Navdeep Parhar f81cb396de cxgbe/tom: Allow caller to select the queue (control or data) used to
send the CPL_SET_TCB_FIELD request in t4_set_tcb_field().

MFC after:	1 week
2013-06-11 21:20:23 +00:00

1286 lines
33 KiB
C

/*-
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/tcp_var.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/toecore.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_object.h>
#ifdef TCP_OFFLOAD
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_tcb.h"
#include "tom/t4_tom.h"
#define PPOD_SZ(n) ((n) * sizeof(struct pagepod))
#define PPOD_SIZE (PPOD_SZ(1))
/* XXX: must match A_ULP_RX_TDDP_PSZ */
static int t4_ddp_pgsz[] = {4096, 4096 << 2, 4096 << 4, 4096 << 6};
#if 0
static void
t4_dump_tcb(struct adapter *sc, int tid)
{
uint32_t tcb_base, off, i, j;
/* Dump TCB for the tid */
tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2),
tcb_base + tid * TCB_SIZE);
t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2));
off = 0;
printf("\n");
for (i = 0; i < 4; i++) {
uint32_t buf[8];
for (j = 0; j < 8; j++, off += 4)
buf[j] = htonl(t4_read_reg(sc, MEMWIN2_BASE + off));
printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7]);
}
}
#endif
#define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN)
static int
alloc_ppods(struct tom_data *td, int n, struct ppod_region *pr)
{
int ppod;
KASSERT(n > 0, ("%s: nonsense allocation (%d)", __func__, n));
mtx_lock(&td->ppod_lock);
if (n > td->nppods_free) {
mtx_unlock(&td->ppod_lock);
return (-1);
}
if (td->nppods_free_head >= n) {
td->nppods_free_head -= n;
ppod = td->nppods_free_head;
TAILQ_INSERT_HEAD(&td->ppods, pr, link);
} else {
struct ppod_region *p;
ppod = td->nppods_free_head;
TAILQ_FOREACH(p, &td->ppods, link) {
ppod += p->used + p->free;
if (n <= p->free) {
ppod -= n;
p->free -= n;
TAILQ_INSERT_AFTER(&td->ppods, p, pr, link);
goto allocated;
}
}
if (__predict_false(ppod != td->nppods)) {
panic("%s: ppods TAILQ (%p) corrupt."
" At %d instead of %d at the end of the queue.",
__func__, &td->ppods, ppod, td->nppods);
}
mtx_unlock(&td->ppod_lock);
return (-1);
}
allocated:
pr->used = n;
pr->free = 0;
td->nppods_free -= n;
mtx_unlock(&td->ppod_lock);
return (ppod);
}
static void
free_ppods(struct tom_data *td, struct ppod_region *pr)
{
struct ppod_region *p;
KASSERT(pr->used > 0, ("%s: nonsense free (%d)", __func__, pr->used));
mtx_lock(&td->ppod_lock);
p = TAILQ_PREV(pr, ppod_head, link);
if (p != NULL)
p->free += pr->used + pr->free;
else
td->nppods_free_head += pr->used + pr->free;
td->nppods_free += pr->used;
KASSERT(td->nppods_free <= td->nppods,
("%s: nppods_free (%d) > nppods (%d). %d freed this time.",
__func__, td->nppods_free, td->nppods, pr->used));
TAILQ_REMOVE(&td->ppods, pr, link);
mtx_unlock(&td->ppod_lock);
}
static inline int
pages_to_nppods(int npages, int ddp_pgsz)
{
int nsegs = npages * PAGE_SIZE / ddp_pgsz;
return (howmany(nsegs, PPOD_PAGES));
}
static void
free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
{
if (db == NULL)
return;
if (db->pages)
free(db->pages, M_CXGBE);
if (db->nppods > 0)
free_ppods(td, &db->ppod_region);
free(db, M_CXGBE);
}
void
release_ddp_resources(struct toepcb *toep)
{
int i;
for (i = 0; i < nitems(toep->db); i++) {
if (toep->db[i] != NULL) {
free_ddp_buffer(toep->td, toep->db[i]);
toep->db[i] = NULL;
}
}
}
/* XXX: handle_ddp_data code duplication */
void
insert_ddp_data(struct toepcb *toep, uint32_t n)
{
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
struct sockbuf *sb = &inp->inp_socket->so_rcv;
struct mbuf *m;
INP_WLOCK_ASSERT(inp);
SOCKBUF_LOCK_ASSERT(sb);
m = get_ddp_mbuf(n);
tp->rcv_nxt += n;
#ifndef USE_DDP_RX_FLOW_CONTROL
KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
tp->rcv_wnd -= n;
#endif
KASSERT(toep->sb_cc >= sb->sb_cc,
("%s: sb %p has more data (%d) than last time (%d).",
__func__, sb, sb->sb_cc, toep->sb_cc));
toep->rx_credits += toep->sb_cc - sb->sb_cc;
#ifdef USE_DDP_RX_FLOW_CONTROL
toep->rx_credits -= n; /* adjust for F_RX_FC_DDP */
#endif
sbappendstream_locked(sb, m);
toep->sb_cc = sb->sb_cc;
}
/* SET_TCB_FIELD sent as a ULP command looks like this */
#define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
/* RX_DATA_ACK sent as a ULP command looks like this */
#define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
static inline void *
mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
uint64_t word, uint64_t mask, uint64_t val)
{
struct ulptx_idata *ulpsc;
struct cpl_set_tcb_field_core *req;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(sizeof(*req));
req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
req->reply_ctrl = htobe16(V_NO_REPLY(1) |
V_QUEUENO(toep->ofld_rxq->iq.abs_id));
req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
req->mask = htobe64(mask);
req->val = htobe64(val);
ulpsc = (struct ulptx_idata *)(req + 1);
if (LEN__SET_TCB_FIELD_ULP % 16) {
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
ulpsc->len = htobe32(0);
return (ulpsc + 1);
}
return (ulpsc);
}
static inline void *
mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
{
struct ulptx_idata *ulpsc;
struct cpl_rx_data_ack_core *req;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(sizeof(*req));
req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
req->credit_dack = htobe32(F_RX_MODULATE_RX);
ulpsc = (struct ulptx_idata *)(req + 1);
if (LEN__RX_DATA_ACK_ULP % 16) {
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
ulpsc->len = htobe32(0);
return (ulpsc + 1);
}
return (ulpsc);
}
static inline uint64_t
select_ddp_flags(struct socket *so, int flags, int db_idx)
{
uint64_t ddp_flags = V_TF_DDP_INDICATE_OUT(0);
int waitall = flags & MSG_WAITALL;
int nb = so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO);
KASSERT(db_idx == 0 || db_idx == 1,
("%s: bad DDP buffer index %d", __func__, db_idx));
if (db_idx == 0) {
ddp_flags |= V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_ACTIVE_BUF(0);
if (waitall)
ddp_flags |= V_TF_DDP_PUSH_DISABLE_0(1);
else if (nb)
ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
else
ddp_flags |= V_TF_DDP_BUF0_FLUSH(0);
} else {
ddp_flags |= V_TF_DDP_BUF1_VALID(1) | V_TF_DDP_ACTIVE_BUF(1);
if (waitall)
ddp_flags |= V_TF_DDP_PUSH_DISABLE_1(1);
else if (nb)
ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
else
ddp_flags |= V_TF_DDP_BUF1_FLUSH(0);
}
return (ddp_flags);
}
static struct wrqe *
mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
int offset, uint64_t ddp_flags)
{
struct ddp_buffer *db = toep->db[db_idx];
struct wrqe *wr;
struct work_request_hdr *wrh;
struct ulp_txpkt *ulpmc;
int len;
KASSERT(db_idx == 0 || db_idx == 1,
("%s: bad DDP buffer index %d", __func__, db_idx));
/*
* We'll send a compound work request that has 3 SET_TCB_FIELDs and an
* RX_DATA_ACK (with RX_MODULATE to speed up delivery).
*
* The work request header is 16B and always ends at a 16B boundary.
* The ULPTX master commands that follow must all end at 16B boundaries
* too so we round up the size to 16.
*/
len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
roundup2(LEN__RX_DATA_ACK_ULP, 16);
wr = alloc_wrqe(len, toep->ctrlq);
if (wr == NULL)
return (NULL);
wrh = wrtod(wr);
INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
ulpmc = (struct ulp_txpkt *)(wrh + 1);
/* Write the buffer's tag */
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF0_TAG + db_idx,
V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
V_TCB_RX_DDP_BUF0_TAG(db->tag));
/* Update the current offset in the DDP buffer and its total length */
if (db_idx == 0)
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF0_OFFSET,
V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
V_TCB_RX_DDP_BUF0_OFFSET(offset) |
V_TCB_RX_DDP_BUF0_LEN(db->len));
else
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF1_OFFSET,
V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
V_TCB_RX_DDP_BUF1_OFFSET(offset) |
V_TCB_RX_DDP_BUF1_LEN((u64)db->len << 32));
/* Update DDP flags */
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF1_FLUSH(1) |
V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PUSH_DISABLE_1(1) |
V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1) |
V_TF_DDP_ACTIVE_BUF(1) | V_TF_DDP_INDICATE_OUT(1), ddp_flags);
/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
return (wr);
}
static void
discourage_ddp(struct toepcb *toep)
{
if (toep->ddp_score && --toep->ddp_score == 0) {
toep->ddp_flags &= ~DDP_OK;
toep->ddp_disabled = time_uptime;
CTR3(KTR_CXGBE, "%s: tid %u !DDP_OK @ %u",
__func__, toep->tid, time_uptime);
}
}
static int
handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
{
uint32_t report = be32toh(ddp_report);
unsigned int db_flag;
struct inpcb *inp = toep->inp;
struct tcpcb *tp;
struct socket *so;
struct sockbuf *sb;
struct mbuf *m;
db_flag = report & F_DDP_BUF_IDX ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
if (__predict_false(!(report & F_DDP_INV)))
CXGBE_UNIMPLEMENTED("DDP buffer still valid");
INP_WLOCK(inp);
so = inp_inpcbtosocket(inp);
sb = &so->so_rcv;
if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
/*
* XXX: think a bit more.
* tcpcb probably gone, but socket should still be around
* because we always wait for DDP completion in soreceive no
* matter what. Just wake it up and let it clean up.
*/
CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
__func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
SOCKBUF_LOCK(sb);
goto wakeup;
}
tp = intotcpcb(inp);
len += be32toh(rcv_nxt) - tp->rcv_nxt;
tp->rcv_nxt += len;
tp->t_rcvtime = ticks;
#ifndef USE_DDP_RX_FLOW_CONTROL
KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
tp->rcv_wnd -= len;
#endif
m = get_ddp_mbuf(len);
SOCKBUF_LOCK(sb);
if (report & F_DDP_BUF_COMPLETE)
toep->ddp_score = DDP_HIGH_SCORE;
else
discourage_ddp(toep);
KASSERT(toep->sb_cc >= sb->sb_cc,
("%s: sb %p has more data (%d) than last time (%d).",
__func__, sb, sb->sb_cc, toep->sb_cc));
toep->rx_credits += toep->sb_cc - sb->sb_cc;
#ifdef USE_DDP_RX_FLOW_CONTROL
toep->rx_credits -= len; /* adjust for F_RX_FC_DDP */
#endif
sbappendstream_locked(sb, m);
toep->sb_cc = sb->sb_cc;
wakeup:
KASSERT(toep->ddp_flags & db_flag,
("%s: DDP buffer not active. toep %p, ddp_flags 0x%x, report 0x%x",
__func__, toep, toep->ddp_flags, report));
toep->ddp_flags &= ~db_flag;
sorwakeup_locked(so);
SOCKBUF_UNLOCK_ASSERT(sb);
INP_WUNLOCK(inp);
return (0);
}
#define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
static int
do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
uint32_t vld;
struct toepcb *toep = lookup_tid(sc, tid);
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
KASSERT(!(toep->flags & TPF_SYNQE),
("%s: toep %p claims to be a synq entry", __func__, toep));
vld = be32toh(cpl->ddpvld);
if (__predict_false(vld & DDP_ERR)) {
panic("%s: DDP error 0x%x (tid %d, toep %p)",
__func__, vld, tid, toep);
}
handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
return (0);
}
static int
do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
KASSERT(!(toep->flags & TPF_SYNQE),
("%s: toep %p claims to be a synq entry", __func__, toep));
handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
return (0);
}
void
enable_ddp(struct adapter *sc, struct toepcb *toep)
{
KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
("%s: toep %p has bad ddp_flags 0x%x",
__func__, toep, toep->ddp_flags));
CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
__func__, toep->tid, time_uptime);
toep->ddp_flags |= DDP_SC_REQ;
t4_set_tcb_field(sc, toep, 1, W_TCB_RX_DDP_FLAGS,
V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1));
t4_set_tcb_field(sc, toep, 1, W_TCB_T_FLAGS,
V_TF_RCV_COALESCE_ENABLE(1), 0);
}
static inline void
disable_ddp(struct adapter *sc, struct toepcb *toep)
{
KASSERT((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) == DDP_ON,
("%s: toep %p has bad ddp_flags 0x%x",
__func__, toep, toep->ddp_flags));
CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
__func__, toep->tid, time_uptime);
toep->ddp_flags |= DDP_SC_REQ;
t4_set_tcb_field(sc, toep, 1, W_TCB_T_FLAGS,
V_TF_RCV_COALESCE_ENABLE(1), V_TF_RCV_COALESCE_ENABLE(1));
t4_set_tcb_field(sc, toep, 1, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1),
V_TF_DDP_OFF(1));
}
static int
hold_uio(struct uio *uio, vm_page_t **ppages, int *pnpages)
{
struct vm_map *map;
struct iovec *iov;
vm_offset_t start, end;
vm_page_t *pp;
int n;
KASSERT(uio->uio_iovcnt == 1,
("%s: uio_iovcnt %d", __func__, uio->uio_iovcnt));
KASSERT(uio->uio_td->td_proc == curproc,
("%s: uio proc (%p) is not curproc (%p)",
__func__, uio->uio_td->td_proc, curproc));
map = &curproc->p_vmspace->vm_map;
iov = &uio->uio_iov[0];
start = trunc_page((uintptr_t)iov->iov_base);
end = round_page((vm_offset_t)iov->iov_base + iov->iov_len);
n = howmany(end - start, PAGE_SIZE);
if (end - start > MAX_DDP_BUFFER_SIZE)
return (E2BIG);
pp = malloc(n * sizeof(vm_page_t), M_CXGBE, M_NOWAIT);
if (pp == NULL)
return (ENOMEM);
if (vm_fault_quick_hold_pages(map, (vm_offset_t)iov->iov_base,
iov->iov_len, VM_PROT_WRITE, pp, n) < 0) {
free(pp, M_CXGBE);
return (EFAULT);
}
*ppages = pp;
*pnpages = n;
return (0);
}
static int
bufcmp(struct ddp_buffer *db, vm_page_t *pages, int npages, int offset, int len)
{
int i;
if (db == NULL || db->npages != npages || db->offset != offset ||
db->len != len)
return (1);
for (i = 0; i < npages; i++) {
if (pages[i]->phys_addr != db->pages[i]->phys_addr)
return (1);
}
return (0);
}
static int
calculate_hcf(int n1, int n2)
{
int a, b, t;
if (n1 <= n2) {
a = n1;
b = n2;
} else {
a = n2;
b = n1;
}
while (a != 0) {
t = a;
a = b % a;
b = t;
}
return (b);
}
static struct ddp_buffer *
alloc_ddp_buffer(struct tom_data *td, vm_page_t *pages, int npages, int offset,
int len)
{
int i, hcf, seglen, idx, ppod, nppods;
struct ddp_buffer *db;
/*
* The DDP page size is unrelated to the VM page size. We combine
* contiguous physical pages into larger segments to get the best DDP
* page size possible. This is the largest of the four sizes in
* A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
* the page list.
*/
hcf = 0;
for (i = 0; i < npages; i++) {
seglen = PAGE_SIZE;
while (i < npages - 1 &&
pages[i]->phys_addr + PAGE_SIZE == pages[i + 1]->phys_addr) {
seglen += PAGE_SIZE;
i++;
}
hcf = calculate_hcf(hcf, seglen);
if (hcf < t4_ddp_pgsz[1]) {
idx = 0;
goto have_pgsz; /* give up, short circuit */
}
}
if (hcf % t4_ddp_pgsz[0] != 0) {
/* hmmm. This could only happen when PAGE_SIZE < 4K */
KASSERT(PAGE_SIZE < 4096,
("%s: PAGE_SIZE %d, hcf %d", __func__, PAGE_SIZE, hcf));
CTR3(KTR_CXGBE, "%s: PAGE_SIZE %d, hcf %d",
__func__, PAGE_SIZE, hcf);
return (NULL);
}
for (idx = nitems(t4_ddp_pgsz) - 1; idx > 0; idx--) {
if (hcf % t4_ddp_pgsz[idx] == 0)
break;
}
have_pgsz:
db = malloc(sizeof(*db), M_CXGBE, M_NOWAIT);
if (db == NULL) {
CTR1(KTR_CXGBE, "%s: malloc failed.", __func__);
return (NULL);
}
nppods = pages_to_nppods(npages, t4_ddp_pgsz[idx]);
ppod = alloc_ppods(td, nppods, &db->ppod_region);
if (ppod < 0) {
free(db, M_CXGBE);
CTR4(KTR_CXGBE, "%s: no pods, nppods %d, resid %d, pgsz %d",
__func__, nppods, len, t4_ddp_pgsz[idx]);
return (NULL);
}
KASSERT(idx <= M_PPOD_PGSZ && ppod <= M_PPOD_TAG,
("%s: DDP pgsz_idx = %d, ppod = %d", __func__, idx, ppod));
db->tag = V_PPOD_PGSZ(idx) | V_PPOD_TAG(ppod);
db->nppods = nppods;
db->npages = npages;
db->pages = pages;
db->offset = offset;
db->len = len;
CTR6(KTR_CXGBE, "New DDP buffer. "
"ddp_pgsz %d, ppod 0x%x, npages %d, nppods %d, offset %d, len %d",
t4_ddp_pgsz[idx], ppod, db->npages, db->nppods, db->offset,
db->len);
return (db);
}
#define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
static int
write_page_pods(struct adapter *sc, struct toepcb *toep, struct ddp_buffer *db)
{
struct wrqe *wr;
struct ulp_mem_io *ulpmc;
struct ulptx_idata *ulpsc;
struct pagepod *ppod;
int i, j, k, n, chunk, len, ddp_pgsz, idx, ppod_addr;
uint32_t cmd;
cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
if (is_t4(sc))
cmd |= htobe32(F_ULP_MEMIO_ORDER);
else
cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
ddp_pgsz = t4_ddp_pgsz[G_PPOD_PGSZ(db->tag)];
ppod_addr = sc->vres.ddp.start + G_PPOD_TAG(db->tag) * PPOD_SIZE;
for (i = 0; i < db->nppods; ppod_addr += chunk) {
/* How many page pods are we writing in this cycle */
n = min(db->nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
chunk = PPOD_SZ(n);
len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
wr = alloc_wrqe(len, toep->ctrlq);
if (wr == NULL)
return (ENOMEM); /* ok to just bail out */
ulpmc = wrtod(wr);
INIT_ULPTX_WR(ulpmc, len, 0, 0);
ulpmc->cmd = cmd;
ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(chunk);
ppod = (struct pagepod *)(ulpsc + 1);
for (j = 0; j < n; i++, j++, ppod++) {
ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
V_PPOD_TID(toep->tid) | db->tag);
ppod->len_offset = htobe64(V_PPOD_LEN(db->len) |
V_PPOD_OFST(db->offset));
ppod->rsvd = 0;
idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
for (k = 0; k < nitems(ppod->addr); k++) {
if (idx < db->npages) {
ppod->addr[k] =
htobe64(db->pages[idx]->phys_addr);
idx += ddp_pgsz / PAGE_SIZE;
} else
ppod->addr[k] = 0;
#if 0
CTR5(KTR_CXGBE,
"%s: tid %d ppod[%d]->addr[%d] = %p",
__func__, toep->tid, i, k,
htobe64(ppod->addr[k]));
#endif
}
}
t4_wrq_tx(sc, wr);
}
return (0);
}
/*
* Reuse, or allocate (and program the page pods for) a new DDP buffer. The
* "pages" array is handed over to this function and should not be used in any
* way by the caller after that.
*/
static int
select_ddp_buffer(struct adapter *sc, struct toepcb *toep, vm_page_t *pages,
int npages, int db_off, int db_len)
{
struct ddp_buffer *db;
struct tom_data *td = sc->tom_softc;
int i, empty_slot = -1;
/* Try to reuse */
for (i = 0; i < nitems(toep->db); i++) {
if (bufcmp(toep->db[i], pages, npages, db_off, db_len) == 0) {
free(pages, M_CXGBE);
return (i); /* pages still held */
} else if (toep->db[i] == NULL && empty_slot < 0)
empty_slot = i;
}
/* Allocate new buffer, write its page pods. */
db = alloc_ddp_buffer(td, pages, npages, db_off, db_len);
if (db == NULL) {
vm_page_unhold_pages(pages, npages);
free(pages, M_CXGBE);
return (-1);
}
if (write_page_pods(sc, toep, db) != 0) {
vm_page_unhold_pages(pages, npages);
free_ddp_buffer(td, db);
return (-1);
}
i = empty_slot;
if (i < 0) {
i = arc4random() % nitems(toep->db);
free_ddp_buffer(td, toep->db[i]);
}
toep->db[i] = db;
CTR5(KTR_CXGBE, "%s: tid %d, DDP buffer[%d] = %p (tag 0x%x)",
__func__, toep->tid, i, db, db->tag);
return (i);
}
static void
wire_ddp_buffer(struct ddp_buffer *db)
{
int i;
vm_page_t p;
for (i = 0; i < db->npages; i++) {
p = db->pages[i];
vm_page_lock(p);
vm_page_wire(p);
vm_page_unhold(p);
vm_page_unlock(p);
}
}
static void
unwire_ddp_buffer(struct ddp_buffer *db)
{
int i;
vm_page_t p;
for (i = 0; i < db->npages; i++) {
p = db->pages[i];
vm_page_lock(p);
vm_page_unwire(p, 0);
vm_page_unlock(p);
}
}
static int
handle_ddp(struct socket *so, struct uio *uio, int flags, int error)
{
struct sockbuf *sb = &so->so_rcv;
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
struct adapter *sc = td_adapter(toep->td);
vm_page_t *pages;
int npages, db_idx, rc, buf_flag;
struct ddp_buffer *db;
struct wrqe *wr;
uint64_t ddp_flags;
SOCKBUF_LOCK_ASSERT(sb);
#if 0
if (sb->sb_cc + sc->tt.ddp_thres > uio->uio_resid) {
CTR4(KTR_CXGBE, "%s: sb_cc %d, threshold %d, resid %d",
__func__, sb->sb_cc, sc->tt.ddp_thres, uio->uio_resid);
}
#endif
/* XXX: too eager to disable DDP, could handle NBIO better than this. */
if (sb->sb_cc >= uio->uio_resid || uio->uio_resid < sc->tt.ddp_thres ||
uio->uio_resid > MAX_DDP_BUFFER_SIZE || uio->uio_iovcnt > 1 ||
so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO) ||
error || so->so_error || sb->sb_state & SBS_CANTRCVMORE)
goto no_ddp;
/*
* Fault in and then hold the pages of the uio buffers. We'll wire them
* a bit later if everything else works out.
*/
SOCKBUF_UNLOCK(sb);
if (hold_uio(uio, &pages, &npages) != 0) {
SOCKBUF_LOCK(sb);
goto no_ddp;
}
SOCKBUF_LOCK(sb);
if (__predict_false(so->so_error || sb->sb_state & SBS_CANTRCVMORE)) {
vm_page_unhold_pages(pages, npages);
free(pages, M_CXGBE);
goto no_ddp;
}
/*
* Figure out which one of the two DDP buffers to use this time.
*/
db_idx = select_ddp_buffer(sc, toep, pages, npages,
(uintptr_t)uio->uio_iov->iov_base & PAGE_MASK, uio->uio_resid);
pages = NULL; /* handed off to select_ddp_buffer */
if (db_idx < 0)
goto no_ddp;
db = toep->db[db_idx];
buf_flag = db_idx == 0 ? DDP_BUF0_ACTIVE : DDP_BUF1_ACTIVE;
/*
* Build the compound work request that tells the chip where to DMA the
* payload.
*/
ddp_flags = select_ddp_flags(so, flags, db_idx);
wr = mk_update_tcb_for_ddp(sc, toep, db_idx, sb->sb_cc, ddp_flags);
if (wr == NULL) {
/*
* Just unhold the pages. The DDP buffer's software state is
* left as-is in the toep. The page pods were written
* successfully and we may have an opportunity to use it in the
* future.
*/
vm_page_unhold_pages(db->pages, db->npages);
goto no_ddp;
}
/* Wire (and then unhold) the pages, and give the chip the go-ahead. */
wire_ddp_buffer(db);
t4_wrq_tx(sc, wr);
sb->sb_flags &= ~SB_DDP_INDICATE;
toep->ddp_flags |= buf_flag;
/*
* Wait for the DDP operation to complete and then unwire the pages.
* The return code from the sbwait will be the final return code of this
* function. But we do need to wait for DDP no matter what.
*/
rc = sbwait(sb);
while (toep->ddp_flags & buf_flag) {
sb->sb_flags |= SB_WAIT;
msleep(&sb->sb_cc, &sb->sb_mtx, PSOCK , "sbwait", 0);
}
unwire_ddp_buffer(db);
return (rc);
no_ddp:
disable_ddp(sc, toep);
discourage_ddp(toep);
sb->sb_flags &= ~SB_DDP_INDICATE;
return (0);
}
void
t4_init_ddp(struct adapter *sc, struct tom_data *td)
{
int nppods = sc->vres.ddp.size / PPOD_SIZE;
td->nppods = nppods;
td->nppods_free = nppods;
td->nppods_free_head = nppods;
TAILQ_INIT(&td->ppods);
mtx_init(&td->ppod_lock, "page pods", NULL, MTX_DEF);
t4_register_cpl_handler(sc, CPL_RX_DATA_DDP, do_rx_data_ddp);
t4_register_cpl_handler(sc, CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
}
void
t4_uninit_ddp(struct adapter *sc __unused, struct tom_data *td)
{
KASSERT(td->nppods == td->nppods_free,
("%s: page pods still in use, nppods = %d, free = %d",
__func__, td->nppods, td->nppods_free));
if (mtx_initialized(&td->ppod_lock))
mtx_destroy(&td->ppod_lock);
}
#define VNET_SO_ASSERT(so) \
VNET_ASSERT(curvnet != NULL, \
("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
#define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
static int
soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
{
CXGBE_UNIMPLEMENTED(__func__);
}
static char ddp_magic_str[] = "nothing to see here";
struct mbuf *
get_ddp_mbuf(int len)
{
struct mbuf *m;
m = m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
CXGBE_UNIMPLEMENTED("mbuf alloc failure");
m->m_len = len;
m->m_data = &ddp_magic_str[0];
return (m);
}
static inline int
is_ddp_mbuf(struct mbuf *m)
{
return (m->m_data == &ddp_magic_str[0]);
}
/*
* Copy an mbuf chain into a uio limited by len if set.
*/
static int
m_mbuftouio_ddp(struct uio *uio, struct mbuf *m, int len)
{
int error, length, total;
int progress = 0;
if (len > 0)
total = min(uio->uio_resid, len);
else
total = uio->uio_resid;
/* Fill the uio with data from the mbufs. */
for (; m != NULL; m = m->m_next) {
length = min(m->m_len, total - progress);
if (is_ddp_mbuf(m)) {
enum uio_seg segflag = uio->uio_segflg;
uio->uio_segflg = UIO_NOCOPY;
error = uiomove(mtod(m, void *), length, uio);
uio->uio_segflg = segflag;
} else
error = uiomove(mtod(m, void *), length, uio);
if (error)
return (error);
progress += length;
}
return (0);
}
/*
* Based on soreceive_stream() in uipc_socket.c
*/
int
t4_soreceive_ddp(struct socket *so, struct sockaddr **psa, struct uio *uio,
struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
{
int len = 0, error = 0, flags, oresid, ddp_handled = 0;
struct sockbuf *sb;
struct mbuf *m, *n = NULL;
/* We only do stream sockets. */
if (so->so_type != SOCK_STREAM)
return (EINVAL);
if (psa != NULL)
*psa = NULL;
if (controlp != NULL)
return (EINVAL);
if (flagsp != NULL)
flags = *flagsp &~ MSG_EOR;
else
flags = 0;
if (flags & MSG_OOB)
return (soreceive_rcvoob(so, uio, flags));
if (mp0 != NULL)
*mp0 = NULL;
sb = &so->so_rcv;
/* Prevent other readers from entering the socket. */
error = sblock(sb, SBLOCKWAIT(flags));
if (error)
goto out;
SOCKBUF_LOCK(sb);
/* Easy one, no space to copyout anything. */
if (uio->uio_resid == 0) {
error = EINVAL;
goto out;
}
oresid = uio->uio_resid;
/* We will never ever get anything unless we are or were connected. */
if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
error = ENOTCONN;
goto out;
}
restart:
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) {
/* uio should be just as it was at entry */
KASSERT(oresid == uio->uio_resid,
("%s: oresid = %d, uio_resid = %zd, sb_cc = %d",
__func__, oresid, uio->uio_resid, sb->sb_cc));
error = handle_ddp(so, uio, flags, 0);
ddp_handled = 1;
if (error)
goto out;
}
/* Abort if socket has reported problems. */
if (so->so_error) {
if (sb->sb_cc > 0)
goto deliver;
if (oresid > uio->uio_resid)
goto out;
error = so->so_error;
if (!(flags & MSG_PEEK))
so->so_error = 0;
goto out;
}
/* Door is closed. Deliver what is left, if any. */
if (sb->sb_state & SBS_CANTRCVMORE) {
if (sb->sb_cc > 0)
goto deliver;
else
goto out;
}
/* Socket buffer is empty and we shall not block. */
if (sb->sb_cc == 0 &&
((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
error = EAGAIN;
goto out;
}
/* Socket buffer got some data that we shall deliver now. */
if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
((sb->sb_flags & SS_NBIO) ||
(flags & (MSG_DONTWAIT|MSG_NBIO)) ||
sb->sb_cc >= sb->sb_lowat ||
sb->sb_cc >= uio->uio_resid ||
sb->sb_cc >= sb->sb_hiwat) ) {
goto deliver;
}
/* On MSG_WAITALL we must wait until all data or error arrives. */
if ((flags & MSG_WAITALL) &&
(sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat))
goto deliver;
/*
* Wait and block until (more) data comes in.
* NB: Drops the sockbuf lock during wait.
*/
error = sbwait(sb);
if (error) {
if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) {
(void) handle_ddp(so, uio, flags, 1);
ddp_handled = 1;
}
goto out;
}
goto restart;
deliver:
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled)
goto restart;
/* Statistics. */
if (uio->uio_td)
uio->uio_td->td_ru.ru_msgrcv++;
/* Fill uio until full or current end of socket buffer is reached. */
len = min(uio->uio_resid, sb->sb_cc);
if (mp0 != NULL) {
/* Dequeue as many mbufs as possible. */
if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
for (*mp0 = m = sb->sb_mb;
m != NULL && m->m_len <= len;
m = m->m_next) {
len -= m->m_len;
uio->uio_resid -= m->m_len;
sbfree(sb, m);
n = m;
}
sb->sb_mb = m;
if (sb->sb_mb == NULL)
SB_EMPTY_FIXUP(sb);
n->m_next = NULL;
}
/* Copy the remainder. */
if (len > 0) {
KASSERT(sb->sb_mb != NULL,
("%s: len > 0 && sb->sb_mb empty", __func__));
m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
if (m == NULL)
len = 0; /* Don't flush data from sockbuf. */
else
uio->uio_resid -= m->m_len;
if (*mp0 != NULL)
n->m_next = m;
else
*mp0 = m;
if (*mp0 == NULL) {
error = ENOBUFS;
goto out;
}
}
} else {
/* NB: Must unlock socket buffer as uiomove may sleep. */
SOCKBUF_UNLOCK(sb);
error = m_mbuftouio_ddp(uio, sb->sb_mb, len);
SOCKBUF_LOCK(sb);
if (error)
goto out;
}
SBLASTRECORDCHK(sb);
SBLASTMBUFCHK(sb);
/*
* Remove the delivered data from the socket buffer unless we
* were only peeking.
*/
if (!(flags & MSG_PEEK)) {
if (len > 0)
sbdrop_locked(sb, len);
/* Notify protocol that we drained some data. */
if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
(((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
!(flags & MSG_SOCALLBCK))) {
SOCKBUF_UNLOCK(sb);
VNET_SO_ASSERT(so);
(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
SOCKBUF_LOCK(sb);
}
}
/*
* For MSG_WAITALL we may have to loop again and wait for
* more data to come in.
*/
if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
goto restart;
out:
SOCKBUF_LOCK_ASSERT(sb);
SBLASTRECORDCHK(sb);
SBLASTMBUFCHK(sb);
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
return (error);
}
#endif