freebsd-nq/module/zfs/zfs_znode.c
Tomohiro Kusumi 34d343c2a8 Drop unused ZNODE_STATS and ZNODE_STAT_ADD()
Unused since 5649246dd3("Remove znode move functionality"),
and ZNODE_STAT_ADD() will never be needed.

Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8636
2019-04-19 12:05:15 -07:00

2213 lines
57 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
*/
/* Portions Copyright 2007 Jeremy Teo */
#ifdef _KERNEL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/mntent.h>
#include <sys/u8_textprep.h>
#include <sys/dsl_dataset.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/mode.h>
#include <sys/atomic.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_rlock.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/dnode.h>
#include <sys/fs/zfs.h>
#include <sys/zpl.h>
#endif /* _KERNEL */
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/refcount.h>
#include <sys/stat.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#include <sys/sa.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_stat.h>
#include "zfs_prop.h"
#include "zfs_comutil.h"
/*
* Functions needed for userland (ie: libzpool) are not put under
* #ifdef_KERNEL; the rest of the functions have dependencies
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
static kmem_cache_t *znode_cache = NULL;
static kmem_cache_t *znode_hold_cache = NULL;
unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
/*
* This is used by the test suite so that it can delay znodes from being
* freed in order to inspect the unlinked set.
*/
int zfs_unlink_suspend_progress = 0;
/*
* This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
* z_rangelock. It will modify the offset and length of the lock to reflect
* znode-specific information, and convert RL_APPEND to RL_WRITER. This is
* called with the rangelock_t's rl_lock held, which avoids races.
*/
static void
zfs_rangelock_cb(locked_range_t *new, void *arg)
{
znode_t *zp = arg;
/*
* If in append mode, convert to writer and lock starting at the
* current end of file.
*/
if (new->lr_type == RL_APPEND) {
new->lr_offset = zp->z_size;
new->lr_type = RL_WRITER;
}
/*
* If we need to grow the block size then lock the whole file range.
*/
uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
new->lr_offset = 0;
new->lr_length = UINT64_MAX;
}
}
/*ARGSUSED*/
static int
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_t *zp = buf;
inode_init_once(ZTOI(zp));
list_link_init(&zp->z_link_node);
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
zp->z_dirlocks = NULL;
zp->z_acl_cached = NULL;
zp->z_xattr_cached = NULL;
zp->z_xattr_parent = 0;
zp->z_moved = 0;
return (0);
}
/*ARGSUSED*/
static void
zfs_znode_cache_destructor(void *buf, void *arg)
{
znode_t *zp = buf;
ASSERT(!list_link_active(&zp->z_link_node));
mutex_destroy(&zp->z_lock);
rw_destroy(&zp->z_parent_lock);
rw_destroy(&zp->z_name_lock);
mutex_destroy(&zp->z_acl_lock);
rw_destroy(&zp->z_xattr_lock);
rangelock_fini(&zp->z_rangelock);
ASSERT(zp->z_dirlocks == NULL);
ASSERT(zp->z_acl_cached == NULL);
ASSERT(zp->z_xattr_cached == NULL);
}
static int
zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_hold_t *zh = buf;
mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
zfs_refcount_create(&zh->zh_refcount);
zh->zh_obj = ZFS_NO_OBJECT;
return (0);
}
static void
zfs_znode_hold_cache_destructor(void *buf, void *arg)
{
znode_hold_t *zh = buf;
mutex_destroy(&zh->zh_lock);
zfs_refcount_destroy(&zh->zh_refcount);
}
void
zfs_znode_init(void)
{
/*
* Initialize zcache. The KMC_SLAB hint is used in order that it be
* backed by kmalloc() when on the Linux slab in order that any
* wait_on_bit() operations on the related inode operate properly.
*/
ASSERT(znode_cache == NULL);
znode_cache = kmem_cache_create("zfs_znode_cache",
sizeof (znode_t), 0, zfs_znode_cache_constructor,
zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
ASSERT(znode_hold_cache == NULL);
znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
}
void
zfs_znode_fini(void)
{
/*
* Cleanup zcache
*/
if (znode_cache)
kmem_cache_destroy(znode_cache);
znode_cache = NULL;
if (znode_hold_cache)
kmem_cache_destroy(znode_hold_cache);
znode_hold_cache = NULL;
}
/*
* The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
* serialize access to a znode and its SA buffer while the object is being
* created or destroyed. This kind of locking would normally reside in the
* znode itself but in this case that's impossible because the znode and SA
* buffer may not yet exist. Therefore the locking is handled externally
* with an array of mutexs and AVLs trees which contain per-object locks.
*
* In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
* in to the correct AVL tree and finally the per-object lock is held. In
* zfs_znode_hold_exit() the process is reversed. The per-object lock is
* released, removed from the AVL tree and destroyed if there are no waiters.
*
* This scheme has two important properties:
*
* 1) No memory allocations are performed while holding one of the z_hold_locks.
* This ensures evict(), which can be called from direct memory reclaim, will
* never block waiting on a z_hold_locks which just happens to have hashed
* to the same index.
*
* 2) All locks used to serialize access to an object are per-object and never
* shared. This minimizes lock contention without creating a large number
* of dedicated locks.
*
* On the downside it does require znode_lock_t structures to be frequently
* allocated and freed. However, because these are backed by a kmem cache
* and very short lived this cost is minimal.
*/
int
zfs_znode_hold_compare(const void *a, const void *b)
{
const znode_hold_t *zh_a = (const znode_hold_t *)a;
const znode_hold_t *zh_b = (const znode_hold_t *)b;
return (AVL_CMP(zh_a->zh_obj, zh_b->zh_obj));
}
boolean_t
zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
{
znode_hold_t *zh, search;
int i = ZFS_OBJ_HASH(zfsvfs, obj);
boolean_t held;
search.zh_obj = obj;
mutex_enter(&zfsvfs->z_hold_locks[i]);
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
mutex_exit(&zfsvfs->z_hold_locks[i]);
return (held);
}
static znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
{
znode_hold_t *zh, *zh_new, search;
int i = ZFS_OBJ_HASH(zfsvfs, obj);
boolean_t found = B_FALSE;
zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
zh_new->zh_obj = obj;
search.zh_obj = obj;
mutex_enter(&zfsvfs->z_hold_locks[i]);
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
if (likely(zh == NULL)) {
zh = zh_new;
avl_add(&zfsvfs->z_hold_trees[i], zh);
} else {
ASSERT3U(zh->zh_obj, ==, obj);
found = B_TRUE;
}
zfs_refcount_add(&zh->zh_refcount, NULL);
mutex_exit(&zfsvfs->z_hold_locks[i]);
if (found == B_TRUE)
kmem_cache_free(znode_hold_cache, zh_new);
ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
mutex_enter(&zh->zh_lock);
return (zh);
}
static void
zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
{
int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
boolean_t remove = B_FALSE;
ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
mutex_exit(&zh->zh_lock);
mutex_enter(&zfsvfs->z_hold_locks[i]);
if (zfs_refcount_remove(&zh->zh_refcount, NULL) == 0) {
avl_remove(&zfsvfs->z_hold_trees[i], zh);
remove = B_TRUE;
}
mutex_exit(&zfsvfs->z_hold_locks[i]);
if (remove == B_TRUE)
kmem_cache_free(znode_hold_cache, zh);
}
static void
zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
{
ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
mutex_enter(&zp->z_lock);
ASSERT(zp->z_sa_hdl == NULL);
ASSERT(zp->z_acl_cached == NULL);
if (sa_hdl == NULL) {
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
SA_HDL_SHARED, &zp->z_sa_hdl));
} else {
zp->z_sa_hdl = sa_hdl;
sa_set_userp(sa_hdl, zp);
}
zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
mutex_exit(&zp->z_lock);
}
void
zfs_znode_dmu_fini(znode_t *zp)
{
ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) || zp->z_unlinked ||
RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
sa_handle_destroy(zp->z_sa_hdl);
zp->z_sa_hdl = NULL;
}
/*
* Called by new_inode() to allocate a new inode.
*/
int
zfs_inode_alloc(struct super_block *sb, struct inode **ip)
{
znode_t *zp;
zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
*ip = ZTOI(zp);
return (0);
}
/*
* Called in multiple places when an inode should be destroyed.
*/
void
zfs_inode_destroy(struct inode *ip)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
mutex_enter(&zfsvfs->z_znodes_lock);
if (list_link_active(&zp->z_link_node)) {
list_remove(&zfsvfs->z_all_znodes, zp);
zfsvfs->z_nr_znodes--;
}
mutex_exit(&zfsvfs->z_znodes_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
if (zp->z_xattr_cached) {
nvlist_free(zp->z_xattr_cached);
zp->z_xattr_cached = NULL;
}
kmem_cache_free(znode_cache, zp);
}
static void
zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
{
uint64_t rdev = 0;
switch (ip->i_mode & S_IFMT) {
case S_IFREG:
ip->i_op = &zpl_inode_operations;
ip->i_fop = &zpl_file_operations;
ip->i_mapping->a_ops = &zpl_address_space_operations;
break;
case S_IFDIR:
ip->i_op = &zpl_dir_inode_operations;
ip->i_fop = &zpl_dir_file_operations;
ITOZ(ip)->z_zn_prefetch = B_TRUE;
break;
case S_IFLNK:
ip->i_op = &zpl_symlink_inode_operations;
break;
/*
* rdev is only stored in a SA only for device files.
*/
case S_IFCHR:
case S_IFBLK:
(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
sizeof (rdev));
/*FALLTHROUGH*/
case S_IFIFO:
case S_IFSOCK:
init_special_inode(ip, ip->i_mode, rdev);
ip->i_op = &zpl_special_inode_operations;
break;
default:
zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
(u_longlong_t)ip->i_ino, ip->i_mode);
/* Assume the inode is a file and attempt to continue */
ip->i_mode = S_IFREG | 0644;
ip->i_op = &zpl_inode_operations;
ip->i_fop = &zpl_file_operations;
ip->i_mapping->a_ops = &zpl_address_space_operations;
break;
}
}
void
zfs_set_inode_flags(znode_t *zp, struct inode *ip)
{
/*
* Linux and Solaris have different sets of file attributes, so we
* restrict this conversion to the intersection of the two.
*/
#ifdef HAVE_INODE_SET_FLAGS
unsigned int flags = 0;
if (zp->z_pflags & ZFS_IMMUTABLE)
flags |= S_IMMUTABLE;
if (zp->z_pflags & ZFS_APPENDONLY)
flags |= S_APPEND;
inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
#else
if (zp->z_pflags & ZFS_IMMUTABLE)
ip->i_flags |= S_IMMUTABLE;
else
ip->i_flags &= ~S_IMMUTABLE;
if (zp->z_pflags & ZFS_APPENDONLY)
ip->i_flags |= S_APPEND;
else
ip->i_flags &= ~S_APPEND;
#endif
}
/*
* Update the embedded inode given the znode. We should work toward
* eliminating this function as soon as possible by removing values
* which are duplicated between the znode and inode. If the generic
* inode has the correct field it should be used, and the ZFS code
* updated to access the inode. This can be done incrementally.
*/
void
zfs_inode_update(znode_t *zp)
{
zfsvfs_t *zfsvfs;
struct inode *ip;
uint32_t blksize;
u_longlong_t i_blocks;
ASSERT(zp != NULL);
zfsvfs = ZTOZSB(zp);
ip = ZTOI(zp);
/* Skip .zfs control nodes which do not exist on disk. */
if (zfsctl_is_node(ip))
return;
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
spin_lock(&ip->i_lock);
ip->i_blocks = i_blocks;
i_size_write(ip, zp->z_size);
spin_unlock(&ip->i_lock);
}
/*
* Construct a znode+inode and initialize.
*
* This does not do a call to dmu_set_user() that is
* up to the caller to do, in case you don't want to
* return the znode
*/
static znode_t *
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
dmu_object_type_t obj_type, uint64_t obj, sa_handle_t *hdl)
{
znode_t *zp;
struct inode *ip;
uint64_t mode;
uint64_t parent;
uint64_t tmp_gen;
uint64_t links;
uint64_t z_uid, z_gid;
uint64_t atime[2], mtime[2], ctime[2];
uint64_t projid = ZFS_DEFAULT_PROJID;
sa_bulk_attr_t bulk[11];
int count = 0;
ASSERT(zfsvfs != NULL);
ip = new_inode(zfsvfs->z_sb);
if (ip == NULL)
return (NULL);
zp = ITOZ(ip);
ASSERT(zp->z_dirlocks == NULL);
ASSERT3P(zp->z_acl_cached, ==, NULL);
ASSERT3P(zp->z_xattr_cached, ==, NULL);
zp->z_moved = 0;
zp->z_sa_hdl = NULL;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_mapcnt = 0;
zp->z_id = db->db_object;
zp->z_blksz = blksz;
zp->z_seq = 0x7A4653;
zp->z_sync_cnt = 0;
zp->z_is_mapped = B_FALSE;
zp->z_is_ctldir = B_FALSE;
zp->z_is_stale = B_FALSE;
zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
&parent, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
(dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
(zp->z_pflags & ZFS_PROJID) &&
sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
if (hdl == NULL)
sa_handle_destroy(zp->z_sa_hdl);
zp->z_sa_hdl = NULL;
goto error;
}
zp->z_projid = projid;
zp->z_mode = ip->i_mode = mode;
ip->i_generation = (uint32_t)tmp_gen;
ip->i_blkbits = SPA_MINBLOCKSHIFT;
set_nlink(ip, (uint32_t)links);
zfs_uid_write(ip, z_uid);
zfs_gid_write(ip, z_gid);
zfs_set_inode_flags(zp, ip);
/* Cache the xattr parent id */
if (zp->z_pflags & ZFS_XATTR)
zp->z_xattr_parent = parent;
ZFS_TIME_DECODE(&ip->i_atime, atime);
ZFS_TIME_DECODE(&ip->i_mtime, mtime);
ZFS_TIME_DECODE(&ip->i_ctime, ctime);
ip->i_ino = obj;
zfs_inode_update(zp);
zfs_inode_set_ops(zfsvfs, ip);
/*
* The only way insert_inode_locked() can fail is if the ip->i_ino
* number is already hashed for this super block. This can never
* happen because the inode numbers map 1:1 with the object numbers.
*
* The one exception is rolling back a mounted file system, but in
* this case all the active inode are unhashed during the rollback.
*/
VERIFY3S(insert_inode_locked(ip), ==, 0);
mutex_enter(&zfsvfs->z_znodes_lock);
list_insert_tail(&zfsvfs->z_all_znodes, zp);
zfsvfs->z_nr_znodes++;
membar_producer();
mutex_exit(&zfsvfs->z_znodes_lock);
unlock_new_inode(ip);
return (zp);
error:
iput(ip);
return (NULL);
}
/*
* Safely mark an inode dirty. Inodes which are part of a read-only
* file system or snapshot may not be dirtied.
*/
void
zfs_mark_inode_dirty(struct inode *ip)
{
zfsvfs_t *zfsvfs = ITOZSB(ip);
if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
return;
mark_inode_dirty(ip);
}
static uint64_t empty_xattr;
static uint64_t pad[4];
static zfs_acl_phys_t acl_phys;
/*
* Create a new DMU object to hold a zfs znode.
*
* IN: dzp - parent directory for new znode
* vap - file attributes for new znode
* tx - dmu transaction id for zap operations
* cr - credentials of caller
* flag - flags:
* IS_ROOT_NODE - new object will be root
* IS_XATTR - new object is an attribute
* bonuslen - length of bonus buffer
* setaclp - File/Dir initial ACL
* fuidp - Tracks fuid allocation.
*
* OUT: zpp - allocated znode
*
*/
void
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
{
uint64_t crtime[2], atime[2], mtime[2], ctime[2];
uint64_t mode, size, links, parent, pflags;
uint64_t projid = ZFS_DEFAULT_PROJID;
uint64_t rdev = 0;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
dmu_buf_t *db;
inode_timespec_t now;
uint64_t gen, obj;
int bonuslen;
int dnodesize;
sa_handle_t *sa_hdl;
dmu_object_type_t obj_type;
sa_bulk_attr_t *sa_attrs;
int cnt = 0;
zfs_acl_locator_cb_t locate = { 0 };
znode_hold_t *zh;
if (zfsvfs->z_replay) {
obj = vap->va_nodeid;
now = vap->va_ctime; /* see zfs_replay_create() */
gen = vap->va_nblocks; /* ditto */
dnodesize = vap->va_fsid; /* ditto */
} else {
obj = 0;
gethrestime(&now);
gen = dmu_tx_get_txg(tx);
dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
}
if (dnodesize == 0)
dnodesize = DNODE_MIN_SIZE;
obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
bonuslen = (obj_type == DMU_OT_SA) ?
DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
/*
* Create a new DMU object.
*/
/*
* There's currently no mechanism for pre-reading the blocks that will
* be needed to allocate a new object, so we accept the small chance
* that there will be an i/o error and we will fail one of the
* assertions below.
*/
if (S_ISDIR(vap->va_mode)) {
if (zfsvfs->z_replay) {
VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, dnodesize, tx));
} else {
obj = zap_create_norm_dnsize(zfsvfs->z_os,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, dnodesize, tx);
}
} else {
if (zfsvfs->z_replay) {
VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, dnodesize, tx));
} else {
obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, dnodesize, tx);
}
}
zh = zfs_znode_hold_enter(zfsvfs, obj);
VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
/*
* If this is the root, fix up the half-initialized parent pointer
* to reference the just-allocated physical data area.
*/
if (flag & IS_ROOT_NODE) {
dzp->z_id = obj;
}
/*
* If parent is an xattr, so am I.
*/
if (dzp->z_pflags & ZFS_XATTR) {
flag |= IS_XATTR;
}
if (zfsvfs->z_use_fuids)
pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
else
pflags = 0;
if (S_ISDIR(vap->va_mode)) {
size = 2; /* contents ("." and "..") */
links = 2;
} else {
size = 0;
links = (flag & IS_TMPFILE) ? 0 : 1;
}
if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
rdev = vap->va_rdev;
parent = dzp->z_id;
mode = acl_ids->z_mode;
if (flag & IS_XATTR)
pflags |= ZFS_XATTR;
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
/*
* With ZFS_PROJID flag, we can easily know whether there is
* project ID stored on disk or not. See zfs_space_delta_cb().
*/
if (obj_type != DMU_OT_ZNODE &&
dmu_objset_projectquota_enabled(zfsvfs->z_os))
pflags |= ZFS_PROJID;
/*
* Inherit project ID from parent if required.
*/
projid = zfs_inherit_projid(dzp);
if (dzp->z_pflags & ZFS_PROJINHERIT)
pflags |= ZFS_PROJINHERIT;
}
/*
* No execs denied will be deterimed when zfs_mode_compute() is called.
*/
pflags |= acl_ids->z_aclp->z_hints &
(ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
ZFS_TIME_ENCODE(&now, crtime);
ZFS_TIME_ENCODE(&now, ctime);
if (vap->va_mask & ATTR_ATIME) {
ZFS_TIME_ENCODE(&vap->va_atime, atime);
} else {
ZFS_TIME_ENCODE(&now, atime);
}
if (vap->va_mask & ATTR_MTIME) {
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
} else {
ZFS_TIME_ENCODE(&now, mtime);
}
/* Now add in all of the "SA" attributes */
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
&sa_hdl));
/*
* Setup the array of attributes to be replaced/set on the new file
*
* order for DMU_OT_ZNODE is critical since it needs to be constructed
* in the old znode_phys_t format. Don't change this ordering
*/
sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
NULL, &crtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
NULL, &parent, 8);
} else {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
NULL, &acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
NULL, &acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
NULL, &parent, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
NULL, &crtime, 16);
}
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
&empty_xattr, 8);
} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
pflags & ZFS_PROJID) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
NULL, &projid, 8);
}
if (obj_type == DMU_OT_ZNODE ||
(S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
NULL, &rdev, 8);
}
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
&acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
&acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
sizeof (uint64_t) * 4);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
&acl_phys, sizeof (zfs_acl_phys_t));
} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
&acl_ids->z_aclp->z_acl_count, 8);
locate.cb_aclp = acl_ids->z_aclp;
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
zfs_acl_data_locator, &locate,
acl_ids->z_aclp->z_acl_bytes);
mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
acl_ids->z_fuid, acl_ids->z_fgid);
}
VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
if (!(flag & IS_ROOT_NODE)) {
/*
* The call to zfs_znode_alloc() may fail if memory is low
* via the call path: alloc_inode() -> inode_init_always() ->
* security_inode_alloc() -> inode_alloc_security(). Since
* the existing code is written such that zfs_mknode() can
* not fail retry until sufficient memory has been reclaimed.
*/
do {
*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, obj,
sa_hdl);
} while (*zpp == NULL);
VERIFY(*zpp != NULL);
VERIFY(dzp != NULL);
} else {
/*
* If we are creating the root node, the "parent" we
* passed in is the znode for the root.
*/
*zpp = dzp;
(*zpp)->z_sa_hdl = sa_hdl;
}
(*zpp)->z_pflags = pflags;
(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
(*zpp)->z_dnodesize = dnodesize;
(*zpp)->z_projid = projid;
if (obj_type == DMU_OT_ZNODE ||
acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
}
kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
zfs_znode_hold_exit(zfsvfs, zh);
}
/*
* Update in-core attributes. It is assumed the caller will be doing an
* sa_bulk_update to push the changes out.
*/
void
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
{
xoptattr_t *xoap;
boolean_t update_inode = B_FALSE;
xoap = xva_getxoptattr(xvap);
ASSERT(xoap);
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
uint64_t times[2];
ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
&times, sizeof (times), tx);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
update_inode = B_TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
update_inode = B_TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
xoap->xoa_av_quarantined, zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
zfs_sa_set_scanstamp(zp, xvap, tx);
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_PROJINHERIT);
}
if (update_inode)
zfs_set_inode_flags(zp, ZTOI(zp));
}
int
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
{
dmu_object_info_t doi;
dmu_buf_t *db;
znode_t *zp;
znode_hold_t *zh;
int err;
sa_handle_t *hdl;
*zpp = NULL;
again:
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EINVAL));
}
hdl = dmu_buf_get_user(db);
if (hdl != NULL) {
zp = sa_get_userdata(hdl);
/*
* Since "SA" does immediate eviction we
* should never find a sa handle that doesn't
* know about the znode.
*/
ASSERT3P(zp, !=, NULL);
mutex_enter(&zp->z_lock);
ASSERT3U(zp->z_id, ==, obj_num);
/*
* If igrab() returns NULL the VFS has independently
* determined the inode should be evicted and has
* called iput_final() to start the eviction process.
* The SA handle is still valid but because the VFS
* requires that the eviction succeed we must drop
* our locks and references to allow the eviction to
* complete. The zfs_zget() may then be retried.
*
* This unlikely case could be optimized by registering
* a sops->drop_inode() callback. The callback would
* need to detect the active SA hold thereby informing
* the VFS that this inode should not be evicted.
*/
if (igrab(ZTOI(zp)) == NULL) {
mutex_exit(&zp->z_lock);
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
/* inode might need this to finish evict */
cond_resched();
goto again;
}
*zpp = zp;
err = 0;
mutex_exit(&zp->z_lock);
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
/*
* Not found create new znode/vnode but only if file exists.
*
* There is a small window where zfs_vget() could
* find this object while a file create is still in
* progress. This is checked for in zfs_znode_alloc()
*
* if zfs_znode_alloc() fails it will drop the hold on the
* bonus buffer.
*/
zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
doi.doi_bonus_type, obj_num, NULL);
if (zp == NULL) {
err = SET_ERROR(ENOENT);
} else {
*zpp = zp;
}
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
int
zfs_rezget(znode_t *zp)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_object_info_t doi;
dmu_buf_t *db;
uint64_t obj_num = zp->z_id;
uint64_t mode;
uint64_t links;
sa_bulk_attr_t bulk[10];
int err;
int count = 0;
uint64_t gen;
uint64_t z_uid, z_gid;
uint64_t atime[2], mtime[2], ctime[2];
uint64_t projid = ZFS_DEFAULT_PROJID;
znode_hold_t *zh;
/*
* skip ctldir, otherwise they will always get invalidated. This will
* cause funny behaviour for the mounted snapdirs. Especially for
* Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
* anyone automount it again as long as someone is still using the
* detached mount.
*/
if (zp->z_is_ctldir)
return (0);
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
mutex_enter(&zp->z_acl_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
mutex_exit(&zp->z_acl_lock);
rw_enter(&zp->z_xattr_lock, RW_WRITER);
if (zp->z_xattr_cached) {
nvlist_free(zp->z_xattr_cached);
zp->z_xattr_cached = NULL;
}
rw_exit(&zp->z_xattr_lock);
ASSERT(zp->z_sa_hdl == NULL);
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EINVAL));
}
zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
/* reload cached values */
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
&gen, sizeof (gen));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, sizeof (zp->z_size));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
&links, sizeof (links));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&z_uid, sizeof (z_uid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
&z_gid, sizeof (z_gid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&mode, sizeof (mode));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
&atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
&mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, 16);
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EIO));
}
if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
&projid, 8);
if (err != 0 && err != ENOENT) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(err));
}
}
zp->z_projid = projid;
zp->z_mode = ZTOI(zp)->i_mode = mode;
zfs_uid_write(ZTOI(zp), z_uid);
zfs_gid_write(ZTOI(zp), z_gid);
ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime);
ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime);
ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime);
if (gen != ZTOI(zp)->i_generation) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EIO));
}
set_nlink(ZTOI(zp), (uint32_t)links);
zfs_set_inode_flags(zp, ZTOI(zp));
zp->z_blksz = doi.doi_data_block_size;
zp->z_atime_dirty = 0;
zfs_inode_update(zp);
/*
* If the file has zero links, then it has been unlinked on the send
* side and it must be in the received unlinked set.
* We call zfs_znode_dmu_fini() now to prevent any accesses to the
* stale data and to prevent automatical removal of the file in
* zfs_zinactive(). The file will be removed either when it is removed
* on the send side and the next incremental stream is received or
* when the unlinked set gets processed.
*/
zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
if (zp->z_unlinked)
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (0);
}
void
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
objset_t *os = zfsvfs->z_os;
uint64_t obj = zp->z_id;
uint64_t acl_obj = zfs_external_acl(zp);
znode_hold_t *zh;
zh = zfs_znode_hold_enter(zfsvfs, obj);
if (acl_obj) {
VERIFY(!zp->z_is_sa);
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
}
VERIFY(0 == dmu_object_free(os, obj, tx));
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
}
void
zfs_zinactive(znode_t *zp)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
uint64_t z_id = zp->z_id;
znode_hold_t *zh;
ASSERT(zp->z_sa_hdl);
/*
* Don't allow a zfs_zget() while were trying to release this znode.
*/
zh = zfs_znode_hold_enter(zfsvfs, z_id);
mutex_enter(&zp->z_lock);
/*
* If this was the last reference to a file with no links, remove
* the file from the file system unless the file system is mounted
* read-only. That can happen, for example, if the file system was
* originally read-write, the file was opened, then unlinked and
* the file system was made read-only before the file was finally
* closed. The file will remain in the unlinked set.
*/
if (zp->z_unlinked) {
ASSERT(!zfsvfs->z_issnap);
if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
mutex_exit(&zp->z_lock);
zfs_znode_hold_exit(zfsvfs, zh);
zfs_rmnode(zp);
return;
}
}
mutex_exit(&zp->z_lock);
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
}
static inline int
zfs_compare_timespec(struct timespec *t1, struct timespec *t2)
{
if (t1->tv_sec < t2->tv_sec)
return (-1);
if (t1->tv_sec > t2->tv_sec)
return (1);
return (t1->tv_nsec - t2->tv_nsec);
}
/*
* Prepare to update znode time stamps.
*
* IN: zp - znode requiring timestamp update
* flag - ATTR_MTIME, ATTR_CTIME flags
*
* OUT: zp - z_seq
* mtime - new mtime
* ctime - new ctime
*
* Note: We don't update atime here, because we rely on Linux VFS to do
* atime updating.
*/
void
zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
uint64_t ctime[2])
{
inode_timespec_t now;
gethrestime(&now);
zp->z_seq++;
if (flag & ATTR_MTIME) {
ZFS_TIME_ENCODE(&now, mtime);
ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime);
if (ZTOZSB(zp)->z_use_fuids) {
zp->z_pflags |= (ZFS_ARCHIVE |
ZFS_AV_MODIFIED);
}
}
if (flag & ATTR_CTIME) {
ZFS_TIME_ENCODE(&now, ctime);
ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime);
if (ZTOZSB(zp)->z_use_fuids)
zp->z_pflags |= ZFS_ARCHIVE;
}
}
/*
* Grow the block size for a file.
*
* IN: zp - znode of file to free data in.
* size - requested block size
* tx - open transaction.
*
* NOTE: this function assumes that the znode is write locked.
*/
void
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
{
int error;
u_longlong_t dummy;
if (size <= zp->z_blksz)
return;
/*
* If the file size is already greater than the current blocksize,
* we will not grow. If there is more than one block in a file,
* the blocksize cannot change.
*/
if (zp->z_blksz && zp->z_size > zp->z_blksz)
return;
error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
size, 0, tx);
if (error == ENOTSUP)
return;
ASSERT0(error);
/* What blocksize did we actually get? */
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
}
/*
* Increase the file length
*
* IN: zp - znode of file to free data in.
* end - new end-of-file
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_extend(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_tx_t *tx;
locked_range_t *lr;
uint64_t newblksz;
int error;
/*
* We will change zp_size, lock the whole file.
*/
lr = rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end <= zp->z_size) {
rangelock_exit(lr);
return (0);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
if (end > zp->z_blksz &&
(!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
/*
* We are growing the file past the current block size.
*/
if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
/*
* File's blocksize is already larger than the
* "recordsize" property. Only let it grow to
* the next power of 2.
*/
ASSERT(!ISP2(zp->z_blksz));
newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
} else {
newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
}
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
} else {
newblksz = 0;
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
rangelock_exit(lr);
return (error);
}
if (newblksz)
zfs_grow_blocksize(zp, newblksz, tx);
zp->z_size = end;
VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
&zp->z_size, sizeof (zp->z_size), tx));
rangelock_exit(lr);
dmu_tx_commit(tx);
return (0);
}
/*
* zfs_zero_partial_page - Modeled after update_pages() but
* with different arguments and semantics for use by zfs_freesp().
*
* Zeroes a piece of a single page cache entry for zp at offset
* start and length len.
*
* Caller must acquire a range lock on the file for the region
* being zeroed in order that the ARC and page cache stay in sync.
*/
static void
zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
{
struct address_space *mp = ZTOI(zp)->i_mapping;
struct page *pp;
int64_t off;
void *pb;
ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
off = start & (PAGE_SIZE - 1);
start &= PAGE_MASK;
pp = find_lock_page(mp, start >> PAGE_SHIFT);
if (pp) {
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
pb = kmap(pp);
bzero(pb + off, len);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
SetPageUptodate(pp);
ClearPageError(pp);
unlock_page(pp);
put_page(pp);
}
}
/*
* Free space in a file.
*
* IN: zp - znode of file to free data in.
* off - start of section to free.
* len - length of section to free.
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
locked_range_t *lr;
int error;
/*
* Lock the range being freed.
*/
lr = rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (off >= zp->z_size) {
rangelock_exit(lr);
return (0);
}
if (off + len > zp->z_size)
len = zp->z_size - off;
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
/*
* Zero partial page cache entries. This must be done under a
* range lock in order to keep the ARC and page cache in sync.
*/
if (zp->z_is_mapped) {
loff_t first_page, last_page, page_len;
loff_t first_page_offset, last_page_offset;
/* first possible full page in hole */
first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* last page of hole */
last_page = (off + len) >> PAGE_SHIFT;
/* offset of first_page */
first_page_offset = first_page << PAGE_SHIFT;
/* offset of last_page */
last_page_offset = last_page << PAGE_SHIFT;
/* truncate whole pages */
if (last_page_offset > first_page_offset) {
truncate_inode_pages_range(ZTOI(zp)->i_mapping,
first_page_offset, last_page_offset - 1);
}
/* truncate sub-page ranges */
if (first_page > last_page) {
/* entire punched area within a single page */
zfs_zero_partial_page(zp, off, len);
} else {
/* beginning of punched area at the end of a page */
page_len = first_page_offset - off;
if (page_len > 0)
zfs_zero_partial_page(zp, off, page_len);
/* end of punched area at the beginning of a page */
page_len = off + len - last_page_offset;
if (page_len > 0)
zfs_zero_partial_page(zp, last_page_offset,
page_len);
}
}
rangelock_exit(lr);
return (error);
}
/*
* Truncate a file
*
* IN: zp - znode of file to free data in.
* end - new end-of-file.
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_trunc(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_tx_t *tx;
locked_range_t *lr;
int error;
sa_bulk_attr_t bulk[2];
int count = 0;
/*
* We will change zp_size, lock the whole file.
*/
lr = rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end >= zp->z_size) {
rangelock_exit(lr);
return (0);
}
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
DMU_OBJECT_END);
if (error) {
rangelock_exit(lr);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
rangelock_exit(lr);
return (error);
}
zp->z_size = end;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
NULL, &zp->z_size, sizeof (zp->z_size));
if (end == 0) {
zp->z_pflags &= ~ZFS_SPARSE;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
NULL, &zp->z_pflags, 8);
}
VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
dmu_tx_commit(tx);
rangelock_exit(lr);
return (0);
}
/*
* Free space in a file
*
* IN: zp - znode of file to free data in.
* off - start of range
* len - end of range (0 => EOF)
* flag - current file open mode flags.
* log - TRUE if this action should be logged
*
* RETURN: 0 on success, error code on failure
*/
int
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
{
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
zilog_t *zilog = zfsvfs->z_log;
uint64_t mode;
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int count = 0;
int error;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
sizeof (mode))) != 0)
return (error);
if (off > zp->z_size) {
error = zfs_extend(zp, off+len);
if (error == 0 && log)
goto log;
goto out;
}
if (len == 0) {
error = zfs_trunc(zp, off);
} else {
if ((error = zfs_free_range(zp, off, len)) == 0 &&
off + len > zp->z_size)
error = zfs_extend(zp, off+len);
}
if (error || !log)
goto out;
log:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
goto out;
}
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
NULL, &zp->z_pflags, 8);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
ASSERT(error == 0);
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
dmu_tx_commit(tx);
zfs_inode_update(zp);
error = 0;
out:
/*
* Truncate the page cache - for file truncate operations, use
* the purpose-built API for truncations. For punching operations,
* the truncation is handled under a range lock in zfs_free_range.
*/
if (len == 0)
truncate_setsize(ZTOI(zp), off);
return (error);
}
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
struct super_block *sb;
zfsvfs_t *zfsvfs;
uint64_t moid, obj, sa_obj, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int size;
int error;
int i;
znode_t *rootzp = NULL;
vattr_t vattr;
znode_t *zp;
zfs_acl_ids_t acl_ids;
/*
* First attempt to create master node.
*/
/*
* In an empty objset, there are no blocks to read and thus
* there can be no i/o errors (which we assert below).
*/
moid = MASTER_NODE_OBJ;
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
/*
* Set starting attributes.
*/
version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
elem = NULL;
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
/* For the moment we expect all zpl props to be uint64_ts */
uint64_t val;
char *name;
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
VERIFY(nvpair_value_uint64(elem, &val) == 0);
name = nvpair_name(elem);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
if (val < version)
version = val;
} else {
error = zap_update(os, moid, name, 8, 1, &val, tx);
}
ASSERT(error == 0);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
norm = val;
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
sense = val;
}
ASSERT(version != 0);
error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
/*
* Create zap object used for SA attribute registration
*/
if (version >= ZPL_VERSION_SA) {
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT(error == 0);
} else {
sa_obj = 0;
}
/*
* Create a delete queue.
*/
obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
ASSERT(error == 0);
/*
* Create root znode. Create minimal znode/inode/zfsvfs/sb
* to allow zfs_mknode to work.
*/
vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
vattr.va_mode = S_IFDIR|0755;
vattr.va_uid = crgetuid(cr);
vattr.va_gid = crgetgid(cr);
rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
rootzp->z_moved = 0;
rootzp->z_unlinked = 0;
rootzp->z_atime_dirty = 0;
rootzp->z_is_sa = USE_SA(version, os);
rootzp->z_pflags = 0;
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
zfsvfs->z_os = os;
zfsvfs->z_parent = zfsvfs;
zfsvfs->z_version = version;
zfsvfs->z_use_fuids = USE_FUIDS(version, os);
zfsvfs->z_use_sa = USE_SA(version, os);
zfsvfs->z_norm = norm;
sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
sb->s_fs_info = zfsvfs;
ZTOI(rootzp)->i_sb = sb;
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zfsvfs->z_attr_table);
ASSERT(error == 0);
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
zfsvfs->z_hold_size = size;
zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
KM_SLEEP);
zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
for (i = 0; i != size; i++) {
avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
}
VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
cr, NULL, &acl_ids));
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
ASSERT3P(zp, ==, rootzp);
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
ASSERT(error == 0);
zfs_acl_ids_free(&acl_ids);
atomic_set(&ZTOI(rootzp)->i_count, 0);
sa_handle_destroy(rootzp->z_sa_hdl);
kmem_cache_free(znode_cache, rootzp);
for (i = 0; i != size; i++) {
avl_destroy(&zfsvfs->z_hold_trees[i]);
mutex_destroy(&zfsvfs->z_hold_locks[i]);
}
mutex_destroy(&zfsvfs->z_znodes_lock);
vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
kmem_free(sb, sizeof (struct super_block));
kmem_free(zfsvfs, sizeof (zfsvfs_t));
}
#endif /* _KERNEL */
static int
zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
{
uint64_t sa_obj = 0;
int error;
error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
if (error != 0 && error != ENOENT)
return (error);
error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
return (error);
}
static int
zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
dmu_buf_t **db, void *tag)
{
dmu_object_info_t doi;
int error;
if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
return (error);
dmu_object_info_from_db(*db, &doi);
if ((doi.doi_bonus_type != DMU_OT_SA &&
doi.doi_bonus_type != DMU_OT_ZNODE) ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t))) {
sa_buf_rele(*db, tag);
return (SET_ERROR(ENOTSUP));
}
error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
if (error != 0) {
sa_buf_rele(*db, tag);
return (error);
}
return (0);
}
void
zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
{
sa_handle_destroy(hdl);
sa_buf_rele(db, tag);
}
/*
* Given an object number, return its parent object number and whether
* or not the object is an extended attribute directory.
*/
static int
zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
uint64_t *pobjp, int *is_xattrdir)
{
uint64_t parent;
uint64_t pflags;
uint64_t mode;
uint64_t parent_mode;
sa_bulk_attr_t bulk[3];
sa_handle_t *sa_hdl;
dmu_buf_t *sa_db;
int count = 0;
int error;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
&parent, sizeof (parent));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
&pflags, sizeof (pflags));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&mode, sizeof (mode));
if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
return (error);
/*
* When a link is removed its parent pointer is not changed and will
* be invalid. There are two cases where a link is removed but the
* file stays around, when it goes to the delete queue and when there
* are additional links.
*/
error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
if (error != 0)
return (error);
error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
if (error != 0)
return (error);
*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
/*
* Extended attributes can be applied to files, directories, etc.
* Otherwise the parent must be a directory.
*/
if (!*is_xattrdir && !S_ISDIR(parent_mode))
return (SET_ERROR(EINVAL));
*pobjp = parent;
return (0);
}
/*
* Given an object number, return some zpl level statistics
*/
static int
zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
zfs_stat_t *sb)
{
sa_bulk_attr_t bulk[4];
int count = 0;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&sb->zs_mode, sizeof (sb->zs_mode));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
&sb->zs_gen, sizeof (sb->zs_gen));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
&sb->zs_links, sizeof (sb->zs_links));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
&sb->zs_ctime, sizeof (sb->zs_ctime));
return (sa_bulk_lookup(hdl, bulk, count));
}
static int
zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
sa_attr_type_t *sa_table, char *buf, int len)
{
sa_handle_t *sa_hdl;
sa_handle_t *prevhdl = NULL;
dmu_buf_t *prevdb = NULL;
dmu_buf_t *sa_db = NULL;
char *path = buf + len - 1;
int error;
*path = '\0';
sa_hdl = hdl;
uint64_t deleteq_obj;
VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
error = zap_lookup_int(osp, deleteq_obj, obj);
if (error == 0) {
return (ESTALE);
} else if (error != ENOENT) {
return (error);
}
error = 0;
for (;;) {
uint64_t pobj = 0;
char component[MAXNAMELEN + 2];
size_t complen;
int is_xattrdir = 0;
if (prevdb)
zfs_release_sa_handle(prevhdl, prevdb, FTAG);
if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
&is_xattrdir)) != 0)
break;
if (pobj == obj) {
if (path[0] != '/')
*--path = '/';
break;
}
component[0] = '/';
if (is_xattrdir) {
(void) sprintf(component + 1, "<xattrdir>");
} else {
error = zap_value_search(osp, pobj, obj,
ZFS_DIRENT_OBJ(-1ULL), component + 1);
if (error != 0)
break;
}
complen = strlen(component);
path -= complen;
ASSERT(path >= buf);
bcopy(component, path, complen);
obj = pobj;
if (sa_hdl != hdl) {
prevhdl = sa_hdl;
prevdb = sa_db;
}
error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
if (error != 0) {
sa_hdl = prevhdl;
sa_db = prevdb;
break;
}
}
if (sa_hdl != NULL && sa_hdl != hdl) {
ASSERT(sa_db != NULL);
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
}
if (error == 0)
(void) memmove(buf, path, buf + len - path);
return (error);
}
int
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
{
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
int
zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
char *buf, int len)
{
char *path = buf + len - 1;
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
*path = '\0';
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
if (error != 0) {
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
#if defined(_KERNEL)
EXPORT_SYMBOL(zfs_create_fs);
EXPORT_SYMBOL(zfs_obj_to_path);
/* CSTYLED */
module_param(zfs_object_mutex_size, uint, 0644);
MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
module_param(zfs_unlink_suspend_progress, int, 0644);
MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
"(debug - leaks space into the unlinked set)");
#endif