6004362e66
including other headers.
493 lines
12 KiB
C
493 lines
12 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986 The Regents of the University of California.
|
|
* Copyright (c) 1989, 1990 William Jolitz
|
|
* Copyright (c) 1994 John Dyson
|
|
* Copyright (c) 2001 Jake Burkholder.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
|
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
|
* from: FreeBSD: src/sys/i386/i386/vm_machdep.c,v 1.167 2001/07/12
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_pmap.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/linker_set.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
|
|
#include <machine/cache.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/fp.h>
|
|
#include <machine/fsr.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#include <machine/ofw_mem.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/tlb.h>
|
|
#include <machine/tstate.h>
|
|
|
|
#ifndef NSFBUFS
|
|
#define NSFBUFS (512 + maxusers * 16)
|
|
#endif
|
|
|
|
static void sf_buf_init(void *arg);
|
|
SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
|
|
|
|
/*
|
|
* Expanded sf_freelist head. Really an SLIST_HEAD() in disguise, with the
|
|
* sf_freelist head with the sf_lock mutex.
|
|
*/
|
|
static struct {
|
|
SLIST_HEAD(, sf_buf) sf_head;
|
|
struct mtx sf_lock;
|
|
} sf_freelist;
|
|
|
|
static u_int sf_buf_alloc_want;
|
|
|
|
PMAP_STATS_VAR(uma_nsmall_alloc);
|
|
PMAP_STATS_VAR(uma_nsmall_alloc_oc);
|
|
PMAP_STATS_VAR(uma_nsmall_free);
|
|
|
|
void
|
|
cpu_exit(struct thread *td)
|
|
{
|
|
struct md_utrap *ut;
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
p->p_md.md_sigtramp = NULL;
|
|
if ((ut = p->p_md.md_utrap) != NULL) {
|
|
ut->ut_refcnt--;
|
|
if (ut->ut_refcnt == 0)
|
|
free(ut, M_SUBPROC);
|
|
p->p_md.md_utrap = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
cpu_thread_exit(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_thread_clean(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_thread_setup(struct thread *td)
|
|
{
|
|
struct pcb *pcb;
|
|
|
|
pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
|
|
sizeof(struct pcb)) & ~0x3fUL);
|
|
pcb->pcb_nsaved = 0;
|
|
td->td_frame = (struct trapframe *)pcb - 1;
|
|
td->td_pcb = pcb;
|
|
}
|
|
|
|
void
|
|
cpu_thread_swapin(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_thread_swapout(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_set_upcall(struct thread *td, struct thread *td0)
|
|
{
|
|
struct trapframe *tf;
|
|
struct frame *fr;
|
|
struct pcb *pcb;
|
|
|
|
bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
|
|
|
|
pcb = td->td_pcb;
|
|
tf = td->td_frame;
|
|
fr = (struct frame *)tf - 1;
|
|
fr->fr_local[0] = (u_long)fork_return;
|
|
fr->fr_local[1] = (u_long)td;
|
|
fr->fr_local[2] = (u_long)tf;
|
|
pcb->pcb_pc = (u_long)fork_trampoline - 8;
|
|
pcb->pcb_sp = (u_long)fr - SPOFF;
|
|
}
|
|
|
|
void
|
|
cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
|
|
{
|
|
struct trapframe *tf;
|
|
uint64_t sp;
|
|
|
|
tf = td->td_frame;
|
|
sp = (uint64_t)ku->ku_stack.ss_sp + ku->ku_stack.ss_size;
|
|
tf->tf_out[0] = (uint64_t)ku->ku_mailbox;
|
|
tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
|
|
tf->tf_tpc = (uint64_t)ku->ku_func;
|
|
tf->tf_tnpc = tf->tf_tpc + 4;
|
|
|
|
td->td_retval[0] = tf->tf_out[0];
|
|
td->td_retval[1] = tf->tf_out[1];
|
|
}
|
|
|
|
/*
|
|
* Finish a fork operation, with process p2 nearly set up.
|
|
* Copy and update the pcb, set up the stack so that the child
|
|
* ready to run and return to user mode.
|
|
*/
|
|
void
|
|
cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
|
|
{
|
|
struct md_utrap *ut;
|
|
struct trapframe *tf;
|
|
struct frame *fp;
|
|
struct pcb *pcb1;
|
|
struct pcb *pcb2;
|
|
vm_offset_t sp;
|
|
int error;
|
|
int i;
|
|
|
|
KASSERT(td1 == curthread || td1 == &thread0,
|
|
("cpu_fork: p1 not curproc and not proc0"));
|
|
|
|
if ((flags & RFPROC) == 0)
|
|
return;
|
|
|
|
p2->p_md.md_sigtramp = td1->td_proc->p_md.md_sigtramp;
|
|
if ((ut = td1->td_proc->p_md.md_utrap) != NULL)
|
|
ut->ut_refcnt++;
|
|
p2->p_md.md_utrap = ut;
|
|
|
|
/* The pcb must be aligned on a 64-byte boundary. */
|
|
pcb1 = td1->td_pcb;
|
|
pcb2 = (struct pcb *)((td2->td_kstack + td2->td_kstack_pages *
|
|
PAGE_SIZE - sizeof(struct pcb)) & ~0x3fUL);
|
|
td2->td_pcb = pcb2;
|
|
|
|
/*
|
|
* Ensure that p1's pcb is up to date.
|
|
*/
|
|
critical_enter();
|
|
if ((td1->td_frame->tf_fprs & FPRS_FEF) != 0)
|
|
savefpctx(pcb1->pcb_ufp);
|
|
critical_exit();
|
|
/* Make sure the copied windows are spilled. */
|
|
flushw();
|
|
/* Copy the pcb (this will copy the windows saved in the pcb, too). */
|
|
bcopy(pcb1, pcb2, sizeof(*pcb1));
|
|
|
|
/*
|
|
* If we're creating a new user process and we're sharing the address
|
|
* space, the parent's top most frame must be saved in the pcb. The
|
|
* child will pop the frame when it returns to user mode, and may
|
|
* overwrite it with its own data causing much suffering for the
|
|
* parent. We check if its already in the pcb, and if not copy it
|
|
* in. Its unlikely that the copyin will fail, but if so there's not
|
|
* much we can do. The parent will likely crash soon anyway in that
|
|
* case.
|
|
*/
|
|
if ((flags & RFMEM) != 0 && td1 != &thread0) {
|
|
sp = td1->td_frame->tf_sp;
|
|
for (i = 0; i < pcb1->pcb_nsaved; i++) {
|
|
if (pcb1->pcb_rwsp[i] == sp)
|
|
break;
|
|
}
|
|
if (i == pcb1->pcb_nsaved) {
|
|
error = copyin((caddr_t)sp + SPOFF, &pcb1->pcb_rw[i],
|
|
sizeof(struct rwindow));
|
|
if (error == 0) {
|
|
pcb1->pcb_rwsp[i] = sp;
|
|
pcb1->pcb_nsaved++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a new fresh stack for the new process.
|
|
* Copy the trap frame for the return to user mode as if from a
|
|
* syscall. This copies most of the user mode register values.
|
|
*/
|
|
tf = (struct trapframe *)pcb2 - 1;
|
|
bcopy(td1->td_frame, tf, sizeof(*tf));
|
|
|
|
tf->tf_out[0] = 0; /* Child returns zero */
|
|
tf->tf_out[1] = 0;
|
|
tf->tf_tstate &= ~TSTATE_XCC_C; /* success */
|
|
tf->tf_fprs = 0;
|
|
|
|
td2->td_frame = tf;
|
|
fp = (struct frame *)tf - 1;
|
|
fp->fr_local[0] = (u_long)fork_return;
|
|
fp->fr_local[1] = (u_long)td2;
|
|
fp->fr_local[2] = (u_long)tf;
|
|
/* Terminate stack traces at this frame. */
|
|
fp->fr_pc = fp->fr_fp = 0;
|
|
pcb2->pcb_sp = (u_long)fp - SPOFF;
|
|
pcb2->pcb_pc = (u_long)fork_trampoline - 8;
|
|
|
|
/*
|
|
* Now, cpu_switch() can schedule the new process.
|
|
*/
|
|
}
|
|
|
|
void
|
|
cpu_reset(void)
|
|
{
|
|
static char bspec[64] = "";
|
|
phandle_t chosen;
|
|
static struct {
|
|
cell_t name;
|
|
cell_t nargs;
|
|
cell_t nreturns;
|
|
cell_t bootspec;
|
|
} args = {
|
|
(cell_t)"boot",
|
|
1,
|
|
0,
|
|
(cell_t)bspec
|
|
};
|
|
if ((chosen = OF_finddevice("/chosen")) != 0) {
|
|
if (OF_getprop(chosen, "bootpath", bspec, sizeof(bspec)) == -1)
|
|
bspec[0] = '\0';
|
|
bspec[sizeof(bspec) - 1] = '\0';
|
|
}
|
|
|
|
openfirmware_exit(&args);
|
|
}
|
|
|
|
/*
|
|
* Intercept the return address from a freshly forked process that has NOT
|
|
* been scheduled yet.
|
|
*
|
|
* This is needed to make kernel threads stay in kernel mode.
|
|
*/
|
|
void
|
|
cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
|
|
{
|
|
struct frame *fp;
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
fp = (struct frame *)(pcb->pcb_sp + SPOFF);
|
|
fp->fr_local[0] = (u_long)func;
|
|
fp->fr_local[1] = (u_long)arg;
|
|
}
|
|
|
|
int
|
|
is_physical_memory(vm_paddr_t addr)
|
|
{
|
|
struct ofw_mem_region *mr;
|
|
|
|
for (mr = sparc64_memreg; mr < sparc64_memreg + sparc64_nmemreg; mr++)
|
|
if (addr >= mr->mr_start && addr < mr->mr_start + mr->mr_size)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
|
|
*/
|
|
static void
|
|
sf_buf_init(void *arg)
|
|
{
|
|
struct sf_buf *sf_bufs;
|
|
vm_offset_t sf_base;
|
|
int i;
|
|
|
|
nsfbufs = NSFBUFS;
|
|
TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
|
|
|
|
mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF);
|
|
SLIST_INIT(&sf_freelist.sf_head);
|
|
sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
|
|
sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
|
|
M_NOWAIT | M_ZERO);
|
|
for (i = 0; i < nsfbufs; i++) {
|
|
sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
|
|
SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list);
|
|
}
|
|
sf_buf_alloc_want = 0;
|
|
}
|
|
|
|
/*
|
|
* Get an sf_buf from the freelist. Will block if none are available.
|
|
*/
|
|
struct sf_buf *
|
|
sf_buf_alloc(struct vm_page *m, int flags)
|
|
{
|
|
struct sf_buf *sf;
|
|
int error;
|
|
|
|
mtx_lock(&sf_freelist.sf_lock);
|
|
while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) {
|
|
if (flags & SFB_NOWAIT)
|
|
break;
|
|
sf_buf_alloc_want++;
|
|
mbstat.sf_allocwait++;
|
|
error = msleep(&sf_freelist, &sf_freelist.sf_lock,
|
|
(flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
|
|
sf_buf_alloc_want--;
|
|
|
|
/*
|
|
* If we got a signal, don't risk going back to sleep.
|
|
*/
|
|
if (error)
|
|
break;
|
|
}
|
|
if (sf != NULL) {
|
|
SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list);
|
|
sf->m = m;
|
|
nsfbufsused++;
|
|
nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
|
|
pmap_qenter(sf->kva, &sf->m, 1);
|
|
}
|
|
mtx_unlock(&sf_freelist.sf_lock);
|
|
return (sf);
|
|
}
|
|
|
|
/*
|
|
* Release resources back to the system.
|
|
*/
|
|
void
|
|
sf_buf_free(struct sf_buf *sf)
|
|
{
|
|
|
|
pmap_qremove(sf->kva, 1);
|
|
mtx_lock(&sf_freelist.sf_lock);
|
|
SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list);
|
|
nsfbufsused--;
|
|
if (sf_buf_alloc_want > 0)
|
|
wakeup_one(&sf_freelist);
|
|
mtx_unlock(&sf_freelist.sf_lock);
|
|
}
|
|
|
|
void
|
|
swi_vm(void *v)
|
|
{
|
|
|
|
/*
|
|
* Nothing to do here yet - busdma bounce buffers are not yet
|
|
* implemented.
|
|
*/
|
|
}
|
|
|
|
void *
|
|
uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
|
|
{
|
|
static vm_pindex_t color;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
int pflags;
|
|
void *va;
|
|
|
|
PMAP_STATS_INC(uma_nsmall_alloc);
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
|
|
if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
|
|
pflags = VM_ALLOC_INTERRUPT;
|
|
else
|
|
pflags = VM_ALLOC_SYSTEM;
|
|
|
|
if (wait & M_ZERO)
|
|
pflags |= VM_ALLOC_ZERO;
|
|
|
|
for (;;) {
|
|
m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
|
|
if (m == NULL) {
|
|
if (wait & M_NOWAIT)
|
|
return (NULL);
|
|
else
|
|
VM_WAIT;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
if (m->md.color != DCACHE_COLOR(pa)) {
|
|
KASSERT(m->md.colors[0] == 0 && m->md.colors[1] == 0,
|
|
("uma_small_alloc: free page still has mappings!"));
|
|
PMAP_STATS_INC(uma_nsmall_alloc_oc);
|
|
m->md.color = DCACHE_COLOR(pa);
|
|
dcache_page_inval(pa);
|
|
}
|
|
va = (void *)TLB_PHYS_TO_DIRECT(pa);
|
|
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
|
|
bzero(va, PAGE_SIZE);
|
|
return (va);
|
|
}
|
|
|
|
void
|
|
uma_small_free(void *mem, int size, u_int8_t flags)
|
|
{
|
|
vm_page_t m;
|
|
|
|
PMAP_STATS_INC(uma_nsmall_free);
|
|
m = PHYS_TO_VM_PAGE(TLB_DIRECT_TO_PHYS((vm_offset_t)mem));
|
|
vm_page_lock_queues();
|
|
vm_page_free(m);
|
|
vm_page_unlock_queues();
|
|
}
|