above copyright notice and this
* paragraph and the following disclaimer are duplicated in all
* such forms.
*
* This software is provided "AS IS" and without any express or
* implied warranties, including, without limitation, the implied
* warranties of merchantability and fitness for a particular
* purpose.
*
* $FreeBSD$
*/
/* Memory Locations */
.set MEM_ARG,0x900 # Arguments
.set MEM_ORG,0x7c00 # Origin
.set MEM_BUF,0x8000 # Load area
.set MEM_BTX,0x9000 # BTX start
.set MEM_JMP,0x9010 # BTX entry point
.set MEM_USR,0xa000 # Client start
.set BDA_BOOT,0x472 # Boot howto flag
/* Partition Constants */
.set PRT_OFF,0x1be # Partition offset
.set PRT_NUM,0x4 # Partitions
.set PRT_BSD,0xa5 # Partition type
/* Misc. Constants */
.set SIZ_PAG,0x1000 # Page size
.set SIZ_SEC,0x200 # Sector size
.set NSECT,0x80
.globl start
.code16
/*
* Load the rest of zfsboot2 and BTX up, copy the parts to the right locations,
* and start it all up.
*/
/*
* Setup the segment registers to flat addressing (segment 0) and setup the
* stack to end just below the start of our code.
*/
start: cld # String ops inc
xor %cx,%cx # Zero
mov %cx,%es # Address
mov %cx,%ds # data
mov %cx,%ss # Set up
mov $start,%sp # stack
/*
* Load the MBR and look for the first FreeBSD slice. We use the fake
* partition entry below that points to the MBR when we call read.
* The first pass looks for the first active FreeBSD slice. The
* second pass looks for the first non-active FreeBSD slice if the
* first one fails.
*/
call check_edd # Make sure EDD works
mov $part4,%si # Dummy partition
xor %eax,%eax # Read MBR
movl $MEM_BUF,%ebx # from first
call read # sector
mov $0x1,%cx # Two passes
main.1: mov $MEM_BUF+PRT_OFF,%si # Partition table
movb $0x1,%dh # Partition
main.2: cmpb $PRT_BSD,0x4(%si) # Our partition type?
jne main.3 # No
jcxz main.5 # If second pass
testb $0x80,(%si) # Active?
jnz main.5 # Yes
main.3: add $0x10,%si # Next entry
incb %dh # Partition
cmpb $0x1+PRT_NUM,%dh # In table?
jb main.2 # Yes
dec %cx # Do two
jcxz main.1 # passes
/*
* If we get here, we didn't find any FreeBSD slices at all, so print an
* error message and die.
*/
mov $msg_part,%si # Message
jmp error # Error
/*
* Ok, we have a slice and drive in %dx now, so use that to locate and
* load boot2. %si references the start of the slice we are looking
* for, so go ahead and load up the 128 sectors starting at sector 1024
* (i.e. after the two vdev labels). We don't have do anything fancy
* here to allow for an extra copy of boot1 and a partition table
* (compare to this section of the UFS bootstrap) so we just load it
* all at 0x9000. The first part of boot2 is BTX, which wants to run
* at 0x9000. The boot2.bin binary starts right after the end of BTX,
* so we have to figure out where the start of it is and then move the
* binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000,
* but when we use btxld to create zfsboot2, we use an entry point of
* 0x2000. That entry point is relative to MEM_USR; thus boot2.bin
* starts at 0xc000.
*
* The load area and the target area for the client overlap so we have
* to use a decrementing string move. We also play segment register
* games with the destination address for the move so that the client
* can be larger than 16k (which would overflow the zero segment since
* the client starts at 0xc000).
*/
main.5: mov %dx,MEM_ARG # Save args
mov $NSECT,%cx # Sector count
movl $1024,%eax # Offset to boot2
mov $MEM_BTX,%ebx # Destination buffer
main.6: pushal # Save params
call read # Read disk
popal # Restore
incl %eax # Advance to
add $SIZ_SEC,%ebx # next sector
loop main.6 # If not last, read another
mov MEM_BTX+0xa,%bx # Get BTX length
mov $NSECT*SIZ_SEC-1,%di # Size of load area (less one)
mov %di,%si # End of load area, 0x9000 rel
sub %bx,%di # End of client, 0xc000 rel
mov %di,%cx # Size of
inc %cx # client
mov $(MEM_BTX)>>4,%dx # Segment
mov %dx,%ds # addressing 0x9000
mov $(MEM_USR+2*SIZ_PAG)>>4,%dx # Segment
mov %dx,%es # addressing 0xc000
std # Move with decrement
rep # Relocate
movsb # client
cld # Back to increment
xor %dx,%dx # Back
mov %ds,%dx # to zero
mov %dx,%es # segment
/*
* Enable A20 so we can access memory above 1 meg.
* Use the zero-valued %cx as a timeout for embedded hardware which do not
* have a keyboard controller.
*/
seta20: cli # Disable interrupts
seta20.1: dec %cx # Timeout?
jz seta20.3 # Yes
inb $0x64,%al # Get status
testb $0x2,%al # Busy?
jnz seta20.1 # Yes
movb $0xd1,%al # Command: Write
outb %al,$0x64 # output port
seta20.2: inb $0x64,%al # Get status
testb $0x2,%al # Busy?
jnz seta20.2 # Yes
movb $0xdf,%al # Enable
outb %al,$0x60 # A20
seta20.3: sti # Enable interrupts
jmp start+MEM_JMP-MEM_ORG # Start BTX
/*
* Read a sector from the disk. Sets up an EDD packet on the stack
* and passes it to read. We assume that the destination address is
* always segment-aligned.
*
* %eax - int - LBA to read in relative to partition start
* %ebx - ptr - destination address
* %dl - byte - drive to read from
* %si - ptr - MBR partition entry
*/
read: xor %ecx,%ecx # Get
addl 0x8(%si),%eax # LBA
adc $0,%ecx
pushl %ecx # Starting absolute block
pushl %eax # block number
shr $4,%ebx # Convert to segment
push %bx # Address of
push $0 # transfer buffer
push $0x1 # Read 1 sector
push $0x10 # Size of packet
mov %sp,%si # Packet pointer
mov $0x42,%ah # BIOS: Extended
int $0x13 # read
jc read.1 # If error, fail
lea 0x10(%si),%sp # Clear stack
ret # If success, return
read.1: mov %ah,%al # Format
mov $read_err,%di # error
call hex8 # code
mov $msg_read,%si # Set the error message and
# fall through to the error
# routine
/*
* Print out the error message pointed to by %ds:(%si) followed
* by a prompt, wait for a keypress, and then reboot the machine.
*/
error: callw putstr # Display message
mov $prompt,%si # Display
callw putstr # prompt
xorb %ah,%ah # BIOS: Get
int $0x16 # keypress
movw $0x1234, BDA_BOOT # Do a warm boot
ljmp $0xffff,$0x0 # reboot the machine
/*
* Display a null-terminated string using the BIOS output.
*/
putstr.0: mov $0x7,%bx # Page:attribute
movb $0xe,%ah # BIOS: Display
int $0x10 # character
putstr: lodsb # Get char
testb %al,%al # End of string?
jne putstr.0 # No
ret # To caller
/*
* Check to see if the disk supports EDD. zfsboot requires EDD and does not
* support older C/H/S disk I/O.
*/
check_edd: cmpb $0x80,%dl # Hard drive?
jb check_edd.1 # No, fail to boot
mov $0x55aa,%bx # Magic
push %dx # Save
movb $0x41,%ah # BIOS: Check
int $0x13 # extensions present
pop %dx # Restore
jc check_edd.1 # If error, fail
cmp $0xaa55,%bx # Magic?
jne check_edd.1 # No, so fail
testb $0x1,%cl # Packet interface?
jz check_edd.1 # No, so fail
ret # EDD ok, keep booting
check_edd.1: mov $msg_chs,%si # Warn that CHS is
jmp error # unsupported and fail
/*
* AL to hex, saving the result to [EDI].
*/
hex8: push %ax # Save
shrb $0x4,%al # Do upper
call hex8.1 # 4
pop %ax # Restore
hex8.1: andb $0xf,%al # Get lower 4
cmpb $0xa,%al # Convert
sbbb $0x69,%al # to hex
das # digit
orb $0x20,%al # To lower case
stosb # Save char
ret # (Recursive)
/* Messages */
msg_chs: .asciz "CHS not supported"
msg_read: .ascii "Read error: "
read_err: .asciz "XX"
msg_part: .asciz "Boot error"
prompt: .asciz "\r\n"
.org PRT_OFF,0x90
/* Partition table */
.fill 0x30,0x1,0x0
part4: .byte 0x80, 0x00, 0x01, 0x00
.byte 0xa5, 0xfe, 0xff, 0xff
.byte 0x00, 0x00, 0x00, 0x00
.byte 0x50, 0xc3, 0x00, 0x00 # 50000 sectors long, bleh
.word 0xaa55 # Magic number