freebsd-nq/sys/mips/sibyte/sb_zbpci.c
Neel Natu f7bb996d92 Various fixes to get the SWARM config working on a big-endian Sibyte CPU.
Getting the little-endian PCI bus working on the big-endian CPU proved to be
quite challenging. We let the PCI devices be mapped in the "match byte lanes"
address window. This is where they are mapped by the CFE and DMA transfers
generated to or from addresses within this window are not subject to automatic
byte-swapping.

However any access by the driver to memory-mapped pci space is redirected
via the "match bit lanes" address window. We get the benefit of automatic
byte swapping through this address window and drivers don't need to change
to deal with CPU big-endianness.
2010-02-17 06:43:37 +00:00

545 lines
14 KiB
C

/*-
* Copyright (c) 2009 Neelkanth Natu
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/pcpu.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcib_private.h>
#include <machine/pmap.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include "pcib_if.h"
#include "sb_bus_space.h"
#include "sb_scd.h"
__FBSDID("$FreeBSD$");
static struct {
vm_offset_t vaddr;
vm_paddr_t paddr;
} zbpci_config_space[MAXCPU];
static const vm_paddr_t CFG_PADDR_BASE = 0xFE000000;
static const u_long PCI_IOSPACE_ADDR = 0xFC000000;
static const u_long PCI_IOSPACE_SIZE = 0x02000000;
#define PCI_MATCH_BYTE_LANES_START 0x40000000
#define PCI_MATCH_BYTE_LANES_END 0x5FFFFFFF
#define PCI_MATCH_BYTE_LANES_SIZE 0x20000000
#define PCI_MATCH_BIT_LANES_MASK (1 << 29)
#define PCI_MATCH_BIT_LANES_START 0x60000000
#define PCI_MATCH_BIT_LANES_END 0x7FFFFFFF
#define PCI_MATCH_BIT_LANES_SIZE 0x20000000
static struct rman port_rman;
static int
zbpci_probe(device_t dev)
{
device_set_desc(dev, "Broadcom/Sibyte PCI I/O Bridge");
return (0);
}
static int
zbpci_attach(device_t dev)
{
int n, rid, size;
vm_offset_t va;
struct resource *res;
/*
* Reserve the physical memory window used to map PCI I/O space.
*/
rid = 0;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
PCI_IOSPACE_ADDR,
PCI_IOSPACE_ADDR + PCI_IOSPACE_SIZE - 1,
PCI_IOSPACE_SIZE, 0);
if (res == NULL)
panic("Cannot allocate resource for PCI I/O space mapping.");
port_rman.rm_start = 0;
port_rman.rm_end = PCI_IOSPACE_SIZE - 1;
port_rman.rm_type = RMAN_ARRAY;
port_rman.rm_descr = "PCI I/O ports";
if (rman_init(&port_rman) != 0 ||
rman_manage_region(&port_rman, 0, PCI_IOSPACE_SIZE - 1) != 0)
panic("%s: port_rman", __func__);
/*
* Reserve the the physical memory that is used to read/write to the
* pci config space but don't activate it. We are using a page worth
* of KVA as a window over this region.
*/
rid = 1;
size = (PCI_BUSMAX + 1) * (PCI_SLOTMAX + 1) * (PCI_FUNCMAX + 1) * 256;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, CFG_PADDR_BASE,
CFG_PADDR_BASE + size - 1, size, 0);
if (res == NULL)
panic("Cannot allocate resource for config space accesses.");
/*
* Allocate the entire "match bit lanes" address space.
*/
#if _BYTE_ORDER == _BIG_ENDIAN
rid = 2;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
PCI_MATCH_BIT_LANES_START,
PCI_MATCH_BIT_LANES_END,
PCI_MATCH_BIT_LANES_SIZE, 0);
if (res == NULL)
panic("Cannot allocate resource for pci match bit lanes.");
#endif /* _BYTE_ORDER ==_BIG_ENDIAN */
/*
* Allocate KVA for accessing PCI config space.
*/
va = kmem_alloc_nofault(kernel_map, PAGE_SIZE * mp_ncpus);
if (va == 0) {
device_printf(dev, "Cannot allocate virtual addresses for "
"config space access.\n");
return (ENOMEM);
}
for (n = 0; n < mp_ncpus; ++n)
zbpci_config_space[n].vaddr = va + n * PAGE_SIZE;
/*
* Sibyte has the PCI bus hierarchy rooted at bus 0 and HT-PCI
* hierarchy rooted at bus 1.
*/
if (device_add_child(dev, "pci", 0) == NULL)
panic("zbpci_attach: could not add pci bus 0.\n");
if (device_add_child(dev, "pci", 1) == NULL)
panic("zbpci_attach: could not add pci bus 1.\n");
if (bootverbose)
device_printf(dev, "attached.\n");
return (bus_generic_attach(dev));
}
static struct resource *
zbpci_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct resource *res;
/*
* Handle PCI I/O port resources here and pass everything else to nexus.
*/
if (type != SYS_RES_IOPORT) {
res = bus_generic_alloc_resource(bus, child, type, rid,
start, end, count, flags);
return (res);
}
res = rman_reserve_resource(&port_rman, start, end, count,
flags, child);
if (res == NULL)
return (NULL);
rman_set_rid(res, *rid);
/* Activate the resource is requested */
if (flags & RF_ACTIVE) {
if (bus_activate_resource(child, type, *rid, res) != 0) {
rman_release_resource(res);
return (NULL);
}
}
return (res);
}
static int
zbpci_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *res)
{
int error;
void *vaddr;
u_long orig_paddr, paddr, psize;
paddr = rman_get_start(res);
psize = rman_get_size(res);
orig_paddr = paddr;
#if _BYTE_ORDER == _BIG_ENDIAN
/*
* The CFE allocates PCI memory resources that map to the
* "match byte lanes" address space. This address space works
* best for DMA transfers because it does not do any automatic
* byte swaps when data crosses the pci-cpu interface.
*
* This also makes it sub-optimal for accesses to PCI device
* registers because it exposes the little-endian nature of
* the PCI bus to the big-endian CPU. The Sibyte has another
* address window called the "match bit lanes" window which
* automatically swaps bytes when data crosses the pci-cpu
* interface.
*
* We "assume" that any bus_space memory accesses done by the
* CPU to a PCI device are register/configuration accesses and
* are done through the "match bit lanes" window. Any DMA
* transfers will continue to be through the "match byte lanes"
* window because the PCI BAR registers will not be changed.
*/
if (type == SYS_RES_MEMORY) {
if (paddr >= PCI_MATCH_BYTE_LANES_START &&
paddr + psize - 1 <= PCI_MATCH_BYTE_LANES_END) {
paddr |= PCI_MATCH_BIT_LANES_MASK;
rman_set_start(res, paddr);
rman_set_end(res, paddr + psize - 1);
}
}
#endif
if (type != SYS_RES_IOPORT) {
error = bus_generic_activate_resource(bus, child, type,
rid, res);
#if _BYTE_ORDER == _BIG_ENDIAN
if (type == SYS_RES_MEMORY) {
rman_set_start(res, orig_paddr);
rman_set_end(res, orig_paddr + psize - 1);
}
#endif
return (error);
}
/*
* Map the I/O space resource through the memory window starting
* at PCI_IOSPACE_ADDR.
*/
vaddr = pmap_mapdev(paddr + PCI_IOSPACE_ADDR, psize);
rman_set_virtual(res, vaddr);
rman_set_bustag(res, mips_bus_space_generic);
rman_set_bushandle(res, (bus_space_handle_t)vaddr);
return (rman_activate_resource(res));
}
static int
zbpci_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
int error;
if (type != SYS_RES_IOPORT)
return (bus_generic_release_resource(bus, child, type, rid, r));
if (rman_get_flags(r) & RF_ACTIVE) {
error = bus_deactivate_resource(child, type, rid, r);
if (error)
return (error);
}
return (rman_release_resource(r));
}
static int
zbpci_deactivate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
vm_offset_t va;
if (type != SYS_RES_IOPORT) {
return (bus_generic_deactivate_resource(bus, child, type,
rid, r));
}
va = (vm_offset_t)rman_get_virtual(r);
pmap_unmapdev(va, rman_get_size(r));
return (rman_deactivate_resource(r));
}
static int
zbpci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = 0; /* single PCI domain */
return (0);
case PCIB_IVAR_BUS:
*result = device_get_unit(child); /* PCI bus 0 or 1 */
return (0);
default:
return (ENOENT);
}
}
/*
* We rely on the CFE to have configured the intline correctly to point to
* one of PCI-A/PCI-B/PCI-C/PCI-D in the interupt mapper.
*/
static int
zbpci_route_interrupt(device_t pcib, device_t dev, int pin)
{
return (PCI_INVALID_IRQ);
}
/*
* This function is expected to be called in a critical section since it
* changes the per-cpu pci config space va-to-pa mappings.
*/
static vm_offset_t
zbpci_config_space_va(int bus, int slot, int func, int reg, int bytes)
{
int cpu;
vm_offset_t va_page;
vm_paddr_t pa, pa_page;
if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX &&
reg <= PCI_REGMAX && (bytes == 1 || bytes == 2 || bytes == 4) &&
((reg & (bytes - 1)) == 0)) {
cpu = PCPU_GET(cpuid);
va_page = zbpci_config_space[cpu].vaddr;
pa = CFG_PADDR_BASE |
(bus << 16) | (slot << 11) | (func << 8) | reg;
#if _BYTE_ORDER == _BIG_ENDIAN
pa = pa ^ (4 - bytes);
#endif
pa_page = pa & ~(PAGE_SIZE - 1);
if (zbpci_config_space[cpu].paddr != pa_page) {
pmap_kremove(va_page);
pmap_kenter(va_page, pa_page);
zbpci_config_space[cpu].paddr = pa_page;
}
return (va_page + (pa - pa_page));
} else {
return (0);
}
}
static uint32_t
zbpci_read_config(device_t dev, u_int b, u_int s, u_int f, u_int r, int w)
{
uint32_t data;
vm_offset_t va;
critical_enter();
va = zbpci_config_space_va(b, s, f, r, w);
if (va == 0) {
panic("zbpci_read_config: invalid %d/%d/%d[%d] %d\n",
b, s, f, r, w);
}
switch (w) {
case 4:
data = *(uint32_t *)va;
break;
case 2:
data = *(uint16_t *)va;
break;
case 1:
data = *(uint8_t *)va;
break;
default:
panic("zbpci_read_config: invalid width %d\n", w);
}
critical_exit();
return (data);
}
static void
zbpci_write_config(device_t d, u_int b, u_int s, u_int f, u_int r,
uint32_t data, int w)
{
vm_offset_t va;
critical_enter();
va = zbpci_config_space_va(b, s, f, r, w);
if (va == 0) {
panic("zbpci_write_config: invalid %d/%d/%d[%d] %d/%d\n",
b, s, f, r, data, w);
}
switch (w) {
case 4:
*(uint32_t *)va = data;
break;
case 2:
*(uint16_t *)va = data;
break;
case 1:
*(uint8_t *)va = data;
break;
default:
panic("zbpci_write_config: invalid width %d\n", w);
}
critical_exit();
}
static device_method_t zbpci_methods[] ={
/* Device interface */
DEVMETHOD(device_probe, zbpci_probe),
DEVMETHOD(device_attach, zbpci_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, zbpci_read_ivar),
DEVMETHOD(bus_write_ivar, bus_generic_write_ivar),
DEVMETHOD(bus_alloc_resource, zbpci_alloc_resource),
DEVMETHOD(bus_activate_resource, zbpci_activate_resource),
DEVMETHOD(bus_deactivate_resource, zbpci_deactivate_resource),
DEVMETHOD(bus_release_resource, zbpci_release_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_add_child, bus_generic_add_child),
/* pcib interface */
DEVMETHOD(pcib_maxslots, pcib_maxslots),
DEVMETHOD(pcib_read_config, zbpci_read_config),
DEVMETHOD(pcib_write_config, zbpci_write_config),
DEVMETHOD(pcib_route_interrupt, zbpci_route_interrupt),
{ 0, 0 }
};
/*
* The "zbpci" class inherits from the "pcib" base class. Therefore in
* addition to drivers that belong to the "zbpci" class we will also
* consider drivers belonging to the "pcib" when probing children of
* "zbpci".
*/
DECLARE_CLASS(pcib_driver);
DEFINE_CLASS_1(zbpci, zbpci_driver, zbpci_methods, 0, pcib_driver);
static devclass_t zbpci_devclass;
DRIVER_MODULE(zbpci, zbbus, zbpci_driver, zbpci_devclass, 0, 0);
/*
* Big endian bus space routines
*/
#if _BYTE_ORDER == _BIG_ENDIAN
/*
* The CPU correctly deals with the big-endian to little-endian swap if
* we are accessing 4 bytes at a time. However if we want to read 1 or 2
* bytes then we need to fudge the address generated by the CPU such that
* it generates the right byte enables on the PCI bus.
*/
static bus_addr_t
sb_match_bit_lane_addr(bus_addr_t addr, int bytes)
{
vm_offset_t pa;
pa = vtophys(addr);
if (pa >= PCI_MATCH_BIT_LANES_START && pa <= PCI_MATCH_BIT_LANES_END)
return (addr ^ (4 - bytes));
else
return (addr);
}
uint8_t
sb_big_endian_read8(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 1);
return (readb(addr2));
}
uint16_t
sb_big_endian_read16(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 2);
return (readw(addr2));
}
uint32_t
sb_big_endian_read32(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 4);
return (readl(addr2));
}
void
sb_big_endian_write8(bus_addr_t addr, uint8_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 1);
writeb(addr2, val);
}
void
sb_big_endian_write16(bus_addr_t addr, uint16_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 2);
writew(addr2, val);
}
void
sb_big_endian_write32(bus_addr_t addr, uint32_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 4);
writel(addr2, val);
}
#endif /* _BIG_ENDIAN */