Jilles Tjoelker b18943f3b4 libthr: Always use the threaded rtld lock implementation.
The threaded rtld lock implementation is faster even in the single-threaded
case because it postpones signal handlers via THR_CRITICAL_ENTER and
THR_CRITICAL_LEAVE instead of calling sigprocmask(2).

As a result, exception handling becomes faster in single-threaded
applications linked with libthr.

Reviewed by:	kib
2013-01-18 23:08:40 +00:00

213 lines
5.0 KiB
C

/*
* Copyright (c) 2005 David Xu <davidxu@freebsd.org>
* Copyright (C) 2003 Daniel M. Eischen <deischen@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/types.h>
#include <sys/signalvar.h>
#include <sys/rtprio.h>
#include <sys/mman.h>
#include <pthread.h>
#include "thr_private.h"
/*#define DEBUG_THREAD_KERN */
#ifdef DEBUG_THREAD_KERN
#define DBG_MSG stdout_debug
#else
#define DBG_MSG(x...)
#endif
static struct umutex addr_lock;
static struct wake_addr *wake_addr_head;
static struct wake_addr default_wake_addr;
/*
* This is called when the first thread (other than the initial
* thread) is created.
*/
int
_thr_setthreaded(int threaded)
{
if (((threaded == 0) ^ (__isthreaded == 0)) == 0)
return (0);
__isthreaded = threaded;
return (0);
}
void
_thr_assert_lock_level()
{
PANIC("locklevel <= 0");
}
int
_rtp_to_schedparam(const struct rtprio *rtp, int *policy,
struct sched_param *param)
{
switch(rtp->type) {
case RTP_PRIO_REALTIME:
*policy = SCHED_RR;
param->sched_priority = RTP_PRIO_MAX - rtp->prio;
break;
case RTP_PRIO_FIFO:
*policy = SCHED_FIFO;
param->sched_priority = RTP_PRIO_MAX - rtp->prio;
break;
default:
*policy = SCHED_OTHER;
param->sched_priority = 0;
break;
}
return (0);
}
int
_schedparam_to_rtp(int policy, const struct sched_param *param,
struct rtprio *rtp)
{
switch(policy) {
case SCHED_RR:
rtp->type = RTP_PRIO_REALTIME;
rtp->prio = RTP_PRIO_MAX - param->sched_priority;
break;
case SCHED_FIFO:
rtp->type = RTP_PRIO_FIFO;
rtp->prio = RTP_PRIO_MAX - param->sched_priority;
break;
case SCHED_OTHER:
default:
rtp->type = RTP_PRIO_NORMAL;
rtp->prio = 0;
break;
}
return (0);
}
int
_thr_getscheduler(lwpid_t lwpid, int *policy, struct sched_param *param)
{
struct rtprio rtp;
int ret;
ret = rtprio_thread(RTP_LOOKUP, lwpid, &rtp);
if (ret == -1)
return (ret);
_rtp_to_schedparam(&rtp, policy, param);
return (0);
}
int
_thr_setscheduler(lwpid_t lwpid, int policy, const struct sched_param *param)
{
struct rtprio rtp;
_schedparam_to_rtp(policy, param, &rtp);
return (rtprio_thread(RTP_SET, lwpid, &rtp));
}
void
_thr_wake_addr_init(void)
{
_thr_umutex_init(&addr_lock);
wake_addr_head = NULL;
}
/*
* Allocate wake-address, the memory area is never freed after
* allocated, this becauses threads may be referencing it.
*/
struct wake_addr *
_thr_alloc_wake_addr(void)
{
struct pthread *curthread;
struct wake_addr *p;
if (_thr_initial == NULL) {
return &default_wake_addr;
}
curthread = _get_curthread();
THR_LOCK_ACQUIRE(curthread, &addr_lock);
if (wake_addr_head == NULL) {
unsigned i;
unsigned pagesize = getpagesize();
struct wake_addr *pp = (struct wake_addr *)
mmap(NULL, getpagesize(), PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
for (i = 1; i < pagesize/sizeof(struct wake_addr); ++i)
pp[i].link = &pp[i+1];
pp[i-1].link = NULL;
wake_addr_head = &pp[1];
p = &pp[0];
} else {
p = wake_addr_head;
wake_addr_head = p->link;
}
THR_LOCK_RELEASE(curthread, &addr_lock);
p->value = 0;
return (p);
}
void
_thr_release_wake_addr(struct wake_addr *wa)
{
struct pthread *curthread = _get_curthread();
if (wa == &default_wake_addr)
return;
THR_LOCK_ACQUIRE(curthread, &addr_lock);
wa->link = wake_addr_head;
wake_addr_head = wa;
THR_LOCK_RELEASE(curthread, &addr_lock);
}
/* Sleep on thread wakeup address */
int
_thr_sleep(struct pthread *curthread, int clockid,
const struct timespec *abstime)
{
if (curthread->wake_addr->value != 0)
return (0);
return _thr_umtx_timedwait_uint(&curthread->wake_addr->value, 0,
clockid, abstime, 0);
}
void
_thr_wake_all(unsigned int *waddrs[], int count)
{
int i;
for (i = 0; i < count; ++i)
*waddrs[i] = 1;
_umtx_op(waddrs, UMTX_OP_NWAKE_PRIVATE, count, NULL, NULL);
}