f7db0c9532
This is mostly mechanical except for vmspace_exit(). There, use the new refcount_release_if_last() to avoid switching to vmspace0 unless other processes are sharing the vmspace. In that case, upon switching to vmspace0 we can unconditionally release the reference. Remove the volatile qualifier from vm_refcnt now that accesses are protected using refcount(9) KPIs. Reviewed by: alc, kib, mmel MFC after: 1 month Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D27057
1944 lines
52 KiB
C
1944 lines
52 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2012 Chelsio Communications, Inc.
|
|
* All rights reserved.
|
|
* Written by: Navdeep Parhar <np@FreeBSD.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/aio.h>
|
|
#include <sys/file.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/module.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/uio.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp_var.h>
|
|
#define TCPSTATES
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/toecore.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
#ifdef TCP_OFFLOAD
|
|
#include "common/common.h"
|
|
#include "common/t4_msg.h"
|
|
#include "common/t4_regs.h"
|
|
#include "common/t4_tcb.h"
|
|
#include "tom/t4_tom.h"
|
|
|
|
/*
|
|
* Use the 'backend3' field in AIO jobs to store the amount of data
|
|
* received by the AIO job so far.
|
|
*/
|
|
#define aio_received backend3
|
|
|
|
static void aio_ddp_requeue_task(void *context, int pending);
|
|
static void ddp_complete_all(struct toepcb *toep, int error);
|
|
static void t4_aio_cancel_active(struct kaiocb *job);
|
|
static void t4_aio_cancel_queued(struct kaiocb *job);
|
|
|
|
static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
|
|
static struct mtx ddp_orphan_pagesets_lock;
|
|
static struct task ddp_orphan_task;
|
|
|
|
#define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN)
|
|
|
|
/*
|
|
* A page set holds information about a buffer used for DDP. The page
|
|
* set holds resources such as the VM pages backing the buffer (either
|
|
* held or wired) and the page pods associated with the buffer.
|
|
* Recently used page sets are cached to allow for efficient reuse of
|
|
* buffers (avoiding the need to re-fault in pages, hold them, etc.).
|
|
* Note that cached page sets keep the backing pages wired. The
|
|
* number of wired pages is capped by only allowing for two wired
|
|
* pagesets per connection. This is not a perfect cap, but is a
|
|
* trade-off for performance.
|
|
*
|
|
* If an application ping-pongs two buffers for a connection via
|
|
* aio_read(2) then those buffers should remain wired and expensive VM
|
|
* fault lookups should be avoided after each buffer has been used
|
|
* once. If an application uses more than two buffers then this will
|
|
* fall back to doing expensive VM fault lookups for each operation.
|
|
*/
|
|
static void
|
|
free_pageset(struct tom_data *td, struct pageset *ps)
|
|
{
|
|
vm_page_t p;
|
|
int i;
|
|
|
|
if (ps->prsv.prsv_nppods > 0)
|
|
t4_free_page_pods(&ps->prsv);
|
|
|
|
for (i = 0; i < ps->npages; i++) {
|
|
p = ps->pages[i];
|
|
vm_page_unwire(p, PQ_INACTIVE);
|
|
}
|
|
mtx_lock(&ddp_orphan_pagesets_lock);
|
|
TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
|
|
taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
|
|
mtx_unlock(&ddp_orphan_pagesets_lock);
|
|
}
|
|
|
|
static void
|
|
ddp_free_orphan_pagesets(void *context, int pending)
|
|
{
|
|
struct pageset *ps;
|
|
|
|
mtx_lock(&ddp_orphan_pagesets_lock);
|
|
while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
|
|
ps = TAILQ_FIRST(&ddp_orphan_pagesets);
|
|
TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
|
|
mtx_unlock(&ddp_orphan_pagesets_lock);
|
|
if (ps->vm)
|
|
vmspace_free(ps->vm);
|
|
free(ps, M_CXGBE);
|
|
mtx_lock(&ddp_orphan_pagesets_lock);
|
|
}
|
|
mtx_unlock(&ddp_orphan_pagesets_lock);
|
|
}
|
|
|
|
static void
|
|
recycle_pageset(struct toepcb *toep, struct pageset *ps)
|
|
{
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
if (!(toep->ddp.flags & DDP_DEAD)) {
|
|
KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
|
|
nitems(toep->ddp.db), ("too many wired pagesets"));
|
|
TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
|
|
toep->ddp.cached_count++;
|
|
} else
|
|
free_pageset(toep->td, ps);
|
|
}
|
|
|
|
static void
|
|
ddp_complete_one(struct kaiocb *job, int error)
|
|
{
|
|
long copied;
|
|
|
|
/*
|
|
* If this job had copied data out of the socket buffer before
|
|
* it was cancelled, report it as a short read rather than an
|
|
* error.
|
|
*/
|
|
copied = job->aio_received;
|
|
if (copied != 0 || error == 0)
|
|
aio_complete(job, copied, 0);
|
|
else
|
|
aio_complete(job, -1, error);
|
|
}
|
|
|
|
static void
|
|
free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
|
|
{
|
|
|
|
if (db->job) {
|
|
/*
|
|
* XXX: If we are un-offloading the socket then we
|
|
* should requeue these on the socket somehow. If we
|
|
* got a FIN from the remote end, then this completes
|
|
* any remaining requests with an EOF read.
|
|
*/
|
|
if (!aio_clear_cancel_function(db->job))
|
|
ddp_complete_one(db->job, 0);
|
|
}
|
|
|
|
if (db->ps)
|
|
free_pageset(td, db->ps);
|
|
}
|
|
|
|
void
|
|
ddp_init_toep(struct toepcb *toep)
|
|
{
|
|
|
|
TAILQ_INIT(&toep->ddp.aiojobq);
|
|
TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
|
|
toep->ddp.flags = DDP_OK;
|
|
toep->ddp.active_id = -1;
|
|
mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
|
|
}
|
|
|
|
void
|
|
ddp_uninit_toep(struct toepcb *toep)
|
|
{
|
|
|
|
mtx_destroy(&toep->ddp.lock);
|
|
}
|
|
|
|
void
|
|
release_ddp_resources(struct toepcb *toep)
|
|
{
|
|
struct pageset *ps;
|
|
int i;
|
|
|
|
DDP_LOCK(toep);
|
|
toep->ddp.flags |= DDP_DEAD;
|
|
for (i = 0; i < nitems(toep->ddp.db); i++) {
|
|
free_ddp_buffer(toep->td, &toep->ddp.db[i]);
|
|
}
|
|
while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
|
|
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
|
|
free_pageset(toep->td, ps);
|
|
}
|
|
ddp_complete_all(toep, 0);
|
|
DDP_UNLOCK(toep);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
void
|
|
ddp_assert_empty(struct toepcb *toep)
|
|
{
|
|
int i;
|
|
|
|
MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
|
|
for (i = 0; i < nitems(toep->ddp.db); i++) {
|
|
MPASS(toep->ddp.db[i].job == NULL);
|
|
MPASS(toep->ddp.db[i].ps == NULL);
|
|
}
|
|
MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
|
|
MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
|
|
unsigned int db_idx)
|
|
{
|
|
unsigned int db_flag;
|
|
|
|
toep->ddp.active_count--;
|
|
if (toep->ddp.active_id == db_idx) {
|
|
if (toep->ddp.active_count == 0) {
|
|
KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
|
|
("%s: active_count mismatch", __func__));
|
|
toep->ddp.active_id = -1;
|
|
} else
|
|
toep->ddp.active_id ^= 1;
|
|
#ifdef VERBOSE_TRACES
|
|
CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
|
|
toep->tid, toep->ddp.active_id);
|
|
#endif
|
|
} else {
|
|
KASSERT(toep->ddp.active_count != 0 &&
|
|
toep->ddp.active_id != -1,
|
|
("%s: active count mismatch", __func__));
|
|
}
|
|
|
|
db->cancel_pending = 0;
|
|
db->job = NULL;
|
|
recycle_pageset(toep, db->ps);
|
|
db->ps = NULL;
|
|
|
|
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
|
|
KASSERT(toep->ddp.flags & db_flag,
|
|
("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
|
|
__func__, toep, toep->ddp.flags));
|
|
toep->ddp.flags &= ~db_flag;
|
|
}
|
|
|
|
/* XXX: handle_ddp_data code duplication */
|
|
void
|
|
insert_ddp_data(struct toepcb *toep, uint32_t n)
|
|
{
|
|
struct inpcb *inp = toep->inp;
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
struct ddp_buffer *db;
|
|
struct kaiocb *job;
|
|
size_t placed;
|
|
long copied;
|
|
unsigned int db_flag, db_idx;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
DDP_ASSERT_LOCKED(toep);
|
|
|
|
tp->rcv_nxt += n;
|
|
#ifndef USE_DDP_RX_FLOW_CONTROL
|
|
KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
|
|
tp->rcv_wnd -= n;
|
|
#endif
|
|
CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
|
|
__func__, n);
|
|
while (toep->ddp.active_count > 0) {
|
|
MPASS(toep->ddp.active_id != -1);
|
|
db_idx = toep->ddp.active_id;
|
|
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
|
|
MPASS((toep->ddp.flags & db_flag) != 0);
|
|
db = &toep->ddp.db[db_idx];
|
|
job = db->job;
|
|
copied = job->aio_received;
|
|
placed = n;
|
|
if (placed > job->uaiocb.aio_nbytes - copied)
|
|
placed = job->uaiocb.aio_nbytes - copied;
|
|
if (placed > 0)
|
|
job->msgrcv = 1;
|
|
if (!aio_clear_cancel_function(job)) {
|
|
/*
|
|
* Update the copied length for when
|
|
* t4_aio_cancel_active() completes this
|
|
* request.
|
|
*/
|
|
job->aio_received += placed;
|
|
} else if (copied + placed != 0) {
|
|
CTR4(KTR_CXGBE,
|
|
"%s: completing %p (copied %ld, placed %lu)",
|
|
__func__, job, copied, placed);
|
|
/* XXX: This always completes if there is some data. */
|
|
aio_complete(job, copied + placed, 0);
|
|
} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
|
|
TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
|
|
toep->ddp.waiting_count++;
|
|
} else
|
|
aio_cancel(job);
|
|
n -= placed;
|
|
complete_ddp_buffer(toep, db, db_idx);
|
|
}
|
|
|
|
MPASS(n == 0);
|
|
}
|
|
|
|
/* SET_TCB_FIELD sent as a ULP command looks like this */
|
|
#define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
|
|
sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
|
|
|
|
/* RX_DATA_ACK sent as a ULP command looks like this */
|
|
#define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
|
|
sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
|
|
|
|
static inline void *
|
|
mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
|
|
uint64_t word, uint64_t mask, uint64_t val)
|
|
{
|
|
struct ulptx_idata *ulpsc;
|
|
struct cpl_set_tcb_field_core *req;
|
|
|
|
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
|
|
ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
|
|
|
|
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
|
|
ulpsc->len = htobe32(sizeof(*req));
|
|
|
|
req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
|
|
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
|
|
req->reply_ctrl = htobe16(V_NO_REPLY(1) |
|
|
V_QUEUENO(toep->ofld_rxq->iq.abs_id));
|
|
req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
|
|
req->mask = htobe64(mask);
|
|
req->val = htobe64(val);
|
|
|
|
ulpsc = (struct ulptx_idata *)(req + 1);
|
|
if (LEN__SET_TCB_FIELD_ULP % 16) {
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
|
|
ulpsc->len = htobe32(0);
|
|
return (ulpsc + 1);
|
|
}
|
|
return (ulpsc);
|
|
}
|
|
|
|
static inline void *
|
|
mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
|
|
{
|
|
struct ulptx_idata *ulpsc;
|
|
struct cpl_rx_data_ack_core *req;
|
|
|
|
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
|
|
ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
|
|
|
|
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
|
|
ulpsc->len = htobe32(sizeof(*req));
|
|
|
|
req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
|
|
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
|
|
req->credit_dack = htobe32(F_RX_MODULATE_RX);
|
|
|
|
ulpsc = (struct ulptx_idata *)(req + 1);
|
|
if (LEN__RX_DATA_ACK_ULP % 16) {
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
|
|
ulpsc->len = htobe32(0);
|
|
return (ulpsc + 1);
|
|
}
|
|
return (ulpsc);
|
|
}
|
|
|
|
static struct wrqe *
|
|
mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
|
|
struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
|
|
{
|
|
struct wrqe *wr;
|
|
struct work_request_hdr *wrh;
|
|
struct ulp_txpkt *ulpmc;
|
|
int len;
|
|
|
|
KASSERT(db_idx == 0 || db_idx == 1,
|
|
("%s: bad DDP buffer index %d", __func__, db_idx));
|
|
|
|
/*
|
|
* We'll send a compound work request that has 3 SET_TCB_FIELDs and an
|
|
* RX_DATA_ACK (with RX_MODULATE to speed up delivery).
|
|
*
|
|
* The work request header is 16B and always ends at a 16B boundary.
|
|
* The ULPTX master commands that follow must all end at 16B boundaries
|
|
* too so we round up the size to 16.
|
|
*/
|
|
len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
|
|
roundup2(LEN__RX_DATA_ACK_ULP, 16);
|
|
|
|
wr = alloc_wrqe(len, toep->ctrlq);
|
|
if (wr == NULL)
|
|
return (NULL);
|
|
wrh = wrtod(wr);
|
|
INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
|
|
ulpmc = (struct ulp_txpkt *)(wrh + 1);
|
|
|
|
/* Write the buffer's tag */
|
|
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
|
|
W_TCB_RX_DDP_BUF0_TAG + db_idx,
|
|
V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
|
|
V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
|
|
|
|
/* Update the current offset in the DDP buffer and its total length */
|
|
if (db_idx == 0)
|
|
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
|
|
W_TCB_RX_DDP_BUF0_OFFSET,
|
|
V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
|
|
V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
|
|
V_TCB_RX_DDP_BUF0_OFFSET(offset) |
|
|
V_TCB_RX_DDP_BUF0_LEN(ps->len));
|
|
else
|
|
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
|
|
W_TCB_RX_DDP_BUF1_OFFSET,
|
|
V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
|
|
V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
|
|
V_TCB_RX_DDP_BUF1_OFFSET(offset) |
|
|
V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
|
|
|
|
/* Update DDP flags */
|
|
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
|
|
ddp_flags_mask, ddp_flags);
|
|
|
|
/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
|
|
ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
|
|
|
|
return (wr);
|
|
}
|
|
|
|
static int
|
|
handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
|
|
{
|
|
uint32_t report = be32toh(ddp_report);
|
|
unsigned int db_idx;
|
|
struct inpcb *inp = toep->inp;
|
|
struct ddp_buffer *db;
|
|
struct tcpcb *tp;
|
|
struct socket *so;
|
|
struct sockbuf *sb;
|
|
struct kaiocb *job;
|
|
long copied;
|
|
|
|
db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
|
|
|
|
if (__predict_false(!(report & F_DDP_INV)))
|
|
CXGBE_UNIMPLEMENTED("DDP buffer still valid");
|
|
|
|
INP_WLOCK(inp);
|
|
so = inp_inpcbtosocket(inp);
|
|
sb = &so->so_rcv;
|
|
DDP_LOCK(toep);
|
|
|
|
KASSERT(toep->ddp.active_id == db_idx,
|
|
("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
|
|
toep->ddp.active_id, toep->tid));
|
|
db = &toep->ddp.db[db_idx];
|
|
job = db->job;
|
|
|
|
if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
|
|
/*
|
|
* This can happen due to an administrative tcpdrop(8).
|
|
* Just fail the request with ECONNRESET.
|
|
*/
|
|
CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
|
|
__func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
|
|
if (aio_clear_cancel_function(job))
|
|
ddp_complete_one(job, ECONNRESET);
|
|
goto completed;
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
|
|
/*
|
|
* For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
|
|
* sequence number of the next byte to receive. The length of
|
|
* the data received for this message must be computed by
|
|
* comparing the new and old values of rcv_nxt.
|
|
*
|
|
* For RX_DATA_DDP, len might be non-zero, but it is only the
|
|
* length of the most recent DMA. It does not include the
|
|
* total length of the data received since the previous update
|
|
* for this DDP buffer. rcv_nxt is the sequence number of the
|
|
* first received byte from the most recent DMA.
|
|
*/
|
|
len += be32toh(rcv_nxt) - tp->rcv_nxt;
|
|
tp->rcv_nxt += len;
|
|
tp->t_rcvtime = ticks;
|
|
#ifndef USE_DDP_RX_FLOW_CONTROL
|
|
KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
|
|
tp->rcv_wnd -= len;
|
|
#endif
|
|
#ifdef VERBOSE_TRACES
|
|
CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
|
|
toep->tid, db_idx, len, report);
|
|
#endif
|
|
|
|
/* receive buffer autosize */
|
|
MPASS(toep->vnet == so->so_vnet);
|
|
CURVNET_SET(toep->vnet);
|
|
SOCKBUF_LOCK(sb);
|
|
if (sb->sb_flags & SB_AUTOSIZE &&
|
|
V_tcp_do_autorcvbuf &&
|
|
sb->sb_hiwat < V_tcp_autorcvbuf_max &&
|
|
len > (sbspace(sb) / 8 * 7)) {
|
|
struct adapter *sc = td_adapter(toep->td);
|
|
unsigned int hiwat = sb->sb_hiwat;
|
|
unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
|
|
V_tcp_autorcvbuf_max);
|
|
|
|
if (!sbreserve_locked(sb, newsize, so, NULL))
|
|
sb->sb_flags &= ~SB_AUTOSIZE;
|
|
}
|
|
SOCKBUF_UNLOCK(sb);
|
|
CURVNET_RESTORE();
|
|
|
|
job->msgrcv = 1;
|
|
if (db->cancel_pending) {
|
|
/*
|
|
* Update the job's length but defer completion to the
|
|
* TCB_RPL callback.
|
|
*/
|
|
job->aio_received += len;
|
|
goto out;
|
|
} else if (!aio_clear_cancel_function(job)) {
|
|
/*
|
|
* Update the copied length for when
|
|
* t4_aio_cancel_active() completes this request.
|
|
*/
|
|
job->aio_received += len;
|
|
} else {
|
|
copied = job->aio_received;
|
|
#ifdef VERBOSE_TRACES
|
|
CTR5(KTR_CXGBE,
|
|
"%s: tid %u, completing %p (copied %ld, placed %d)",
|
|
__func__, toep->tid, job, copied, len);
|
|
#endif
|
|
aio_complete(job, copied + len, 0);
|
|
t4_rcvd(&toep->td->tod, tp);
|
|
}
|
|
|
|
completed:
|
|
complete_ddp_buffer(toep, db, db_idx);
|
|
if (toep->ddp.waiting_count > 0)
|
|
ddp_queue_toep(toep);
|
|
out:
|
|
DDP_UNLOCK(toep);
|
|
INP_WUNLOCK(inp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
handle_ddp_indicate(struct toepcb *toep)
|
|
{
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
MPASS(toep->ddp.active_count == 0);
|
|
MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
|
|
if (toep->ddp.waiting_count == 0) {
|
|
/*
|
|
* The pending requests that triggered the request for an
|
|
* an indicate were cancelled. Those cancels should have
|
|
* already disabled DDP. Just ignore this as the data is
|
|
* going into the socket buffer anyway.
|
|
*/
|
|
return;
|
|
}
|
|
CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
|
|
toep->tid, toep->ddp.waiting_count);
|
|
ddp_queue_toep(toep);
|
|
}
|
|
|
|
enum {
|
|
DDP_BUF0_INVALIDATED = 0x2,
|
|
DDP_BUF1_INVALIDATED
|
|
};
|
|
|
|
CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0);
|
|
|
|
static int
|
|
do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
|
|
{
|
|
struct adapter *sc = iq->adapter;
|
|
const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
|
|
unsigned int tid = GET_TID(cpl);
|
|
unsigned int db_idx;
|
|
struct toepcb *toep;
|
|
struct inpcb *inp;
|
|
struct ddp_buffer *db;
|
|
struct kaiocb *job;
|
|
long copied;
|
|
|
|
if (cpl->status != CPL_ERR_NONE)
|
|
panic("XXX: tcp_rpl failed: %d", cpl->status);
|
|
|
|
toep = lookup_tid(sc, tid);
|
|
inp = toep->inp;
|
|
switch (cpl->cookie) {
|
|
case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
|
|
case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
|
|
/*
|
|
* XXX: This duplicates a lot of code with handle_ddp_data().
|
|
*/
|
|
db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
|
|
MPASS(db_idx < nitems(toep->ddp.db));
|
|
INP_WLOCK(inp);
|
|
DDP_LOCK(toep);
|
|
db = &toep->ddp.db[db_idx];
|
|
|
|
/*
|
|
* handle_ddp_data() should leave the job around until
|
|
* this callback runs once a cancel is pending.
|
|
*/
|
|
MPASS(db != NULL);
|
|
MPASS(db->job != NULL);
|
|
MPASS(db->cancel_pending);
|
|
|
|
/*
|
|
* XXX: It's not clear what happens if there is data
|
|
* placed when the buffer is invalidated. I suspect we
|
|
* need to read the TCB to see how much data was placed.
|
|
*
|
|
* For now this just pretends like nothing was placed.
|
|
*
|
|
* XXX: Note that if we did check the PCB we would need to
|
|
* also take care of updating the tp, etc.
|
|
*/
|
|
job = db->job;
|
|
copied = job->aio_received;
|
|
if (copied == 0) {
|
|
CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
|
|
aio_cancel(job);
|
|
} else {
|
|
CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
|
|
__func__, job, copied);
|
|
aio_complete(job, copied, 0);
|
|
t4_rcvd(&toep->td->tod, intotcpcb(inp));
|
|
}
|
|
|
|
complete_ddp_buffer(toep, db, db_idx);
|
|
if (toep->ddp.waiting_count > 0)
|
|
ddp_queue_toep(toep);
|
|
DDP_UNLOCK(toep);
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
default:
|
|
panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
|
|
G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
|
|
{
|
|
struct ddp_buffer *db;
|
|
struct kaiocb *job;
|
|
long copied;
|
|
unsigned int db_flag, db_idx;
|
|
int len, placed;
|
|
|
|
INP_WLOCK_ASSERT(toep->inp);
|
|
DDP_ASSERT_LOCKED(toep);
|
|
|
|
len = be32toh(rcv_nxt) - tp->rcv_nxt;
|
|
tp->rcv_nxt += len;
|
|
|
|
while (toep->ddp.active_count > 0) {
|
|
MPASS(toep->ddp.active_id != -1);
|
|
db_idx = toep->ddp.active_id;
|
|
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
|
|
MPASS((toep->ddp.flags & db_flag) != 0);
|
|
db = &toep->ddp.db[db_idx];
|
|
job = db->job;
|
|
copied = job->aio_received;
|
|
placed = len;
|
|
if (placed > job->uaiocb.aio_nbytes - copied)
|
|
placed = job->uaiocb.aio_nbytes - copied;
|
|
if (placed > 0)
|
|
job->msgrcv = 1;
|
|
if (!aio_clear_cancel_function(job)) {
|
|
/*
|
|
* Update the copied length for when
|
|
* t4_aio_cancel_active() completes this
|
|
* request.
|
|
*/
|
|
job->aio_received += placed;
|
|
} else {
|
|
CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
|
|
__func__, toep->tid, db_idx, placed);
|
|
aio_complete(job, copied + placed, 0);
|
|
}
|
|
len -= placed;
|
|
complete_ddp_buffer(toep, db, db_idx);
|
|
}
|
|
|
|
MPASS(len == 0);
|
|
ddp_complete_all(toep, 0);
|
|
}
|
|
|
|
#define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
|
|
F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
|
|
F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
|
|
F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
|
|
|
|
extern cpl_handler_t t4_cpl_handler[];
|
|
|
|
static int
|
|
do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
|
|
{
|
|
struct adapter *sc = iq->adapter;
|
|
const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
|
|
unsigned int tid = GET_TID(cpl);
|
|
uint32_t vld;
|
|
struct toepcb *toep = lookup_tid(sc, tid);
|
|
|
|
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
|
|
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
|
|
KASSERT(!(toep->flags & TPF_SYNQE),
|
|
("%s: toep %p claims to be a synq entry", __func__, toep));
|
|
|
|
vld = be32toh(cpl->ddpvld);
|
|
if (__predict_false(vld & DDP_ERR)) {
|
|
panic("%s: DDP error 0x%x (tid %d, toep %p)",
|
|
__func__, vld, tid, toep);
|
|
}
|
|
|
|
if (ulp_mode(toep) == ULP_MODE_ISCSI) {
|
|
t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
|
|
return (0);
|
|
}
|
|
|
|
handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
|
|
struct mbuf *m)
|
|
{
|
|
struct adapter *sc = iq->adapter;
|
|
const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
|
|
unsigned int tid = GET_TID(cpl);
|
|
struct toepcb *toep = lookup_tid(sc, tid);
|
|
|
|
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
|
|
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
|
|
KASSERT(!(toep->flags & TPF_SYNQE),
|
|
("%s: toep %p claims to be a synq entry", __func__, toep));
|
|
|
|
handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
enable_ddp(struct adapter *sc, struct toepcb *toep)
|
|
{
|
|
|
|
KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
|
|
("%s: toep %p has bad ddp_flags 0x%x",
|
|
__func__, toep, toep->ddp.flags));
|
|
|
|
CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
|
|
__func__, toep->tid, time_uptime);
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
toep->ddp.flags |= DDP_SC_REQ;
|
|
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
|
|
V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
|
|
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
|
|
V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
|
|
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
|
|
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
|
|
V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
|
|
}
|
|
|
|
static int
|
|
calculate_hcf(int n1, int n2)
|
|
{
|
|
int a, b, t;
|
|
|
|
if (n1 <= n2) {
|
|
a = n1;
|
|
b = n2;
|
|
} else {
|
|
a = n2;
|
|
b = n1;
|
|
}
|
|
|
|
while (a != 0) {
|
|
t = a;
|
|
a = b % a;
|
|
b = t;
|
|
}
|
|
|
|
return (b);
|
|
}
|
|
|
|
static inline int
|
|
pages_to_nppods(int npages, int ddp_page_shift)
|
|
{
|
|
|
|
MPASS(ddp_page_shift >= PAGE_SHIFT);
|
|
|
|
return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
|
|
}
|
|
|
|
static int
|
|
alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
|
|
struct ppod_reservation *prsv)
|
|
{
|
|
vmem_addr_t addr; /* relative to start of region */
|
|
|
|
if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
|
|
&addr) != 0)
|
|
return (ENOMEM);
|
|
|
|
CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
|
|
__func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
|
|
nppods, 1 << pr->pr_page_shift[pgsz_idx]);
|
|
|
|
/*
|
|
* The hardware tagmask includes an extra invalid bit but the arena was
|
|
* seeded with valid values only. An allocation out of this arena will
|
|
* fit inside the tagmask but won't have the invalid bit set.
|
|
*/
|
|
MPASS((addr & pr->pr_tag_mask) == addr);
|
|
MPASS((addr & pr->pr_invalid_bit) == 0);
|
|
|
|
prsv->prsv_pr = pr;
|
|
prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
|
|
prsv->prsv_nppods = nppods;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
|
|
{
|
|
int i, hcf, seglen, idx, nppods;
|
|
struct ppod_reservation *prsv = &ps->prsv;
|
|
|
|
KASSERT(prsv->prsv_nppods == 0,
|
|
("%s: page pods already allocated", __func__));
|
|
|
|
/*
|
|
* The DDP page size is unrelated to the VM page size. We combine
|
|
* contiguous physical pages into larger segments to get the best DDP
|
|
* page size possible. This is the largest of the four sizes in
|
|
* A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
|
|
* the page list.
|
|
*/
|
|
hcf = 0;
|
|
for (i = 0; i < ps->npages; i++) {
|
|
seglen = PAGE_SIZE;
|
|
while (i < ps->npages - 1 &&
|
|
ps->pages[i]->phys_addr + PAGE_SIZE ==
|
|
ps->pages[i + 1]->phys_addr) {
|
|
seglen += PAGE_SIZE;
|
|
i++;
|
|
}
|
|
|
|
hcf = calculate_hcf(hcf, seglen);
|
|
if (hcf < (1 << pr->pr_page_shift[1])) {
|
|
idx = 0;
|
|
goto have_pgsz; /* give up, short circuit */
|
|
}
|
|
}
|
|
|
|
#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
|
|
MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
|
|
for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
|
|
if ((hcf & PR_PAGE_MASK(idx)) == 0)
|
|
break;
|
|
}
|
|
#undef PR_PAGE_MASK
|
|
|
|
have_pgsz:
|
|
MPASS(idx <= M_PPOD_PGSZ);
|
|
|
|
nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
|
|
if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
|
|
return (0);
|
|
MPASS(prsv->prsv_nppods > 0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
|
|
struct ppod_reservation *prsv)
|
|
{
|
|
int hcf, seglen, idx, npages, nppods;
|
|
uintptr_t start_pva, end_pva, pva, p1;
|
|
|
|
MPASS(buf > 0);
|
|
MPASS(len > 0);
|
|
|
|
/*
|
|
* The DDP page size is unrelated to the VM page size. We combine
|
|
* contiguous physical pages into larger segments to get the best DDP
|
|
* page size possible. This is the largest of the four sizes in
|
|
* A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
|
|
* in the page list.
|
|
*/
|
|
hcf = 0;
|
|
start_pva = trunc_page(buf);
|
|
end_pva = trunc_page(buf + len - 1);
|
|
pva = start_pva;
|
|
while (pva <= end_pva) {
|
|
seglen = PAGE_SIZE;
|
|
p1 = pmap_kextract(pva);
|
|
pva += PAGE_SIZE;
|
|
while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
|
|
seglen += PAGE_SIZE;
|
|
pva += PAGE_SIZE;
|
|
}
|
|
|
|
hcf = calculate_hcf(hcf, seglen);
|
|
if (hcf < (1 << pr->pr_page_shift[1])) {
|
|
idx = 0;
|
|
goto have_pgsz; /* give up, short circuit */
|
|
}
|
|
}
|
|
|
|
#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
|
|
MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
|
|
for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
|
|
if ((hcf & PR_PAGE_MASK(idx)) == 0)
|
|
break;
|
|
}
|
|
#undef PR_PAGE_MASK
|
|
|
|
have_pgsz:
|
|
MPASS(idx <= M_PPOD_PGSZ);
|
|
|
|
npages = 1;
|
|
npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
|
|
nppods = howmany(npages, PPOD_PAGES);
|
|
if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
|
|
return (ENOMEM);
|
|
MPASS(prsv->prsv_nppods > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t4_free_page_pods(struct ppod_reservation *prsv)
|
|
{
|
|
struct ppod_region *pr = prsv->prsv_pr;
|
|
vmem_addr_t addr;
|
|
|
|
MPASS(prsv != NULL);
|
|
MPASS(prsv->prsv_nppods != 0);
|
|
|
|
addr = prsv->prsv_tag & pr->pr_tag_mask;
|
|
MPASS((addr & pr->pr_invalid_bit) == 0);
|
|
|
|
CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
|
|
pr->pr_arena, addr, prsv->prsv_nppods);
|
|
|
|
vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
|
|
prsv->prsv_nppods = 0;
|
|
}
|
|
|
|
#define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
|
|
|
|
int
|
|
t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
|
|
struct pageset *ps)
|
|
{
|
|
struct wrqe *wr;
|
|
struct ulp_mem_io *ulpmc;
|
|
struct ulptx_idata *ulpsc;
|
|
struct pagepod *ppod;
|
|
int i, j, k, n, chunk, len, ddp_pgsz, idx;
|
|
u_int ppod_addr;
|
|
uint32_t cmd;
|
|
struct ppod_reservation *prsv = &ps->prsv;
|
|
struct ppod_region *pr = prsv->prsv_pr;
|
|
|
|
KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
|
|
("%s: page pods already written", __func__));
|
|
MPASS(prsv->prsv_nppods > 0);
|
|
|
|
cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
|
|
if (is_t4(sc))
|
|
cmd |= htobe32(F_ULP_MEMIO_ORDER);
|
|
else
|
|
cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
|
|
ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
|
|
ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
|
|
for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
|
|
|
|
/* How many page pods are we writing in this cycle */
|
|
n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
|
|
chunk = PPOD_SZ(n);
|
|
len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
|
|
|
|
wr = alloc_wrqe(len, wrq);
|
|
if (wr == NULL)
|
|
return (ENOMEM); /* ok to just bail out */
|
|
ulpmc = wrtod(wr);
|
|
|
|
INIT_ULPTX_WR(ulpmc, len, 0, 0);
|
|
ulpmc->cmd = cmd;
|
|
ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
|
|
ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
|
|
ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
|
|
|
|
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
|
|
ulpsc->len = htobe32(chunk);
|
|
|
|
ppod = (struct pagepod *)(ulpsc + 1);
|
|
for (j = 0; j < n; i++, j++, ppod++) {
|
|
ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
|
|
V_PPOD_TID(tid) | prsv->prsv_tag);
|
|
ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
|
|
V_PPOD_OFST(ps->offset));
|
|
ppod->rsvd = 0;
|
|
idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
|
|
for (k = 0; k < nitems(ppod->addr); k++) {
|
|
if (idx < ps->npages) {
|
|
ppod->addr[k] =
|
|
htobe64(ps->pages[idx]->phys_addr);
|
|
idx += ddp_pgsz / PAGE_SIZE;
|
|
} else
|
|
ppod->addr[k] = 0;
|
|
#if 0
|
|
CTR5(KTR_CXGBE,
|
|
"%s: tid %d ppod[%d]->addr[%d] = %p",
|
|
__func__, toep->tid, i, k,
|
|
htobe64(ppod->addr[k]));
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
t4_wrq_tx(sc, wr);
|
|
}
|
|
ps->flags |= PS_PPODS_WRITTEN;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
|
|
struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
|
|
{
|
|
struct wrqe *wr;
|
|
struct ulp_mem_io *ulpmc;
|
|
struct ulptx_idata *ulpsc;
|
|
struct pagepod *ppod;
|
|
int i, j, k, n, chunk, len, ddp_pgsz;
|
|
u_int ppod_addr, offset;
|
|
uint32_t cmd;
|
|
struct ppod_region *pr = prsv->prsv_pr;
|
|
uintptr_t end_pva, pva, pa;
|
|
|
|
cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
|
|
if (is_t4(sc))
|
|
cmd |= htobe32(F_ULP_MEMIO_ORDER);
|
|
else
|
|
cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
|
|
ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
|
|
offset = buf & PAGE_MASK;
|
|
ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
|
|
pva = trunc_page(buf);
|
|
end_pva = trunc_page(buf + buflen - 1);
|
|
for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
|
|
|
|
/* How many page pods are we writing in this cycle */
|
|
n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
|
|
MPASS(n > 0);
|
|
chunk = PPOD_SZ(n);
|
|
len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
|
|
|
|
wr = alloc_wrqe(len, wrq);
|
|
if (wr == NULL)
|
|
return (ENOMEM); /* ok to just bail out */
|
|
ulpmc = wrtod(wr);
|
|
|
|
INIT_ULPTX_WR(ulpmc, len, 0, 0);
|
|
ulpmc->cmd = cmd;
|
|
ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
|
|
ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
|
|
ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
|
|
|
|
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
|
|
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
|
|
ulpsc->len = htobe32(chunk);
|
|
|
|
ppod = (struct pagepod *)(ulpsc + 1);
|
|
for (j = 0; j < n; i++, j++, ppod++) {
|
|
ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
|
|
V_PPOD_TID(tid) |
|
|
(prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
|
|
ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
|
|
V_PPOD_OFST(offset));
|
|
ppod->rsvd = 0;
|
|
|
|
for (k = 0; k < nitems(ppod->addr); k++) {
|
|
if (pva > end_pva)
|
|
ppod->addr[k] = 0;
|
|
else {
|
|
pa = pmap_kextract(pva);
|
|
ppod->addr[k] = htobe64(pa);
|
|
pva += ddp_pgsz;
|
|
}
|
|
#if 0
|
|
CTR5(KTR_CXGBE,
|
|
"%s: tid %d ppod[%d]->addr[%d] = %p",
|
|
__func__, tid, i, k,
|
|
htobe64(ppod->addr[k]));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Walk back 1 segment so that the first address in the
|
|
* next pod is the same as the last one in the current
|
|
* pod.
|
|
*/
|
|
pva -= ddp_pgsz;
|
|
}
|
|
|
|
t4_wrq_tx(sc, wr);
|
|
}
|
|
|
|
MPASS(pva <= end_pva);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Prepare a pageset for DDP. This sets up page pods.
|
|
*/
|
|
static int
|
|
prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
|
|
{
|
|
struct tom_data *td = sc->tom_softc;
|
|
|
|
if (ps->prsv.prsv_nppods == 0 &&
|
|
!t4_alloc_page_pods_for_ps(&td->pr, ps)) {
|
|
return (0);
|
|
}
|
|
if (!(ps->flags & PS_PPODS_WRITTEN) &&
|
|
t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
|
|
const char *name)
|
|
{
|
|
int i;
|
|
|
|
MPASS(pr != NULL);
|
|
MPASS(r->size > 0);
|
|
|
|
pr->pr_start = r->start;
|
|
pr->pr_len = r->size;
|
|
pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
|
|
pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
|
|
pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
|
|
pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
|
|
|
|
/* The SGL -> page pod algorithm requires the sizes to be in order. */
|
|
for (i = 1; i < nitems(pr->pr_page_shift); i++) {
|
|
if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
|
|
return (ENXIO);
|
|
}
|
|
|
|
pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
|
|
pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
|
|
if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
|
|
return (ENXIO);
|
|
pr->pr_alias_shift = fls(pr->pr_tag_mask);
|
|
pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
|
|
|
|
pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
|
|
M_FIRSTFIT | M_NOWAIT);
|
|
if (pr->pr_arena == NULL)
|
|
return (ENOMEM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t4_free_ppod_region(struct ppod_region *pr)
|
|
{
|
|
|
|
MPASS(pr != NULL);
|
|
|
|
if (pr->pr_arena)
|
|
vmem_destroy(pr->pr_arena);
|
|
bzero(pr, sizeof(*pr));
|
|
}
|
|
|
|
static int
|
|
pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
|
|
int pgoff, int len)
|
|
{
|
|
|
|
if (ps->start != start || ps->npages != npages ||
|
|
ps->offset != pgoff || ps->len != len)
|
|
return (1);
|
|
|
|
return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
|
|
}
|
|
|
|
static int
|
|
hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
|
|
{
|
|
struct vmspace *vm;
|
|
vm_map_t map;
|
|
vm_offset_t start, end, pgoff;
|
|
struct pageset *ps;
|
|
int n;
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
|
|
/*
|
|
* The AIO subsystem will cancel and drain all requests before
|
|
* permitting a process to exit or exec, so p_vmspace should
|
|
* be stable here.
|
|
*/
|
|
vm = job->userproc->p_vmspace;
|
|
map = &vm->vm_map;
|
|
start = (uintptr_t)job->uaiocb.aio_buf;
|
|
pgoff = start & PAGE_MASK;
|
|
end = round_page(start + job->uaiocb.aio_nbytes);
|
|
start = trunc_page(start);
|
|
|
|
if (end - start > MAX_DDP_BUFFER_SIZE) {
|
|
/*
|
|
* Truncate the request to a short read.
|
|
* Alternatively, we could DDP in chunks to the larger
|
|
* buffer, but that would be quite a bit more work.
|
|
*
|
|
* When truncating, round the request down to avoid
|
|
* crossing a cache line on the final transaction.
|
|
*/
|
|
end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
|
|
#ifdef VERBOSE_TRACES
|
|
CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
|
|
__func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
|
|
(unsigned long)(end - (start + pgoff)));
|
|
job->uaiocb.aio_nbytes = end - (start + pgoff);
|
|
#endif
|
|
end = round_page(end);
|
|
}
|
|
|
|
n = atop(end - start);
|
|
|
|
/*
|
|
* Try to reuse a cached pageset.
|
|
*/
|
|
TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
|
|
if (pscmp(ps, vm, start, n, pgoff,
|
|
job->uaiocb.aio_nbytes) == 0) {
|
|
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
|
|
toep->ddp.cached_count--;
|
|
*pps = ps;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are too many cached pagesets to create a new one,
|
|
* free a pageset before creating a new one.
|
|
*/
|
|
KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
|
|
nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
|
|
if (toep->ddp.active_count + toep->ddp.cached_count ==
|
|
nitems(toep->ddp.db)) {
|
|
KASSERT(toep->ddp.cached_count > 0,
|
|
("no cached pageset to free"));
|
|
ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
|
|
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
|
|
toep->ddp.cached_count--;
|
|
free_pageset(toep->td, ps);
|
|
}
|
|
DDP_UNLOCK(toep);
|
|
|
|
/* Create a new pageset. */
|
|
ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
|
|
M_ZERO);
|
|
ps->pages = (vm_page_t *)(ps + 1);
|
|
ps->vm_timestamp = map->timestamp;
|
|
ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
|
|
VM_PROT_WRITE, ps->pages, n);
|
|
|
|
DDP_LOCK(toep);
|
|
if (ps->npages < 0) {
|
|
free(ps, M_CXGBE);
|
|
return (EFAULT);
|
|
}
|
|
|
|
KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
|
|
ps->npages, n));
|
|
|
|
ps->offset = pgoff;
|
|
ps->len = job->uaiocb.aio_nbytes;
|
|
refcount_acquire(&vm->vm_refcnt);
|
|
ps->vm = vm;
|
|
ps->start = start;
|
|
|
|
CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
|
|
__func__, toep->tid, ps, job, ps->npages);
|
|
*pps = ps;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ddp_complete_all(struct toepcb *toep, int error)
|
|
{
|
|
struct kaiocb *job;
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
|
|
job = TAILQ_FIRST(&toep->ddp.aiojobq);
|
|
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
|
|
toep->ddp.waiting_count--;
|
|
if (aio_clear_cancel_function(job))
|
|
ddp_complete_one(job, error);
|
|
}
|
|
}
|
|
|
|
static void
|
|
aio_ddp_cancel_one(struct kaiocb *job)
|
|
{
|
|
long copied;
|
|
|
|
/*
|
|
* If this job had copied data out of the socket buffer before
|
|
* it was cancelled, report it as a short read rather than an
|
|
* error.
|
|
*/
|
|
copied = job->aio_received;
|
|
if (copied != 0)
|
|
aio_complete(job, copied, 0);
|
|
else
|
|
aio_cancel(job);
|
|
}
|
|
|
|
/*
|
|
* Called when the main loop wants to requeue a job to retry it later.
|
|
* Deals with the race of the job being cancelled while it was being
|
|
* examined.
|
|
*/
|
|
static void
|
|
aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
|
|
{
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
if (!(toep->ddp.flags & DDP_DEAD) &&
|
|
aio_set_cancel_function(job, t4_aio_cancel_queued)) {
|
|
TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
|
|
toep->ddp.waiting_count++;
|
|
} else
|
|
aio_ddp_cancel_one(job);
|
|
}
|
|
|
|
static void
|
|
aio_ddp_requeue(struct toepcb *toep)
|
|
{
|
|
struct adapter *sc = td_adapter(toep->td);
|
|
struct socket *so;
|
|
struct sockbuf *sb;
|
|
struct inpcb *inp;
|
|
struct kaiocb *job;
|
|
struct ddp_buffer *db;
|
|
size_t copied, offset, resid;
|
|
struct pageset *ps;
|
|
struct mbuf *m;
|
|
uint64_t ddp_flags, ddp_flags_mask;
|
|
struct wrqe *wr;
|
|
int buf_flag, db_idx, error;
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
|
|
restart:
|
|
if (toep->ddp.flags & DDP_DEAD) {
|
|
MPASS(toep->ddp.waiting_count == 0);
|
|
MPASS(toep->ddp.active_count == 0);
|
|
return;
|
|
}
|
|
|
|
if (toep->ddp.waiting_count == 0 ||
|
|
toep->ddp.active_count == nitems(toep->ddp.db)) {
|
|
return;
|
|
}
|
|
|
|
job = TAILQ_FIRST(&toep->ddp.aiojobq);
|
|
so = job->fd_file->f_data;
|
|
sb = &so->so_rcv;
|
|
SOCKBUF_LOCK(sb);
|
|
|
|
/* We will never get anything unless we are or were connected. */
|
|
if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
ddp_complete_all(toep, ENOTCONN);
|
|
return;
|
|
}
|
|
|
|
KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
|
|
("%s: pending sockbuf data and DDP is active", __func__));
|
|
|
|
/* Abort if socket has reported problems. */
|
|
/* XXX: Wait for any queued DDP's to finish and/or flush them? */
|
|
if (so->so_error && sbavail(sb) == 0) {
|
|
toep->ddp.waiting_count--;
|
|
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
|
|
if (!aio_clear_cancel_function(job)) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* If this job has previously copied some data, report
|
|
* a short read and leave the error to be reported by
|
|
* a future request.
|
|
*/
|
|
copied = job->aio_received;
|
|
if (copied != 0) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
aio_complete(job, copied, 0);
|
|
goto restart;
|
|
}
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(sb);
|
|
aio_complete(job, -1, error);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* Door is closed. If there is pending data in the socket buffer,
|
|
* deliver it. If there are pending DDP requests, wait for those
|
|
* to complete. Once they have completed, return EOF reads.
|
|
*/
|
|
if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
if (toep->ddp.active_count != 0)
|
|
return;
|
|
ddp_complete_all(toep, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If DDP is not enabled and there is no pending socket buffer
|
|
* data, try to enable DDP.
|
|
*/
|
|
if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
/*
|
|
* Wait for the card to ACK that DDP is enabled before
|
|
* queueing any buffers. Currently this waits for an
|
|
* indicate to arrive. This could use a TCB_SET_FIELD_RPL
|
|
* message to know that DDP was enabled instead of waiting
|
|
* for the indicate which would avoid copying the indicate
|
|
* if no data is pending.
|
|
*
|
|
* XXX: Might want to limit the indicate size to the size
|
|
* of the first queued request.
|
|
*/
|
|
if ((toep->ddp.flags & DDP_SC_REQ) == 0)
|
|
enable_ddp(sc, toep);
|
|
return;
|
|
}
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
/*
|
|
* If another thread is queueing a buffer for DDP, let it
|
|
* drain any work and return.
|
|
*/
|
|
if (toep->ddp.queueing != NULL)
|
|
return;
|
|
|
|
/* Take the next job to prep it for DDP. */
|
|
toep->ddp.waiting_count--;
|
|
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
|
|
if (!aio_clear_cancel_function(job))
|
|
goto restart;
|
|
toep->ddp.queueing = job;
|
|
|
|
/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
|
|
error = hold_aio(toep, job, &ps);
|
|
if (error != 0) {
|
|
ddp_complete_one(job, error);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
if (so->so_error && sbavail(sb) == 0) {
|
|
copied = job->aio_received;
|
|
if (copied != 0) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
recycle_pageset(toep, ps);
|
|
aio_complete(job, copied, 0);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(sb);
|
|
recycle_pageset(toep, ps);
|
|
aio_complete(job, -1, error);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
recycle_pageset(toep, ps);
|
|
if (toep->ddp.active_count != 0) {
|
|
/*
|
|
* The door is closed, but there are still pending
|
|
* DDP buffers. Requeue. These jobs will all be
|
|
* completed once those buffers drain.
|
|
*/
|
|
aio_ddp_requeue_one(toep, job);
|
|
toep->ddp.queueing = NULL;
|
|
return;
|
|
}
|
|
ddp_complete_one(job, 0);
|
|
ddp_complete_all(toep, 0);
|
|
toep->ddp.queueing = NULL;
|
|
return;
|
|
}
|
|
|
|
sbcopy:
|
|
/*
|
|
* If the toep is dead, there shouldn't be any data in the socket
|
|
* buffer, so the above case should have handled this.
|
|
*/
|
|
MPASS(!(toep->ddp.flags & DDP_DEAD));
|
|
|
|
/*
|
|
* If there is pending data in the socket buffer (either
|
|
* from before the requests were queued or a DDP indicate),
|
|
* copy those mbufs out directly.
|
|
*/
|
|
copied = 0;
|
|
offset = ps->offset + job->aio_received;
|
|
MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
|
|
resid = job->uaiocb.aio_nbytes - job->aio_received;
|
|
m = sb->sb_mb;
|
|
KASSERT(m == NULL || toep->ddp.active_count == 0,
|
|
("%s: sockbuf data with active DDP", __func__));
|
|
while (m != NULL && resid > 0) {
|
|
struct iovec iov[1];
|
|
struct uio uio;
|
|
int error;
|
|
|
|
iov[0].iov_base = mtod(m, void *);
|
|
iov[0].iov_len = m->m_len;
|
|
if (iov[0].iov_len > resid)
|
|
iov[0].iov_len = resid;
|
|
uio.uio_iov = iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_offset = 0;
|
|
uio.uio_resid = iov[0].iov_len;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_rw = UIO_WRITE;
|
|
error = uiomove_fromphys(ps->pages, offset + copied,
|
|
uio.uio_resid, &uio);
|
|
MPASS(error == 0 && uio.uio_resid == 0);
|
|
copied += uio.uio_offset;
|
|
resid -= uio.uio_offset;
|
|
m = m->m_next;
|
|
}
|
|
if (copied != 0) {
|
|
sbdrop_locked(sb, copied);
|
|
job->aio_received += copied;
|
|
job->msgrcv = 1;
|
|
copied = job->aio_received;
|
|
inp = sotoinpcb(so);
|
|
if (!INP_TRY_WLOCK(inp)) {
|
|
/*
|
|
* The reference on the socket file descriptor in
|
|
* the AIO job should keep 'sb' and 'inp' stable.
|
|
* Our caller has a reference on the 'toep' that
|
|
* keeps it stable.
|
|
*/
|
|
SOCKBUF_UNLOCK(sb);
|
|
DDP_UNLOCK(toep);
|
|
INP_WLOCK(inp);
|
|
DDP_LOCK(toep);
|
|
SOCKBUF_LOCK(sb);
|
|
|
|
/*
|
|
* If the socket has been closed, we should detect
|
|
* that and complete this request if needed on
|
|
* the next trip around the loop.
|
|
*/
|
|
}
|
|
t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
|
|
INP_WUNLOCK(inp);
|
|
if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
|
|
/*
|
|
* We filled the entire buffer with socket
|
|
* data, DDP is not being used, or the socket
|
|
* is being shut down, so complete the
|
|
* request.
|
|
*/
|
|
SOCKBUF_UNLOCK(sb);
|
|
recycle_pageset(toep, ps);
|
|
aio_complete(job, copied, 0);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* If DDP is not enabled, requeue this request and restart.
|
|
* This will either enable DDP or wait for more data to
|
|
* arrive on the socket buffer.
|
|
*/
|
|
if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
recycle_pageset(toep, ps);
|
|
aio_ddp_requeue_one(toep, job);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* An indicate might have arrived and been added to
|
|
* the socket buffer while it was unlocked after the
|
|
* copy to lock the INP. If so, restart the copy.
|
|
*/
|
|
if (sbavail(sb) != 0)
|
|
goto sbcopy;
|
|
}
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
if (prep_pageset(sc, toep, ps) == 0) {
|
|
recycle_pageset(toep, ps);
|
|
aio_ddp_requeue_one(toep, job);
|
|
toep->ddp.queueing = NULL;
|
|
|
|
/*
|
|
* XXX: Need to retry this later. Mostly need a trigger
|
|
* when page pods are freed up.
|
|
*/
|
|
printf("%s: prep_pageset failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/* Determine which DDP buffer to use. */
|
|
if (toep->ddp.db[0].job == NULL) {
|
|
db_idx = 0;
|
|
} else {
|
|
MPASS(toep->ddp.db[1].job == NULL);
|
|
db_idx = 1;
|
|
}
|
|
|
|
ddp_flags = 0;
|
|
ddp_flags_mask = 0;
|
|
if (db_idx == 0) {
|
|
ddp_flags |= V_TF_DDP_BUF0_VALID(1);
|
|
if (so->so_state & SS_NBIO)
|
|
ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
|
|
ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
|
|
V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
|
|
V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
|
|
buf_flag = DDP_BUF0_ACTIVE;
|
|
} else {
|
|
ddp_flags |= V_TF_DDP_BUF1_VALID(1);
|
|
if (so->so_state & SS_NBIO)
|
|
ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
|
|
ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
|
|
V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
|
|
V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
|
|
buf_flag = DDP_BUF1_ACTIVE;
|
|
}
|
|
MPASS((toep->ddp.flags & buf_flag) == 0);
|
|
if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
|
|
MPASS(db_idx == 0);
|
|
MPASS(toep->ddp.active_id == -1);
|
|
MPASS(toep->ddp.active_count == 0);
|
|
ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
|
|
}
|
|
|
|
/*
|
|
* The TID for this connection should still be valid. If DDP_DEAD
|
|
* is set, SBS_CANTRCVMORE should be set, so we shouldn't be
|
|
* this far anyway. Even if the socket is closing on the other
|
|
* end, the AIO job holds a reference on this end of the socket
|
|
* which will keep it open and keep the TCP PCB attached until
|
|
* after the job is completed.
|
|
*/
|
|
wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
|
|
ddp_flags, ddp_flags_mask);
|
|
if (wr == NULL) {
|
|
recycle_pageset(toep, ps);
|
|
aio_ddp_requeue_one(toep, job);
|
|
toep->ddp.queueing = NULL;
|
|
|
|
/*
|
|
* XXX: Need a way to kick a retry here.
|
|
*
|
|
* XXX: We know the fixed size needed and could
|
|
* preallocate this using a blocking request at the
|
|
* start of the task to avoid having to handle this
|
|
* edge case.
|
|
*/
|
|
printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
|
|
free_wrqe(wr);
|
|
recycle_pageset(toep, ps);
|
|
aio_ddp_cancel_one(job);
|
|
toep->ddp.queueing = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
#ifdef VERBOSE_TRACES
|
|
CTR6(KTR_CXGBE,
|
|
"%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
|
|
toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
|
|
#endif
|
|
/* Give the chip the go-ahead. */
|
|
t4_wrq_tx(sc, wr);
|
|
db = &toep->ddp.db[db_idx];
|
|
db->cancel_pending = 0;
|
|
db->job = job;
|
|
db->ps = ps;
|
|
toep->ddp.queueing = NULL;
|
|
toep->ddp.flags |= buf_flag;
|
|
toep->ddp.active_count++;
|
|
if (toep->ddp.active_count == 1) {
|
|
MPASS(toep->ddp.active_id == -1);
|
|
toep->ddp.active_id = db_idx;
|
|
CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
|
|
toep->ddp.active_id);
|
|
}
|
|
goto restart;
|
|
}
|
|
|
|
void
|
|
ddp_queue_toep(struct toepcb *toep)
|
|
{
|
|
|
|
DDP_ASSERT_LOCKED(toep);
|
|
if (toep->ddp.flags & DDP_TASK_ACTIVE)
|
|
return;
|
|
toep->ddp.flags |= DDP_TASK_ACTIVE;
|
|
hold_toepcb(toep);
|
|
soaio_enqueue(&toep->ddp.requeue_task);
|
|
}
|
|
|
|
static void
|
|
aio_ddp_requeue_task(void *context, int pending)
|
|
{
|
|
struct toepcb *toep = context;
|
|
|
|
DDP_LOCK(toep);
|
|
aio_ddp_requeue(toep);
|
|
toep->ddp.flags &= ~DDP_TASK_ACTIVE;
|
|
DDP_UNLOCK(toep);
|
|
|
|
free_toepcb(toep);
|
|
}
|
|
|
|
static void
|
|
t4_aio_cancel_active(struct kaiocb *job)
|
|
{
|
|
struct socket *so = job->fd_file->f_data;
|
|
struct tcpcb *tp = so_sototcpcb(so);
|
|
struct toepcb *toep = tp->t_toe;
|
|
struct adapter *sc = td_adapter(toep->td);
|
|
uint64_t valid_flag;
|
|
int i;
|
|
|
|
DDP_LOCK(toep);
|
|
if (aio_cancel_cleared(job)) {
|
|
DDP_UNLOCK(toep);
|
|
aio_ddp_cancel_one(job);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < nitems(toep->ddp.db); i++) {
|
|
if (toep->ddp.db[i].job == job) {
|
|
/* Should only ever get one cancel request for a job. */
|
|
MPASS(toep->ddp.db[i].cancel_pending == 0);
|
|
|
|
/*
|
|
* Invalidate this buffer. It will be
|
|
* cancelled or partially completed once the
|
|
* card ACKs the invalidate.
|
|
*/
|
|
valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
|
|
V_TF_DDP_BUF1_VALID(1);
|
|
t4_set_tcb_field(sc, toep->ctrlq, toep,
|
|
W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
|
|
i + DDP_BUF0_INVALIDATED);
|
|
toep->ddp.db[i].cancel_pending = 1;
|
|
CTR2(KTR_CXGBE, "%s: request %p marked pending",
|
|
__func__, job);
|
|
break;
|
|
}
|
|
}
|
|
DDP_UNLOCK(toep);
|
|
}
|
|
|
|
static void
|
|
t4_aio_cancel_queued(struct kaiocb *job)
|
|
{
|
|
struct socket *so = job->fd_file->f_data;
|
|
struct tcpcb *tp = so_sototcpcb(so);
|
|
struct toepcb *toep = tp->t_toe;
|
|
|
|
DDP_LOCK(toep);
|
|
if (!aio_cancel_cleared(job)) {
|
|
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
|
|
toep->ddp.waiting_count--;
|
|
if (toep->ddp.waiting_count == 0)
|
|
ddp_queue_toep(toep);
|
|
}
|
|
CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
|
|
DDP_UNLOCK(toep);
|
|
|
|
aio_ddp_cancel_one(job);
|
|
}
|
|
|
|
int
|
|
t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
|
|
{
|
|
struct tcpcb *tp = so_sototcpcb(so);
|
|
struct toepcb *toep = tp->t_toe;
|
|
|
|
|
|
/* Ignore writes. */
|
|
if (job->uaiocb.aio_lio_opcode != LIO_READ)
|
|
return (EOPNOTSUPP);
|
|
|
|
DDP_LOCK(toep);
|
|
|
|
/*
|
|
* XXX: Think about possibly returning errors for ENOTCONN,
|
|
* etc. Perhaps the caller would only queue the request
|
|
* if it failed with EOPNOTSUPP?
|
|
*/
|
|
|
|
#ifdef VERBOSE_TRACES
|
|
CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
|
|
#endif
|
|
if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
|
|
panic("new job was cancelled");
|
|
TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
|
|
toep->ddp.waiting_count++;
|
|
toep->ddp.flags |= DDP_OK;
|
|
|
|
/*
|
|
* Try to handle this request synchronously. If this has
|
|
* to block because the task is running, it will just bail
|
|
* and let the task handle it instead.
|
|
*/
|
|
aio_ddp_requeue(toep);
|
|
DDP_UNLOCK(toep);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t4_ddp_mod_load(void)
|
|
{
|
|
|
|
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
|
|
CPL_COOKIE_DDP0);
|
|
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
|
|
CPL_COOKIE_DDP1);
|
|
t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
|
|
t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
|
|
TAILQ_INIT(&ddp_orphan_pagesets);
|
|
mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
|
|
TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
|
|
}
|
|
|
|
void
|
|
t4_ddp_mod_unload(void)
|
|
{
|
|
|
|
taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
|
|
MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
|
|
mtx_destroy(&ddp_orphan_pagesets_lock);
|
|
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
|
|
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
|
|
t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
|
|
t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
|
|
}
|
|
#endif
|