freebsd-nq/sys/fs/nfsserver/nfs_nfsdstate.c
Rick Macklem c16f407e31 Add a counter to limit the number of disabled DSs for a mirrored pNFS MDS.
This patch adds a counter that limits the number of disabled mirrored DSs
to mirror level - 1.  It also makes a small change that keeps a Write that
has failed with EACCES when attempted by a client to a DS from disabling
the DS.
This patch only affects the pNFS server.
2018-06-22 00:55:39 +00:00

8379 lines
236 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009 Rick Macklem, University of Guelph
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifndef APPLEKEXT
#include <sys/extattr.h>
#include <fs/nfs/nfsport.h>
struct nfsrv_stablefirst nfsrv_stablefirst;
int nfsrv_issuedelegs = 0;
int nfsrv_dolocallocks = 0;
struct nfsv4lock nfsv4rootfs_lock;
time_t nfsdev_time = 0;
int nfsrv_layouthashsize;
volatile int nfsrv_layoutcnt = 0;
extern int newnfs_numnfsd;
extern struct nfsstatsv1 nfsstatsv1;
extern int nfsrv_lease;
extern struct timeval nfsboottime;
extern u_int32_t newnfs_true, newnfs_false;
extern struct mtx nfsrv_dslock_mtx;
extern struct mtx nfsrv_recalllock_mtx;
extern struct mtx nfsrv_dontlistlock_mtx;
extern int nfsd_debuglevel;
extern u_int nfsrv_dsdirsize;
extern struct nfsdevicehead nfsrv_devidhead;
extern int nfsrv_doflexfile;
extern int nfsrv_maxpnfsmirror;
NFSV4ROOTLOCKMUTEX;
NFSSTATESPINLOCK;
extern struct nfsdontlisthead nfsrv_dontlisthead;
extern volatile int nfsrv_devidcnt;
extern struct nfslayouthead nfsrv_recalllisthead;
SYSCTL_DECL(_vfs_nfsd);
int nfsrv_statehashsize = NFSSTATEHASHSIZE;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, statehashsize, CTLFLAG_RDTUN,
&nfsrv_statehashsize, 0,
"Size of state hash table set via loader.conf");
int nfsrv_clienthashsize = NFSCLIENTHASHSIZE;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, clienthashsize, CTLFLAG_RDTUN,
&nfsrv_clienthashsize, 0,
"Size of client hash table set via loader.conf");
int nfsrv_lockhashsize = NFSLOCKHASHSIZE;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, fhhashsize, CTLFLAG_RDTUN,
&nfsrv_lockhashsize, 0,
"Size of file handle hash table set via loader.conf");
int nfsrv_sessionhashsize = NFSSESSIONHASHSIZE;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, sessionhashsize, CTLFLAG_RDTUN,
&nfsrv_sessionhashsize, 0,
"Size of session hash table set via loader.conf");
int nfsrv_layouthighwater = NFSLAYOUTHIGHWATER;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, layouthighwater, CTLFLAG_RDTUN,
&nfsrv_layouthighwater, 0,
"High water mark for number of layouts set via loader.conf");
static int nfsrv_v4statelimit = NFSRV_V4STATELIMIT;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, v4statelimit, CTLFLAG_RWTUN,
&nfsrv_v4statelimit, 0,
"High water limit for NFSv4 opens+locks+delegations");
static int nfsrv_writedelegifpos = 0;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, writedelegifpos, CTLFLAG_RW,
&nfsrv_writedelegifpos, 0,
"Issue a write delegation for read opens if possible");
static int nfsrv_allowreadforwriteopen = 1;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, allowreadforwriteopen, CTLFLAG_RW,
&nfsrv_allowreadforwriteopen, 0,
"Allow Reads to be done with Write Access StateIDs");
int nfsrv_pnfsatime = 0;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, pnfsstrictatime, CTLFLAG_RW,
&nfsrv_pnfsatime, 0,
"For pNFS service, do Getattr ops to keep atime up-to-date");
int nfsrv_flexlinuxhack = 0;
SYSCTL_INT(_vfs_nfsd, OID_AUTO, flexlinuxhack, CTLFLAG_RW,
&nfsrv_flexlinuxhack, 0,
"For Linux clients, hack around Flex File Layout bug");
/*
* Hash lists for nfs V4.
*/
struct nfsclienthashhead *nfsclienthash;
struct nfslockhashhead *nfslockhash;
struct nfssessionhash *nfssessionhash;
struct nfslayouthash *nfslayouthash;
volatile int nfsrv_dontlistlen = 0;
#endif /* !APPLEKEXT */
static u_int32_t nfsrv_openpluslock = 0, nfsrv_delegatecnt = 0;
static time_t nfsrvboottime;
static int nfsrv_returnoldstateid = 0, nfsrv_clients = 0;
static int nfsrv_clienthighwater = NFSRV_CLIENTHIGHWATER;
static int nfsrv_nogsscallback = 0;
static volatile int nfsrv_writedelegcnt = 0;
static int nfsrv_faildscnt;
/* local functions */
static void nfsrv_dumpaclient(struct nfsclient *clp,
struct nfsd_dumpclients *dumpp);
static void nfsrv_freeopenowner(struct nfsstate *stp, int cansleep,
NFSPROC_T *p);
static int nfsrv_freeopen(struct nfsstate *stp, vnode_t vp, int cansleep,
NFSPROC_T *p);
static void nfsrv_freelockowner(struct nfsstate *stp, vnode_t vp, int cansleep,
NFSPROC_T *p);
static void nfsrv_freeallnfslocks(struct nfsstate *stp, vnode_t vp,
int cansleep, NFSPROC_T *p);
static void nfsrv_freenfslock(struct nfslock *lop);
static void nfsrv_freenfslockfile(struct nfslockfile *lfp);
static void nfsrv_freedeleg(struct nfsstate *);
static int nfsrv_getstate(struct nfsclient *clp, nfsv4stateid_t *stateidp,
u_int32_t flags, struct nfsstate **stpp);
static void nfsrv_getowner(struct nfsstatehead *hp, struct nfsstate *new_stp,
struct nfsstate **stpp);
static int nfsrv_getlockfh(vnode_t vp, u_short flags,
struct nfslockfile *new_lfp, fhandle_t *nfhp, NFSPROC_T *p);
static int nfsrv_getlockfile(u_short flags, struct nfslockfile **new_lfpp,
struct nfslockfile **lfpp, fhandle_t *nfhp, int lockit);
static void nfsrv_insertlock(struct nfslock *new_lop,
struct nfslock *insert_lop, struct nfsstate *stp, struct nfslockfile *lfp);
static void nfsrv_updatelock(struct nfsstate *stp, struct nfslock **new_lopp,
struct nfslock **other_lopp, struct nfslockfile *lfp);
static int nfsrv_getipnumber(u_char *cp);
static int nfsrv_checkrestart(nfsquad_t clientid, u_int32_t flags,
nfsv4stateid_t *stateidp, int specialid);
static int nfsrv_checkgrace(struct nfsrv_descript *nd, struct nfsclient *clp,
u_int32_t flags);
static int nfsrv_docallback(struct nfsclient *clp, int procnum,
nfsv4stateid_t *stateidp, int trunc, fhandle_t *fhp,
struct nfsvattr *nap, nfsattrbit_t *attrbitp, int laytype, NFSPROC_T *p);
static int nfsrv_cbcallargs(struct nfsrv_descript *nd, struct nfsclient *clp,
uint32_t callback, int op, const char *optag, struct nfsdsession **sepp);
static u_int32_t nfsrv_nextclientindex(void);
static u_int32_t nfsrv_nextstateindex(struct nfsclient *clp);
static void nfsrv_markstable(struct nfsclient *clp);
static void nfsrv_markreclaim(struct nfsclient *clp);
static int nfsrv_checkstable(struct nfsclient *clp);
static int nfsrv_clientconflict(struct nfsclient *clp, int *haslockp, struct
vnode *vp, NFSPROC_T *p);
static int nfsrv_delegconflict(struct nfsstate *stp, int *haslockp,
NFSPROC_T *p, vnode_t vp);
static int nfsrv_cleandeleg(vnode_t vp, struct nfslockfile *lfp,
struct nfsclient *clp, int *haslockp, NFSPROC_T *p);
static int nfsrv_notsamecredname(struct nfsrv_descript *nd,
struct nfsclient *clp);
static time_t nfsrv_leaseexpiry(void);
static void nfsrv_delaydelegtimeout(struct nfsstate *stp);
static int nfsrv_checkseqid(struct nfsrv_descript *nd, u_int32_t seqid,
struct nfsstate *stp, struct nfsrvcache *op);
static int nfsrv_nootherstate(struct nfsstate *stp);
static int nfsrv_locallock(vnode_t vp, struct nfslockfile *lfp, int flags,
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p);
static void nfsrv_localunlock(vnode_t vp, struct nfslockfile *lfp,
uint64_t init_first, uint64_t init_end, NFSPROC_T *p);
static int nfsrv_dolocal(vnode_t vp, struct nfslockfile *lfp, int flags,
int oldflags, uint64_t first, uint64_t end, struct nfslockconflict *cfp,
NFSPROC_T *p);
static void nfsrv_locallock_rollback(vnode_t vp, struct nfslockfile *lfp,
NFSPROC_T *p);
static void nfsrv_locallock_commit(struct nfslockfile *lfp, int flags,
uint64_t first, uint64_t end);
static void nfsrv_locklf(struct nfslockfile *lfp);
static void nfsrv_unlocklf(struct nfslockfile *lfp);
static struct nfsdsession *nfsrv_findsession(uint8_t *sessionid);
static int nfsrv_freesession(struct nfsdsession *sep, uint8_t *sessionid);
static int nfsv4_setcbsequence(struct nfsrv_descript *nd, struct nfsclient *clp,
int dont_replycache, struct nfsdsession **sepp);
static int nfsv4_getcbsession(struct nfsclient *clp, struct nfsdsession **sepp);
static int nfsrv_addlayout(struct nfsrv_descript *nd, struct nfslayout **lypp,
nfsv4stateid_t *stateidp, char *layp, int *layoutlenp, NFSPROC_T *p);
static void nfsrv_freelayout(struct nfslayouthead *lhp, struct nfslayout *lyp);
static void nfsrv_freelayoutlist(nfsquad_t clientid);
static void nfsrv_freelayouts(nfsquad_t *clid, fsid_t *fs, int laytype,
int iomode);
static void nfsrv_freealllayouts(void);
static void nfsrv_freedevid(struct nfsdevice *ds);
static int nfsrv_setdsserver(char *dspathp, NFSPROC_T *p,
struct nfsdevice **dsp);
static int nfsrv_delds(char *devid, NFSPROC_T *p);
static void nfsrv_deleteds(struct nfsdevice *fndds);
static void nfsrv_allocdevid(struct nfsdevice *ds, char *addr, char *dnshost);
static void nfsrv_freealldevids(void);
static void nfsrv_flexlayouterr(struct nfsrv_descript *nd, uint32_t *layp,
int maxcnt, NFSPROC_T *p);
static int nfsrv_recalllayout(nfsquad_t clid, nfsv4stateid_t *stateidp,
fhandle_t *fhp, struct nfslayout *lyp, struct nfslayouthead *lyheadp,
int laytype, NFSPROC_T *p);
static int nfsrv_findlayout(nfsquad_t *clientidp, fhandle_t *fhp, int laytype,
NFSPROC_T *, struct nfslayout **lypp);
static int nfsrv_fndclid(nfsquad_t *clidvec, nfsquad_t clid, int clidcnt);
static struct nfslayout *nfsrv_filelayout(struct nfsrv_descript *nd, int iomode,
fhandle_t *fhp, fhandle_t *dsfhp, char *devid, fsid_t fs);
static struct nfslayout *nfsrv_flexlayout(struct nfsrv_descript *nd, int iomode,
int mirrorcnt, fhandle_t *fhp, fhandle_t *dsfhp, char *devid, fsid_t fs);
static int nfsrv_dontlayout(fhandle_t *fhp);
static int nfsrv_createdsfile(vnode_t vp, fhandle_t *fhp, struct pnfsdsfile *pf,
vnode_t dvp, struct nfsdevice *ds, struct ucred *cred, NFSPROC_T *p,
vnode_t *tvpp);
/*
* Scan the client list for a match and either return the current one,
* create a new entry or return an error.
* If returning a non-error, the clp structure must either be linked into
* the client list or free'd.
*/
APPLESTATIC int
nfsrv_setclient(struct nfsrv_descript *nd, struct nfsclient **new_clpp,
nfsquad_t *clientidp, nfsquad_t *confirmp, NFSPROC_T *p)
{
struct nfsclient *clp = NULL, *new_clp = *new_clpp;
int i, error = 0, ret;
struct nfsstate *stp, *tstp;
struct sockaddr_in *sad, *rad;
struct nfsdsession *sep, *nsep;
int zapit = 0, gotit, hasstate = 0, igotlock;
static u_int64_t confirm_index = 0;
/*
* Check for state resource limit exceeded.
*/
if (nfsrv_openpluslock > nfsrv_v4statelimit) {
error = NFSERR_RESOURCE;
goto out;
}
if (nfsrv_issuedelegs == 0 ||
((nd->nd_flag & ND_GSS) != 0 && nfsrv_nogsscallback != 0))
/*
* Don't do callbacks when delegations are disabled or
* for AUTH_GSS unless enabled via nfsrv_nogsscallback.
* If establishing a callback connection is attempted
* when a firewall is blocking the callback path, the
* server may wait too long for the connect attempt to
* succeed during the Open. Some clients, such as Linux,
* may timeout and give up on the Open before the server
* replies. Also, since AUTH_GSS callbacks are not
* yet interoperability tested, they might cause the
* server to crap out, if they get past the Init call to
* the client.
*/
new_clp->lc_program = 0;
/* Lock out other nfsd threads */
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (!igotlock);
NFSUNLOCKV4ROOTMUTEX();
/*
* Search for a match in the client list.
*/
gotit = i = 0;
while (i < nfsrv_clienthashsize && !gotit) {
LIST_FOREACH(clp, &nfsclienthash[i], lc_hash) {
if (new_clp->lc_idlen == clp->lc_idlen &&
!NFSBCMP(new_clp->lc_id, clp->lc_id, clp->lc_idlen)) {
gotit = 1;
break;
}
}
if (gotit == 0)
i++;
}
if (!gotit ||
(clp->lc_flags & (LCL_NEEDSCONFIRM | LCL_ADMINREVOKED))) {
if ((nd->nd_flag & ND_NFSV41) != 0 && confirmp->lval[1] != 0) {
/*
* For NFSv4.1, if confirmp->lval[1] is non-zero, the
* client is trying to update a confirmed clientid.
*/
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
confirmp->lval[1] = 0;
error = NFSERR_NOENT;
goto out;
}
/*
* Get rid of the old one.
*/
if (i != nfsrv_clienthashsize) {
LIST_REMOVE(clp, lc_hash);
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
zapit = 1;
}
/*
* Add it after assigning a client id to it.
*/
new_clp->lc_flags |= LCL_NEEDSCONFIRM;
if ((nd->nd_flag & ND_NFSV41) != 0)
new_clp->lc_confirm.lval[0] = confirmp->lval[0] =
++confirm_index;
else
confirmp->qval = new_clp->lc_confirm.qval =
++confirm_index;
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
(u_int32_t)nfsrvboottime;
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
nfsrv_nextclientindex();
new_clp->lc_stateindex = 0;
new_clp->lc_statemaxindex = 0;
new_clp->lc_cbref = 0;
new_clp->lc_expiry = nfsrv_leaseexpiry();
LIST_INIT(&new_clp->lc_open);
LIST_INIT(&new_clp->lc_deleg);
LIST_INIT(&new_clp->lc_olddeleg);
LIST_INIT(&new_clp->lc_session);
for (i = 0; i < nfsrv_statehashsize; i++)
LIST_INIT(&new_clp->lc_stateid[i]);
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
lc_hash);
nfsstatsv1.srvclients++;
nfsrv_openpluslock++;
nfsrv_clients++;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
if (zapit)
nfsrv_zapclient(clp, p);
*new_clpp = NULL;
goto out;
}
/*
* Now, handle the cases where the id is already issued.
*/
if (nfsrv_notsamecredname(nd, clp)) {
/*
* Check to see if there is expired state that should go away.
*/
if (clp->lc_expiry < NFSD_MONOSEC &&
(!LIST_EMPTY(&clp->lc_open) || !LIST_EMPTY(&clp->lc_deleg))) {
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
}
/*
* If there is outstanding state, then reply NFSERR_CLIDINUSE per
* RFC3530 Sec. 8.1.2 last para.
*/
if (!LIST_EMPTY(&clp->lc_deleg)) {
hasstate = 1;
} else if (LIST_EMPTY(&clp->lc_open)) {
hasstate = 0;
} else {
hasstate = 0;
/* Look for an Open on the OpenOwner */
LIST_FOREACH(stp, &clp->lc_open, ls_list) {
if (!LIST_EMPTY(&stp->ls_open)) {
hasstate = 1;
break;
}
}
}
if (hasstate) {
/*
* If the uid doesn't match, return NFSERR_CLIDINUSE after
* filling out the correct ipaddr and portnum.
*/
sad = NFSSOCKADDR(new_clp->lc_req.nr_nam, struct sockaddr_in *);
rad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr_in *);
sad->sin_addr.s_addr = rad->sin_addr.s_addr;
sad->sin_port = rad->sin_port;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
error = NFSERR_CLIDINUSE;
goto out;
}
}
if (NFSBCMP(new_clp->lc_verf, clp->lc_verf, NFSX_VERF)) {
/*
* If the verifier has changed, the client has rebooted
* and a new client id is issued. The old state info
* can be thrown away once the SETCLIENTID_CONFIRM occurs.
*/
LIST_REMOVE(clp, lc_hash);
/* Get rid of all sessions on this clientid. */
LIST_FOREACH_SAFE(sep, &clp->lc_session, sess_list, nsep) {
ret = nfsrv_freesession(sep, NULL);
if (ret != 0)
printf("nfsrv_setclient: verifier changed free"
" session failed=%d\n", ret);
}
new_clp->lc_flags |= LCL_NEEDSCONFIRM;
if ((nd->nd_flag & ND_NFSV41) != 0)
new_clp->lc_confirm.lval[0] = confirmp->lval[0] =
++confirm_index;
else
confirmp->qval = new_clp->lc_confirm.qval =
++confirm_index;
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
nfsrvboottime;
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
nfsrv_nextclientindex();
new_clp->lc_stateindex = 0;
new_clp->lc_statemaxindex = 0;
new_clp->lc_cbref = 0;
new_clp->lc_expiry = nfsrv_leaseexpiry();
/*
* Save the state until confirmed.
*/
LIST_NEWHEAD(&new_clp->lc_open, &clp->lc_open, ls_list);
LIST_FOREACH(tstp, &new_clp->lc_open, ls_list)
tstp->ls_clp = new_clp;
LIST_NEWHEAD(&new_clp->lc_deleg, &clp->lc_deleg, ls_list);
LIST_FOREACH(tstp, &new_clp->lc_deleg, ls_list)
tstp->ls_clp = new_clp;
LIST_NEWHEAD(&new_clp->lc_olddeleg, &clp->lc_olddeleg,
ls_list);
LIST_FOREACH(tstp, &new_clp->lc_olddeleg, ls_list)
tstp->ls_clp = new_clp;
for (i = 0; i < nfsrv_statehashsize; i++) {
LIST_NEWHEAD(&new_clp->lc_stateid[i],
&clp->lc_stateid[i], ls_hash);
LIST_FOREACH(tstp, &new_clp->lc_stateid[i], ls_hash)
tstp->ls_clp = new_clp;
}
LIST_INIT(&new_clp->lc_session);
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
lc_hash);
nfsstatsv1.srvclients++;
nfsrv_openpluslock++;
nfsrv_clients++;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
/*
* Must wait until any outstanding callback on the old clp
* completes.
*/
NFSLOCKSTATE();
while (clp->lc_cbref) {
clp->lc_flags |= LCL_WAKEUPWANTED;
(void)mtx_sleep(clp, NFSSTATEMUTEXPTR, PZERO - 1,
"nfsd clp", 10 * hz);
}
NFSUNLOCKSTATE();
nfsrv_zapclient(clp, p);
*new_clpp = NULL;
goto out;
}
/* For NFSv4.1, mark that we found a confirmed clientid. */
if ((nd->nd_flag & ND_NFSV41) != 0) {
clientidp->lval[0] = clp->lc_clientid.lval[0];
clientidp->lval[1] = clp->lc_clientid.lval[1];
confirmp->lval[0] = 0; /* Ignored by client */
confirmp->lval[1] = 1;
} else {
/*
* id and verifier match, so update the net address info
* and get rid of any existing callback authentication
* handle, so a new one will be acquired.
*/
LIST_REMOVE(clp, lc_hash);
new_clp->lc_flags |= (LCL_NEEDSCONFIRM | LCL_DONTCLEAN);
new_clp->lc_expiry = nfsrv_leaseexpiry();
confirmp->qval = new_clp->lc_confirm.qval = ++confirm_index;
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
clp->lc_clientid.lval[0];
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
clp->lc_clientid.lval[1];
new_clp->lc_delegtime = clp->lc_delegtime;
new_clp->lc_stateindex = clp->lc_stateindex;
new_clp->lc_statemaxindex = clp->lc_statemaxindex;
new_clp->lc_cbref = 0;
LIST_NEWHEAD(&new_clp->lc_open, &clp->lc_open, ls_list);
LIST_FOREACH(tstp, &new_clp->lc_open, ls_list)
tstp->ls_clp = new_clp;
LIST_NEWHEAD(&new_clp->lc_deleg, &clp->lc_deleg, ls_list);
LIST_FOREACH(tstp, &new_clp->lc_deleg, ls_list)
tstp->ls_clp = new_clp;
LIST_NEWHEAD(&new_clp->lc_olddeleg, &clp->lc_olddeleg, ls_list);
LIST_FOREACH(tstp, &new_clp->lc_olddeleg, ls_list)
tstp->ls_clp = new_clp;
for (i = 0; i < nfsrv_statehashsize; i++) {
LIST_NEWHEAD(&new_clp->lc_stateid[i],
&clp->lc_stateid[i], ls_hash);
LIST_FOREACH(tstp, &new_clp->lc_stateid[i], ls_hash)
tstp->ls_clp = new_clp;
}
LIST_INIT(&new_clp->lc_session);
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
lc_hash);
nfsstatsv1.srvclients++;
nfsrv_openpluslock++;
nfsrv_clients++;
}
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
if ((nd->nd_flag & ND_NFSV41) == 0) {
/*
* Must wait until any outstanding callback on the old clp
* completes.
*/
NFSLOCKSTATE();
while (clp->lc_cbref) {
clp->lc_flags |= LCL_WAKEUPWANTED;
(void)mtx_sleep(clp, NFSSTATEMUTEXPTR, PZERO - 1,
"nfsdclp", 10 * hz);
}
NFSUNLOCKSTATE();
nfsrv_zapclient(clp, p);
*new_clpp = NULL;
}
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Check to see if the client id exists and optionally confirm it.
*/
APPLESTATIC int
nfsrv_getclient(nfsquad_t clientid, int opflags, struct nfsclient **clpp,
struct nfsdsession *nsep, nfsquad_t confirm, uint32_t cbprogram,
struct nfsrv_descript *nd, NFSPROC_T *p)
{
struct nfsclient *clp;
struct nfsstate *stp;
int i;
struct nfsclienthashhead *hp;
int error = 0, igotlock, doneok;
struct nfssessionhash *shp;
struct nfsdsession *sep;
uint64_t sessid[2];
static uint64_t next_sess = 0;
if (clpp)
*clpp = NULL;
if ((nd == NULL || (nd->nd_flag & ND_NFSV41) == 0 ||
opflags != CLOPS_RENEW) && nfsrvboottime != clientid.lval[0]) {
error = NFSERR_STALECLIENTID;
goto out;
}
/*
* If called with opflags == CLOPS_RENEW, the State Lock is
* already held. Otherwise, we need to get either that or,
* for the case of Confirm, lock out the nfsd threads.
*/
if (opflags & CLOPS_CONFIRM) {
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (!igotlock);
/*
* Create a new sessionid here, since we need to do it where
* there is a mutex held to serialize update of next_sess.
*/
if ((nd->nd_flag & ND_NFSV41) != 0) {
sessid[0] = ++next_sess;
sessid[1] = clientid.qval;
}
NFSUNLOCKV4ROOTMUTEX();
} else if (opflags != CLOPS_RENEW) {
NFSLOCKSTATE();
}
/* For NFSv4.1, the clp is acquired from the associated session. */
if (nd != NULL && (nd->nd_flag & ND_NFSV41) != 0 &&
opflags == CLOPS_RENEW) {
clp = NULL;
if ((nd->nd_flag & ND_HASSEQUENCE) != 0) {
shp = NFSSESSIONHASH(nd->nd_sessionid);
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(nd->nd_sessionid);
if (sep != NULL)
clp = sep->sess_clp;
NFSUNLOCKSESSION(shp);
}
} else {
hp = NFSCLIENTHASH(clientid);
LIST_FOREACH(clp, hp, lc_hash) {
if (clp->lc_clientid.lval[1] == clientid.lval[1])
break;
}
}
if (clp == NULL) {
if (opflags & CLOPS_CONFIRM)
error = NFSERR_STALECLIENTID;
else
error = NFSERR_EXPIRED;
} else if (clp->lc_flags & LCL_ADMINREVOKED) {
/*
* If marked admin revoked, just return the error.
*/
error = NFSERR_ADMINREVOKED;
}
if (error) {
if (opflags & CLOPS_CONFIRM) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
} else if (opflags != CLOPS_RENEW) {
NFSUNLOCKSTATE();
}
goto out;
}
/*
* Perform any operations specified by the opflags.
*/
if (opflags & CLOPS_CONFIRM) {
if (((nd->nd_flag & ND_NFSV41) != 0 &&
clp->lc_confirm.lval[0] != confirm.lval[0]) ||
((nd->nd_flag & ND_NFSV41) == 0 &&
clp->lc_confirm.qval != confirm.qval))
error = NFSERR_STALECLIENTID;
else if (nfsrv_notsamecredname(nd, clp))
error = NFSERR_CLIDINUSE;
if (!error) {
if ((clp->lc_flags & (LCL_NEEDSCONFIRM | LCL_DONTCLEAN)) ==
LCL_NEEDSCONFIRM) {
/*
* Hang onto the delegations (as old delegations)
* for an Open with CLAIM_DELEGATE_PREV unless in
* grace, but get rid of the rest of the state.
*/
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_olddeleg);
if (nfsrv_checkgrace(nd, clp, 0)) {
/* In grace, so just delete delegations */
nfsrv_freedeleglist(&clp->lc_deleg);
} else {
LIST_FOREACH(stp, &clp->lc_deleg, ls_list)
stp->ls_flags |= NFSLCK_OLDDELEG;
clp->lc_delegtime = NFSD_MONOSEC +
nfsrv_lease + NFSRV_LEASEDELTA;
LIST_NEWHEAD(&clp->lc_olddeleg, &clp->lc_deleg,
ls_list);
}
if ((nd->nd_flag & ND_NFSV41) != 0)
clp->lc_program = cbprogram;
}
clp->lc_flags &= ~(LCL_NEEDSCONFIRM | LCL_DONTCLEAN);
if (clp->lc_program)
clp->lc_flags |= LCL_NEEDSCBNULL;
/* For NFSv4.1, link the session onto the client. */
if (nsep != NULL) {
/* Hold a reference on the xprt for a backchannel. */
if ((nsep->sess_crflags & NFSV4CRSESS_CONNBACKCHAN)
!= 0) {
if (clp->lc_req.nr_client == NULL)
clp->lc_req.nr_client = (struct __rpc_client *)
clnt_bck_create(nd->nd_xprt->xp_socket,
cbprogram, NFSV4_CBVERS);
if (clp->lc_req.nr_client != NULL) {
SVC_ACQUIRE(nd->nd_xprt);
nd->nd_xprt->xp_p2 =
clp->lc_req.nr_client->cl_private;
/* Disable idle timeout. */
nd->nd_xprt->xp_idletimeout = 0;
nsep->sess_cbsess.nfsess_xprt = nd->nd_xprt;
} else
nsep->sess_crflags &= ~NFSV4CRSESS_CONNBACKCHAN;
}
NFSBCOPY(sessid, nsep->sess_sessionid,
NFSX_V4SESSIONID);
NFSBCOPY(sessid, nsep->sess_cbsess.nfsess_sessionid,
NFSX_V4SESSIONID);
shp = NFSSESSIONHASH(nsep->sess_sessionid);
NFSLOCKSTATE();
NFSLOCKSESSION(shp);
LIST_INSERT_HEAD(&shp->list, nsep, sess_hash);
LIST_INSERT_HEAD(&clp->lc_session, nsep, sess_list);
nsep->sess_clp = clp;
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
}
}
} else if (clp->lc_flags & LCL_NEEDSCONFIRM) {
error = NFSERR_EXPIRED;
}
/*
* If called by the Renew Op, we must check the principal.
*/
if (!error && (opflags & CLOPS_RENEWOP)) {
if (nfsrv_notsamecredname(nd, clp)) {
doneok = 0;
for (i = 0; i < nfsrv_statehashsize && doneok == 0; i++) {
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
if ((stp->ls_flags & NFSLCK_OPEN) &&
stp->ls_uid == nd->nd_cred->cr_uid) {
doneok = 1;
break;
}
}
}
if (!doneok)
error = NFSERR_ACCES;
}
if (!error && (clp->lc_flags & LCL_CBDOWN))
error = NFSERR_CBPATHDOWN;
}
if ((!error || error == NFSERR_CBPATHDOWN) &&
(opflags & CLOPS_RENEW)) {
clp->lc_expiry = nfsrv_leaseexpiry();
}
if (opflags & CLOPS_CONFIRM) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
} else if (opflags != CLOPS_RENEW) {
NFSUNLOCKSTATE();
}
if (clpp)
*clpp = clp;
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Perform the NFSv4.1 destroy clientid.
*/
int
nfsrv_destroyclient(nfsquad_t clientid, NFSPROC_T *p)
{
struct nfsclient *clp;
struct nfsclienthashhead *hp;
int error = 0, i, igotlock;
if (nfsrvboottime != clientid.lval[0]) {
error = NFSERR_STALECLIENTID;
goto out;
}
/* Lock out other nfsd threads */
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (igotlock == 0);
NFSUNLOCKV4ROOTMUTEX();
hp = NFSCLIENTHASH(clientid);
LIST_FOREACH(clp, hp, lc_hash) {
if (clp->lc_clientid.lval[1] == clientid.lval[1])
break;
}
if (clp == NULL) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
/* Just return ok, since it is gone. */
goto out;
}
/*
* Free up all layouts on the clientid. Should the client return the
* layouts?
*/
nfsrv_freelayoutlist(clientid);
/* Scan for state on the clientid. */
for (i = 0; i < nfsrv_statehashsize; i++)
if (!LIST_EMPTY(&clp->lc_stateid[i])) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
error = NFSERR_CLIENTIDBUSY;
goto out;
}
if (!LIST_EMPTY(&clp->lc_session) || !LIST_EMPTY(&clp->lc_deleg)) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
error = NFSERR_CLIENTIDBUSY;
goto out;
}
/* Destroy the clientid and return ok. */
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
LIST_REMOVE(clp, lc_hash);
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
nfsrv_zapclient(clp, p);
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Called from the new nfssvc syscall to admin revoke a clientid.
* Returns 0 for success, error otherwise.
*/
APPLESTATIC int
nfsrv_adminrevoke(struct nfsd_clid *revokep, NFSPROC_T *p)
{
struct nfsclient *clp = NULL;
int i, error = 0;
int gotit, igotlock;
/*
* First, lock out the nfsd so that state won't change while the
* revocation record is being written to the stable storage restart
* file.
*/
NFSLOCKV4ROOTMUTEX();
do {
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (!igotlock);
NFSUNLOCKV4ROOTMUTEX();
/*
* Search for a match in the client list.
*/
gotit = i = 0;
while (i < nfsrv_clienthashsize && !gotit) {
LIST_FOREACH(clp, &nfsclienthash[i], lc_hash) {
if (revokep->nclid_idlen == clp->lc_idlen &&
!NFSBCMP(revokep->nclid_id, clp->lc_id, clp->lc_idlen)) {
gotit = 1;
break;
}
}
i++;
}
if (!gotit) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 0);
NFSUNLOCKV4ROOTMUTEX();
error = EPERM;
goto out;
}
/*
* Now, write out the revocation record
*/
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
nfsrv_backupstable();
/*
* and clear out the state, marking the clientid revoked.
*/
clp->lc_flags &= ~LCL_CALLBACKSON;
clp->lc_flags |= LCL_ADMINREVOKED;
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 0);
NFSUNLOCKV4ROOTMUTEX();
out:
NFSEXITCODE(error);
return (error);
}
/*
* Dump out stats for all clients. Called from nfssvc(2), that is used
* nfsstatsv1.
*/
APPLESTATIC void
nfsrv_dumpclients(struct nfsd_dumpclients *dumpp, int maxcnt)
{
struct nfsclient *clp;
int i = 0, cnt = 0;
/*
* First, get a reference on the nfsv4rootfs_lock so that an
* exclusive lock cannot be acquired while dumping the clients.
*/
NFSLOCKV4ROOTMUTEX();
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR, NULL);
NFSUNLOCKV4ROOTMUTEX();
NFSLOCKSTATE();
/*
* Rattle through the client lists until done.
*/
while (i < nfsrv_clienthashsize && cnt < maxcnt) {
clp = LIST_FIRST(&nfsclienthash[i]);
while (clp != LIST_END(&nfsclienthash[i]) && cnt < maxcnt) {
nfsrv_dumpaclient(clp, &dumpp[cnt]);
cnt++;
clp = LIST_NEXT(clp, lc_hash);
}
i++;
}
if (cnt < maxcnt)
dumpp[cnt].ndcl_clid.nclid_idlen = 0;
NFSUNLOCKSTATE();
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
}
/*
* Dump stats for a client. Must be called with the NFSSTATELOCK and spl'd.
*/
static void
nfsrv_dumpaclient(struct nfsclient *clp, struct nfsd_dumpclients *dumpp)
{
struct nfsstate *stp, *openstp, *lckownstp;
struct nfslock *lop;
struct sockaddr *sad;
struct sockaddr_in *rad;
struct sockaddr_in6 *rad6;
dumpp->ndcl_nopenowners = dumpp->ndcl_nlockowners = 0;
dumpp->ndcl_nopens = dumpp->ndcl_nlocks = 0;
dumpp->ndcl_ndelegs = dumpp->ndcl_nolddelegs = 0;
dumpp->ndcl_flags = clp->lc_flags;
dumpp->ndcl_clid.nclid_idlen = clp->lc_idlen;
NFSBCOPY(clp->lc_id, dumpp->ndcl_clid.nclid_id, clp->lc_idlen);
sad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr *);
dumpp->ndcl_addrfam = sad->sa_family;
if (sad->sa_family == AF_INET) {
rad = (struct sockaddr_in *)sad;
dumpp->ndcl_cbaddr.sin_addr = rad->sin_addr;
} else {
rad6 = (struct sockaddr_in6 *)sad;
dumpp->ndcl_cbaddr.sin6_addr = rad6->sin6_addr;
}
/*
* Now, scan the state lists and total up the opens and locks.
*/
LIST_FOREACH(stp, &clp->lc_open, ls_list) {
dumpp->ndcl_nopenowners++;
LIST_FOREACH(openstp, &stp->ls_open, ls_list) {
dumpp->ndcl_nopens++;
LIST_FOREACH(lckownstp, &openstp->ls_open, ls_list) {
dumpp->ndcl_nlockowners++;
LIST_FOREACH(lop, &lckownstp->ls_lock, lo_lckowner) {
dumpp->ndcl_nlocks++;
}
}
}
}
/*
* and the delegation lists.
*/
LIST_FOREACH(stp, &clp->lc_deleg, ls_list) {
dumpp->ndcl_ndelegs++;
}
LIST_FOREACH(stp, &clp->lc_olddeleg, ls_list) {
dumpp->ndcl_nolddelegs++;
}
}
/*
* Dump out lock stats for a file.
*/
APPLESTATIC void
nfsrv_dumplocks(vnode_t vp, struct nfsd_dumplocks *ldumpp, int maxcnt,
NFSPROC_T *p)
{
struct nfsstate *stp;
struct nfslock *lop;
int cnt = 0;
struct nfslockfile *lfp;
struct sockaddr *sad;
struct sockaddr_in *rad;
struct sockaddr_in6 *rad6;
int ret;
fhandle_t nfh;
ret = nfsrv_getlockfh(vp, 0, NULL, &nfh, p);
/*
* First, get a reference on the nfsv4rootfs_lock so that an
* exclusive lock on it cannot be acquired while dumping the locks.
*/
NFSLOCKV4ROOTMUTEX();
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR, NULL);
NFSUNLOCKV4ROOTMUTEX();
NFSLOCKSTATE();
if (!ret)
ret = nfsrv_getlockfile(0, NULL, &lfp, &nfh, 0);
if (ret) {
ldumpp[0].ndlck_clid.nclid_idlen = 0;
NFSUNLOCKSTATE();
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
return;
}
/*
* For each open share on file, dump it out.
*/
stp = LIST_FIRST(&lfp->lf_open);
while (stp != LIST_END(&lfp->lf_open) && cnt < maxcnt) {
ldumpp[cnt].ndlck_flags = stp->ls_flags;
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
ldumpp[cnt].ndlck_owner.nclid_idlen =
stp->ls_openowner->ls_ownerlen;
NFSBCOPY(stp->ls_openowner->ls_owner,
ldumpp[cnt].ndlck_owner.nclid_id,
stp->ls_openowner->ls_ownerlen);
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
stp->ls_clp->lc_idlen);
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
if (sad->sa_family == AF_INET) {
rad = (struct sockaddr_in *)sad;
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
} else {
rad6 = (struct sockaddr_in6 *)sad;
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
}
stp = LIST_NEXT(stp, ls_file);
cnt++;
}
/*
* and all locks.
*/
lop = LIST_FIRST(&lfp->lf_lock);
while (lop != LIST_END(&lfp->lf_lock) && cnt < maxcnt) {
stp = lop->lo_stp;
ldumpp[cnt].ndlck_flags = lop->lo_flags;
ldumpp[cnt].ndlck_first = lop->lo_first;
ldumpp[cnt].ndlck_end = lop->lo_end;
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
ldumpp[cnt].ndlck_owner.nclid_idlen = stp->ls_ownerlen;
NFSBCOPY(stp->ls_owner, ldumpp[cnt].ndlck_owner.nclid_id,
stp->ls_ownerlen);
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
stp->ls_clp->lc_idlen);
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
if (sad->sa_family == AF_INET) {
rad = (struct sockaddr_in *)sad;
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
} else {
rad6 = (struct sockaddr_in6 *)sad;
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
}
lop = LIST_NEXT(lop, lo_lckfile);
cnt++;
}
/*
* and the delegations.
*/
stp = LIST_FIRST(&lfp->lf_deleg);
while (stp != LIST_END(&lfp->lf_deleg) && cnt < maxcnt) {
ldumpp[cnt].ndlck_flags = stp->ls_flags;
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
ldumpp[cnt].ndlck_owner.nclid_idlen = 0;
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
stp->ls_clp->lc_idlen);
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
if (sad->sa_family == AF_INET) {
rad = (struct sockaddr_in *)sad;
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
} else {
rad6 = (struct sockaddr_in6 *)sad;
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
}
stp = LIST_NEXT(stp, ls_file);
cnt++;
}
/*
* If list isn't full, mark end of list by setting the client name
* to zero length.
*/
if (cnt < maxcnt)
ldumpp[cnt].ndlck_clid.nclid_idlen = 0;
NFSUNLOCKSTATE();
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
}
/*
* Server timer routine. It can scan any linked list, so long
* as it holds the spin/mutex lock and there is no exclusive lock on
* nfsv4rootfs_lock.
* (For OpenBSD, a kthread is ok. For FreeBSD, I think it is ok
* to do this from a callout, since the spin locks work. For
* Darwin, I'm not sure what will work correctly yet.)
* Should be called once per second.
*/
APPLESTATIC void
nfsrv_servertimer(void)
{
struct nfsclient *clp, *nclp;
struct nfsstate *stp, *nstp;
int got_ref, i;
/*
* Make sure nfsboottime is set. This is used by V3 as well
* as V4. Note that nfsboottime is not nfsrvboottime, which is
* only used by the V4 server for leases.
*/
if (nfsboottime.tv_sec == 0)
NFSSETBOOTTIME(nfsboottime);
/*
* If server hasn't started yet, just return.
*/
NFSLOCKSTATE();
if (nfsrv_stablefirst.nsf_eograce == 0) {
NFSUNLOCKSTATE();
return;
}
if (!(nfsrv_stablefirst.nsf_flags & NFSNSF_UPDATEDONE)) {
if (!(nfsrv_stablefirst.nsf_flags & NFSNSF_GRACEOVER) &&
NFSD_MONOSEC > nfsrv_stablefirst.nsf_eograce)
nfsrv_stablefirst.nsf_flags |=
(NFSNSF_GRACEOVER | NFSNSF_NEEDLOCK);
NFSUNLOCKSTATE();
return;
}
/*
* Try and get a reference count on the nfsv4rootfs_lock so that
* no nfsd thread can acquire an exclusive lock on it before this
* call is done. If it is already exclusively locked, just return.
*/
NFSLOCKV4ROOTMUTEX();
got_ref = nfsv4_getref_nonblock(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
if (got_ref == 0) {
NFSUNLOCKSTATE();
return;
}
/*
* For each client...
*/
for (i = 0; i < nfsrv_clienthashsize; i++) {
clp = LIST_FIRST(&nfsclienthash[i]);
while (clp != LIST_END(&nfsclienthash[i])) {
nclp = LIST_NEXT(clp, lc_hash);
if (!(clp->lc_flags & LCL_EXPIREIT)) {
if (((clp->lc_expiry + NFSRV_STALELEASE) < NFSD_MONOSEC
&& ((LIST_EMPTY(&clp->lc_deleg)
&& LIST_EMPTY(&clp->lc_open)) ||
nfsrv_clients > nfsrv_clienthighwater)) ||
(clp->lc_expiry + NFSRV_MOULDYLEASE) < NFSD_MONOSEC ||
(clp->lc_expiry < NFSD_MONOSEC &&
(nfsrv_openpluslock * 10 / 9) > nfsrv_v4statelimit)) {
/*
* Lease has expired several nfsrv_lease times ago:
* PLUS
* - no state is associated with it
* OR
* - above high water mark for number of clients
* (nfsrv_clienthighwater should be large enough
* that this only occurs when clients fail to
* use the same nfs_client_id4.id. Maybe somewhat
* higher that the maximum number of clients that
* will mount this server?)
* OR
* Lease has expired a very long time ago
* OR
* Lease has expired PLUS the number of opens + locks
* has exceeded 90% of capacity
*
* --> Mark for expiry. The actual expiry will be done
* by an nfsd sometime soon.
*/
clp->lc_flags |= LCL_EXPIREIT;
nfsrv_stablefirst.nsf_flags |=
(NFSNSF_NEEDLOCK | NFSNSF_EXPIREDCLIENT);
} else {
/*
* If there are no opens, increment no open tick cnt
* If time exceeds NFSNOOPEN, mark it to be thrown away
* otherwise, if there is an open, reset no open time
* Hopefully, this will avoid excessive re-creation
* of open owners and subsequent open confirms.
*/
stp = LIST_FIRST(&clp->lc_open);
while (stp != LIST_END(&clp->lc_open)) {
nstp = LIST_NEXT(stp, ls_list);
if (LIST_EMPTY(&stp->ls_open)) {
stp->ls_noopens++;
if (stp->ls_noopens > NFSNOOPEN ||
(nfsrv_openpluslock * 2) >
nfsrv_v4statelimit)
nfsrv_stablefirst.nsf_flags |=
NFSNSF_NOOPENS;
} else {
stp->ls_noopens = 0;
}
stp = nstp;
}
}
}
clp = nclp;
}
}
NFSUNLOCKSTATE();
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
}
/*
* The following set of functions free up the various data structures.
*/
/*
* Clear out all open/lock state related to this nfsclient.
* Caller must hold an exclusive lock on nfsv4rootfs_lock, so that
* there are no other active nfsd threads.
*/
APPLESTATIC void
nfsrv_cleanclient(struct nfsclient *clp, NFSPROC_T *p)
{
struct nfsstate *stp, *nstp;
struct nfsdsession *sep, *nsep;
LIST_FOREACH_SAFE(stp, &clp->lc_open, ls_list, nstp)
nfsrv_freeopenowner(stp, 1, p);
if ((clp->lc_flags & LCL_ADMINREVOKED) == 0)
LIST_FOREACH_SAFE(sep, &clp->lc_session, sess_list, nsep)
(void)nfsrv_freesession(sep, NULL);
}
/*
* Free a client that has been cleaned. It should also already have been
* removed from the lists.
* (Just to be safe w.r.t. newnfs_disconnect(), call this function when
* softclock interrupts are enabled.)
*/
APPLESTATIC void
nfsrv_zapclient(struct nfsclient *clp, NFSPROC_T *p)
{
#ifdef notyet
if ((clp->lc_flags & (LCL_GSS | LCL_CALLBACKSON)) ==
(LCL_GSS | LCL_CALLBACKSON) &&
(clp->lc_hand.nfsh_flag & NFSG_COMPLETE) &&
clp->lc_handlelen > 0) {
clp->lc_hand.nfsh_flag &= ~NFSG_COMPLETE;
clp->lc_hand.nfsh_flag |= NFSG_DESTROYED;
(void) nfsrv_docallback(clp, NFSV4PROC_CBNULL,
NULL, 0, NULL, NULL, NULL, 0, p);
}
#endif
newnfs_disconnect(&clp->lc_req);
free(clp->lc_req.nr_nam, M_SONAME);
NFSFREEMUTEX(&clp->lc_req.nr_mtx);
free(clp->lc_stateid, M_NFSDCLIENT);
free(clp, M_NFSDCLIENT);
NFSLOCKSTATE();
nfsstatsv1.srvclients--;
nfsrv_openpluslock--;
nfsrv_clients--;
NFSUNLOCKSTATE();
}
/*
* Free a list of delegation state structures.
* (This function will also free all nfslockfile structures that no
* longer have associated state.)
*/
APPLESTATIC void
nfsrv_freedeleglist(struct nfsstatehead *sthp)
{
struct nfsstate *stp, *nstp;
LIST_FOREACH_SAFE(stp, sthp, ls_list, nstp) {
nfsrv_freedeleg(stp);
}
LIST_INIT(sthp);
}
/*
* Free up a delegation.
*/
static void
nfsrv_freedeleg(struct nfsstate *stp)
{
struct nfslockfile *lfp;
LIST_REMOVE(stp, ls_hash);
LIST_REMOVE(stp, ls_list);
LIST_REMOVE(stp, ls_file);
if ((stp->ls_flags & NFSLCK_DELEGWRITE) != 0)
nfsrv_writedelegcnt--;
lfp = stp->ls_lfp;
if (LIST_EMPTY(&lfp->lf_open) &&
LIST_EMPTY(&lfp->lf_lock) && LIST_EMPTY(&lfp->lf_deleg) &&
LIST_EMPTY(&lfp->lf_locallock) && LIST_EMPTY(&lfp->lf_rollback) &&
lfp->lf_usecount == 0 &&
nfsv4_testlock(&lfp->lf_locallock_lck) == 0)
nfsrv_freenfslockfile(lfp);
free(stp, M_NFSDSTATE);
nfsstatsv1.srvdelegates--;
nfsrv_openpluslock--;
nfsrv_delegatecnt--;
}
/*
* This function frees an open owner and all associated opens.
*/
static void
nfsrv_freeopenowner(struct nfsstate *stp, int cansleep, NFSPROC_T *p)
{
struct nfsstate *nstp, *tstp;
LIST_REMOVE(stp, ls_list);
/*
* Now, free all associated opens.
*/
nstp = LIST_FIRST(&stp->ls_open);
while (nstp != LIST_END(&stp->ls_open)) {
tstp = nstp;
nstp = LIST_NEXT(nstp, ls_list);
(void) nfsrv_freeopen(tstp, NULL, cansleep, p);
}
if (stp->ls_op)
nfsrvd_derefcache(stp->ls_op);
free(stp, M_NFSDSTATE);
nfsstatsv1.srvopenowners--;
nfsrv_openpluslock--;
}
/*
* This function frees an open (nfsstate open structure) with all associated
* lock_owners and locks. It also frees the nfslockfile structure iff there
* are no other opens on the file.
* Returns 1 if it free'd the nfslockfile, 0 otherwise.
*/
static int
nfsrv_freeopen(struct nfsstate *stp, vnode_t vp, int cansleep, NFSPROC_T *p)
{
struct nfsstate *nstp, *tstp;
struct nfslockfile *lfp;
int ret;
LIST_REMOVE(stp, ls_hash);
LIST_REMOVE(stp, ls_list);
LIST_REMOVE(stp, ls_file);
lfp = stp->ls_lfp;
/*
* Now, free all lockowners associated with this open.
*/
LIST_FOREACH_SAFE(tstp, &stp->ls_open, ls_list, nstp)
nfsrv_freelockowner(tstp, vp, cansleep, p);
/*
* The nfslockfile is freed here if there are no locks
* associated with the open.
* If there are locks associated with the open, the
* nfslockfile structure can be freed via nfsrv_freelockowner().
* Acquire the state mutex to avoid races with calls to
* nfsrv_getlockfile().
*/
if (cansleep != 0)
NFSLOCKSTATE();
if (lfp != NULL && LIST_EMPTY(&lfp->lf_open) &&
LIST_EMPTY(&lfp->lf_deleg) && LIST_EMPTY(&lfp->lf_lock) &&
LIST_EMPTY(&lfp->lf_locallock) && LIST_EMPTY(&lfp->lf_rollback) &&
lfp->lf_usecount == 0 &&
(cansleep != 0 || nfsv4_testlock(&lfp->lf_locallock_lck) == 0)) {
nfsrv_freenfslockfile(lfp);
ret = 1;
} else
ret = 0;
if (cansleep != 0)
NFSUNLOCKSTATE();
free(stp, M_NFSDSTATE);
nfsstatsv1.srvopens--;
nfsrv_openpluslock--;
return (ret);
}
/*
* Frees a lockowner and all associated locks.
*/
static void
nfsrv_freelockowner(struct nfsstate *stp, vnode_t vp, int cansleep,
NFSPROC_T *p)
{
LIST_REMOVE(stp, ls_hash);
LIST_REMOVE(stp, ls_list);
nfsrv_freeallnfslocks(stp, vp, cansleep, p);
if (stp->ls_op)
nfsrvd_derefcache(stp->ls_op);
free(stp, M_NFSDSTATE);
nfsstatsv1.srvlockowners--;
nfsrv_openpluslock--;
}
/*
* Free all the nfs locks on a lockowner.
*/
static void
nfsrv_freeallnfslocks(struct nfsstate *stp, vnode_t vp, int cansleep,
NFSPROC_T *p)
{
struct nfslock *lop, *nlop;
struct nfsrollback *rlp, *nrlp;
struct nfslockfile *lfp = NULL;
int gottvp = 0;
vnode_t tvp = NULL;
uint64_t first, end;
if (vp != NULL)
ASSERT_VOP_UNLOCKED(vp, "nfsrv_freeallnfslocks: vnode locked");
lop = LIST_FIRST(&stp->ls_lock);
while (lop != LIST_END(&stp->ls_lock)) {
nlop = LIST_NEXT(lop, lo_lckowner);
/*
* Since all locks should be for the same file, lfp should
* not change.
*/
if (lfp == NULL)
lfp = lop->lo_lfp;
else if (lfp != lop->lo_lfp)
panic("allnfslocks");
/*
* If vp is NULL and cansleep != 0, a vnode must be acquired
* from the file handle. This only occurs when called from
* nfsrv_cleanclient().
*/
if (gottvp == 0) {
if (nfsrv_dolocallocks == 0)
tvp = NULL;
else if (vp == NULL && cansleep != 0) {
tvp = nfsvno_getvp(&lfp->lf_fh);
NFSVOPUNLOCK(tvp, 0);
} else
tvp = vp;
gottvp = 1;
}
if (tvp != NULL) {
if (cansleep == 0)
panic("allnfs2");
first = lop->lo_first;
end = lop->lo_end;
nfsrv_freenfslock(lop);
nfsrv_localunlock(tvp, lfp, first, end, p);
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list,
nrlp)
free(rlp, M_NFSDROLLBACK);
LIST_INIT(&lfp->lf_rollback);
} else
nfsrv_freenfslock(lop);
lop = nlop;
}
if (vp == NULL && tvp != NULL)
vrele(tvp);
}
/*
* Free an nfslock structure.
*/
static void
nfsrv_freenfslock(struct nfslock *lop)
{
if (lop->lo_lckfile.le_prev != NULL) {
LIST_REMOVE(lop, lo_lckfile);
nfsstatsv1.srvlocks--;
nfsrv_openpluslock--;
}
LIST_REMOVE(lop, lo_lckowner);
free(lop, M_NFSDLOCK);
}
/*
* This function frees an nfslockfile structure.
*/
static void
nfsrv_freenfslockfile(struct nfslockfile *lfp)
{
LIST_REMOVE(lfp, lf_hash);
free(lfp, M_NFSDLOCKFILE);
}
/*
* This function looks up an nfsstate structure via stateid.
*/
static int
nfsrv_getstate(struct nfsclient *clp, nfsv4stateid_t *stateidp, __unused u_int32_t flags,
struct nfsstate **stpp)
{
struct nfsstate *stp;
struct nfsstatehead *hp;
int error = 0;
*stpp = NULL;
hp = NFSSTATEHASH(clp, *stateidp);
LIST_FOREACH(stp, hp, ls_hash) {
if (!NFSBCMP(stp->ls_stateid.other, stateidp->other,
NFSX_STATEIDOTHER))
break;
}
/*
* If no state id in list, return NFSERR_BADSTATEID.
*/
if (stp == LIST_END(hp)) {
error = NFSERR_BADSTATEID;
goto out;
}
*stpp = stp;
out:
NFSEXITCODE(error);
return (error);
}
/*
* This function gets an nfsstate structure via owner string.
*/
static void
nfsrv_getowner(struct nfsstatehead *hp, struct nfsstate *new_stp,
struct nfsstate **stpp)
{
struct nfsstate *stp;
*stpp = NULL;
LIST_FOREACH(stp, hp, ls_list) {
if (new_stp->ls_ownerlen == stp->ls_ownerlen &&
!NFSBCMP(new_stp->ls_owner,stp->ls_owner,stp->ls_ownerlen)) {
*stpp = stp;
return;
}
}
}
/*
* Lock control function called to update lock status.
* Returns 0 upon success, -1 if there is no lock and the flags indicate
* that one isn't to be created and an NFSERR_xxx for other errors.
* The structures new_stp and new_lop are passed in as pointers that should
* be set to NULL if the structure is used and shouldn't be free'd.
* For the NFSLCK_TEST and NFSLCK_CHECK cases, the structures are
* never used and can safely be allocated on the stack. For all other
* cases, *new_stpp and *new_lopp should be malloc'd before the call,
* in case they are used.
*/
APPLESTATIC int
nfsrv_lockctrl(vnode_t vp, struct nfsstate **new_stpp,
struct nfslock **new_lopp, struct nfslockconflict *cfp,
nfsquad_t clientid, nfsv4stateid_t *stateidp,
__unused struct nfsexstuff *exp,
struct nfsrv_descript *nd, NFSPROC_T *p)
{
struct nfslock *lop;
struct nfsstate *new_stp = *new_stpp;
struct nfslock *new_lop = *new_lopp;
struct nfsstate *tstp, *mystp, *nstp;
int specialid = 0;
struct nfslockfile *lfp;
struct nfslock *other_lop = NULL;
struct nfsstate *stp, *lckstp = NULL;
struct nfsclient *clp = NULL;
u_int32_t bits;
int error = 0, haslock = 0, ret, reterr;
int getlckret, delegation = 0, filestruct_locked, vnode_unlocked = 0;
fhandle_t nfh;
uint64_t first, end;
uint32_t lock_flags;
if (new_stp->ls_flags & (NFSLCK_CHECK | NFSLCK_SETATTR)) {
/*
* Note the special cases of "all 1s" or "all 0s" stateids and
* let reads with all 1s go ahead.
*/
if (new_stp->ls_stateid.seqid == 0x0 &&
new_stp->ls_stateid.other[0] == 0x0 &&
new_stp->ls_stateid.other[1] == 0x0 &&
new_stp->ls_stateid.other[2] == 0x0)
specialid = 1;
else if (new_stp->ls_stateid.seqid == 0xffffffff &&
new_stp->ls_stateid.other[0] == 0xffffffff &&
new_stp->ls_stateid.other[1] == 0xffffffff &&
new_stp->ls_stateid.other[2] == 0xffffffff)
specialid = 2;
}
/*
* Check for restart conditions (client and server).
*/
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
&new_stp->ls_stateid, specialid);
if (error)
goto out;
/*
* Check for state resource limit exceeded.
*/
if ((new_stp->ls_flags & NFSLCK_LOCK) &&
nfsrv_openpluslock > nfsrv_v4statelimit) {
error = NFSERR_RESOURCE;
goto out;
}
/*
* For the lock case, get another nfslock structure,
* just in case we need it.
* Malloc now, before we start sifting through the linked lists,
* in case we have to wait for memory.
*/
tryagain:
if (new_stp->ls_flags & NFSLCK_LOCK)
other_lop = malloc(sizeof (struct nfslock),
M_NFSDLOCK, M_WAITOK);
filestruct_locked = 0;
reterr = 0;
lfp = NULL;
/*
* Get the lockfile structure for CFH now, so we can do a sanity
* check against the stateid, before incrementing the seqid#, since
* we want to return NFSERR_BADSTATEID on failure and the seqid#
* shouldn't be incremented for this case.
* If nfsrv_getlockfile() returns -1, it means "not found", which
* will be handled later.
* If we are doing Lock/LockU and local locking is enabled, sleep
* lock the nfslockfile structure.
*/
getlckret = nfsrv_getlockfh(vp, new_stp->ls_flags, NULL, &nfh, p);
NFSLOCKSTATE();
if (getlckret == 0) {
if ((new_stp->ls_flags & (NFSLCK_LOCK | NFSLCK_UNLOCK)) != 0 &&
nfsrv_dolocallocks != 0 && nd->nd_repstat == 0) {
getlckret = nfsrv_getlockfile(new_stp->ls_flags, NULL,
&lfp, &nfh, 1);
if (getlckret == 0)
filestruct_locked = 1;
} else
getlckret = nfsrv_getlockfile(new_stp->ls_flags, NULL,
&lfp, &nfh, 0);
}
if (getlckret != 0 && getlckret != -1)
reterr = getlckret;
if (filestruct_locked != 0) {
LIST_INIT(&lfp->lf_rollback);
if ((new_stp->ls_flags & NFSLCK_LOCK)) {
/*
* For local locking, do the advisory locking now, so
* that any conflict can be detected. A failure later
* can be rolled back locally. If an error is returned,
* struct nfslockfile has been unlocked and any local
* locking rolled back.
*/
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl1");
vnode_unlocked = 1;
NFSVOPUNLOCK(vp, 0);
}
reterr = nfsrv_locallock(vp, lfp,
(new_lop->lo_flags & (NFSLCK_READ | NFSLCK_WRITE)),
new_lop->lo_first, new_lop->lo_end, cfp, p);
NFSLOCKSTATE();
}
}
if (specialid == 0) {
if (new_stp->ls_flags & NFSLCK_TEST) {
/*
* RFC 3530 does not list LockT as an op that renews a
* lease, but the consensus seems to be that it is ok
* for a server to do so.
*/
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
/*
* Since NFSERR_EXPIRED, NFSERR_ADMINREVOKED are not valid
* error returns for LockT, just go ahead and test for a lock,
* since there are no locks for this client, but other locks
* can conflict. (ie. same client will always be false)
*/
if (error == NFSERR_EXPIRED || error == NFSERR_ADMINREVOKED)
error = 0;
lckstp = new_stp;
} else {
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
if (error == 0)
/*
* Look up the stateid
*/
error = nfsrv_getstate(clp, &new_stp->ls_stateid,
new_stp->ls_flags, &stp);
/*
* do some sanity checks for an unconfirmed open or a
* stateid that refers to the wrong file, for an open stateid
*/
if (error == 0 && (stp->ls_flags & NFSLCK_OPEN) &&
((stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM) ||
(getlckret == 0 && stp->ls_lfp != lfp))){
/*
* NFSLCK_SETATTR should return OK rather than NFSERR_BADSTATEID
* The only exception is using SETATTR with SIZE.
* */
if ((new_stp->ls_flags &
(NFSLCK_SETATTR | NFSLCK_CHECK)) != NFSLCK_SETATTR)
error = NFSERR_BADSTATEID;
}
if (error == 0 &&
(stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) &&
getlckret == 0 && stp->ls_lfp != lfp)
error = NFSERR_BADSTATEID;
/*
* If the lockowner stateid doesn't refer to the same file,
* I believe that is considered ok, since some clients will
* only create a single lockowner and use that for all locks
* on all files.
* For now, log it as a diagnostic, instead of considering it
* a BadStateid.
*/
if (error == 0 && (stp->ls_flags &
(NFSLCK_OPEN | NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) == 0 &&
getlckret == 0 && stp->ls_lfp != lfp) {
#ifdef DIAGNOSTIC
printf("Got a lock statid for different file open\n");
#endif
/*
error = NFSERR_BADSTATEID;
*/
}
if (error == 0) {
if (new_stp->ls_flags & NFSLCK_OPENTOLOCK) {
/*
* If haslock set, we've already checked the seqid.
*/
if (!haslock) {
if (stp->ls_flags & NFSLCK_OPEN)
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
stp->ls_openowner, new_stp->ls_op);
else
error = NFSERR_BADSTATEID;
}
if (!error)
nfsrv_getowner(&stp->ls_open, new_stp, &lckstp);
if (lckstp)
/*
* I believe this should be an error, but it
* isn't obvious what NFSERR_xxx would be
* appropriate, so I'll use NFSERR_INVAL for now.
*/
error = NFSERR_INVAL;
else
lckstp = new_stp;
} else if (new_stp->ls_flags&(NFSLCK_LOCK|NFSLCK_UNLOCK)) {
/*
* If haslock set, ditto above.
*/
if (!haslock) {
if (stp->ls_flags & NFSLCK_OPEN)
error = NFSERR_BADSTATEID;
else
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
stp, new_stp->ls_op);
}
lckstp = stp;
} else {
lckstp = stp;
}
}
/*
* If the seqid part of the stateid isn't the same, return
* NFSERR_OLDSTATEID for cases other than I/O Ops.
* For I/O Ops, only return NFSERR_OLDSTATEID if
* nfsrv_returnoldstateid is set. (The consensus on the email
* list was that most clients would prefer to not receive
* NFSERR_OLDSTATEID for I/O Ops, but the RFC suggests that that
* is what will happen, so I use the nfsrv_returnoldstateid to
* allow for either server configuration.)
*/
if (!error && stp->ls_stateid.seqid!=new_stp->ls_stateid.seqid &&
(((nd->nd_flag & ND_NFSV41) == 0 &&
(!(new_stp->ls_flags & NFSLCK_CHECK) ||
nfsrv_returnoldstateid)) ||
((nd->nd_flag & ND_NFSV41) != 0 &&
new_stp->ls_stateid.seqid != 0)))
error = NFSERR_OLDSTATEID;
}
}
/*
* Now we can check for grace.
*/
if (!error)
error = nfsrv_checkgrace(nd, clp, new_stp->ls_flags);
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error &&
nfsrv_checkstable(clp))
error = NFSERR_NOGRACE;
/*
* If we successfully Reclaimed state, note that.
*/
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error)
nfsrv_markstable(clp);
/*
* At this point, either error == NFSERR_BADSTATEID or the
* seqid# has been updated, so we can return any error.
* If error == 0, there may be an error in:
* nd_repstat - Set by the calling function.
* reterr - Set above, if getting the nfslockfile structure
* or acquiring the local lock failed.
* (If both of these are set, nd_repstat should probably be
* returned, since that error was detected before this
* function call.)
*/
if (error != 0 || nd->nd_repstat != 0 || reterr != 0) {
if (error == 0) {
if (nd->nd_repstat != 0)
error = nd->nd_repstat;
else
error = reterr;
}
if (filestruct_locked != 0) {
/* Roll back local locks. */
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl2");
vnode_unlocked = 1;
NFSVOPUNLOCK(vp, 0);
}
nfsrv_locallock_rollback(vp, lfp, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
}
NFSUNLOCKSTATE();
goto out;
}
/*
* Check the nfsrv_getlockfile return.
* Returned -1 if no structure found.
*/
if (getlckret == -1) {
error = NFSERR_EXPIRED;
/*
* Called from lockt, so no lock is OK.
*/
if (new_stp->ls_flags & NFSLCK_TEST) {
error = 0;
} else if (new_stp->ls_flags &
(NFSLCK_CHECK | NFSLCK_SETATTR)) {
/*
* Called to check for a lock, OK if the stateid is all
* 1s or all 0s, but there should be an nfsstate
* otherwise.
* (ie. If there is no open, I'll assume no share
* deny bits.)
*/
if (specialid)
error = 0;
else
error = NFSERR_BADSTATEID;
}
NFSUNLOCKSTATE();
goto out;
}
/*
* For NFSLCK_CHECK and NFSLCK_LOCK, test for a share conflict.
* For NFSLCK_CHECK, allow a read if write access is granted,
* but check for a deny. For NFSLCK_LOCK, require correct access,
* which implies a conflicting deny can't exist.
*/
if (new_stp->ls_flags & (NFSLCK_CHECK | NFSLCK_LOCK)) {
/*
* Four kinds of state id:
* - specialid (all 0s or all 1s), only for NFSLCK_CHECK
* - stateid for an open
* - stateid for a delegation
* - stateid for a lock owner
*/
if (!specialid) {
if (stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) {
delegation = 1;
mystp = stp;
nfsrv_delaydelegtimeout(stp);
} else if (stp->ls_flags & NFSLCK_OPEN) {
mystp = stp;
} else {
mystp = stp->ls_openstp;
}
/*
* If locking or checking, require correct access
* bit set.
*/
if (((new_stp->ls_flags & NFSLCK_LOCK) &&
!((new_lop->lo_flags >> NFSLCK_LOCKSHIFT) &
mystp->ls_flags & NFSLCK_ACCESSBITS)) ||
((new_stp->ls_flags & (NFSLCK_CHECK|NFSLCK_READACCESS)) ==
(NFSLCK_CHECK | NFSLCK_READACCESS) &&
!(mystp->ls_flags & NFSLCK_READACCESS) &&
nfsrv_allowreadforwriteopen == 0) ||
((new_stp->ls_flags & (NFSLCK_CHECK|NFSLCK_WRITEACCESS)) ==
(NFSLCK_CHECK | NFSLCK_WRITEACCESS) &&
!(mystp->ls_flags & NFSLCK_WRITEACCESS))) {
if (filestruct_locked != 0) {
/* Roll back local locks. */
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp,
"nfsrv_lockctrl3");
vnode_unlocked = 1;
NFSVOPUNLOCK(vp, 0);
}
nfsrv_locallock_rollback(vp, lfp, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
}
NFSUNLOCKSTATE();
error = NFSERR_OPENMODE;
goto out;
}
} else
mystp = NULL;
if ((new_stp->ls_flags & NFSLCK_CHECK) && !delegation) {
/*
* Check for a conflicting deny bit.
*/
LIST_FOREACH(tstp, &lfp->lf_open, ls_file) {
if (tstp != mystp) {
bits = tstp->ls_flags;
bits >>= NFSLCK_SHIFT;
if (new_stp->ls_flags & bits & NFSLCK_ACCESSBITS) {
KASSERT(vnode_unlocked == 0,
("nfsrv_lockctrl: vnode unlocked1"));
ret = nfsrv_clientconflict(tstp->ls_clp, &haslock,
vp, p);
if (ret == 1) {
/*
* nfsrv_clientconflict unlocks state
* when it returns non-zero.
*/
lckstp = NULL;
goto tryagain;
}
if (ret == 0)
NFSUNLOCKSTATE();
if (ret == 2)
error = NFSERR_PERM;
else
error = NFSERR_OPENMODE;
goto out;
}
}
}
/* We're outta here */
NFSUNLOCKSTATE();
goto out;
}
}
/*
* For setattr, just get rid of all the Delegations for other clients.
*/
if (new_stp->ls_flags & NFSLCK_SETATTR) {
KASSERT(vnode_unlocked == 0,
("nfsrv_lockctrl: vnode unlocked2"));
ret = nfsrv_cleandeleg(vp, lfp, clp, &haslock, p);
if (ret) {
/*
* nfsrv_cleandeleg() unlocks state when it
* returns non-zero.
*/
if (ret == -1) {
lckstp = NULL;
goto tryagain;
}
error = ret;
goto out;
}
if (!(new_stp->ls_flags & NFSLCK_CHECK) ||
(LIST_EMPTY(&lfp->lf_open) && LIST_EMPTY(&lfp->lf_lock) &&
LIST_EMPTY(&lfp->lf_deleg))) {
NFSUNLOCKSTATE();
goto out;
}
}
/*
* Check for a conflicting delegation. If one is found, call
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
* been set yet, it will get the lock. Otherwise, it will recall
* the delegation. Then, we try try again...
* I currently believe the conflict algorithm to be:
* For Lock Ops (Lock/LockT/LockU)
* - there is a conflict iff a different client has a write delegation
* For Reading (Read Op)
* - there is a conflict iff a different client has a write delegation
* (the specialids are always a different client)
* For Writing (Write/Setattr of size)
* - there is a conflict if a different client has any delegation
* - there is a conflict if the same client has a read delegation
* (I don't understand why this isn't allowed, but that seems to be
* the current consensus?)
*/
tstp = LIST_FIRST(&lfp->lf_deleg);
while (tstp != LIST_END(&lfp->lf_deleg)) {
nstp = LIST_NEXT(tstp, ls_file);
if ((((new_stp->ls_flags&(NFSLCK_LOCK|NFSLCK_UNLOCK|NFSLCK_TEST))||
((new_stp->ls_flags & NFSLCK_CHECK) &&
(new_lop->lo_flags & NFSLCK_READ))) &&
clp != tstp->ls_clp &&
(tstp->ls_flags & NFSLCK_DELEGWRITE)) ||
((new_stp->ls_flags & NFSLCK_CHECK) &&
(new_lop->lo_flags & NFSLCK_WRITE) &&
(clp != tstp->ls_clp ||
(tstp->ls_flags & NFSLCK_DELEGREAD)))) {
ret = 0;
if (filestruct_locked != 0) {
/* Roll back local locks. */
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl4");
NFSVOPUNLOCK(vp, 0);
}
nfsrv_locallock_rollback(vp, lfp, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
NFSUNLOCKSTATE();
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
vnode_unlocked = 0;
if ((vp->v_iflag & VI_DOOMED) != 0)
ret = NFSERR_SERVERFAULT;
NFSLOCKSTATE();
}
if (ret == 0)
ret = nfsrv_delegconflict(tstp, &haslock, p, vp);
if (ret) {
/*
* nfsrv_delegconflict unlocks state when it
* returns non-zero, which it always does.
*/
if (other_lop) {
free(other_lop, M_NFSDLOCK);
other_lop = NULL;
}
if (ret == -1) {
lckstp = NULL;
goto tryagain;
}
error = ret;
goto out;
}
/* Never gets here. */
}
tstp = nstp;
}
/*
* Handle the unlock case by calling nfsrv_updatelock().
* (Should I have done some access checking above for unlock? For now,
* just let it happen.)
*/
if (new_stp->ls_flags & NFSLCK_UNLOCK) {
first = new_lop->lo_first;
end = new_lop->lo_end;
nfsrv_updatelock(stp, new_lopp, &other_lop, lfp);
stateidp->seqid = ++(stp->ls_stateid.seqid);
if ((nd->nd_flag & ND_NFSV41) != 0 && stateidp->seqid == 0)
stateidp->seqid = stp->ls_stateid.seqid = 1;
stateidp->other[0] = stp->ls_stateid.other[0];
stateidp->other[1] = stp->ls_stateid.other[1];
stateidp->other[2] = stp->ls_stateid.other[2];
if (filestruct_locked != 0) {
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl5");
vnode_unlocked = 1;
NFSVOPUNLOCK(vp, 0);
}
/* Update the local locks. */
nfsrv_localunlock(vp, lfp, first, end, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
}
NFSUNLOCKSTATE();
goto out;
}
/*
* Search for a conflicting lock. A lock conflicts if:
* - the lock range overlaps and
* - at least one lock is a write lock and
* - it is not owned by the same lock owner
*/
if (!delegation) {
LIST_FOREACH(lop, &lfp->lf_lock, lo_lckfile) {
if (new_lop->lo_end > lop->lo_first &&
new_lop->lo_first < lop->lo_end &&
(new_lop->lo_flags == NFSLCK_WRITE ||
lop->lo_flags == NFSLCK_WRITE) &&
lckstp != lop->lo_stp &&
(clp != lop->lo_stp->ls_clp ||
lckstp->ls_ownerlen != lop->lo_stp->ls_ownerlen ||
NFSBCMP(lckstp->ls_owner, lop->lo_stp->ls_owner,
lckstp->ls_ownerlen))) {
if (other_lop) {
free(other_lop, M_NFSDLOCK);
other_lop = NULL;
}
if (vnode_unlocked != 0)
ret = nfsrv_clientconflict(lop->lo_stp->ls_clp, &haslock,
NULL, p);
else
ret = nfsrv_clientconflict(lop->lo_stp->ls_clp, &haslock,
vp, p);
if (ret == 1) {
if (filestruct_locked != 0) {
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl6");
NFSVOPUNLOCK(vp, 0);
}
/* Roll back local locks. */
nfsrv_locallock_rollback(vp, lfp, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
NFSUNLOCKSTATE();
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
vnode_unlocked = 0;
if ((vp->v_iflag & VI_DOOMED) != 0) {
error = NFSERR_SERVERFAULT;
goto out;
}
}
/*
* nfsrv_clientconflict() unlocks state when it
* returns non-zero.
*/
lckstp = NULL;
goto tryagain;
}
/*
* Found a conflicting lock, so record the conflict and
* return the error.
*/
if (cfp != NULL && ret == 0) {
cfp->cl_clientid.lval[0]=lop->lo_stp->ls_stateid.other[0];
cfp->cl_clientid.lval[1]=lop->lo_stp->ls_stateid.other[1];
cfp->cl_first = lop->lo_first;
cfp->cl_end = lop->lo_end;
cfp->cl_flags = lop->lo_flags;
cfp->cl_ownerlen = lop->lo_stp->ls_ownerlen;
NFSBCOPY(lop->lo_stp->ls_owner, cfp->cl_owner,
cfp->cl_ownerlen);
}
if (ret == 2)
error = NFSERR_PERM;
else if (new_stp->ls_flags & NFSLCK_RECLAIM)
error = NFSERR_RECLAIMCONFLICT;
else if (new_stp->ls_flags & NFSLCK_CHECK)
error = NFSERR_LOCKED;
else
error = NFSERR_DENIED;
if (filestruct_locked != 0 && ret == 0) {
/* Roll back local locks. */
NFSUNLOCKSTATE();
if (vnode_unlocked == 0) {
ASSERT_VOP_ELOCKED(vp, "nfsrv_lockctrl7");
vnode_unlocked = 1;
NFSVOPUNLOCK(vp, 0);
}
nfsrv_locallock_rollback(vp, lfp, p);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
}
if (ret == 0)
NFSUNLOCKSTATE();
goto out;
}
}
}
/*
* We only get here if there was no lock that conflicted.
*/
if (new_stp->ls_flags & (NFSLCK_TEST | NFSLCK_CHECK)) {
NFSUNLOCKSTATE();
goto out;
}
/*
* We only get here when we are creating or modifying a lock.
* There are two variants:
* - exist_lock_owner where lock_owner exists
* - open_to_lock_owner with new lock_owner
*/
first = new_lop->lo_first;
end = new_lop->lo_end;
lock_flags = new_lop->lo_flags;
if (!(new_stp->ls_flags & NFSLCK_OPENTOLOCK)) {
nfsrv_updatelock(lckstp, new_lopp, &other_lop, lfp);
stateidp->seqid = ++(lckstp->ls_stateid.seqid);
if ((nd->nd_flag & ND_NFSV41) != 0 && stateidp->seqid == 0)
stateidp->seqid = lckstp->ls_stateid.seqid = 1;
stateidp->other[0] = lckstp->ls_stateid.other[0];
stateidp->other[1] = lckstp->ls_stateid.other[1];
stateidp->other[2] = lckstp->ls_stateid.other[2];
} else {
/*
* The new open_to_lock_owner case.
* Link the new nfsstate into the lists.
*/
new_stp->ls_seq = new_stp->ls_opentolockseq;
nfsrvd_refcache(new_stp->ls_op);
stateidp->seqid = new_stp->ls_stateid.seqid = 1;
stateidp->other[0] = new_stp->ls_stateid.other[0] =
clp->lc_clientid.lval[0];
stateidp->other[1] = new_stp->ls_stateid.other[1] =
clp->lc_clientid.lval[1];
stateidp->other[2] = new_stp->ls_stateid.other[2] =
nfsrv_nextstateindex(clp);
new_stp->ls_clp = clp;
LIST_INIT(&new_stp->ls_lock);
new_stp->ls_openstp = stp;
new_stp->ls_lfp = lfp;
nfsrv_insertlock(new_lop, (struct nfslock *)new_stp, new_stp,
lfp);
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_stp->ls_stateid),
new_stp, ls_hash);
LIST_INSERT_HEAD(&stp->ls_open, new_stp, ls_list);
*new_lopp = NULL;
*new_stpp = NULL;
nfsstatsv1.srvlockowners++;
nfsrv_openpluslock++;
}
if (filestruct_locked != 0) {
NFSUNLOCKSTATE();
nfsrv_locallock_commit(lfp, lock_flags, first, end);
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
}
NFSUNLOCKSTATE();
out:
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
if (vnode_unlocked != 0) {
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0)
error = NFSERR_SERVERFAULT;
}
if (other_lop)
free(other_lop, M_NFSDLOCK);
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Check for state errors for Open.
* repstat is passed back out as an error if more critical errors
* are not detected.
*/
APPLESTATIC int
nfsrv_opencheck(nfsquad_t clientid, nfsv4stateid_t *stateidp,
struct nfsstate *new_stp, vnode_t vp, struct nfsrv_descript *nd,
NFSPROC_T *p, int repstat)
{
struct nfsstate *stp, *nstp;
struct nfsclient *clp;
struct nfsstate *ownerstp;
struct nfslockfile *lfp, *new_lfp;
int error = 0, haslock = 0, ret, readonly = 0, getfhret = 0;
if ((new_stp->ls_flags & NFSLCK_SHAREBITS) == NFSLCK_READACCESS)
readonly = 1;
/*
* Check for restart conditions (client and server).
*/
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
&new_stp->ls_stateid, 0);
if (error)
goto out;
/*
* Check for state resource limit exceeded.
* Technically this should be SMP protected, but the worst
* case error is "out by one or two" on the count when it
* returns NFSERR_RESOURCE and the limit is just a rather
* arbitrary high water mark, so no harm is done.
*/
if (nfsrv_openpluslock > nfsrv_v4statelimit) {
error = NFSERR_RESOURCE;
goto out;
}
tryagain:
new_lfp = malloc(sizeof (struct nfslockfile),
M_NFSDLOCKFILE, M_WAITOK);
if (vp)
getfhret = nfsrv_getlockfh(vp, new_stp->ls_flags, new_lfp,
NULL, p);
NFSLOCKSTATE();
/*
* Get the nfsclient structure.
*/
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
/*
* Look up the open owner. See if it needs confirmation and
* check the seq#, as required.
*/
if (!error)
nfsrv_getowner(&clp->lc_open, new_stp, &ownerstp);
if (!error && ownerstp) {
error = nfsrv_checkseqid(nd, new_stp->ls_seq, ownerstp,
new_stp->ls_op);
/*
* If the OpenOwner hasn't been confirmed, assume the
* old one was a replay and this one is ok.
* See: RFC3530 Sec. 14.2.18.
*/
if (error == NFSERR_BADSEQID &&
(ownerstp->ls_flags & NFSLCK_NEEDSCONFIRM))
error = 0;
}
/*
* Check for grace.
*/
if (!error)
error = nfsrv_checkgrace(nd, clp, new_stp->ls_flags);
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error &&
nfsrv_checkstable(clp))
error = NFSERR_NOGRACE;
/*
* If none of the above errors occurred, let repstat be
* returned.
*/
if (repstat && !error)
error = repstat;
if (error) {
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
free(new_lfp, M_NFSDLOCKFILE);
goto out;
}
/*
* If vp == NULL, the file doesn't exist yet, so return ok.
* (This always happens on the first pass, so haslock must be 0.)
*/
if (vp == NULL) {
NFSUNLOCKSTATE();
free(new_lfp, M_NFSDLOCKFILE);
goto out;
}
/*
* Get the structure for the underlying file.
*/
if (getfhret)
error = getfhret;
else
error = nfsrv_getlockfile(new_stp->ls_flags, &new_lfp, &lfp,
NULL, 0);
if (new_lfp)
free(new_lfp, M_NFSDLOCKFILE);
if (error) {
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
goto out;
}
/*
* Search for a conflicting open/share.
*/
if (new_stp->ls_flags & NFSLCK_DELEGCUR) {
/*
* For Delegate_Cur, search for the matching Delegation,
* which indicates no conflict.
* An old delegation should have been recovered by the
* client doing a Claim_DELEGATE_Prev, so I won't let
* it match and return NFSERR_EXPIRED. Should I let it
* match?
*/
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
if (!(stp->ls_flags & NFSLCK_OLDDELEG) &&
(((nd->nd_flag & ND_NFSV41) != 0 &&
stateidp->seqid == 0) ||
stateidp->seqid == stp->ls_stateid.seqid) &&
!NFSBCMP(stateidp->other, stp->ls_stateid.other,
NFSX_STATEIDOTHER))
break;
}
if (stp == LIST_END(&lfp->lf_deleg) ||
((new_stp->ls_flags & NFSLCK_WRITEACCESS) &&
(stp->ls_flags & NFSLCK_DELEGREAD))) {
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
error = NFSERR_EXPIRED;
goto out;
}
}
/*
* Check for access/deny bit conflicts. I check for the same
* owner as well, in case the client didn't bother.
*/
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
if (!(new_stp->ls_flags & NFSLCK_DELEGCUR) &&
(((new_stp->ls_flags & NFSLCK_ACCESSBITS) &
((stp->ls_flags>>NFSLCK_SHIFT) & NFSLCK_ACCESSBITS))||
((stp->ls_flags & NFSLCK_ACCESSBITS) &
((new_stp->ls_flags>>NFSLCK_SHIFT)&NFSLCK_ACCESSBITS)))){
ret = nfsrv_clientconflict(stp->ls_clp,&haslock,vp,p);
if (ret == 1) {
/*
* nfsrv_clientconflict() unlocks
* state when it returns non-zero.
*/
goto tryagain;
}
if (ret == 2)
error = NFSERR_PERM;
else if (new_stp->ls_flags & NFSLCK_RECLAIM)
error = NFSERR_RECLAIMCONFLICT;
else
error = NFSERR_SHAREDENIED;
if (ret == 0)
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
goto out;
}
}
/*
* Check for a conflicting delegation. If one is found, call
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
* been set yet, it will get the lock. Otherwise, it will recall
* the delegation. Then, we try try again...
* (If NFSLCK_DELEGCUR is set, it has a delegation, so there
* isn't a conflict.)
* I currently believe the conflict algorithm to be:
* For Open with Read Access and Deny None
* - there is a conflict iff a different client has a write delegation
* For Open with other Write Access or any Deny except None
* - there is a conflict if a different client has any delegation
* - there is a conflict if the same client has a read delegation
* (The current consensus is that this last case should be
* considered a conflict since the client with a read delegation
* could have done an Open with ReadAccess and WriteDeny
* locally and then not have checked for the WriteDeny.)
* Don't check for a Reclaim, since that will be dealt with
* by nfsrv_openctrl().
*/
if (!(new_stp->ls_flags &
(NFSLCK_DELEGPREV | NFSLCK_DELEGCUR | NFSLCK_RECLAIM))) {
stp = LIST_FIRST(&lfp->lf_deleg);
while (stp != LIST_END(&lfp->lf_deleg)) {
nstp = LIST_NEXT(stp, ls_file);
if ((readonly && stp->ls_clp != clp &&
(stp->ls_flags & NFSLCK_DELEGWRITE)) ||
(!readonly && (stp->ls_clp != clp ||
(stp->ls_flags & NFSLCK_DELEGREAD)))) {
ret = nfsrv_delegconflict(stp, &haslock, p, vp);
if (ret) {
/*
* nfsrv_delegconflict() unlocks state
* when it returns non-zero.
*/
if (ret == -1)
goto tryagain;
error = ret;
goto out;
}
}
stp = nstp;
}
}
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Open control function to create/update open state for an open.
*/
APPLESTATIC int
nfsrv_openctrl(struct nfsrv_descript *nd, vnode_t vp,
struct nfsstate **new_stpp, nfsquad_t clientid, nfsv4stateid_t *stateidp,
nfsv4stateid_t *delegstateidp, u_int32_t *rflagsp, struct nfsexstuff *exp,
NFSPROC_T *p, u_quad_t filerev)
{
struct nfsstate *new_stp = *new_stpp;
struct nfsstate *stp, *nstp;
struct nfsstate *openstp = NULL, *new_open, *ownerstp, *new_deleg;
struct nfslockfile *lfp, *new_lfp;
struct nfsclient *clp;
int error = 0, haslock = 0, ret, delegate = 1, writedeleg = 1;
int readonly = 0, cbret = 1, getfhret = 0;
int gotstate = 0, len = 0;
u_char *clidp = NULL;
if ((new_stp->ls_flags & NFSLCK_SHAREBITS) == NFSLCK_READACCESS)
readonly = 1;
/*
* Check for restart conditions (client and server).
* (Paranoia, should have been detected by nfsrv_opencheck().)
* If an error does show up, return NFSERR_EXPIRED, since the
* the seqid# has already been incremented.
*/
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
&new_stp->ls_stateid, 0);
if (error) {
printf("Nfsd: openctrl unexpected restart err=%d\n",
error);
error = NFSERR_EXPIRED;
goto out;
}
clidp = malloc(NFSV4_OPAQUELIMIT, M_TEMP, M_WAITOK);
tryagain:
new_lfp = malloc(sizeof (struct nfslockfile),
M_NFSDLOCKFILE, M_WAITOK);
new_open = malloc(sizeof (struct nfsstate),
M_NFSDSTATE, M_WAITOK);
new_deleg = malloc(sizeof (struct nfsstate),
M_NFSDSTATE, M_WAITOK);
getfhret = nfsrv_getlockfh(vp, new_stp->ls_flags, new_lfp,
NULL, p);
NFSLOCKSTATE();
/*
* Get the client structure. Since the linked lists could be changed
* by other nfsd processes if this process does a tsleep(), one of
* two things must be done.
* 1 - don't tsleep()
* or
* 2 - get the nfsv4_lock() { indicated by haslock == 1 }
* before using the lists, since this lock stops the other
* nfsd. This should only be used for rare cases, since it
* essentially single threads the nfsd.
* At this time, it is only done for cases where the stable
* storage file must be written prior to completion of state
* expiration.
*/
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
if (!error && (clp->lc_flags & LCL_NEEDSCBNULL) &&
clp->lc_program) {
/*
* This happens on the first open for a client
* that supports callbacks.
*/
NFSUNLOCKSTATE();
/*
* Although nfsrv_docallback() will sleep, clp won't
* go away, since they are only removed when the
* nfsv4_lock() has blocked the nfsd threads. The
* fields in clp can change, but having multiple
* threads do this Null callback RPC should be
* harmless.
*/
cbret = nfsrv_docallback(clp, NFSV4PROC_CBNULL,
NULL, 0, NULL, NULL, NULL, 0, p);
NFSLOCKSTATE();
clp->lc_flags &= ~LCL_NEEDSCBNULL;
if (!cbret)
clp->lc_flags |= LCL_CALLBACKSON;
}
/*
* Look up the open owner. See if it needs confirmation and
* check the seq#, as required.
*/
if (!error)
nfsrv_getowner(&clp->lc_open, new_stp, &ownerstp);
if (error) {
NFSUNLOCKSTATE();
printf("Nfsd: openctrl unexpected state err=%d\n",
error);
free(new_lfp, M_NFSDLOCKFILE);
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
error = NFSERR_EXPIRED;
goto out;
}
if (new_stp->ls_flags & NFSLCK_RECLAIM)
nfsrv_markstable(clp);
/*
* Get the structure for the underlying file.
*/
if (getfhret)
error = getfhret;
else
error = nfsrv_getlockfile(new_stp->ls_flags, &new_lfp, &lfp,
NULL, 0);
if (new_lfp)
free(new_lfp, M_NFSDLOCKFILE);
if (error) {
NFSUNLOCKSTATE();
printf("Nfsd openctrl unexpected getlockfile err=%d\n",
error);
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
goto out;
}
/*
* Search for a conflicting open/share.
*/
if (new_stp->ls_flags & NFSLCK_DELEGCUR) {
/*
* For Delegate_Cur, search for the matching Delegation,
* which indicates no conflict.
* An old delegation should have been recovered by the
* client doing a Claim_DELEGATE_Prev, so I won't let
* it match and return NFSERR_EXPIRED. Should I let it
* match?
*/
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
if (!(stp->ls_flags & NFSLCK_OLDDELEG) &&
(((nd->nd_flag & ND_NFSV41) != 0 &&
stateidp->seqid == 0) ||
stateidp->seqid == stp->ls_stateid.seqid) &&
!NFSBCMP(stateidp->other, stp->ls_stateid.other,
NFSX_STATEIDOTHER))
break;
}
if (stp == LIST_END(&lfp->lf_deleg) ||
((new_stp->ls_flags & NFSLCK_WRITEACCESS) &&
(stp->ls_flags & NFSLCK_DELEGREAD))) {
NFSUNLOCKSTATE();
printf("Nfsd openctrl unexpected expiry\n");
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
error = NFSERR_EXPIRED;
goto out;
}
/*
* Don't issue a Delegation, since one already exists and
* delay delegation timeout, as required.
*/
delegate = 0;
nfsrv_delaydelegtimeout(stp);
}
/*
* Check for access/deny bit conflicts. I also check for the
* same owner, since the client might not have bothered to check.
* Also, note an open for the same file and owner, if found,
* which is all we do here for Delegate_Cur, since conflict
* checking is already done.
*/
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
if (ownerstp && stp->ls_openowner == ownerstp)
openstp = stp;
if (!(new_stp->ls_flags & NFSLCK_DELEGCUR)) {
/*
* If another client has the file open, the only
* delegation that can be issued is a Read delegation
* and only if it is a Read open with Deny none.
*/
if (clp != stp->ls_clp) {
if ((stp->ls_flags & NFSLCK_SHAREBITS) ==
NFSLCK_READACCESS)
writedeleg = 0;
else
delegate = 0;
}
if(((new_stp->ls_flags & NFSLCK_ACCESSBITS) &
((stp->ls_flags>>NFSLCK_SHIFT) & NFSLCK_ACCESSBITS))||
((stp->ls_flags & NFSLCK_ACCESSBITS) &
((new_stp->ls_flags>>NFSLCK_SHIFT)&NFSLCK_ACCESSBITS))){
ret = nfsrv_clientconflict(stp->ls_clp,&haslock,vp,p);
if (ret == 1) {
/*
* nfsrv_clientconflict() unlocks state
* when it returns non-zero.
*/
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
openstp = NULL;
goto tryagain;
}
if (ret == 2)
error = NFSERR_PERM;
else if (new_stp->ls_flags & NFSLCK_RECLAIM)
error = NFSERR_RECLAIMCONFLICT;
else
error = NFSERR_SHAREDENIED;
if (ret == 0)
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
printf("nfsd openctrl unexpected client cnfl\n");
goto out;
}
}
}
/*
* Check for a conflicting delegation. If one is found, call
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
* been set yet, it will get the lock. Otherwise, it will recall
* the delegation. Then, we try try again...
* (If NFSLCK_DELEGCUR is set, it has a delegation, so there
* isn't a conflict.)
* I currently believe the conflict algorithm to be:
* For Open with Read Access and Deny None
* - there is a conflict iff a different client has a write delegation
* For Open with other Write Access or any Deny except None
* - there is a conflict if a different client has any delegation
* - there is a conflict if the same client has a read delegation
* (The current consensus is that this last case should be
* considered a conflict since the client with a read delegation
* could have done an Open with ReadAccess and WriteDeny
* locally and then not have checked for the WriteDeny.)
*/
if (!(new_stp->ls_flags & (NFSLCK_DELEGPREV | NFSLCK_DELEGCUR))) {
stp = LIST_FIRST(&lfp->lf_deleg);
while (stp != LIST_END(&lfp->lf_deleg)) {
nstp = LIST_NEXT(stp, ls_file);
if (stp->ls_clp != clp && (stp->ls_flags & NFSLCK_DELEGREAD))
writedeleg = 0;
else
delegate = 0;
if ((readonly && stp->ls_clp != clp &&
(stp->ls_flags & NFSLCK_DELEGWRITE)) ||
(!readonly && (stp->ls_clp != clp ||
(stp->ls_flags & NFSLCK_DELEGREAD)))) {
if (new_stp->ls_flags & NFSLCK_RECLAIM) {
delegate = 2;
} else {
ret = nfsrv_delegconflict(stp, &haslock, p, vp);
if (ret) {
/*
* nfsrv_delegconflict() unlocks state
* when it returns non-zero.
*/
printf("Nfsd openctrl unexpected deleg cnfl\n");
free(new_open, M_NFSDSTATE);
free(new_deleg, M_NFSDSTATE);
if (ret == -1) {
openstp = NULL;
goto tryagain;
}
error = ret;
goto out;
}
}
}
stp = nstp;
}
}
/*
* We only get here if there was no open that conflicted.
* If an open for the owner exists, or in the access/deny bits.
* Otherwise it is a new open. If the open_owner hasn't been
* confirmed, replace the open with the new one needing confirmation,
* otherwise add the open.
*/
if (new_stp->ls_flags & NFSLCK_DELEGPREV) {
/*
* Handle NFSLCK_DELEGPREV by searching the old delegations for
* a match. If found, just move the old delegation to the current
* delegation list and issue open. If not found, return
* NFSERR_EXPIRED.
*/
LIST_FOREACH(stp, &clp->lc_olddeleg, ls_list) {
if (stp->ls_lfp == lfp) {
/* Found it */
if (stp->ls_clp != clp)
panic("olddeleg clp");
LIST_REMOVE(stp, ls_list);
LIST_REMOVE(stp, ls_hash);
stp->ls_flags &= ~NFSLCK_OLDDELEG;
stp->ls_stateid.seqid = delegstateidp->seqid = 1;
stp->ls_stateid.other[0] = delegstateidp->other[0] =
clp->lc_clientid.lval[0];
stp->ls_stateid.other[1] = delegstateidp->other[1] =
clp->lc_clientid.lval[1];
stp->ls_stateid.other[2] = delegstateidp->other[2] =
nfsrv_nextstateindex(clp);
stp->ls_compref = nd->nd_compref;
LIST_INSERT_HEAD(&clp->lc_deleg, stp, ls_list);
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
stp->ls_stateid), stp, ls_hash);
if (stp->ls_flags & NFSLCK_DELEGWRITE)
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
else
*rflagsp |= NFSV4OPEN_READDELEGATE;
clp->lc_delegtime = NFSD_MONOSEC +
nfsrv_lease + NFSRV_LEASEDELTA;
/*
* Now, do the associated open.
*/
new_open->ls_stateid.seqid = 1;
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
new_open->ls_flags = (new_stp->ls_flags&NFSLCK_DENYBITS)|
NFSLCK_OPEN;
if (stp->ls_flags & NFSLCK_DELEGWRITE)
new_open->ls_flags |= (NFSLCK_READACCESS |
NFSLCK_WRITEACCESS);
else
new_open->ls_flags |= NFSLCK_READACCESS;
new_open->ls_uid = new_stp->ls_uid;
new_open->ls_lfp = lfp;
new_open->ls_clp = clp;
LIST_INIT(&new_open->ls_open);
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
new_open, ls_hash);
/*
* and handle the open owner
*/
if (ownerstp) {
new_open->ls_openowner = ownerstp;
LIST_INSERT_HEAD(&ownerstp->ls_open,new_open,ls_list);
} else {
new_open->ls_openowner = new_stp;
new_stp->ls_flags = 0;
nfsrvd_refcache(new_stp->ls_op);
new_stp->ls_noopens = 0;
LIST_INIT(&new_stp->ls_open);
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
*new_stpp = NULL;
nfsstatsv1.srvopenowners++;
nfsrv_openpluslock++;
}
openstp = new_open;
new_open = NULL;
nfsstatsv1.srvopens++;
nfsrv_openpluslock++;
break;
}
}
if (stp == LIST_END(&clp->lc_olddeleg))
error = NFSERR_EXPIRED;
} else if (new_stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) {
/*
* Scan to see that no delegation for this client and file
* doesn't already exist.
* There also shouldn't yet be an Open for this file and
* openowner.
*/
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
if (stp->ls_clp == clp)
break;
}
if (stp == LIST_END(&lfp->lf_deleg) && openstp == NULL) {
/*
* This is the Claim_Previous case with a delegation
* type != Delegate_None.
*/
/*
* First, add the delegation. (Although we must issue the
* delegation, we can also ask for an immediate return.)
*/
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 1;
new_deleg->ls_stateid.other[0] = delegstateidp->other[0] =
clp->lc_clientid.lval[0];
new_deleg->ls_stateid.other[1] = delegstateidp->other[1] =
clp->lc_clientid.lval[1];
new_deleg->ls_stateid.other[2] = delegstateidp->other[2] =
nfsrv_nextstateindex(clp);
if (new_stp->ls_flags & NFSLCK_DELEGWRITE) {
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
nfsrv_writedelegcnt++;
} else {
new_deleg->ls_flags = (NFSLCK_DELEGREAD |
NFSLCK_READACCESS);
*rflagsp |= NFSV4OPEN_READDELEGATE;
}
new_deleg->ls_uid = new_stp->ls_uid;
new_deleg->ls_lfp = lfp;
new_deleg->ls_clp = clp;
new_deleg->ls_filerev = filerev;
new_deleg->ls_compref = nd->nd_compref;
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
new_deleg->ls_stateid), new_deleg, ls_hash);
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
new_deleg = NULL;
if (delegate == 2 || nfsrv_issuedelegs == 0 ||
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) !=
LCL_CALLBACKSON ||
NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt) ||
!NFSVNO_DELEGOK(vp))
*rflagsp |= NFSV4OPEN_RECALL;
nfsstatsv1.srvdelegates++;
nfsrv_openpluslock++;
nfsrv_delegatecnt++;
/*
* Now, do the associated open.
*/
new_open->ls_stateid.seqid = 1;
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_DENYBITS) |
NFSLCK_OPEN;
if (new_stp->ls_flags & NFSLCK_DELEGWRITE)
new_open->ls_flags |= (NFSLCK_READACCESS |
NFSLCK_WRITEACCESS);
else
new_open->ls_flags |= NFSLCK_READACCESS;
new_open->ls_uid = new_stp->ls_uid;
new_open->ls_lfp = lfp;
new_open->ls_clp = clp;
LIST_INIT(&new_open->ls_open);
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
new_open, ls_hash);
/*
* and handle the open owner
*/
if (ownerstp) {
new_open->ls_openowner = ownerstp;
LIST_INSERT_HEAD(&ownerstp->ls_open, new_open, ls_list);
} else {
new_open->ls_openowner = new_stp;
new_stp->ls_flags = 0;
nfsrvd_refcache(new_stp->ls_op);
new_stp->ls_noopens = 0;
LIST_INIT(&new_stp->ls_open);
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
*new_stpp = NULL;
nfsstatsv1.srvopenowners++;
nfsrv_openpluslock++;
}
openstp = new_open;
new_open = NULL;
nfsstatsv1.srvopens++;
nfsrv_openpluslock++;
} else {
error = NFSERR_RECLAIMCONFLICT;
}
} else if (ownerstp) {
if (ownerstp->ls_flags & NFSLCK_NEEDSCONFIRM) {
/* Replace the open */
if (ownerstp->ls_op)
nfsrvd_derefcache(ownerstp->ls_op);
ownerstp->ls_op = new_stp->ls_op;
nfsrvd_refcache(ownerstp->ls_op);
ownerstp->ls_seq = new_stp->ls_seq;
*rflagsp |= NFSV4OPEN_RESULTCONFIRM;
stp = LIST_FIRST(&ownerstp->ls_open);
stp->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS) |
NFSLCK_OPEN;
stp->ls_stateid.seqid = 1;
stp->ls_uid = new_stp->ls_uid;
if (lfp != stp->ls_lfp) {
LIST_REMOVE(stp, ls_file);
LIST_INSERT_HEAD(&lfp->lf_open, stp, ls_file);
stp->ls_lfp = lfp;
}
openstp = stp;
} else if (openstp) {
openstp->ls_flags |= (new_stp->ls_flags & NFSLCK_SHAREBITS);
openstp->ls_stateid.seqid++;
if ((nd->nd_flag & ND_NFSV41) != 0 &&
openstp->ls_stateid.seqid == 0)
openstp->ls_stateid.seqid = 1;
/*
* This is where we can choose to issue a delegation.
*/
if (delegate == 0 || writedeleg == 0 ||
NFSVNO_EXRDONLY(exp) || (readonly != 0 &&
nfsrv_writedelegifpos == 0) ||
!NFSVNO_DELEGOK(vp) ||
(new_stp->ls_flags & NFSLCK_WANTRDELEG) != 0 ||
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) !=
LCL_CALLBACKSON)
*rflagsp |= NFSV4OPEN_WDCONTENTION;
else if (nfsrv_issuedelegs == 0 ||
NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt))
*rflagsp |= NFSV4OPEN_WDRESOURCE;
else if ((new_stp->ls_flags & NFSLCK_WANTNODELEG) != 0)
*rflagsp |= NFSV4OPEN_WDNOTWANTED;
else {
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 1;
new_deleg->ls_stateid.other[0] = delegstateidp->other[0]
= clp->lc_clientid.lval[0];
new_deleg->ls_stateid.other[1] = delegstateidp->other[1]
= clp->lc_clientid.lval[1];
new_deleg->ls_stateid.other[2] = delegstateidp->other[2]
= nfsrv_nextstateindex(clp);
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
new_deleg->ls_uid = new_stp->ls_uid;
new_deleg->ls_lfp = lfp;
new_deleg->ls_clp = clp;
new_deleg->ls_filerev = filerev;
new_deleg->ls_compref = nd->nd_compref;
nfsrv_writedelegcnt++;
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
new_deleg->ls_stateid), new_deleg, ls_hash);
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
new_deleg = NULL;
nfsstatsv1.srvdelegates++;
nfsrv_openpluslock++;
nfsrv_delegatecnt++;
}
} else {
new_open->ls_stateid.seqid = 1;
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS)|
NFSLCK_OPEN;
new_open->ls_uid = new_stp->ls_uid;
new_open->ls_openowner = ownerstp;
new_open->ls_lfp = lfp;
new_open->ls_clp = clp;
LIST_INIT(&new_open->ls_open);
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
LIST_INSERT_HEAD(&ownerstp->ls_open, new_open, ls_list);
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
new_open, ls_hash);
openstp = new_open;
new_open = NULL;
nfsstatsv1.srvopens++;
nfsrv_openpluslock++;
/*
* This is where we can choose to issue a delegation.
*/
if (delegate == 0 || (writedeleg == 0 && readonly == 0) ||
!NFSVNO_DELEGOK(vp) ||
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) !=
LCL_CALLBACKSON)
*rflagsp |= NFSV4OPEN_WDCONTENTION;
else if (nfsrv_issuedelegs == 0 ||
NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt))
*rflagsp |= NFSV4OPEN_WDRESOURCE;
else if ((new_stp->ls_flags & NFSLCK_WANTNODELEG) != 0)
*rflagsp |= NFSV4OPEN_WDNOTWANTED;
else {
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 1;
new_deleg->ls_stateid.other[0] = delegstateidp->other[0]
= clp->lc_clientid.lval[0];
new_deleg->ls_stateid.other[1] = delegstateidp->other[1]
= clp->lc_clientid.lval[1];
new_deleg->ls_stateid.other[2] = delegstateidp->other[2]
= nfsrv_nextstateindex(clp);
if (writedeleg && !NFSVNO_EXRDONLY(exp) &&
(nfsrv_writedelegifpos || !readonly) &&
(new_stp->ls_flags & NFSLCK_WANTRDELEG) == 0) {
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
nfsrv_writedelegcnt++;
} else {
new_deleg->ls_flags = (NFSLCK_DELEGREAD |
NFSLCK_READACCESS);
*rflagsp |= NFSV4OPEN_READDELEGATE;
}
new_deleg->ls_uid = new_stp->ls_uid;
new_deleg->ls_lfp = lfp;
new_deleg->ls_clp = clp;
new_deleg->ls_filerev = filerev;
new_deleg->ls_compref = nd->nd_compref;
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
new_deleg->ls_stateid), new_deleg, ls_hash);
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
new_deleg = NULL;
nfsstatsv1.srvdelegates++;
nfsrv_openpluslock++;
nfsrv_delegatecnt++;
}
}
} else {
/*
* New owner case. Start the open_owner sequence with a
* Needs confirmation (unless a reclaim) and hang the
* new open off it.
*/
new_open->ls_stateid.seqid = 1;
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS) |
NFSLCK_OPEN;
new_open->ls_uid = new_stp->ls_uid;
LIST_INIT(&new_open->ls_open);
new_open->ls_openowner = new_stp;
new_open->ls_lfp = lfp;
new_open->ls_clp = clp;
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
if (new_stp->ls_flags & NFSLCK_RECLAIM) {
new_stp->ls_flags = 0;
} else if ((nd->nd_flag & ND_NFSV41) != 0) {
/* NFSv4.1 never needs confirmation. */
new_stp->ls_flags = 0;
/*
* This is where we can choose to issue a delegation.
*/
if (delegate && nfsrv_issuedelegs &&
(writedeleg || readonly) &&
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) ==
LCL_CALLBACKSON &&
!NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt) &&
NFSVNO_DELEGOK(vp) &&
((nd->nd_flag & ND_NFSV41) == 0 ||
(new_stp->ls_flags & NFSLCK_WANTNODELEG) == 0)) {
new_deleg->ls_stateid.seqid =
delegstateidp->seqid = 1;
new_deleg->ls_stateid.other[0] =
delegstateidp->other[0]
= clp->lc_clientid.lval[0];
new_deleg->ls_stateid.other[1] =
delegstateidp->other[1]
= clp->lc_clientid.lval[1];
new_deleg->ls_stateid.other[2] =
delegstateidp->other[2]
= nfsrv_nextstateindex(clp);
if (writedeleg && !NFSVNO_EXRDONLY(exp) &&
(nfsrv_writedelegifpos || !readonly) &&
((nd->nd_flag & ND_NFSV41) == 0 ||
(new_stp->ls_flags & NFSLCK_WANTRDELEG) ==
0)) {
new_deleg->ls_flags =
(NFSLCK_DELEGWRITE |
NFSLCK_READACCESS |
NFSLCK_WRITEACCESS);
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
nfsrv_writedelegcnt++;
} else {
new_deleg->ls_flags =
(NFSLCK_DELEGREAD |
NFSLCK_READACCESS);
*rflagsp |= NFSV4OPEN_READDELEGATE;
}
new_deleg->ls_uid = new_stp->ls_uid;
new_deleg->ls_lfp = lfp;
new_deleg->ls_clp = clp;
new_deleg->ls_filerev = filerev;
new_deleg->ls_compref = nd->nd_compref;
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg,
ls_file);
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
new_deleg->ls_stateid), new_deleg, ls_hash);
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg,
ls_list);
new_deleg = NULL;
nfsstatsv1.srvdelegates++;
nfsrv_openpluslock++;
nfsrv_delegatecnt++;
}
/*
* Since NFSv4.1 never does an OpenConfirm, the first
* open state will be acquired here.
*/
if (!(clp->lc_flags & LCL_STAMPEDSTABLE)) {
clp->lc_flags |= LCL_STAMPEDSTABLE;
len = clp->lc_idlen;
NFSBCOPY(clp->lc_id, clidp, len);
gotstate = 1;
}
} else {
*rflagsp |= NFSV4OPEN_RESULTCONFIRM;
new_stp->ls_flags = NFSLCK_NEEDSCONFIRM;
}
nfsrvd_refcache(new_stp->ls_op);
new_stp->ls_noopens = 0;
LIST_INIT(&new_stp->ls_open);
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
new_open, ls_hash);
openstp = new_open;
new_open = NULL;
*new_stpp = NULL;
nfsstatsv1.srvopens++;
nfsrv_openpluslock++;
nfsstatsv1.srvopenowners++;
nfsrv_openpluslock++;
}
if (!error) {
stateidp->seqid = openstp->ls_stateid.seqid;
stateidp->other[0] = openstp->ls_stateid.other[0];
stateidp->other[1] = openstp->ls_stateid.other[1];
stateidp->other[2] = openstp->ls_stateid.other[2];
}
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
if (new_open)
free(new_open, M_NFSDSTATE);
if (new_deleg)
free(new_deleg, M_NFSDSTATE);
/*
* If the NFSv4.1 client just acquired its first open, write a timestamp
* to the stable storage file.
*/
if (gotstate != 0) {
nfsrv_writestable(clidp, len, NFSNST_NEWSTATE, p);
nfsrv_backupstable();
}
out:
free(clidp, M_TEMP);
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Open update. Does the confirm, downgrade and close.
*/
APPLESTATIC int
nfsrv_openupdate(vnode_t vp, struct nfsstate *new_stp, nfsquad_t clientid,
nfsv4stateid_t *stateidp, struct nfsrv_descript *nd, NFSPROC_T *p,
int *retwriteaccessp)
{
struct nfsstate *stp;
struct nfsclient *clp;
struct nfslockfile *lfp;
u_int32_t bits;
int error = 0, gotstate = 0, len = 0;
u_char *clidp = NULL;
/*
* Check for restart conditions (client and server).
*/
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
&new_stp->ls_stateid, 0);
if (error)
goto out;
clidp = malloc(NFSV4_OPAQUELIMIT, M_TEMP, M_WAITOK);
NFSLOCKSTATE();
/*
* Get the open structure via clientid and stateid.
*/
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
if (!error)
error = nfsrv_getstate(clp, &new_stp->ls_stateid,
new_stp->ls_flags, &stp);
/*
* Sanity check the open.
*/
if (!error && (!(stp->ls_flags & NFSLCK_OPEN) ||
(!(new_stp->ls_flags & NFSLCK_CONFIRM) &&
(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM)) ||
((new_stp->ls_flags & NFSLCK_CONFIRM) &&
(!(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM)))))
error = NFSERR_BADSTATEID;
if (!error)
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
stp->ls_openowner, new_stp->ls_op);
if (!error && stp->ls_stateid.seqid != new_stp->ls_stateid.seqid &&
(((nd->nd_flag & ND_NFSV41) == 0 &&
!(new_stp->ls_flags & NFSLCK_CONFIRM)) ||
((nd->nd_flag & ND_NFSV41) != 0 &&
new_stp->ls_stateid.seqid != 0)))
error = NFSERR_OLDSTATEID;
if (!error && vnode_vtype(vp) != VREG) {
if (vnode_vtype(vp) == VDIR)
error = NFSERR_ISDIR;
else
error = NFSERR_INVAL;
}
if (error) {
/*
* If a client tries to confirm an Open with a bad
* seqid# and there are no byte range locks or other Opens
* on the openowner, just throw it away, so the next use of the
* openowner will start a fresh seq#.
*/
if (error == NFSERR_BADSEQID &&
(new_stp->ls_flags & NFSLCK_CONFIRM) &&
nfsrv_nootherstate(stp))
nfsrv_freeopenowner(stp->ls_openowner, 0, p);
NFSUNLOCKSTATE();
goto out;
}
/*
* Set the return stateid.
*/
stateidp->seqid = stp->ls_stateid.seqid + 1;
if ((nd->nd_flag & ND_NFSV41) != 0 && stateidp->seqid == 0)
stateidp->seqid = 1;
stateidp->other[0] = stp->ls_stateid.other[0];
stateidp->other[1] = stp->ls_stateid.other[1];
stateidp->other[2] = stp->ls_stateid.other[2];
/*
* Now, handle the three cases.
*/
if (new_stp->ls_flags & NFSLCK_CONFIRM) {
/*
* If the open doesn't need confirmation, it seems to me that
* there is a client error, but I'll just log it and keep going?
*/
if (!(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM))
printf("Nfsv4d: stray open confirm\n");
stp->ls_openowner->ls_flags = 0;
stp->ls_stateid.seqid++;
if ((nd->nd_flag & ND_NFSV41) != 0 &&
stp->ls_stateid.seqid == 0)
stp->ls_stateid.seqid = 1;
if (!(clp->lc_flags & LCL_STAMPEDSTABLE)) {
clp->lc_flags |= LCL_STAMPEDSTABLE;
len = clp->lc_idlen;
NFSBCOPY(clp->lc_id, clidp, len);
gotstate = 1;
}
NFSUNLOCKSTATE();
} else if (new_stp->ls_flags & NFSLCK_CLOSE) {
lfp = stp->ls_lfp;
if (retwriteaccessp != NULL) {
if ((stp->ls_flags & NFSLCK_WRITEACCESS) != 0)
*retwriteaccessp = 1;
else
*retwriteaccessp = 0;
}
if (nfsrv_dolocallocks != 0 && !LIST_EMPTY(&stp->ls_open)) {
/* Get the lf lock */
nfsrv_locklf(lfp);
NFSUNLOCKSTATE();
ASSERT_VOP_ELOCKED(vp, "nfsrv_openupdate");
NFSVOPUNLOCK(vp, 0);
if (nfsrv_freeopen(stp, vp, 1, p) == 0) {
NFSLOCKSTATE();
nfsrv_unlocklf(lfp);
NFSUNLOCKSTATE();
}
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
} else {
(void) nfsrv_freeopen(stp, NULL, 0, p);
NFSUNLOCKSTATE();
}
} else {
/*
* Update the share bits, making sure that the new set are a
* subset of the old ones.
*/
bits = (new_stp->ls_flags & NFSLCK_SHAREBITS);
if (~(stp->ls_flags) & bits) {
NFSUNLOCKSTATE();
error = NFSERR_INVAL;
goto out;
}
stp->ls_flags = (bits | NFSLCK_OPEN);
stp->ls_stateid.seqid++;
if ((nd->nd_flag & ND_NFSV41) != 0 &&
stp->ls_stateid.seqid == 0)
stp->ls_stateid.seqid = 1;
NFSUNLOCKSTATE();
}
/*
* If the client just confirmed its first open, write a timestamp
* to the stable storage file.
*/
if (gotstate != 0) {
nfsrv_writestable(clidp, len, NFSNST_NEWSTATE, p);
nfsrv_backupstable();
}
out:
free(clidp, M_TEMP);
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Delegation update. Does the purge and return.
*/
APPLESTATIC int
nfsrv_delegupdate(struct nfsrv_descript *nd, nfsquad_t clientid,
nfsv4stateid_t *stateidp, vnode_t vp, int op, struct ucred *cred,
NFSPROC_T *p, int *retwriteaccessp)
{
struct nfsstate *stp;
struct nfsclient *clp;
int error = 0;
fhandle_t fh;
/*
* Do a sanity check against the file handle for DelegReturn.
*/
if (vp) {
error = nfsvno_getfh(vp, &fh, p);
if (error)
goto out;
}
/*
* Check for restart conditions (client and server).
*/
if (op == NFSV4OP_DELEGRETURN)
error = nfsrv_checkrestart(clientid, NFSLCK_DELEGRETURN,
stateidp, 0);
else
error = nfsrv_checkrestart(clientid, NFSLCK_DELEGPURGE,
stateidp, 0);
NFSLOCKSTATE();
/*
* Get the open structure via clientid and stateid.
*/
if (!error)
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, nd, p);
if (error) {
if (error == NFSERR_CBPATHDOWN)
error = 0;
if (error == NFSERR_STALECLIENTID && op == NFSV4OP_DELEGRETURN)
error = NFSERR_STALESTATEID;
}
if (!error && op == NFSV4OP_DELEGRETURN) {
error = nfsrv_getstate(clp, stateidp, NFSLCK_DELEGRETURN, &stp);
if (!error && stp->ls_stateid.seqid != stateidp->seqid &&
((nd->nd_flag & ND_NFSV41) == 0 || stateidp->seqid != 0))
error = NFSERR_OLDSTATEID;
}
/*
* NFSERR_EXPIRED means that the state has gone away,
* so Delegations have been purged. Just return ok.
*/
if (error == NFSERR_EXPIRED && op == NFSV4OP_DELEGPURGE) {
NFSUNLOCKSTATE();
error = 0;
goto out;
}
if (error) {
NFSUNLOCKSTATE();
goto out;
}
if (op == NFSV4OP_DELEGRETURN) {
if (NFSBCMP((caddr_t)&fh, (caddr_t)&stp->ls_lfp->lf_fh,
sizeof (fhandle_t))) {
NFSUNLOCKSTATE();
error = NFSERR_BADSTATEID;
goto out;
}
if (retwriteaccessp != NULL) {
if ((stp->ls_flags & NFSLCK_DELEGWRITE) != 0)
*retwriteaccessp = 1;
else
*retwriteaccessp = 0;
}
nfsrv_freedeleg(stp);
} else {
nfsrv_freedeleglist(&clp->lc_olddeleg);
}
NFSUNLOCKSTATE();
error = 0;
out:
NFSEXITCODE(error);
return (error);
}
/*
* Release lock owner.
*/
APPLESTATIC int
nfsrv_releaselckown(struct nfsstate *new_stp, nfsquad_t clientid,
NFSPROC_T *p)
{
struct nfsstate *stp, *nstp, *openstp, *ownstp;
struct nfsclient *clp;
int error = 0;
/*
* Check for restart conditions (client and server).
*/
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
&new_stp->ls_stateid, 0);
if (error)
goto out;
NFSLOCKSTATE();
/*
* Get the lock owner by name.
*/
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp, NULL,
(nfsquad_t)((u_quad_t)0), 0, NULL, p);
if (error) {
NFSUNLOCKSTATE();
goto out;
}
LIST_FOREACH(ownstp, &clp->lc_open, ls_list) {
LIST_FOREACH(openstp, &ownstp->ls_open, ls_list) {
stp = LIST_FIRST(&openstp->ls_open);
while (stp != LIST_END(&openstp->ls_open)) {
nstp = LIST_NEXT(stp, ls_list);
/*
* If the owner matches, check for locks and
* then free or return an error.
*/
if (stp->ls_ownerlen == new_stp->ls_ownerlen &&
!NFSBCMP(stp->ls_owner, new_stp->ls_owner,
stp->ls_ownerlen)){
if (LIST_EMPTY(&stp->ls_lock)) {
nfsrv_freelockowner(stp, NULL, 0, p);
} else {
NFSUNLOCKSTATE();
error = NFSERR_LOCKSHELD;
goto out;
}
}
stp = nstp;
}
}
}
NFSUNLOCKSTATE();
out:
NFSEXITCODE(error);
return (error);
}
/*
* Get the file handle for a lock structure.
*/
static int
nfsrv_getlockfh(vnode_t vp, u_short flags, struct nfslockfile *new_lfp,
fhandle_t *nfhp, NFSPROC_T *p)
{
fhandle_t *fhp = NULL;
int error;
/*
* For lock, use the new nfslock structure, otherwise just
* a fhandle_t on the stack.
*/
if (flags & NFSLCK_OPEN) {
KASSERT(new_lfp != NULL, ("nfsrv_getlockfh: new_lfp NULL"));
fhp = &new_lfp->lf_fh;
} else if (nfhp) {
fhp = nfhp;
} else {
panic("nfsrv_getlockfh");
}
error = nfsvno_getfh(vp, fhp, p);
NFSEXITCODE(error);
return (error);
}
/*
* Get an nfs lock structure. Allocate one, as required, and return a
* pointer to it.
* Returns an NFSERR_xxx upon failure or -1 to indicate no current lock.
*/
static int
nfsrv_getlockfile(u_short flags, struct nfslockfile **new_lfpp,
struct nfslockfile **lfpp, fhandle_t *nfhp, int lockit)
{
struct nfslockfile *lfp;
fhandle_t *fhp = NULL, *tfhp;
struct nfslockhashhead *hp;
struct nfslockfile *new_lfp = NULL;
/*
* For lock, use the new nfslock structure, otherwise just
* a fhandle_t on the stack.
*/
if (flags & NFSLCK_OPEN) {
new_lfp = *new_lfpp;
fhp = &new_lfp->lf_fh;
} else if (nfhp) {
fhp = nfhp;
} else {
panic("nfsrv_getlockfile");
}
hp = NFSLOCKHASH(fhp);
LIST_FOREACH(lfp, hp, lf_hash) {
tfhp = &lfp->lf_fh;
if (NFSVNO_CMPFH(fhp, tfhp)) {
if (lockit)
nfsrv_locklf(lfp);
*lfpp = lfp;
return (0);
}
}
if (!(flags & NFSLCK_OPEN))
return (-1);
/*
* No match, so chain the new one into the list.
*/
LIST_INIT(&new_lfp->lf_open);
LIST_INIT(&new_lfp->lf_lock);
LIST_INIT(&new_lfp->lf_deleg);
LIST_INIT(&new_lfp->lf_locallock);
LIST_INIT(&new_lfp->lf_rollback);
new_lfp->lf_locallock_lck.nfslock_usecnt = 0;
new_lfp->lf_locallock_lck.nfslock_lock = 0;
new_lfp->lf_usecount = 0;
LIST_INSERT_HEAD(hp, new_lfp, lf_hash);
*lfpp = new_lfp;
*new_lfpp = NULL;
return (0);
}
/*
* This function adds a nfslock lock structure to the list for the associated
* nfsstate and nfslockfile structures. It will be inserted after the
* entry pointed at by insert_lop.
*/
static void
nfsrv_insertlock(struct nfslock *new_lop, struct nfslock *insert_lop,
struct nfsstate *stp, struct nfslockfile *lfp)
{
struct nfslock *lop, *nlop;
new_lop->lo_stp = stp;
new_lop->lo_lfp = lfp;
if (stp != NULL) {
/* Insert in increasing lo_first order */
lop = LIST_FIRST(&lfp->lf_lock);
if (lop == LIST_END(&lfp->lf_lock) ||
new_lop->lo_first <= lop->lo_first) {
LIST_INSERT_HEAD(&lfp->lf_lock, new_lop, lo_lckfile);
} else {
nlop = LIST_NEXT(lop, lo_lckfile);
while (nlop != LIST_END(&lfp->lf_lock) &&
nlop->lo_first < new_lop->lo_first) {
lop = nlop;
nlop = LIST_NEXT(lop, lo_lckfile);
}
LIST_INSERT_AFTER(lop, new_lop, lo_lckfile);
}
} else {
new_lop->lo_lckfile.le_prev = NULL; /* list not used */
}
/*
* Insert after insert_lop, which is overloaded as stp or lfp for
* an empty list.
*/
if (stp == NULL && (struct nfslockfile *)insert_lop == lfp)
LIST_INSERT_HEAD(&lfp->lf_locallock, new_lop, lo_lckowner);
else if ((struct nfsstate *)insert_lop == stp)
LIST_INSERT_HEAD(&stp->ls_lock, new_lop, lo_lckowner);
else
LIST_INSERT_AFTER(insert_lop, new_lop, lo_lckowner);
if (stp != NULL) {
nfsstatsv1.srvlocks++;
nfsrv_openpluslock++;
}
}
/*
* This function updates the locking for a lock owner and given file. It
* maintains a list of lock ranges ordered on increasing file offset that
* are NFSLCK_READ or NFSLCK_WRITE and non-overlapping (aka POSIX style).
* It always adds new_lop to the list and sometimes uses the one pointed
* at by other_lopp.
*/
static void
nfsrv_updatelock(struct nfsstate *stp, struct nfslock **new_lopp,
struct nfslock **other_lopp, struct nfslockfile *lfp)
{
struct nfslock *new_lop = *new_lopp;
struct nfslock *lop, *tlop, *ilop;
struct nfslock *other_lop = *other_lopp;
int unlock = 0, myfile = 0;
u_int64_t tmp;
/*
* Work down the list until the lock is merged.
*/
if (new_lop->lo_flags & NFSLCK_UNLOCK)
unlock = 1;
if (stp != NULL) {
ilop = (struct nfslock *)stp;
lop = LIST_FIRST(&stp->ls_lock);
} else {
ilop = (struct nfslock *)lfp;
lop = LIST_FIRST(&lfp->lf_locallock);
}
while (lop != NULL) {
/*
* Only check locks for this file that aren't before the start of
* new lock's range.
*/
if (lop->lo_lfp == lfp) {
myfile = 1;
if (lop->lo_end >= new_lop->lo_first) {
if (new_lop->lo_end < lop->lo_first) {
/*
* If the new lock ends before the start of the
* current lock's range, no merge, just insert
* the new lock.
*/
break;
}
if (new_lop->lo_flags == lop->lo_flags ||
(new_lop->lo_first <= lop->lo_first &&
new_lop->lo_end >= lop->lo_end)) {
/*
* This lock can be absorbed by the new lock/unlock.
* This happens when it covers the entire range
* of the old lock or is contiguous
* with the old lock and is of the same type or an
* unlock.
*/
if (lop->lo_first < new_lop->lo_first)
new_lop->lo_first = lop->lo_first;
if (lop->lo_end > new_lop->lo_end)
new_lop->lo_end = lop->lo_end;
tlop = lop;
lop = LIST_NEXT(lop, lo_lckowner);
nfsrv_freenfslock(tlop);
continue;
}
/*
* All these cases are for contiguous locks that are not the
* same type, so they can't be merged.
*/
if (new_lop->lo_first <= lop->lo_first) {
/*
* This case is where the new lock overlaps with the
* first part of the old lock. Move the start of the
* old lock to just past the end of the new lock. The
* new lock will be inserted in front of the old, since
* ilop hasn't been updated. (We are done now.)
*/
lop->lo_first = new_lop->lo_end;
break;
}
if (new_lop->lo_end >= lop->lo_end) {
/*
* This case is where the new lock overlaps with the
* end of the old lock's range. Move the old lock's
* end to just before the new lock's first and insert
* the new lock after the old lock.
* Might not be done yet, since the new lock could
* overlap further locks with higher ranges.
*/
lop->lo_end = new_lop->lo_first;
ilop = lop;
lop = LIST_NEXT(lop, lo_lckowner);
continue;
}
/*
* The final case is where the new lock's range is in the
* middle of the current lock's and splits the current lock
* up. Use *other_lopp to handle the second part of the
* split old lock range. (We are done now.)
* For unlock, we use new_lop as other_lop and tmp, since
* other_lop and new_lop are the same for this case.
* We noted the unlock case above, so we don't need
* new_lop->lo_flags any longer.
*/
tmp = new_lop->lo_first;
if (other_lop == NULL) {
if (!unlock)
panic("nfsd srv update unlock");
other_lop = new_lop;
*new_lopp = NULL;
}
other_lop->lo_first = new_lop->lo_end;
other_lop->lo_end = lop->lo_end;
other_lop->lo_flags = lop->lo_flags;
other_lop->lo_stp = stp;
other_lop->lo_lfp = lfp;
lop->lo_end = tmp;
nfsrv_insertlock(other_lop, lop, stp, lfp);
*other_lopp = NULL;
ilop = lop;
break;
}
}
ilop = lop;
lop = LIST_NEXT(lop, lo_lckowner);
if (myfile && (lop == NULL || lop->lo_lfp != lfp))
break;
}
/*
* Insert the new lock in the list at the appropriate place.
*/
if (!unlock) {
nfsrv_insertlock(new_lop, ilop, stp, lfp);
*new_lopp = NULL;
}
}
/*
* This function handles sequencing of locks, etc.
* It returns an error that indicates what the caller should do.
*/
static int
nfsrv_checkseqid(struct nfsrv_descript *nd, u_int32_t seqid,
struct nfsstate *stp, struct nfsrvcache *op)
{
int error = 0;
if ((nd->nd_flag & ND_NFSV41) != 0)
/* NFSv4.1 ignores the open_seqid and lock_seqid. */
goto out;
if (op != nd->nd_rp)
panic("nfsrvstate checkseqid");
if (!(op->rc_flag & RC_INPROG))
panic("nfsrvstate not inprog");
if (stp->ls_op && stp->ls_op->rc_refcnt <= 0) {
printf("refcnt=%d\n", stp->ls_op->rc_refcnt);
panic("nfsrvstate op refcnt");
}
if ((stp->ls_seq + 1) == seqid) {
if (stp->ls_op)
nfsrvd_derefcache(stp->ls_op);
stp->ls_op = op;
nfsrvd_refcache(op);
stp->ls_seq = seqid;
goto out;
} else if (stp->ls_seq == seqid && stp->ls_op &&
op->rc_xid == stp->ls_op->rc_xid &&
op->rc_refcnt == 0 &&
op->rc_reqlen == stp->ls_op->rc_reqlen &&
op->rc_cksum == stp->ls_op->rc_cksum) {
if (stp->ls_op->rc_flag & RC_INPROG) {
error = NFSERR_DONTREPLY;
goto out;
}
nd->nd_rp = stp->ls_op;
nd->nd_rp->rc_flag |= RC_INPROG;
nfsrvd_delcache(op);
error = NFSERR_REPLYFROMCACHE;
goto out;
}
error = NFSERR_BADSEQID;
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Get the client ip address for callbacks. If the strings can't be parsed,
* just set lc_program to 0 to indicate no callbacks are possible.
* (For cases where the address can't be parsed or is 0.0.0.0.0.0, set
* the address to the client's transport address. This won't be used
* for callbacks, but can be printed out by nfsstats for info.)
* Return error if the xdr can't be parsed, 0 otherwise.
*/
APPLESTATIC int
nfsrv_getclientipaddr(struct nfsrv_descript *nd, struct nfsclient *clp)
{
u_int32_t *tl;
u_char *cp, *cp2;
int i, j;
struct sockaddr_in *rad, *sad;
u_char protocol[5], addr[24];
int error = 0, cantparse = 0;
union {
in_addr_t ival;
u_char cval[4];
} ip;
union {
in_port_t sval;
u_char cval[2];
} port;
rad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr_in *);
rad->sin_family = AF_INET;
rad->sin_len = sizeof (struct sockaddr_in);
rad->sin_addr.s_addr = 0;
rad->sin_port = 0;
clp->lc_req.nr_client = NULL;
clp->lc_req.nr_lock = 0;
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl);
if (i >= 3 && i <= 4) {
error = nfsrv_mtostr(nd, protocol, i);
if (error)
goto nfsmout;
if (!strcmp(protocol, "tcp")) {
clp->lc_flags |= LCL_TCPCALLBACK;
clp->lc_req.nr_sotype = SOCK_STREAM;
clp->lc_req.nr_soproto = IPPROTO_TCP;
} else if (!strcmp(protocol, "udp")) {
clp->lc_req.nr_sotype = SOCK_DGRAM;
clp->lc_req.nr_soproto = IPPROTO_UDP;
} else {
cantparse = 1;
}
} else {
cantparse = 1;
if (i > 0) {
error = nfsm_advance(nd, NFSM_RNDUP(i), -1);
if (error)
goto nfsmout;
}
}
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl);
if (i < 0) {
error = NFSERR_BADXDR;
goto nfsmout;
} else if (i == 0) {
cantparse = 1;
} else if (!cantparse && i <= 23 && i >= 11) {
error = nfsrv_mtostr(nd, addr, i);
if (error)
goto nfsmout;
/*
* Parse out the address fields. We expect 6 decimal numbers
* separated by '.'s.
*/
cp = addr;
i = 0;
while (*cp && i < 6) {
cp2 = cp;
while (*cp2 && *cp2 != '.')
cp2++;
if (*cp2)
*cp2++ = '\0';
else if (i != 5) {
cantparse = 1;
break;
}
j = nfsrv_getipnumber(cp);
if (j >= 0) {
if (i < 4)
ip.cval[3 - i] = j;
else
port.cval[5 - i] = j;
} else {
cantparse = 1;
break;
}
cp = cp2;
i++;
}
if (!cantparse) {
if (ip.ival != 0x0) {
rad->sin_addr.s_addr = htonl(ip.ival);
rad->sin_port = htons(port.sval);
} else {
cantparse = 1;
}
}
} else {
cantparse = 1;
if (i > 0) {
error = nfsm_advance(nd, NFSM_RNDUP(i), -1);
if (error)
goto nfsmout;
}
}
if (cantparse) {
sad = NFSSOCKADDR(nd->nd_nam, struct sockaddr_in *);
if (sad->sin_family == AF_INET) {
rad->sin_addr.s_addr = sad->sin_addr.s_addr;
rad->sin_port = 0x0;
}
clp->lc_program = 0;
}
nfsmout:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Turn a string of up to three decimal digits into a number. Return -1 upon
* error.
*/
static int
nfsrv_getipnumber(u_char *cp)
{
int i = 0, j = 0;
while (*cp) {
if (j > 2 || *cp < '0' || *cp > '9')
return (-1);
i *= 10;
i += (*cp - '0');
cp++;
j++;
}
if (i < 256)
return (i);
return (-1);
}
/*
* This function checks for restart conditions.
*/
static int
nfsrv_checkrestart(nfsquad_t clientid, u_int32_t flags,
nfsv4stateid_t *stateidp, int specialid)
{
int ret = 0;
/*
* First check for a server restart. Open, LockT, ReleaseLockOwner
* and DelegPurge have a clientid, the rest a stateid.
*/
if (flags &
(NFSLCK_OPEN | NFSLCK_TEST | NFSLCK_RELEASE | NFSLCK_DELEGPURGE)) {
if (clientid.lval[0] != nfsrvboottime) {
ret = NFSERR_STALECLIENTID;
goto out;
}
} else if (stateidp->other[0] != nfsrvboottime &&
specialid == 0) {
ret = NFSERR_STALESTATEID;
goto out;
}
/*
* Read, Write, Setattr and LockT can return NFSERR_GRACE and do
* not use a lock/open owner seqid#, so the check can be done now.
* (The others will be checked, as required, later.)
*/
if (!(flags & (NFSLCK_CHECK | NFSLCK_TEST)))
goto out;
NFSLOCKSTATE();
ret = nfsrv_checkgrace(NULL, NULL, flags);
NFSUNLOCKSTATE();
out:
NFSEXITCODE(ret);
return (ret);
}
/*
* Check for grace.
*/
static int
nfsrv_checkgrace(struct nfsrv_descript *nd, struct nfsclient *clp,
u_int32_t flags)
{
int error = 0, notreclaimed;
struct nfsrv_stable *sp;
if ((nfsrv_stablefirst.nsf_flags & (NFSNSF_UPDATEDONE |
NFSNSF_GRACEOVER)) == 0) {
/*
* First, check to see if all of the clients have done a
* ReclaimComplete. If so, grace can end now.
*/
notreclaimed = 0;
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
if ((sp->nst_flag & NFSNST_RECLAIMED) == 0) {
notreclaimed = 1;
break;
}
}
if (notreclaimed == 0)
nfsrv_stablefirst.nsf_flags |= (NFSNSF_GRACEOVER |
NFSNSF_NEEDLOCK);
}
if ((nfsrv_stablefirst.nsf_flags & NFSNSF_GRACEOVER) != 0) {
if (flags & NFSLCK_RECLAIM) {
error = NFSERR_NOGRACE;
goto out;
}
} else {
if (!(flags & NFSLCK_RECLAIM)) {
error = NFSERR_GRACE;
goto out;
}
if (nd != NULL && clp != NULL &&
(nd->nd_flag & ND_NFSV41) != 0 &&
(clp->lc_flags & LCL_RECLAIMCOMPLETE) != 0) {
error = NFSERR_NOGRACE;
goto out;
}
/*
* If grace is almost over and we are still getting Reclaims,
* extend grace a bit.
*/
if ((NFSD_MONOSEC + NFSRV_LEASEDELTA) >
nfsrv_stablefirst.nsf_eograce)
nfsrv_stablefirst.nsf_eograce = NFSD_MONOSEC +
NFSRV_LEASEDELTA;
}
out:
NFSEXITCODE(error);
return (error);
}
/*
* Do a server callback.
*/
static int
nfsrv_docallback(struct nfsclient *clp, int procnum, nfsv4stateid_t *stateidp,
int trunc, fhandle_t *fhp, struct nfsvattr *nap, nfsattrbit_t *attrbitp,
int laytype, NFSPROC_T *p)
{
mbuf_t m;
u_int32_t *tl;
struct nfsrv_descript *nd;
struct ucred *cred;
int error = 0;
u_int32_t callback;
struct nfsdsession *sep = NULL;
uint64_t tval;
nd = malloc(sizeof(*nd), M_TEMP, M_WAITOK | M_ZERO);
cred = newnfs_getcred();
NFSLOCKSTATE(); /* mostly for lc_cbref++ */
if (clp->lc_flags & LCL_NEEDSCONFIRM) {
NFSUNLOCKSTATE();
panic("docallb");
}
clp->lc_cbref++;
/*
* Fill the callback program# and version into the request
* structure for newnfs_connect() to use.
*/
clp->lc_req.nr_prog = clp->lc_program;
#ifdef notnow
if ((clp->lc_flags & LCL_NFSV41) != 0)
clp->lc_req.nr_vers = NFSV41_CBVERS;
else
#endif
clp->lc_req.nr_vers = NFSV4_CBVERS;
/*
* First, fill in some of the fields of nd and cr.
*/
nd->nd_flag = ND_NFSV4;
if (clp->lc_flags & LCL_GSS)
nd->nd_flag |= ND_KERBV;
if ((clp->lc_flags & LCL_NFSV41) != 0)
nd->nd_flag |= ND_NFSV41;
nd->nd_repstat = 0;
cred->cr_uid = clp->lc_uid;
cred->cr_gid = clp->lc_gid;
callback = clp->lc_callback;
NFSUNLOCKSTATE();
cred->cr_ngroups = 1;
/*
* Get the first mbuf for the request.
*/
MGET(m, M_WAITOK, MT_DATA);
mbuf_setlen(m, 0);
nd->nd_mreq = nd->nd_mb = m;
nd->nd_bpos = NFSMTOD(m, caddr_t);
/*
* and build the callback request.
*/
if (procnum == NFSV4OP_CBGETATTR) {
nd->nd_procnum = NFSV4PROC_CBCOMPOUND;
error = nfsrv_cbcallargs(nd, clp, callback, NFSV4OP_CBGETATTR,
"CB Getattr", &sep);
if (error != 0) {
mbuf_freem(nd->nd_mreq);
goto errout;
}
(void)nfsm_fhtom(nd, (u_int8_t *)fhp, NFSX_MYFH, 0);
(void)nfsrv_putattrbit(nd, attrbitp);
} else if (procnum == NFSV4OP_CBRECALL) {
nd->nd_procnum = NFSV4PROC_CBCOMPOUND;
error = nfsrv_cbcallargs(nd, clp, callback, NFSV4OP_CBRECALL,
"CB Recall", &sep);
if (error != 0) {
mbuf_freem(nd->nd_mreq);
goto errout;
}
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_STATEID);
*tl++ = txdr_unsigned(stateidp->seqid);
NFSBCOPY((caddr_t)stateidp->other, (caddr_t)tl,
NFSX_STATEIDOTHER);
tl += (NFSX_STATEIDOTHER / NFSX_UNSIGNED);
if (trunc)
*tl = newnfs_true;
else
*tl = newnfs_false;
(void)nfsm_fhtom(nd, (u_int8_t *)fhp, NFSX_MYFH, 0);
} else if (procnum == NFSV4OP_CBLAYOUTRECALL) {
NFSD_DEBUG(4, "docallback layout recall\n");
nd->nd_procnum = NFSV4PROC_CBCOMPOUND;
error = nfsrv_cbcallargs(nd, clp, callback,
NFSV4OP_CBLAYOUTRECALL, "CB Reclayout", &sep);
NFSD_DEBUG(4, "aft cbcallargs=%d\n", error);
if (error != 0) {
mbuf_freem(nd->nd_mreq);
goto errout;
}
NFSM_BUILD(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(laytype);
*tl++ = txdr_unsigned(NFSLAYOUTIOMODE_ANY);
*tl++ = newnfs_true;
*tl = txdr_unsigned(NFSV4LAYOUTRET_FILE);
nfsm_fhtom(nd, (uint8_t *)fhp, NFSX_MYFH, 0);
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_HYPER + NFSX_STATEID);
tval = 0;
txdr_hyper(tval, tl); tl += 2;
tval = UINT64_MAX;
txdr_hyper(tval, tl); tl += 2;
*tl++ = txdr_unsigned(stateidp->seqid);
NFSBCOPY(stateidp->other, tl, NFSX_STATEIDOTHER);
tl += (NFSX_STATEIDOTHER / NFSX_UNSIGNED);
NFSD_DEBUG(4, "aft args\n");
} else if (procnum == NFSV4PROC_CBNULL) {
nd->nd_procnum = NFSV4PROC_CBNULL;
if ((clp->lc_flags & LCL_NFSV41) != 0) {
error = nfsv4_getcbsession(clp, &sep);
if (error != 0) {
mbuf_freem(nd->nd_mreq);
goto errout;
}
}
} else {
error = NFSERR_SERVERFAULT;
mbuf_freem(nd->nd_mreq);
goto errout;
}
/*
* Call newnfs_connect(), as required, and then newnfs_request().
*/
(void) newnfs_sndlock(&clp->lc_req.nr_lock);
if (clp->lc_req.nr_client == NULL) {
if ((clp->lc_flags & LCL_NFSV41) != 0) {
error = ECONNREFUSED;
nfsrv_freesession(sep, NULL);
} else if (nd->nd_procnum == NFSV4PROC_CBNULL)
error = newnfs_connect(NULL, &clp->lc_req, cred,
NULL, 1);
else
error = newnfs_connect(NULL, &clp->lc_req, cred,
NULL, 3);
}
newnfs_sndunlock(&clp->lc_req.nr_lock);
NFSD_DEBUG(4, "aft sndunlock=%d\n", error);
if (!error) {
if ((nd->nd_flag & ND_NFSV41) != 0) {
KASSERT(sep != NULL, ("sep NULL"));
if (sep->sess_cbsess.nfsess_xprt != NULL)
error = newnfs_request(nd, NULL, clp,
&clp->lc_req, NULL, NULL, cred,
clp->lc_program, clp->lc_req.nr_vers, NULL,
1, NULL, &sep->sess_cbsess);
else {
/*
* This should probably never occur, but if a
* client somehow does an RPC without a
* SequenceID Op that causes a callback just
* after the nfsd threads have been terminated
* and restared we could conceivably get here
* without a backchannel xprt.
*/
printf("nfsrv_docallback: no xprt\n");
error = ECONNREFUSED;
}
NFSD_DEBUG(4, "aft newnfs_request=%d\n", error);
nfsrv_freesession(sep, NULL);
} else
error = newnfs_request(nd, NULL, clp, &clp->lc_req,
NULL, NULL, cred, clp->lc_program,
clp->lc_req.nr_vers, NULL, 1, NULL, NULL);
}
errout:
NFSFREECRED(cred);
/*
* If error is set here, the Callback path isn't working
* properly, so twiddle the appropriate LCL_ flags.
* (nd_repstat != 0 indicates the Callback path is working,
* but the callback failed on the client.)
*/
if (error) {
/*
* Mark the callback pathway down, which disabled issuing
* of delegations and gets Renew to return NFSERR_CBPATHDOWN.
*/
NFSLOCKSTATE();
clp->lc_flags |= LCL_CBDOWN;
NFSUNLOCKSTATE();
} else {
/*
* Callback worked. If the callback path was down, disable
* callbacks, so no more delegations will be issued. (This
* is done on the assumption that the callback pathway is
* flakey.)
*/
NFSLOCKSTATE();
if (clp->lc_flags & LCL_CBDOWN)
clp->lc_flags &= ~(LCL_CBDOWN | LCL_CALLBACKSON);
NFSUNLOCKSTATE();
if (nd->nd_repstat) {
error = nd->nd_repstat;
NFSD_DEBUG(1, "nfsrv_docallback op=%d err=%d\n",
procnum, error);
} else if (error == 0 && procnum == NFSV4OP_CBGETATTR)
error = nfsv4_loadattr(nd, NULL, nap, NULL, NULL, 0,
NULL, NULL, NULL, NULL, NULL, 0, NULL, NULL, NULL,
p, NULL);
mbuf_freem(nd->nd_mrep);
}
NFSLOCKSTATE();
clp->lc_cbref--;
if ((clp->lc_flags & LCL_WAKEUPWANTED) && clp->lc_cbref == 0) {
clp->lc_flags &= ~LCL_WAKEUPWANTED;
wakeup(clp);
}
NFSUNLOCKSTATE();
free(nd, M_TEMP);
NFSEXITCODE(error);
return (error);
}
/*
* Set up the compound RPC for the callback.
*/
static int
nfsrv_cbcallargs(struct nfsrv_descript *nd, struct nfsclient *clp,
uint32_t callback, int op, const char *optag, struct nfsdsession **sepp)
{
uint32_t *tl;
int error, len;
len = strlen(optag);
(void)nfsm_strtom(nd, optag, len);
NFSM_BUILD(tl, uint32_t *, 4 * NFSX_UNSIGNED);
if ((nd->nd_flag & ND_NFSV41) != 0) {
*tl++ = txdr_unsigned(NFSV41_MINORVERSION);
*tl++ = txdr_unsigned(callback);
*tl++ = txdr_unsigned(2);
*tl = txdr_unsigned(NFSV4OP_CBSEQUENCE);
error = nfsv4_setcbsequence(nd, clp, 1, sepp);
if (error != 0)
return (error);
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(op);
} else {
*tl++ = txdr_unsigned(NFSV4_MINORVERSION);
*tl++ = txdr_unsigned(callback);
*tl++ = txdr_unsigned(1);
*tl = txdr_unsigned(op);
}
return (0);
}
/*
* Return the next index# for a clientid. Mostly just increment and return
* the next one, but... if the 32bit unsigned does actually wrap around,
* it should be rebooted.
* At an average rate of one new client per second, it will wrap around in
* approximately 136 years. (I think the server will have been shut
* down or rebooted before then.)
*/
static u_int32_t
nfsrv_nextclientindex(void)
{
static u_int32_t client_index = 0;
client_index++;
if (client_index != 0)
return (client_index);
printf("%s: out of clientids\n", __func__);
return (client_index);
}
/*
* Return the next index# for a stateid. Mostly just increment and return
* the next one, but... if the 32bit unsigned does actually wrap around
* (will a BSD server stay up that long?), find
* new start and end values.
*/
static u_int32_t
nfsrv_nextstateindex(struct nfsclient *clp)
{
struct nfsstate *stp;
int i;
u_int32_t canuse, min_index, max_index;
if (!(clp->lc_flags & LCL_INDEXNOTOK)) {
clp->lc_stateindex++;
if (clp->lc_stateindex != clp->lc_statemaxindex)
return (clp->lc_stateindex);
}
/*
* Yuck, we've hit the end.
* Look for a new min and max.
*/
min_index = 0;
max_index = 0xffffffff;
for (i = 0; i < nfsrv_statehashsize; i++) {
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
if (stp->ls_stateid.other[2] > 0x80000000) {
if (stp->ls_stateid.other[2] < max_index)
max_index = stp->ls_stateid.other[2];
} else {
if (stp->ls_stateid.other[2] > min_index)
min_index = stp->ls_stateid.other[2];
}
}
}
/*
* Yikes, highly unlikely, but I'll handle it anyhow.
*/
if (min_index == 0x80000000 && max_index == 0x80000001) {
canuse = 0;
/*
* Loop around until we find an unused entry. Return that
* and set LCL_INDEXNOTOK, so the search will continue next time.
* (This is one of those rare cases where a goto is the
* cleanest way to code the loop.)
*/
tryagain:
for (i = 0; i < nfsrv_statehashsize; i++) {
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
if (stp->ls_stateid.other[2] == canuse) {
canuse++;
goto tryagain;
}
}
}
clp->lc_flags |= LCL_INDEXNOTOK;
return (canuse);
}
/*
* Ok to start again from min + 1.
*/
clp->lc_stateindex = min_index + 1;
clp->lc_statemaxindex = max_index;
clp->lc_flags &= ~LCL_INDEXNOTOK;
return (clp->lc_stateindex);
}
/*
* The following functions handle the stable storage file that deals with
* the edge conditions described in RFC3530 Sec. 8.6.3.
* The file is as follows:
* - a single record at the beginning that has the lease time of the
* previous server instance (before the last reboot) and the nfsrvboottime
* values for the previous server boots.
* These previous boot times are used to ensure that the current
* nfsrvboottime does not, somehow, get set to a previous one.
* (This is important so that Stale ClientIDs and StateIDs can
* be recognized.)
* The number of previous nfsvrboottime values precedes the list.
* - followed by some number of appended records with:
* - client id string
* - flag that indicates it is a record revoking state via lease
* expiration or similar
* OR has successfully acquired state.
* These structures vary in length, with the client string at the end, up
* to NFSV4_OPAQUELIMIT in size.
*
* At the end of the grace period, the file is truncated, the first
* record is rewritten with updated information and any acquired state
* records for successful reclaims of state are written.
*
* Subsequent records are appended when the first state is issued to
* a client and when state is revoked for a client.
*
* When reading the file in, state issued records that come later in
* the file override older ones, since the append log is in cronological order.
* If, for some reason, the file can't be read, the grace period is
* immediately terminated and all reclaims get NFSERR_NOGRACE.
*/
/*
* Read in the stable storage file. Called by nfssvc() before the nfsd
* processes start servicing requests.
*/
APPLESTATIC void
nfsrv_setupstable(NFSPROC_T *p)
{
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
struct nfsrv_stable *sp, *nsp;
struct nfst_rec *tsp;
int error, i, tryagain;
off_t off = 0;
ssize_t aresid, len;
/*
* If NFSNSF_UPDATEDONE is set, this is a restart of the nfsds without
* a reboot, so state has not been lost.
*/
if (sf->nsf_flags & NFSNSF_UPDATEDONE)
return;
/*
* Set Grace over just until the file reads successfully.
*/
nfsrvboottime = time_second;
LIST_INIT(&sf->nsf_head);
sf->nsf_flags = (NFSNSF_GRACEOVER | NFSNSF_NEEDLOCK);
sf->nsf_eograce = NFSD_MONOSEC + NFSRV_LEASEDELTA;
if (sf->nsf_fp == NULL)
return;
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
(caddr_t)&sf->nsf_rec, sizeof (struct nfsf_rec), off, UIO_SYSSPACE,
0, NFSFPCRED(sf->nsf_fp), &aresid, p);
if (error || aresid || sf->nsf_numboots == 0 ||
sf->nsf_numboots > NFSNSF_MAXNUMBOOTS)
return;
/*
* Now, read in the boottimes.
*/
sf->nsf_bootvals = (time_t *)malloc((sf->nsf_numboots + 1) *
sizeof (time_t), M_TEMP, M_WAITOK);
off = sizeof (struct nfsf_rec);
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
(caddr_t)sf->nsf_bootvals, sf->nsf_numboots * sizeof (time_t), off,
UIO_SYSSPACE, 0, NFSFPCRED(sf->nsf_fp), &aresid, p);
if (error || aresid) {
free(sf->nsf_bootvals, M_TEMP);
sf->nsf_bootvals = NULL;
return;
}
/*
* Make sure this nfsrvboottime is different from all recorded
* previous ones.
*/
do {
tryagain = 0;
for (i = 0; i < sf->nsf_numboots; i++) {
if (nfsrvboottime == sf->nsf_bootvals[i]) {
nfsrvboottime++;
tryagain = 1;
break;
}
}
} while (tryagain);
sf->nsf_flags |= NFSNSF_OK;
off += (sf->nsf_numboots * sizeof (time_t));
/*
* Read through the file, building a list of records for grace
* checking.
* Each record is between sizeof (struct nfst_rec) and
* sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1
* and is actually sizeof (struct nfst_rec) + nst_len - 1.
*/
tsp = (struct nfst_rec *)malloc(sizeof (struct nfst_rec) +
NFSV4_OPAQUELIMIT - 1, M_TEMP, M_WAITOK);
do {
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
(caddr_t)tsp, sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1,
off, UIO_SYSSPACE, 0, NFSFPCRED(sf->nsf_fp), &aresid, p);
len = (sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1) - aresid;
if (error || (len > 0 && (len < sizeof (struct nfst_rec) ||
len < (sizeof (struct nfst_rec) + tsp->len - 1)))) {
/*
* Yuck, the file has been corrupted, so just return
* after clearing out any restart state, so the grace period
* is over.
*/
LIST_FOREACH_SAFE(sp, &sf->nsf_head, nst_list, nsp) {
LIST_REMOVE(sp, nst_list);
free(sp, M_TEMP);
}
free(tsp, M_TEMP);
sf->nsf_flags &= ~NFSNSF_OK;
free(sf->nsf_bootvals, M_TEMP);
sf->nsf_bootvals = NULL;
return;
}
if (len > 0) {
off += sizeof (struct nfst_rec) + tsp->len - 1;
/*
* Search the list for a matching client.
*/
LIST_FOREACH(sp, &sf->nsf_head, nst_list) {
if (tsp->len == sp->nst_len &&
!NFSBCMP(tsp->client, sp->nst_client, tsp->len))
break;
}
if (sp == LIST_END(&sf->nsf_head)) {
sp = (struct nfsrv_stable *)malloc(tsp->len +
sizeof (struct nfsrv_stable) - 1, M_TEMP,
M_WAITOK);
NFSBCOPY((caddr_t)tsp, (caddr_t)&sp->nst_rec,
sizeof (struct nfst_rec) + tsp->len - 1);
LIST_INSERT_HEAD(&sf->nsf_head, sp, nst_list);
} else {
if (tsp->flag == NFSNST_REVOKE)
sp->nst_flag |= NFSNST_REVOKE;
else
/*
* A subsequent timestamp indicates the client
* did a setclientid/confirm and any previous
* revoke is no longer relevant.
*/
sp->nst_flag &= ~NFSNST_REVOKE;
}
}
} while (len > 0);
free(tsp, M_TEMP);
sf->nsf_flags = NFSNSF_OK;
sf->nsf_eograce = NFSD_MONOSEC + sf->nsf_lease +
NFSRV_LEASEDELTA;
}
/*
* Update the stable storage file, now that the grace period is over.
*/
APPLESTATIC void
nfsrv_updatestable(NFSPROC_T *p)
{
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
struct nfsrv_stable *sp, *nsp;
int i;
struct nfsvattr nva;
vnode_t vp;
#if defined(__FreeBSD_version) && (__FreeBSD_version >= 500000)
mount_t mp = NULL;
#endif
int error;
if (sf->nsf_fp == NULL || (sf->nsf_flags & NFSNSF_UPDATEDONE))
return;
sf->nsf_flags |= NFSNSF_UPDATEDONE;
/*
* Ok, we need to rewrite the stable storage file.
* - truncate to 0 length
* - write the new first structure
* - loop through the data structures, writing out any that
* have timestamps older than the old boot
*/
if (sf->nsf_bootvals) {
sf->nsf_numboots++;
for (i = sf->nsf_numboots - 2; i >= 0; i--)
sf->nsf_bootvals[i + 1] = sf->nsf_bootvals[i];
} else {
sf->nsf_numboots = 1;
sf->nsf_bootvals = (time_t *)malloc(sizeof (time_t),
M_TEMP, M_WAITOK);
}
sf->nsf_bootvals[0] = nfsrvboottime;
sf->nsf_lease = nfsrv_lease;
NFSVNO_ATTRINIT(&nva);
NFSVNO_SETATTRVAL(&nva, size, 0);
vp = NFSFPVNODE(sf->nsf_fp);
vn_start_write(vp, &mp, V_WAIT);
if (NFSVOPLOCK(vp, LK_EXCLUSIVE) == 0) {
error = nfsvno_setattr(vp, &nva, NFSFPCRED(sf->nsf_fp), p,
NULL);
NFSVOPUNLOCK(vp, 0);
} else
error = EPERM;
vn_finished_write(mp);
if (!error)
error = NFSD_RDWR(UIO_WRITE, vp,
(caddr_t)&sf->nsf_rec, sizeof (struct nfsf_rec), (off_t)0,
UIO_SYSSPACE, IO_SYNC, NFSFPCRED(sf->nsf_fp), NULL, p);
if (!error)
error = NFSD_RDWR(UIO_WRITE, vp,
(caddr_t)sf->nsf_bootvals,
sf->nsf_numboots * sizeof (time_t),
(off_t)(sizeof (struct nfsf_rec)),
UIO_SYSSPACE, IO_SYNC, NFSFPCRED(sf->nsf_fp), NULL, p);
free(sf->nsf_bootvals, M_TEMP);
sf->nsf_bootvals = NULL;
if (error) {
sf->nsf_flags &= ~NFSNSF_OK;
printf("EEK! Can't write NfsV4 stable storage file\n");
return;
}
sf->nsf_flags |= NFSNSF_OK;
/*
* Loop through the list and write out timestamp records for
* any clients that successfully reclaimed state.
*/
LIST_FOREACH_SAFE(sp, &sf->nsf_head, nst_list, nsp) {
if (sp->nst_flag & NFSNST_GOTSTATE) {
nfsrv_writestable(sp->nst_client, sp->nst_len,
NFSNST_NEWSTATE, p);
sp->nst_clp->lc_flags |= LCL_STAMPEDSTABLE;
}
LIST_REMOVE(sp, nst_list);
free(sp, M_TEMP);
}
nfsrv_backupstable();
}
/*
* Append a record to the stable storage file.
*/
APPLESTATIC void
nfsrv_writestable(u_char *client, int len, int flag, NFSPROC_T *p)
{
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
struct nfst_rec *sp;
int error;
if (!(sf->nsf_flags & NFSNSF_OK) || sf->nsf_fp == NULL)
return;
sp = (struct nfst_rec *)malloc(sizeof (struct nfst_rec) +
len - 1, M_TEMP, M_WAITOK);
sp->len = len;
NFSBCOPY(client, sp->client, len);
sp->flag = flag;
error = NFSD_RDWR(UIO_WRITE, NFSFPVNODE(sf->nsf_fp),
(caddr_t)sp, sizeof (struct nfst_rec) + len - 1, (off_t)0,
UIO_SYSSPACE, (IO_SYNC | IO_APPEND), NFSFPCRED(sf->nsf_fp), NULL, p);
free(sp, M_TEMP);
if (error) {
sf->nsf_flags &= ~NFSNSF_OK;
printf("EEK! Can't write NfsV4 stable storage file\n");
}
}
/*
* This function is called during the grace period to mark a client
* that successfully reclaimed state.
*/
static void
nfsrv_markstable(struct nfsclient *clp)
{
struct nfsrv_stable *sp;
/*
* First find the client structure.
*/
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
if (sp->nst_len == clp->lc_idlen &&
!NFSBCMP(sp->nst_client, clp->lc_id, sp->nst_len))
break;
}
if (sp == LIST_END(&nfsrv_stablefirst.nsf_head))
return;
/*
* Now, just mark it and set the nfsclient back pointer.
*/
sp->nst_flag |= NFSNST_GOTSTATE;
sp->nst_clp = clp;
}
/*
* This function is called when a NFSv4.1 client does a ReclaimComplete.
* Very similar to nfsrv_markstable(), except for the flag being set.
*/
static void
nfsrv_markreclaim(struct nfsclient *clp)
{
struct nfsrv_stable *sp;
/*
* First find the client structure.
*/
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
if (sp->nst_len == clp->lc_idlen &&
!NFSBCMP(sp->nst_client, clp->lc_id, sp->nst_len))
break;
}
if (sp == LIST_END(&nfsrv_stablefirst.nsf_head))
return;
/*
* Now, just set the flag.
*/
sp->nst_flag |= NFSNST_RECLAIMED;
}
/*
* This function is called for a reclaim, to see if it gets grace.
* It returns 0 if a reclaim is allowed, 1 otherwise.
*/
static int
nfsrv_checkstable(struct nfsclient *clp)
{
struct nfsrv_stable *sp;
/*
* First, find the entry for the client.
*/
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
if (sp->nst_len == clp->lc_idlen &&
!NFSBCMP(sp->nst_client, clp->lc_id, sp->nst_len))
break;
}
/*
* If not in the list, state was revoked or no state was issued
* since the previous reboot, a reclaim is denied.
*/
if (sp == LIST_END(&nfsrv_stablefirst.nsf_head) ||
(sp->nst_flag & NFSNST_REVOKE) ||
!(nfsrv_stablefirst.nsf_flags & NFSNSF_OK))
return (1);
return (0);
}
/*
* Test for and try to clear out a conflicting client. This is called by
* nfsrv_lockctrl() and nfsrv_openctrl() when conflicts with other clients
* a found.
* The trick here is that it can't revoke a conflicting client with an
* expired lease unless it holds the v4root lock, so...
* If no v4root lock, get the lock and return 1 to indicate "try again".
* Return 0 to indicate the conflict can't be revoked and 1 to indicate
* the revocation worked and the conflicting client is "bye, bye", so it
* can be tried again.
* Return 2 to indicate that the vnode is VI_DOOMED after NFSVOPLOCK().
* Unlocks State before a non-zero value is returned.
*/
static int
nfsrv_clientconflict(struct nfsclient *clp, int *haslockp, vnode_t vp,
NFSPROC_T *p)
{
int gotlock, lktype = 0;
/*
* If lease hasn't expired, we can't fix it.
*/
if (clp->lc_expiry >= NFSD_MONOSEC ||
!(nfsrv_stablefirst.nsf_flags & NFSNSF_UPDATEDONE))
return (0);
if (*haslockp == 0) {
NFSUNLOCKSTATE();
if (vp != NULL) {
lktype = NFSVOPISLOCKED(vp);
NFSVOPUNLOCK(vp, 0);
}
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
gotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (!gotlock);
NFSUNLOCKV4ROOTMUTEX();
*haslockp = 1;
if (vp != NULL) {
NFSVOPLOCK(vp, lktype | LK_RETRY);
if ((vp->v_iflag & VI_DOOMED) != 0)
return (2);
}
return (1);
}
NFSUNLOCKSTATE();
/*
* Ok, we can expire the conflicting client.
*/
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
nfsrv_backupstable();
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
LIST_REMOVE(clp, lc_hash);
nfsrv_zapclient(clp, p);
return (1);
}
/*
* Resolve a delegation conflict.
* Returns 0 to indicate the conflict was resolved without sleeping.
* Return -1 to indicate that the caller should check for conflicts again.
* Return > 0 for an error that should be returned, normally NFSERR_DELAY.
*
* Also, manipulate the nfsv4root_lock, as required. It isn't changed
* for a return of 0, since there was no sleep and it could be required
* later. It is released for a return of NFSERR_DELAY, since the caller
* will return that error. It is released when a sleep was done waiting
* for the delegation to be returned or expire (so that other nfsds can
* handle ops). Then, it must be acquired for the write to stable storage.
* (This function is somewhat similar to nfsrv_clientconflict(), but
* the semantics differ in a couple of subtle ways. The return of 0
* indicates the conflict was resolved without sleeping here, not
* that the conflict can't be resolved and the handling of nfsv4root_lock
* differs, as noted above.)
* Unlocks State before returning a non-zero value.
*/
static int
nfsrv_delegconflict(struct nfsstate *stp, int *haslockp, NFSPROC_T *p,
vnode_t vp)
{
struct nfsclient *clp = stp->ls_clp;
int gotlock, error, lktype = 0, retrycnt, zapped_clp;
nfsv4stateid_t tstateid;
fhandle_t tfh;
/*
* If the conflict is with an old delegation...
*/
if (stp->ls_flags & NFSLCK_OLDDELEG) {
/*
* You can delete it, if it has expired.
*/
if (clp->lc_delegtime < NFSD_MONOSEC) {
nfsrv_freedeleg(stp);
NFSUNLOCKSTATE();
error = -1;
goto out;
}
NFSUNLOCKSTATE();
/*
* During this delay, the old delegation could expire or it
* could be recovered by the client via an Open with
* CLAIM_DELEGATE_PREV.
* Release the nfsv4root_lock, if held.
*/
if (*haslockp) {
*haslockp = 0;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
error = NFSERR_DELAY;
goto out;
}
/*
* It's a current delegation, so:
* - check to see if the delegation has expired
* - if so, get the v4root lock and then expire it
*/
if (!(stp->ls_flags & NFSLCK_DELEGRECALL)) {
/*
* - do a recall callback, since not yet done
* For now, never allow truncate to be set. To use
* truncate safely, it must be guaranteed that the
* Remove, Rename or Setattr with size of 0 will
* succeed and that would require major changes to
* the VFS/Vnode OPs.
* Set the expiry time large enough so that it won't expire
* until after the callback, then set it correctly, once
* the callback is done. (The delegation will now time
* out whether or not the Recall worked ok. The timeout
* will be extended when ops are done on the delegation
* stateid, up to the timelimit.)
*/
stp->ls_delegtime = NFSD_MONOSEC + (2 * nfsrv_lease) +
NFSRV_LEASEDELTA;
stp->ls_delegtimelimit = NFSD_MONOSEC + (6 * nfsrv_lease) +
NFSRV_LEASEDELTA;
stp->ls_flags |= NFSLCK_DELEGRECALL;
/*
* Loop NFSRV_CBRETRYCNT times while the CBRecall replies
* NFSERR_BADSTATEID or NFSERR_BADHANDLE. This is done
* in order to try and avoid a race that could happen
* when a CBRecall request passed the Open reply with
* the delegation in it when transitting the network.
* Since nfsrv_docallback will sleep, don't use stp after
* the call.
*/
NFSBCOPY((caddr_t)&stp->ls_stateid, (caddr_t)&tstateid,
sizeof (tstateid));
NFSBCOPY((caddr_t)&stp->ls_lfp->lf_fh, (caddr_t)&tfh,
sizeof (tfh));
NFSUNLOCKSTATE();
if (*haslockp) {
*haslockp = 0;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
retrycnt = 0;
do {
error = nfsrv_docallback(clp, NFSV4OP_CBRECALL,
&tstateid, 0, &tfh, NULL, NULL, 0, p);
retrycnt++;
} while ((error == NFSERR_BADSTATEID ||
error == NFSERR_BADHANDLE) && retrycnt < NFSV4_CBRETRYCNT);
error = NFSERR_DELAY;
goto out;
}
if (clp->lc_expiry >= NFSD_MONOSEC &&
stp->ls_delegtime >= NFSD_MONOSEC) {
NFSUNLOCKSTATE();
/*
* A recall has been done, but it has not yet expired.
* So, RETURN_DELAY.
*/
if (*haslockp) {
*haslockp = 0;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
error = NFSERR_DELAY;
goto out;
}
/*
* If we don't yet have the lock, just get it and then return,
* since we need that before deleting expired state, such as
* this delegation.
* When getting the lock, unlock the vnode, so other nfsds that
* are in progress, won't get stuck waiting for the vnode lock.
*/
if (*haslockp == 0) {
NFSUNLOCKSTATE();
if (vp != NULL) {
lktype = NFSVOPISLOCKED(vp);
NFSVOPUNLOCK(vp, 0);
}
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
gotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (!gotlock);
NFSUNLOCKV4ROOTMUTEX();
*haslockp = 1;
if (vp != NULL) {
NFSVOPLOCK(vp, lktype | LK_RETRY);
if ((vp->v_iflag & VI_DOOMED) != 0) {
*haslockp = 0;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
error = NFSERR_PERM;
goto out;
}
}
error = -1;
goto out;
}
NFSUNLOCKSTATE();
/*
* Ok, we can delete the expired delegation.
* First, write the Revoke record to stable storage and then
* clear out the conflict.
* Since all other nfsd threads are now blocked, we can safely
* sleep without the state changing.
*/
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
nfsrv_backupstable();
if (clp->lc_expiry < NFSD_MONOSEC) {
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
LIST_REMOVE(clp, lc_hash);
zapped_clp = 1;
} else {
nfsrv_freedeleg(stp);
zapped_clp = 0;
}
if (zapped_clp)
nfsrv_zapclient(clp, p);
error = -1;
out:
NFSEXITCODE(error);
return (error);
}
/*
* Check for a remove allowed, if remove is set to 1 and get rid of
* delegations.
*/
APPLESTATIC int
nfsrv_checkremove(vnode_t vp, int remove, NFSPROC_T *p)
{
struct nfsstate *stp;
struct nfslockfile *lfp;
int error, haslock = 0;
fhandle_t nfh;
/*
* First, get the lock file structure.
* (A return of -1 means no associated state, so remove ok.)
*/
error = nfsrv_getlockfh(vp, NFSLCK_CHECK, NULL, &nfh, p);
tryagain:
NFSLOCKSTATE();
if (!error)
error = nfsrv_getlockfile(NFSLCK_CHECK, NULL, &lfp, &nfh, 0);
if (error) {
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
if (error == -1)
error = 0;
goto out;
}
/*
* Now, we must Recall any delegations.
*/
error = nfsrv_cleandeleg(vp, lfp, NULL, &haslock, p);
if (error) {
/*
* nfsrv_cleandeleg() unlocks state for non-zero
* return.
*/
if (error == -1)
goto tryagain;
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
goto out;
}
/*
* Now, look for a conflicting open share.
*/
if (remove) {
/*
* If the entry in the directory was the last reference to the
* corresponding filesystem object, the object can be destroyed
* */
if(lfp->lf_usecount>1)
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
if (stp->ls_flags & NFSLCK_WRITEDENY) {
error = NFSERR_FILEOPEN;
break;
}
}
}
NFSUNLOCKSTATE();
if (haslock) {
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
}
out:
NFSEXITCODE(error);
return (error);
}
/*
* Clear out all delegations for the file referred to by lfp.
* May return NFSERR_DELAY, if there will be a delay waiting for
* delegations to expire.
* Returns -1 to indicate it slept while recalling a delegation.
* This function has the side effect of deleting the nfslockfile structure,
* if it no longer has associated state and didn't have to sleep.
* Unlocks State before a non-zero value is returned.
*/
static int
nfsrv_cleandeleg(vnode_t vp, struct nfslockfile *lfp,
struct nfsclient *clp, int *haslockp, NFSPROC_T *p)
{
struct nfsstate *stp, *nstp;
int ret = 0;
stp = LIST_FIRST(&lfp->lf_deleg);
while (stp != LIST_END(&lfp->lf_deleg)) {
nstp = LIST_NEXT(stp, ls_file);
if (stp->ls_clp != clp) {
ret = nfsrv_delegconflict(stp, haslockp, p, vp);
if (ret) {
/*
* nfsrv_delegconflict() unlocks state
* when it returns non-zero.
*/
goto out;
}
}
stp = nstp;
}
out:
NFSEXITCODE(ret);
return (ret);
}
/*
* There are certain operations that, when being done outside of NFSv4,
* require that any NFSv4 delegation for the file be recalled.
* This function is to be called for those cases:
* VOP_RENAME() - When a delegation is being recalled for any reason,
* the client may have to do Opens against the server, using the file's
* final component name. If the file has been renamed on the server,
* that component name will be incorrect and the Open will fail.
* VOP_REMOVE() - Theoretically, a client could Open a file after it has
* been removed on the server, if there is a delegation issued to
* that client for the file. I say "theoretically" since clients
* normally do an Access Op before the Open and that Access Op will
* fail with ESTALE. Note that NFSv2 and 3 don't even do Opens, so
* they will detect the file's removal in the same manner. (There is
* one case where RFC3530 allows a client to do an Open without first
* doing an Access Op, which is passage of a check against the ACE
* returned with a Write delegation, but current practice is to ignore
* the ACE and always do an Access Op.)
* Since the functions can only be called with an unlocked vnode, this
* can't be done at this time.
* VOP_ADVLOCK() - When a client holds a delegation, it can issue byte range
* locks locally in the client, which are not visible to the server. To
* deal with this, issuing of delegations for a vnode must be disabled
* and all delegations for the vnode recalled. This is done via the
* second function, using the VV_DISABLEDELEG vflag on the vnode.
*/
APPLESTATIC void
nfsd_recalldelegation(vnode_t vp, NFSPROC_T *p)
{
time_t starttime;
int error;
/*
* First, check to see if the server is currently running and it has
* been called for a regular file when issuing delegations.
*/
if (newnfs_numnfsd == 0 || vp->v_type != VREG ||
nfsrv_issuedelegs == 0)
return;
KASSERT((NFSVOPISLOCKED(vp) != LK_EXCLUSIVE), ("vp %p is locked", vp));
/*
* First, get a reference on the nfsv4rootfs_lock so that an
* exclusive lock cannot be acquired by another thread.
*/
NFSLOCKV4ROOTMUTEX();
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR, NULL);
NFSUNLOCKV4ROOTMUTEX();
/*
* Now, call nfsrv_checkremove() in a loop while it returns
* NFSERR_DELAY. Return upon any other error or when timed out.
*/
starttime = NFSD_MONOSEC;
do {
if (NFSVOPLOCK(vp, LK_EXCLUSIVE) == 0) {
error = nfsrv_checkremove(vp, 0, p);
NFSVOPUNLOCK(vp, 0);
} else
error = EPERM;
if (error == NFSERR_DELAY) {
if (NFSD_MONOSEC - starttime > NFS_REMOVETIMEO)
break;
/* Sleep for a short period of time */
(void) nfs_catnap(PZERO, 0, "nfsremove");
}
} while (error == NFSERR_DELAY);
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
NFSUNLOCKV4ROOTMUTEX();
}
APPLESTATIC void
nfsd_disabledelegation(vnode_t vp, NFSPROC_T *p)
{
#ifdef VV_DISABLEDELEG
/*
* First, flag issuance of delegations disabled.
*/
atomic_set_long(&vp->v_vflag, VV_DISABLEDELEG);
#endif
/*
* Then call nfsd_recalldelegation() to get rid of all extant
* delegations.
*/
nfsd_recalldelegation(vp, p);
}
/*
* Check for conflicting locks, etc. and then get rid of delegations.
* (At one point I thought that I should get rid of delegations for any
* Setattr, since it could potentially disallow the I/O op (read or write)
* allowed by the delegation. However, Setattr Ops that aren't changing
* the size get a stateid of all 0s, so you can't tell if it is a delegation
* for the same client or a different one, so I decided to only get rid
* of delegations for other clients when the size is being changed.)
* In general, a Setattr can disable NFS I/O Ops that are outstanding, such
* as Write backs, even if there is no delegation, so it really isn't any
* different?)
*/
APPLESTATIC int
nfsrv_checksetattr(vnode_t vp, struct nfsrv_descript *nd,
nfsv4stateid_t *stateidp, struct nfsvattr *nvap, nfsattrbit_t *attrbitp,
struct nfsexstuff *exp, NFSPROC_T *p)
{
struct nfsstate st, *stp = &st;
struct nfslock lo, *lop = &lo;
int error = 0;
nfsquad_t clientid;
if (NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_SIZE)) {
stp->ls_flags = (NFSLCK_CHECK | NFSLCK_WRITEACCESS);
lop->lo_first = nvap->na_size;
} else {
stp->ls_flags = 0;
lop->lo_first = 0;
}
if (NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_OWNER) ||
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_OWNERGROUP) ||
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_MODE) ||
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_ACL))
stp->ls_flags |= NFSLCK_SETATTR;
if (stp->ls_flags == 0)
goto out;
lop->lo_end = NFS64BITSSET;
lop->lo_flags = NFSLCK_WRITE;
stp->ls_ownerlen = 0;
stp->ls_op = NULL;
stp->ls_uid = nd->nd_cred->cr_uid;
stp->ls_stateid.seqid = stateidp->seqid;
clientid.lval[0] = stp->ls_stateid.other[0] = stateidp->other[0];
clientid.lval[1] = stp->ls_stateid.other[1] = stateidp->other[1];
stp->ls_stateid.other[2] = stateidp->other[2];
error = nfsrv_lockctrl(vp, &stp, &lop, NULL, clientid,
stateidp, exp, nd, p);
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* Check for a write delegation and do a CBGETATTR if there is one, updating
* the attributes, as required.
* Should I return an error if I can't get the attributes? (For now, I'll
* just return ok.
*/
APPLESTATIC int
nfsrv_checkgetattr(struct nfsrv_descript *nd, vnode_t vp,
struct nfsvattr *nvap, nfsattrbit_t *attrbitp, NFSPROC_T *p)
{
struct nfsstate *stp;
struct nfslockfile *lfp;
struct nfsclient *clp;
struct nfsvattr nva;
fhandle_t nfh;
int error = 0;
nfsattrbit_t cbbits;
u_quad_t delegfilerev;
NFSCBGETATTR_ATTRBIT(attrbitp, &cbbits);
if (!NFSNONZERO_ATTRBIT(&cbbits))
goto out;
if (nfsrv_writedelegcnt == 0)
goto out;
/*
* Get the lock file structure.
* (A return of -1 means no associated state, so return ok.)
*/
error = nfsrv_getlockfh(vp, NFSLCK_CHECK, NULL, &nfh, p);
NFSLOCKSTATE();
if (!error)
error = nfsrv_getlockfile(NFSLCK_CHECK, NULL, &lfp, &nfh, 0);
if (error) {
NFSUNLOCKSTATE();
if (error == -1)
error = 0;
goto out;
}
/*
* Now, look for a write delegation.
*/
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
if (stp->ls_flags & NFSLCK_DELEGWRITE)
break;
}
if (stp == LIST_END(&lfp->lf_deleg)) {
NFSUNLOCKSTATE();
goto out;
}
clp = stp->ls_clp;
delegfilerev = stp->ls_filerev;
/*
* If the Write delegation was issued as a part of this Compound RPC
* or if we have an Implied Clientid (used in a previous Op in this
* compound) and it is the client the delegation was issued to,
* just return ok.
* I also assume that it is from the same client iff the network
* host IP address is the same as the callback address. (Not
* exactly correct by the RFC, but avoids a lot of Getattr
* callbacks.)
*/
if (nd->nd_compref == stp->ls_compref ||
((nd->nd_flag & ND_IMPLIEDCLID) &&
clp->lc_clientid.qval == nd->nd_clientid.qval) ||
nfsaddr2_match(clp->lc_req.nr_nam, nd->nd_nam)) {
NFSUNLOCKSTATE();
goto out;
}
/*
* We are now done with the delegation state structure,
* so the statelock can be released and we can now tsleep().
*/
/*
* Now, we must do the CB Getattr callback, to see if Change or Size
* has changed.
*/
if (clp->lc_expiry >= NFSD_MONOSEC) {
NFSUNLOCKSTATE();
NFSVNO_ATTRINIT(&nva);
nva.na_filerev = NFS64BITSSET;
error = nfsrv_docallback(clp, NFSV4OP_CBGETATTR, NULL,
0, &nfh, &nva, &cbbits, 0, p);
if (!error) {
if ((nva.na_filerev != NFS64BITSSET &&
nva.na_filerev > delegfilerev) ||
(NFSVNO_ISSETSIZE(&nva) &&
nva.na_size != nvap->na_size)) {
error = nfsvno_updfilerev(vp, nvap, nd, p);
if (NFSVNO_ISSETSIZE(&nva))
nvap->na_size = nva.na_size;
}
} else
error = 0; /* Ignore callback errors for now. */
} else {
NFSUNLOCKSTATE();
}
out:
NFSEXITCODE2(error, nd);
return (error);
}
/*
* This function looks for openowners that haven't had any opens for
* a while and throws them away. Called by an nfsd when NFSNSF_NOOPENS
* is set.
*/
APPLESTATIC void
nfsrv_throwawayopens(NFSPROC_T *p)
{
struct nfsclient *clp, *nclp;
struct nfsstate *stp, *nstp;
int i;
NFSLOCKSTATE();
nfsrv_stablefirst.nsf_flags &= ~NFSNSF_NOOPENS;
/*
* For each client...
*/
for (i = 0; i < nfsrv_clienthashsize; i++) {
LIST_FOREACH_SAFE(clp, &nfsclienthash[i], lc_hash, nclp) {
LIST_FOREACH_SAFE(stp, &clp->lc_open, ls_list, nstp) {
if (LIST_EMPTY(&stp->ls_open) &&
(stp->ls_noopens > NFSNOOPEN ||
(nfsrv_openpluslock * 2) >
nfsrv_v4statelimit))
nfsrv_freeopenowner(stp, 0, p);
}
}
}
NFSUNLOCKSTATE();
}
/*
* This function checks to see if the credentials are the same.
* Returns 1 for not same, 0 otherwise.
*/
static int
nfsrv_notsamecredname(struct nfsrv_descript *nd, struct nfsclient *clp)
{
if (nd->nd_flag & ND_GSS) {
if (!(clp->lc_flags & LCL_GSS))
return (1);
if (clp->lc_flags & LCL_NAME) {
if (nd->nd_princlen != clp->lc_namelen ||
NFSBCMP(nd->nd_principal, clp->lc_name,
clp->lc_namelen))
return (1);
else
return (0);
}
if (nd->nd_cred->cr_uid == clp->lc_uid)
return (0);
else
return (1);
} else if (clp->lc_flags & LCL_GSS)
return (1);
/*
* For AUTH_SYS, allow the same uid or root. (This is underspecified
* in RFC3530, which talks about principals, but doesn't say anything
* about uids for AUTH_SYS.)
*/
if (nd->nd_cred->cr_uid == clp->lc_uid || nd->nd_cred->cr_uid == 0)
return (0);
else
return (1);
}
/*
* Calculate the lease expiry time.
*/
static time_t
nfsrv_leaseexpiry(void)
{
if (nfsrv_stablefirst.nsf_eograce > NFSD_MONOSEC)
return (NFSD_MONOSEC + 2 * (nfsrv_lease + NFSRV_LEASEDELTA));
return (NFSD_MONOSEC + nfsrv_lease + NFSRV_LEASEDELTA);
}
/*
* Delay the delegation timeout as far as ls_delegtimelimit, as required.
*/
static void
nfsrv_delaydelegtimeout(struct nfsstate *stp)
{
if ((stp->ls_flags & NFSLCK_DELEGRECALL) == 0)
return;
if ((stp->ls_delegtime + 15) > NFSD_MONOSEC &&
stp->ls_delegtime < stp->ls_delegtimelimit) {
stp->ls_delegtime += nfsrv_lease;
if (stp->ls_delegtime > stp->ls_delegtimelimit)
stp->ls_delegtime = stp->ls_delegtimelimit;
}
}
/*
* This function checks to see if there is any other state associated
* with the openowner for this Open.
* It returns 1 if there is no other state, 0 otherwise.
*/
static int
nfsrv_nootherstate(struct nfsstate *stp)
{
struct nfsstate *tstp;
LIST_FOREACH(tstp, &stp->ls_openowner->ls_open, ls_list) {
if (tstp != stp || !LIST_EMPTY(&tstp->ls_lock))
return (0);
}
return (1);
}
/*
* Create a list of lock deltas (changes to local byte range locking
* that can be rolled back using the list) and apply the changes via
* nfsvno_advlock(). Optionally, lock the list. It is expected that either
* the rollback or update function will be called after this.
* It returns an error (and rolls back, as required), if any nfsvno_advlock()
* call fails. If it returns an error, it will unlock the list.
*/
static int
nfsrv_locallock(vnode_t vp, struct nfslockfile *lfp, int flags,
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p)
{
struct nfslock *lop, *nlop;
int error = 0;
/* Loop through the list of locks. */
lop = LIST_FIRST(&lfp->lf_locallock);
while (first < end && lop != NULL) {
nlop = LIST_NEXT(lop, lo_lckowner);
if (first >= lop->lo_end) {
/* not there yet */
lop = nlop;
} else if (first < lop->lo_first) {
/* new one starts before entry in list */
if (end <= lop->lo_first) {
/* no overlap between old and new */
error = nfsrv_dolocal(vp, lfp, flags,
NFSLCK_UNLOCK, first, end, cfp, p);
if (error != 0)
break;
first = end;
} else {
/* handle fragment overlapped with new one */
error = nfsrv_dolocal(vp, lfp, flags,
NFSLCK_UNLOCK, first, lop->lo_first, cfp,
p);
if (error != 0)
break;
first = lop->lo_first;
}
} else {
/* new one overlaps this entry in list */
if (end <= lop->lo_end) {
/* overlaps all of new one */
error = nfsrv_dolocal(vp, lfp, flags,
lop->lo_flags, first, end, cfp, p);
if (error != 0)
break;
first = end;
} else {
/* handle fragment overlapped with new one */
error = nfsrv_dolocal(vp, lfp, flags,
lop->lo_flags, first, lop->lo_end, cfp, p);
if (error != 0)
break;
first = lop->lo_end;
lop = nlop;
}
}
}
if (first < end && error == 0)
/* handle fragment past end of list */
error = nfsrv_dolocal(vp, lfp, flags, NFSLCK_UNLOCK, first,
end, cfp, p);
NFSEXITCODE(error);
return (error);
}
/*
* Local lock unlock. Unlock all byte ranges that are no longer locked
* by NFSv4. To do this, unlock any subranges of first-->end that
* do not overlap with the byte ranges of any lock in the lfp->lf_lock
* list. This list has all locks for the file held by other
* <clientid, lockowner> tuples. The list is ordered by increasing
* lo_first value, but may have entries that overlap each other, for
* the case of read locks.
*/
static void
nfsrv_localunlock(vnode_t vp, struct nfslockfile *lfp, uint64_t init_first,
uint64_t init_end, NFSPROC_T *p)
{
struct nfslock *lop;
uint64_t first, end, prevfirst;
first = init_first;
end = init_end;
while (first < init_end) {
/* Loop through all nfs locks, adjusting first and end */
prevfirst = 0;
LIST_FOREACH(lop, &lfp->lf_lock, lo_lckfile) {
KASSERT(prevfirst <= lop->lo_first,
("nfsv4 locks out of order"));
KASSERT(lop->lo_first < lop->lo_end,
("nfsv4 bogus lock"));
prevfirst = lop->lo_first;
if (first >= lop->lo_first &&
first < lop->lo_end)
/*
* Overlaps with initial part, so trim
* off that initial part by moving first past
* it.
*/
first = lop->lo_end;
else if (end > lop->lo_first &&
lop->lo_first > first) {
/*
* This lock defines the end of the
* segment to unlock, so set end to the
* start of it and break out of the loop.
*/
end = lop->lo_first;
break;
}
if (first >= end)
/*
* There is no segment left to do, so
* break out of this loop and then exit
* the outer while() since first will be set
* to end, which must equal init_end here.
*/
break;
}
if (first < end) {
/* Unlock this segment */
(void) nfsrv_dolocal(vp, lfp, NFSLCK_UNLOCK,
NFSLCK_READ, first, end, NULL, p);
nfsrv_locallock_commit(lfp, NFSLCK_UNLOCK,
first, end);
}
/*
* Now move past this segment and look for any further
* segment in the range, if there is one.
*/
first = end;
end = init_end;
}
}
/*
* Do the local lock operation and update the rollback list, as required.
* Perform the rollback and return the error if nfsvno_advlock() fails.
*/
static int
nfsrv_dolocal(vnode_t vp, struct nfslockfile *lfp, int flags, int oldflags,
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p)
{
struct nfsrollback *rlp;
int error = 0, ltype, oldltype;
if (flags & NFSLCK_WRITE)
ltype = F_WRLCK;
else if (flags & NFSLCK_READ)
ltype = F_RDLCK;
else
ltype = F_UNLCK;
if (oldflags & NFSLCK_WRITE)
oldltype = F_WRLCK;
else if (oldflags & NFSLCK_READ)
oldltype = F_RDLCK;
else
oldltype = F_UNLCK;
if (ltype == oldltype || (oldltype == F_WRLCK && ltype == F_RDLCK))
/* nothing to do */
goto out;
error = nfsvno_advlock(vp, ltype, first, end, p);
if (error != 0) {
if (cfp != NULL) {
cfp->cl_clientid.lval[0] = 0;
cfp->cl_clientid.lval[1] = 0;
cfp->cl_first = 0;
cfp->cl_end = NFS64BITSSET;
cfp->cl_flags = NFSLCK_WRITE;
cfp->cl_ownerlen = 5;
NFSBCOPY("LOCAL", cfp->cl_owner, 5);
}
nfsrv_locallock_rollback(vp, lfp, p);
} else if (ltype != F_UNLCK) {
rlp = malloc(sizeof (struct nfsrollback), M_NFSDROLLBACK,
M_WAITOK);
rlp->rlck_first = first;
rlp->rlck_end = end;
rlp->rlck_type = oldltype;
LIST_INSERT_HEAD(&lfp->lf_rollback, rlp, rlck_list);
}
out:
NFSEXITCODE(error);
return (error);
}
/*
* Roll back local lock changes and free up the rollback list.
*/
static void
nfsrv_locallock_rollback(vnode_t vp, struct nfslockfile *lfp, NFSPROC_T *p)
{
struct nfsrollback *rlp, *nrlp;
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list, nrlp) {
(void) nfsvno_advlock(vp, rlp->rlck_type, rlp->rlck_first,
rlp->rlck_end, p);
free(rlp, M_NFSDROLLBACK);
}
LIST_INIT(&lfp->lf_rollback);
}
/*
* Update local lock list and delete rollback list (ie now committed to the
* local locks). Most of the work is done by the internal function.
*/
static void
nfsrv_locallock_commit(struct nfslockfile *lfp, int flags, uint64_t first,
uint64_t end)
{
struct nfsrollback *rlp, *nrlp;
struct nfslock *new_lop, *other_lop;
new_lop = malloc(sizeof (struct nfslock), M_NFSDLOCK, M_WAITOK);
if (flags & (NFSLCK_READ | NFSLCK_WRITE))
other_lop = malloc(sizeof (struct nfslock), M_NFSDLOCK,
M_WAITOK);
else
other_lop = NULL;
new_lop->lo_flags = flags;
new_lop->lo_first = first;
new_lop->lo_end = end;
nfsrv_updatelock(NULL, &new_lop, &other_lop, lfp);
if (new_lop != NULL)
free(new_lop, M_NFSDLOCK);
if (other_lop != NULL)
free(other_lop, M_NFSDLOCK);
/* and get rid of the rollback list */
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list, nrlp)
free(rlp, M_NFSDROLLBACK);
LIST_INIT(&lfp->lf_rollback);
}
/*
* Lock the struct nfslockfile for local lock updating.
*/
static void
nfsrv_locklf(struct nfslockfile *lfp)
{
int gotlock;
/* lf_usecount ensures *lfp won't be free'd */
lfp->lf_usecount++;
do {
gotlock = nfsv4_lock(&lfp->lf_locallock_lck, 1, NULL,
NFSSTATEMUTEXPTR, NULL);
} while (gotlock == 0);
lfp->lf_usecount--;
}
/*
* Unlock the struct nfslockfile after local lock updating.
*/
static void
nfsrv_unlocklf(struct nfslockfile *lfp)
{
nfsv4_unlock(&lfp->lf_locallock_lck, 0);
}
/*
* Clear out all state for the NFSv4 server.
* Must be called by a thread that can sleep when no nfsds are running.
*/
void
nfsrv_throwawayallstate(NFSPROC_T *p)
{
struct nfsclient *clp, *nclp;
struct nfslockfile *lfp, *nlfp;
int i;
/*
* For each client, clean out the state and then free the structure.
*/
for (i = 0; i < nfsrv_clienthashsize; i++) {
LIST_FOREACH_SAFE(clp, &nfsclienthash[i], lc_hash, nclp) {
nfsrv_cleanclient(clp, p);
nfsrv_freedeleglist(&clp->lc_deleg);
nfsrv_freedeleglist(&clp->lc_olddeleg);
free(clp->lc_stateid, M_NFSDCLIENT);
free(clp, M_NFSDCLIENT);
}
}
/*
* Also, free up any remaining lock file structures.
*/
for (i = 0; i < nfsrv_lockhashsize; i++) {
LIST_FOREACH_SAFE(lfp, &nfslockhash[i], lf_hash, nlfp) {
printf("nfsd unload: fnd a lock file struct\n");
nfsrv_freenfslockfile(lfp);
}
}
/* And get rid of the deviceid structures and layouts. */
nfsrv_freealllayoutsanddevids();
}
/*
* Check the sequence# for the session and slot provided as an argument.
* Also, renew the lease if the session will return NFS_OK.
*/
int
nfsrv_checksequence(struct nfsrv_descript *nd, uint32_t sequenceid,
uint32_t *highest_slotidp, uint32_t *target_highest_slotidp, int cache_this,
uint32_t *sflagsp, NFSPROC_T *p)
{
struct nfsdsession *sep;
struct nfssessionhash *shp;
int error;
SVCXPRT *savxprt;
shp = NFSSESSIONHASH(nd->nd_sessionid);
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(nd->nd_sessionid);
if (sep == NULL) {
NFSUNLOCKSESSION(shp);
return (NFSERR_BADSESSION);
}
error = nfsv4_seqsession(sequenceid, nd->nd_slotid, *highest_slotidp,
sep->sess_slots, NULL, NFSV4_SLOTS - 1);
if (error != 0) {
NFSUNLOCKSESSION(shp);
return (error);
}
if (cache_this != 0)
nd->nd_flag |= ND_SAVEREPLY;
/* Renew the lease. */
sep->sess_clp->lc_expiry = nfsrv_leaseexpiry();
nd->nd_clientid.qval = sep->sess_clp->lc_clientid.qval;
nd->nd_flag |= ND_IMPLIEDCLID;
/*
* If this session handles the backchannel, save the nd_xprt for this
* RPC, since this is the one being used.
* RFC-5661 specifies that the fore channel will be implicitly
* bound by a Sequence operation. However, since some NFSv4.1 clients
* erroneously assumed that the back channel would be implicitly
* bound as well, do the implicit binding unless a
* BindConnectiontoSession has already been done on the session.
*/
if (sep->sess_clp->lc_req.nr_client != NULL &&
sep->sess_cbsess.nfsess_xprt != nd->nd_xprt &&
(sep->sess_crflags & NFSV4CRSESS_CONNBACKCHAN) != 0 &&
(sep->sess_clp->lc_flags & LCL_DONEBINDCONN) == 0) {
NFSD_DEBUG(2,
"nfsrv_checksequence: implicit back channel bind\n");
savxprt = sep->sess_cbsess.nfsess_xprt;
SVC_ACQUIRE(nd->nd_xprt);
nd->nd_xprt->xp_p2 =
sep->sess_clp->lc_req.nr_client->cl_private;
nd->nd_xprt->xp_idletimeout = 0; /* Disable timeout. */
sep->sess_cbsess.nfsess_xprt = nd->nd_xprt;
if (savxprt != NULL)
SVC_RELEASE(savxprt);
}
*sflagsp = 0;
if (sep->sess_clp->lc_req.nr_client == NULL)
*sflagsp |= NFSV4SEQ_CBPATHDOWN;
NFSUNLOCKSESSION(shp);
if (error == NFSERR_EXPIRED) {
*sflagsp |= NFSV4SEQ_EXPIREDALLSTATEREVOKED;
error = 0;
} else if (error == NFSERR_ADMINREVOKED) {
*sflagsp |= NFSV4SEQ_ADMINSTATEREVOKED;
error = 0;
}
*highest_slotidp = *target_highest_slotidp = NFSV4_SLOTS - 1;
return (0);
}
/*
* Check/set reclaim complete for this session/clientid.
*/
int
nfsrv_checkreclaimcomplete(struct nfsrv_descript *nd)
{
struct nfsdsession *sep;
struct nfssessionhash *shp;
int error = 0;
shp = NFSSESSIONHASH(nd->nd_sessionid);
NFSLOCKSTATE();
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(nd->nd_sessionid);
if (sep == NULL) {
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
return (NFSERR_BADSESSION);
}
/* Check to see if reclaim complete has already happened. */
if ((sep->sess_clp->lc_flags & LCL_RECLAIMCOMPLETE) != 0)
error = NFSERR_COMPLETEALREADY;
else {
sep->sess_clp->lc_flags |= LCL_RECLAIMCOMPLETE;
nfsrv_markreclaim(sep->sess_clp);
}
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
return (error);
}
/*
* Cache the reply in a session slot.
*/
void
nfsrv_cache_session(uint8_t *sessionid, uint32_t slotid, int repstat,
struct mbuf **m)
{
struct nfsdsession *sep;
struct nfssessionhash *shp;
shp = NFSSESSIONHASH(sessionid);
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(sessionid);
if (sep == NULL) {
NFSUNLOCKSESSION(shp);
printf("nfsrv_cache_session: no session\n");
m_freem(*m);
return;
}
nfsv4_seqsess_cacherep(slotid, sep->sess_slots, repstat, m);
NFSUNLOCKSESSION(shp);
}
/*
* Search for a session that matches the sessionid.
*/
static struct nfsdsession *
nfsrv_findsession(uint8_t *sessionid)
{
struct nfsdsession *sep;
struct nfssessionhash *shp;
shp = NFSSESSIONHASH(sessionid);
LIST_FOREACH(sep, &shp->list, sess_hash) {
if (!NFSBCMP(sessionid, sep->sess_sessionid, NFSX_V4SESSIONID))
break;
}
return (sep);
}
/*
* Destroy a session.
*/
int
nfsrv_destroysession(struct nfsrv_descript *nd, uint8_t *sessionid)
{
int error, igotlock, samesess;
samesess = 0;
if (!NFSBCMP(sessionid, nd->nd_sessionid, NFSX_V4SESSIONID) &&
(nd->nd_flag & ND_HASSEQUENCE) != 0) {
samesess = 1;
if ((nd->nd_flag & ND_LASTOP) == 0)
return (NFSERR_BADSESSION);
}
/* Lock out other nfsd threads */
NFSLOCKV4ROOTMUTEX();
nfsv4_relref(&nfsv4rootfs_lock);
do {
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
NFSV4ROOTLOCKMUTEXPTR, NULL);
} while (igotlock == 0);
NFSUNLOCKV4ROOTMUTEX();
error = nfsrv_freesession(NULL, sessionid);
if (error == 0 && samesess != 0)
nd->nd_flag &= ~ND_HASSEQUENCE;
NFSLOCKV4ROOTMUTEX();
nfsv4_unlock(&nfsv4rootfs_lock, 1);
NFSUNLOCKV4ROOTMUTEX();
return (error);
}
/*
* Bind a connection to a session.
* For now, only certain variants are supported, since the current session
* structure can only handle a single backchannel entry, which will be
* applied to all connections if it is set.
*/
int
nfsrv_bindconnsess(struct nfsrv_descript *nd, uint8_t *sessionid, int *foreaftp)
{
struct nfssessionhash *shp;
struct nfsdsession *sep;
struct nfsclient *clp;
SVCXPRT *savxprt;
int error;
error = 0;
shp = NFSSESSIONHASH(sessionid);
NFSLOCKSTATE();
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(sessionid);
if (sep != NULL) {
clp = sep->sess_clp;
if (*foreaftp == NFSCDFC4_BACK ||
*foreaftp == NFSCDFC4_BACK_OR_BOTH ||
*foreaftp == NFSCDFC4_FORE_OR_BOTH) {
/* Try to set up a backchannel. */
if (clp->lc_req.nr_client == NULL) {
NFSD_DEBUG(2, "nfsrv_bindconnsess: acquire "
"backchannel\n");
clp->lc_req.nr_client = (struct __rpc_client *)
clnt_bck_create(nd->nd_xprt->xp_socket,
sep->sess_cbprogram, NFSV4_CBVERS);
}
if (clp->lc_req.nr_client != NULL) {
NFSD_DEBUG(2, "nfsrv_bindconnsess: set up "
"backchannel\n");
savxprt = sep->sess_cbsess.nfsess_xprt;
SVC_ACQUIRE(nd->nd_xprt);
nd->nd_xprt->xp_p2 =
clp->lc_req.nr_client->cl_private;
/* Disable idle timeout. */
nd->nd_xprt->xp_idletimeout = 0;
sep->sess_cbsess.nfsess_xprt = nd->nd_xprt;
if (savxprt != NULL)
SVC_RELEASE(savxprt);
sep->sess_crflags |= NFSV4CRSESS_CONNBACKCHAN;
clp->lc_flags |= LCL_DONEBINDCONN;
if (*foreaftp == NFSCDFS4_BACK)
*foreaftp = NFSCDFS4_BACK;
else
*foreaftp = NFSCDFS4_BOTH;
} else if (*foreaftp != NFSCDFC4_BACK) {
NFSD_DEBUG(2, "nfsrv_bindconnsess: can't set "
"up backchannel\n");
sep->sess_crflags &= ~NFSV4CRSESS_CONNBACKCHAN;
clp->lc_flags |= LCL_DONEBINDCONN;
*foreaftp = NFSCDFS4_FORE;
} else {
error = NFSERR_NOTSUPP;
printf("nfsrv_bindconnsess: Can't add "
"backchannel\n");
}
} else {
NFSD_DEBUG(2, "nfsrv_bindconnsess: Set forechannel\n");
clp->lc_flags |= LCL_DONEBINDCONN;
*foreaftp = NFSCDFS4_FORE;
}
} else
error = NFSERR_BADSESSION;
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
return (error);
}
/*
* Free up a session structure.
*/
static int
nfsrv_freesession(struct nfsdsession *sep, uint8_t *sessionid)
{
struct nfssessionhash *shp;
int i;
NFSLOCKSTATE();
if (sep == NULL) {
shp = NFSSESSIONHASH(sessionid);
NFSLOCKSESSION(shp);
sep = nfsrv_findsession(sessionid);
} else {
shp = NFSSESSIONHASH(sep->sess_sessionid);
NFSLOCKSESSION(shp);
}
if (sep != NULL) {
sep->sess_refcnt--;
if (sep->sess_refcnt > 0) {
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
return (NFSERR_BACKCHANBUSY);
}
LIST_REMOVE(sep, sess_hash);
LIST_REMOVE(sep, sess_list);
}
NFSUNLOCKSESSION(shp);
NFSUNLOCKSTATE();
if (sep == NULL)
return (NFSERR_BADSESSION);
for (i = 0; i < NFSV4_SLOTS; i++)
if (sep->sess_slots[i].nfssl_reply != NULL)
m_freem(sep->sess_slots[i].nfssl_reply);
if (sep->sess_cbsess.nfsess_xprt != NULL)
SVC_RELEASE(sep->sess_cbsess.nfsess_xprt);
free(sep, M_NFSDSESSION);
return (0);
}
/*
* Free a stateid.
* RFC5661 says that it should fail when there are associated opens, locks
* or delegations. Since stateids represent opens, I don't see how you can
* free an open stateid (it will be free'd when closed), so this function
* only works for lock stateids (freeing the lock_owner) or delegations.
*/
int
nfsrv_freestateid(struct nfsrv_descript *nd, nfsv4stateid_t *stateidp,
NFSPROC_T *p)
{
struct nfsclient *clp;
struct nfsstate *stp;
int error;
NFSLOCKSTATE();
/*
* Look up the stateid
*/
error = nfsrv_getclient((nfsquad_t)((u_quad_t)0), CLOPS_RENEW, &clp,
NULL, (nfsquad_t)((u_quad_t)0), 0, nd, p);
if (error == 0) {
/* First, check for a delegation. */
LIST_FOREACH(stp, &clp->lc_deleg, ls_list) {
if (!NFSBCMP(stp->ls_stateid.other, stateidp->other,
NFSX_STATEIDOTHER))
break;
}
if (stp != NULL) {
nfsrv_freedeleg(stp);
NFSUNLOCKSTATE();
return (error);
}
}
/* Not a delegation, try for a lock_owner. */
if (error == 0)
error = nfsrv_getstate(clp, stateidp, 0, &stp);
if (error == 0 && ((stp->ls_flags & (NFSLCK_OPEN | NFSLCK_DELEGREAD |
NFSLCK_DELEGWRITE)) != 0 || (stp->ls_flags & NFSLCK_LOCK) == 0))
/* Not a lock_owner stateid. */
error = NFSERR_LOCKSHELD;
if (error == 0 && !LIST_EMPTY(&stp->ls_lock))
error = NFSERR_LOCKSHELD;
if (error == 0)
nfsrv_freelockowner(stp, NULL, 0, p);
NFSUNLOCKSTATE();
return (error);
}
/*
* Test a stateid.
*/
int
nfsrv_teststateid(struct nfsrv_descript *nd, nfsv4stateid_t *stateidp,
NFSPROC_T *p)
{
struct nfsclient *clp;
struct nfsstate *stp;
int error;
NFSLOCKSTATE();
/*
* Look up the stateid
*/
error = nfsrv_getclient((nfsquad_t)((u_quad_t)0), CLOPS_RENEW, &clp,
NULL, (nfsquad_t)((u_quad_t)0), 0, nd, p);
if (error == 0)
error = nfsrv_getstate(clp, stateidp, 0, &stp);
if (error == 0 && stateidp->seqid != 0 &&
SEQ_LT(stateidp->seqid, stp->ls_stateid.seqid))
error = NFSERR_OLDSTATEID;
NFSUNLOCKSTATE();
return (error);
}
/*
* Generate the xdr for an NFSv4.1 CBSequence Operation.
*/
static int
nfsv4_setcbsequence(struct nfsrv_descript *nd, struct nfsclient *clp,
int dont_replycache, struct nfsdsession **sepp)
{
struct nfsdsession *sep;
uint32_t *tl, slotseq = 0;
int maxslot, slotpos;
uint8_t sessionid[NFSX_V4SESSIONID];
int error;
error = nfsv4_getcbsession(clp, sepp);
if (error != 0)
return (error);
sep = *sepp;
(void)nfsv4_sequencelookup(NULL, &sep->sess_cbsess, &slotpos, &maxslot,
&slotseq, sessionid);
KASSERT(maxslot >= 0, ("nfsv4_setcbsequence neg maxslot"));
/* Build the Sequence arguments. */
NFSM_BUILD(tl, uint32_t *, NFSX_V4SESSIONID + 5 * NFSX_UNSIGNED);
bcopy(sessionid, tl, NFSX_V4SESSIONID);
tl += NFSX_V4SESSIONID / NFSX_UNSIGNED;
nd->nd_slotseq = tl;
*tl++ = txdr_unsigned(slotseq);
*tl++ = txdr_unsigned(slotpos);
*tl++ = txdr_unsigned(maxslot);
if (dont_replycache == 0)
*tl++ = newnfs_true;
else
*tl++ = newnfs_false;
*tl = 0; /* No referring call list, for now. */
nd->nd_flag |= ND_HASSEQUENCE;
return (0);
}
/*
* Get a session for the callback.
*/
static int
nfsv4_getcbsession(struct nfsclient *clp, struct nfsdsession **sepp)
{
struct nfsdsession *sep;
NFSLOCKSTATE();
LIST_FOREACH(sep, &clp->lc_session, sess_list) {
if ((sep->sess_crflags & NFSV4CRSESS_CONNBACKCHAN) != 0)
break;
}
if (sep == NULL) {
NFSUNLOCKSTATE();
return (NFSERR_BADSESSION);
}
sep->sess_refcnt++;
*sepp = sep;
NFSUNLOCKSTATE();
return (0);
}
/*
* Free up all backchannel xprts. This needs to be done when the nfsd threads
* exit, since those transports will all be going away.
* This is only called after all the nfsd threads are done performing RPCs,
* so locking shouldn't be an issue.
*/
APPLESTATIC void
nfsrv_freeallbackchannel_xprts(void)
{
struct nfsdsession *sep;
struct nfsclient *clp;
SVCXPRT *xprt;
int i;
for (i = 0; i < nfsrv_clienthashsize; i++) {
LIST_FOREACH(clp, &nfsclienthash[i], lc_hash) {
LIST_FOREACH(sep, &clp->lc_session, sess_list) {
xprt = sep->sess_cbsess.nfsess_xprt;
sep->sess_cbsess.nfsess_xprt = NULL;
if (xprt != NULL)
SVC_RELEASE(xprt);
}
}
}
}
/*
* Do a layout commit. Actually just call nfsrv_updatemdsattr().
* I have no idea if the rest of these arguments will ever be useful?
*/
int
nfsrv_layoutcommit(struct nfsrv_descript *nd, vnode_t vp, int layouttype,
int hasnewoff, uint64_t newoff, uint64_t offset, uint64_t len,
int hasnewmtime, struct timespec *newmtimep, int reclaim,
nfsv4stateid_t *stateidp, int maxcnt, char *layp, int *hasnewsizep,
uint64_t *newsizep, struct ucred *cred, NFSPROC_T *p)
{
struct nfsvattr na;
int error;
error = nfsrv_updatemdsattr(vp, &na, p);
if (error == 0) {
*hasnewsizep = 1;
*newsizep = na.na_size;
}
return (error);
}
/*
* Try and get a layout.
*/
int
nfsrv_layoutget(struct nfsrv_descript *nd, vnode_t vp, struct nfsexstuff *exp,
int layouttype, int *iomode, uint64_t *offset, uint64_t *len,
uint64_t minlen, nfsv4stateid_t *stateidp, int maxcnt, int *retonclose,
int *layoutlenp, char *layp, struct ucred *cred, NFSPROC_T *p)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp;
char *devid;
fhandle_t fh, *dsfhp;
int error, mirrorcnt;
if (nfsrv_devidcnt == 0)
return (NFSERR_UNKNLAYOUTTYPE);
if (*offset != 0)
printf("nfsrv_layoutget: off=%ju len=%ju\n", (uintmax_t)*offset,
(uintmax_t)*len);
error = nfsvno_getfh(vp, &fh, p);
NFSD_DEBUG(4, "layoutget getfh=%d\n", error);
if (error != 0)
return (error);
/*
* For now, all layouts are for entire files.
* Only issue Read/Write layouts if requested for a non-readonly fs.
*/
if (NFSVNO_EXRDONLY(exp)) {
if (*iomode == NFSLAYOUTIOMODE_RW)
return (NFSERR_LAYOUTTRYLATER);
*iomode = NFSLAYOUTIOMODE_READ;
}
if (*iomode != NFSLAYOUTIOMODE_RW)
*iomode = NFSLAYOUTIOMODE_READ;
/*
* Check to see if a write layout can be issued for this file.
* This is used during mirror recovery to avoid RW layouts being
* issued for a file while it is being copied to the recovered
* mirror.
*/
if (*iomode == NFSLAYOUTIOMODE_RW && nfsrv_dontlayout(&fh) != 0)
return (NFSERR_LAYOUTTRYLATER);
*retonclose = 0;
*offset = 0;
*len = UINT64_MAX;
/* First, see if a layout already exists and return if found. */
lhyp = NFSLAYOUTHASH(&fh);
NFSLOCKLAYOUT(lhyp);
error = nfsrv_findlayout(&nd->nd_clientid, &fh, layouttype, p, &lyp);
NFSD_DEBUG(4, "layoutget findlay=%d\n", error);
/*
* Not sure if the seqid must be the same, so I won't check it.
*/
if (error == 0 && (stateidp->other[0] != lyp->lay_stateid.other[0] ||
stateidp->other[1] != lyp->lay_stateid.other[1] ||
stateidp->other[2] != lyp->lay_stateid.other[2])) {
if ((lyp->lay_flags & NFSLAY_CALLB) == 0) {
NFSUNLOCKLAYOUT(lhyp);
NFSD_DEBUG(1, "ret bad stateid\n");
return (NFSERR_BADSTATEID);
}
/*
* I believe we get here because there is a race between
* the client processing the CBLAYOUTRECALL and the layout
* being deleted here on the server.
* The client has now done a LayoutGet with a non-layout
* stateid, as it would when there is no layout.
* As such, free this layout and set error == NFSERR_BADSTATEID
* so the code below will create a new layout structure as
* would happen if no layout was found.
* "lyp" will be set before being used below, but set it NULL
* as a safety belt.
*/
nfsrv_freelayout(&lhyp->list, lyp);
lyp = NULL;
error = NFSERR_BADSTATEID;
}
if (error == 0) {
if (lyp->lay_layoutlen > maxcnt) {
NFSUNLOCKLAYOUT(lhyp);
NFSD_DEBUG(1, "ret layout too small\n");
return (NFSERR_TOOSMALL);
}
if (*iomode == NFSLAYOUTIOMODE_RW)
lyp->lay_flags |= NFSLAY_RW;
else
lyp->lay_flags |= NFSLAY_READ;
NFSBCOPY(lyp->lay_xdr, layp, lyp->lay_layoutlen);
*layoutlenp = lyp->lay_layoutlen;
if (++lyp->lay_stateid.seqid == 0)
lyp->lay_stateid.seqid = 1;
stateidp->seqid = lyp->lay_stateid.seqid;
NFSUNLOCKLAYOUT(lhyp);
NFSD_DEBUG(4, "ret fnd layout\n");
return (0);
}
NFSUNLOCKLAYOUT(lhyp);
/* Find the device id and file handle. */
dsfhp = malloc(sizeof(fhandle_t) * NFSDEV_MAXMIRRORS, M_TEMP, M_WAITOK);
devid = malloc(NFSX_V4DEVICEID * NFSDEV_MAXMIRRORS, M_TEMP, M_WAITOK);
error = nfsrv_dsgetdevandfh(vp, p, &mirrorcnt, dsfhp, devid);
NFSD_DEBUG(4, "layoutget devandfh=%d\n", error);
if (error == 0) {
if (layouttype == NFSLAYOUT_NFSV4_1_FILES) {
if (NFSX_V4FILELAYOUT > maxcnt)
error = NFSERR_TOOSMALL;
else
lyp = nfsrv_filelayout(nd, *iomode, &fh, dsfhp,
devid, vp->v_mount->mnt_stat.f_fsid);
} else {
if (NFSX_V4FLEXLAYOUT(mirrorcnt) > maxcnt)
error = NFSERR_TOOSMALL;
else
lyp = nfsrv_flexlayout(nd, *iomode, mirrorcnt,
&fh, dsfhp, devid,
vp->v_mount->mnt_stat.f_fsid);
}
}
free(dsfhp, M_TEMP);
free(devid, M_TEMP);
if (error != 0)
return (error);
/*
* Now, add this layout to the list.
*/
error = nfsrv_addlayout(nd, &lyp, stateidp, layp, layoutlenp, p);
NFSD_DEBUG(4, "layoutget addl=%d\n", error);
/*
* The lyp will be set to NULL by nfsrv_addlayout() if it
* linked the new structure into the lists.
*/
free(lyp, M_NFSDSTATE);
return (error);
}
/*
* Generate a File Layout.
*/
static struct nfslayout *
nfsrv_filelayout(struct nfsrv_descript *nd, int iomode, fhandle_t *fhp,
fhandle_t *dsfhp, char *devid, fsid_t fs)
{
uint32_t *tl;
struct nfslayout *lyp;
uint64_t pattern_offset;
lyp = malloc(sizeof(struct nfslayout) + NFSX_V4FILELAYOUT, M_NFSDSTATE,
M_WAITOK | M_ZERO);
lyp->lay_type = NFSLAYOUT_NFSV4_1_FILES;
if (iomode == NFSLAYOUTIOMODE_RW)
lyp->lay_flags = NFSLAY_RW;
else
lyp->lay_flags = NFSLAY_READ;
NFSBCOPY(fhp, &lyp->lay_fh, sizeof(*fhp));
lyp->lay_clientid.qval = nd->nd_clientid.qval;
lyp->lay_fsid = fs;
/* Fill in the xdr for the files layout. */
tl = (uint32_t *)lyp->lay_xdr;
NFSBCOPY(devid, tl, NFSX_V4DEVICEID); /* Device ID. */
tl += (NFSX_V4DEVICEID / NFSX_UNSIGNED);
/*
* Make the stripe size as many 64K blocks as will fit in the stripe
* mask. Since there is only one stripe, the stripe size doesn't really
* matter, except that the Linux client will only handle an exact
* multiple of their PAGE_SIZE (usually 4K). I chose 64K as a value
* that should cover most/all arches w.r.t. PAGE_SIZE.
*/
*tl++ = txdr_unsigned(NFSFLAYUTIL_STRIPE_MASK & ~0xffff);
*tl++ = 0; /* 1st stripe index. */
pattern_offset = 0;
txdr_hyper(pattern_offset, tl); tl += 2; /* Pattern offset. */
*tl++ = txdr_unsigned(1); /* 1 file handle. */
*tl++ = txdr_unsigned(NFSX_V4PNFSFH);
NFSBCOPY(dsfhp, tl, sizeof(*dsfhp));
lyp->lay_layoutlen = NFSX_V4FILELAYOUT;
return (lyp);
}
#define FLEX_OWNERID "999"
#define FLEX_UID0 "0"
/*
* Generate a Flex File Layout.
* The FLEX_OWNERID can be any string of 3 decimal digits. Although this
* string goes on the wire, it isn't supposed to be used by the client,
* since this server uses tight coupling.
* Although not recommended by the spec., if vfs.nfsd.flexlinuxhack=1 use
* a string of "0". This works around the Linux Flex File Layout driver bug
* which uses the synthetic uid/gid strings for the "tightly coupled" case.
*/
static struct nfslayout *
nfsrv_flexlayout(struct nfsrv_descript *nd, int iomode, int mirrorcnt,
fhandle_t *fhp, fhandle_t *dsfhp, char *devid, fsid_t fs)
{
uint32_t *tl;
struct nfslayout *lyp;
uint64_t lenval;
int i;
lyp = malloc(sizeof(struct nfslayout) + NFSX_V4FLEXLAYOUT(mirrorcnt),
M_NFSDSTATE, M_WAITOK | M_ZERO);
lyp->lay_type = NFSLAYOUT_FLEXFILE;
if (iomode == NFSLAYOUTIOMODE_RW)
lyp->lay_flags = NFSLAY_RW;
else
lyp->lay_flags = NFSLAY_READ;
NFSBCOPY(fhp, &lyp->lay_fh, sizeof(*fhp));
lyp->lay_clientid.qval = nd->nd_clientid.qval;
lyp->lay_fsid = fs;
lyp->lay_mirrorcnt = mirrorcnt;
/* Fill in the xdr for the files layout. */
tl = (uint32_t *)lyp->lay_xdr;
lenval = 0;
txdr_hyper(lenval, tl); tl += 2; /* Stripe unit. */
*tl++ = txdr_unsigned(mirrorcnt); /* # of mirrors. */
for (i = 0; i < mirrorcnt; i++) {
*tl++ = txdr_unsigned(1); /* One stripe. */
NFSBCOPY(devid, tl, NFSX_V4DEVICEID); /* Device ID. */
tl += (NFSX_V4DEVICEID / NFSX_UNSIGNED);
devid += NFSX_V4DEVICEID;
*tl++ = txdr_unsigned(1); /* Efficiency. */
*tl++ = 0; /* Proxy Stateid. */
*tl++ = 0x55555555;
*tl++ = 0x55555555;
*tl++ = 0x55555555;
*tl++ = txdr_unsigned(1); /* 1 file handle. */
*tl++ = txdr_unsigned(NFSX_V4PNFSFH);
NFSBCOPY(dsfhp, tl, sizeof(*dsfhp));
tl += (NFSM_RNDUP(NFSX_V4PNFSFH) / NFSX_UNSIGNED);
dsfhp++;
if (nfsrv_flexlinuxhack != 0) {
*tl++ = txdr_unsigned(strlen(FLEX_UID0));
*tl = 0; /* 0 pad string. */
NFSBCOPY(FLEX_UID0, tl++, strlen(FLEX_UID0));
*tl++ = txdr_unsigned(strlen(FLEX_UID0));
*tl = 0; /* 0 pad string. */
NFSBCOPY(FLEX_UID0, tl++, strlen(FLEX_UID0));
} else {
*tl++ = txdr_unsigned(strlen(FLEX_OWNERID));
NFSBCOPY(FLEX_OWNERID, tl++, NFSX_UNSIGNED);
*tl++ = txdr_unsigned(strlen(FLEX_OWNERID));
NFSBCOPY(FLEX_OWNERID, tl++, NFSX_UNSIGNED);
}
}
*tl++ = txdr_unsigned(0); /* ff_flags. */
*tl = txdr_unsigned(60); /* Status interval hint. */
lyp->lay_layoutlen = NFSX_V4FLEXLAYOUT(mirrorcnt);
return (lyp);
}
/*
* Parse and process Flex File errors returned via LayoutReturn.
*/
static void
nfsrv_flexlayouterr(struct nfsrv_descript *nd, uint32_t *layp, int maxcnt,
NFSPROC_T *p)
{
uint32_t *tl;
int cnt, errcnt, i, j, opnum, stat;
char devid[NFSX_V4DEVICEID];
tl = layp;
cnt = fxdr_unsigned(int, *tl++);
NFSD_DEBUG(4, "flexlayouterr cnt=%d\n", cnt);
for (i = 0; i < cnt; i++) {
/* Skip offset, length and stateid for now. */
tl += (4 + NFSX_STATEID / NFSX_UNSIGNED);
errcnt = fxdr_unsigned(int, *tl++);
NFSD_DEBUG(4, "flexlayouterr errcnt=%d\n", errcnt);
for (j = 0; j < errcnt; j++) {
NFSBCOPY(tl, devid, NFSX_V4DEVICEID);
tl += (NFSX_V4DEVICEID / NFSX_UNSIGNED);
stat = fxdr_unsigned(int, *tl++);
opnum = fxdr_unsigned(int, *tl++);
NFSD_DEBUG(4, "flexlayouterr op=%d stat=%d\n", opnum,
stat);
/*
* Except for NFSERR_ACCES errors, disable the mirror.
*/
if (stat != NFSERR_ACCES)
nfsrv_delds(devid, p);
}
}
}
/*
* This function removes all flex file layouts which has a mirror with
* a device id that matches the argument.
* Called when the DS represented by the device id has failed.
*/
void
nfsrv_flexmirrordel(char *devid, NFSPROC_T *p)
{
uint32_t *tl;
struct nfslayout *lyp, *nlyp;
struct nfslayouthash *lhyp;
struct nfslayouthead loclyp;
int i, j;
NFSD_DEBUG(4, "flexmirrordel\n");
/* Move all layouts found onto a local list. */
TAILQ_INIT(&loclyp);
for (i = 0; i < nfsrv_layouthashsize; i++) {
lhyp = &nfslayouthash[i];
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp) {
if (lyp->lay_type == NFSLAYOUT_FLEXFILE &&
lyp->lay_mirrorcnt > 1) {
NFSD_DEBUG(4, "possible match\n");
tl = lyp->lay_xdr;
tl += 3;
for (j = 0; j < lyp->lay_mirrorcnt; j++) {
tl++;
if (NFSBCMP(devid, tl, NFSX_V4DEVICEID)
== 0) {
/* Found one. */
NFSD_DEBUG(4, "fnd one\n");
TAILQ_REMOVE(&lhyp->list, lyp,
lay_list);
TAILQ_INSERT_HEAD(&loclyp, lyp,
lay_list);
break;
}
tl += (NFSX_V4DEVICEID / NFSX_UNSIGNED +
NFSM_RNDUP(NFSX_V4PNFSFH) /
NFSX_UNSIGNED + 11 * NFSX_UNSIGNED);
}
}
}
NFSUNLOCKLAYOUT(lhyp);
}
/* Now, try to do a Layout recall for each one found. */
TAILQ_FOREACH_SAFE(lyp, &loclyp, lay_list, nlyp) {
NFSD_DEBUG(4, "do layout recall\n");
/*
* The layout stateid.seqid needs to be incremented
* before doing a LAYOUT_RECALL callback.
* Set lay_trycnt to UINT16_MAX so it won't set up a retry.
*/
if (++lyp->lay_stateid.seqid == 0)
lyp->lay_stateid.seqid = 1;
lyp->lay_trycnt = UINT16_MAX;
nfsrv_recalllayout(lyp->lay_clientid, &lyp->lay_stateid,
&lyp->lay_fh, lyp, &loclyp, lyp->lay_type, p);
nfsrv_freelayout(&loclyp, lyp);
}
}
/*
* Do a recall callback to the client for this layout.
*/
static int
nfsrv_recalllayout(nfsquad_t clid, nfsv4stateid_t *stateidp, fhandle_t *fhp,
struct nfslayout *lyp, struct nfslayouthead *lyheadp, int laytype,
NFSPROC_T *p)
{
struct nfsclient *clp;
int error;
NFSD_DEBUG(4, "nfsrv_recalllayout\n");
error = nfsrv_getclient(clid, 0, &clp, NULL, (nfsquad_t)((u_quad_t)0),
0, NULL, p);
NFSD_DEBUG(4, "aft nfsrv_getclient=%d\n", error);
if (error != 0)
return (error);
if ((clp->lc_flags & LCL_NFSV41) != 0) {
error = nfsrv_docallback(clp, NFSV4OP_CBLAYOUTRECALL,
stateidp, 0, fhp, NULL, NULL, laytype, p);
/* If lyp != NULL, handle an error return here. */
if (error != 0 && lyp != NULL) {
NFSDRECALLLOCK();
if (error == NFSERR_NOMATCHLAYOUT) {
/*
* Mark it returned, since there is no layout.
*/
if ((lyp->lay_flags & NFSLAY_RECALL) != 0) {
lyp->lay_flags |= NFSLAY_RETURNED;
wakeup(lyp);
}
NFSDRECALLUNLOCK();
} else if ((lyp->lay_flags & NFSLAY_RETURNED) == 0 &&
lyp->lay_trycnt < 10) {
/*
* Clear recall, so it can be tried again
* and put it at the end of the list to
* delay the retry a little longer.
*/
lyp->lay_flags &= ~NFSLAY_RECALL;
lyp->lay_trycnt++;
TAILQ_REMOVE(lyheadp, lyp, lay_list);
TAILQ_INSERT_TAIL(lyheadp, lyp, lay_list);
NFSDRECALLUNLOCK();
nfs_catnap(PVFS, 0, "nfsrclay");
} else
NFSDRECALLUNLOCK();
}
} else
printf("nfsrv_recalllayout: clp not NFSv4.1\n");
return (error);
}
/*
* Find a layout to recall when we exceed our high water mark.
*/
void
nfsrv_recalloldlayout(NFSPROC_T *p)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp;
nfsquad_t clientid;
nfsv4stateid_t stateid;
fhandle_t fh;
int error, laytype, ret;
lhyp = &nfslayouthash[arc4random() % nfsrv_layouthashsize];
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_REVERSE(lyp, &lhyp->list, nfslayouthead, lay_list) {
if ((lyp->lay_flags & NFSLAY_CALLB) == 0) {
lyp->lay_flags |= NFSLAY_CALLB;
/*
* The layout stateid.seqid needs to be incremented
* before doing a LAYOUT_RECALL callback.
*/
if (++lyp->lay_stateid.seqid == 0)
lyp->lay_stateid.seqid = 1;
clientid = lyp->lay_clientid;
stateid = lyp->lay_stateid;
fh = lyp->lay_fh;
laytype = lyp->lay_type;
break;
}
}
NFSUNLOCKLAYOUT(lhyp);
if (lyp != NULL) {
error = nfsrv_recalllayout(clientid, &stateid, &fh, NULL, NULL,
laytype, p);
if (error != 0 && error != NFSERR_NOMATCHLAYOUT)
printf("recallold=%d\n", error);
if (error != 0) {
NFSLOCKLAYOUT(lhyp);
/*
* Since the hash list was unlocked, we need to
* find it again.
*/
ret = nfsrv_findlayout(&clientid, &fh, laytype, p,
&lyp);
if (ret == 0 &&
(lyp->lay_flags & NFSLAY_CALLB) != 0 &&
lyp->lay_stateid.other[0] == stateid.other[0] &&
lyp->lay_stateid.other[1] == stateid.other[1] &&
lyp->lay_stateid.other[2] == stateid.other[2]) {
/*
* The client no longer knows this layout, so
* it can be free'd now.
*/
if (error == NFSERR_NOMATCHLAYOUT)
nfsrv_freelayout(&lhyp->list, lyp);
else {
/*
* Leave it to be tried later by
* clearing NFSLAY_CALLB and moving
* it to the head of the list, so it
* won't be tried again for a while.
*/
lyp->lay_flags &= ~NFSLAY_CALLB;
TAILQ_REMOVE(&lhyp->list, lyp,
lay_list);
TAILQ_INSERT_HEAD(&lhyp->list, lyp,
lay_list);
}
}
NFSUNLOCKLAYOUT(lhyp);
}
}
}
/*
* Try and return layout(s).
*/
int
nfsrv_layoutreturn(struct nfsrv_descript *nd, vnode_t vp,
int layouttype, int iomode, uint64_t offset, uint64_t len, int reclaim,
int kind, nfsv4stateid_t *stateidp, int maxcnt, uint32_t *layp, int *fndp,
struct ucred *cred, NFSPROC_T *p)
{
struct nfsvattr na;
struct nfslayouthash *lhyp;
struct nfslayout *lyp;
fhandle_t fh;
int error = 0;
*fndp = 0;
if (kind == NFSV4LAYOUTRET_FILE) {
error = nfsvno_getfh(vp, &fh, p);
if (error == 0) {
error = nfsrv_updatemdsattr(vp, &na, p);
if (error != 0)
printf("nfsrv_layoutreturn: updatemdsattr"
" failed=%d\n", error);
}
if (error == 0) {
if (reclaim == newnfs_true) {
error = nfsrv_checkgrace(NULL, NULL,
NFSLCK_RECLAIM);
if (error != NFSERR_NOGRACE)
error = 0;
return (error);
}
lhyp = NFSLAYOUTHASH(&fh);
NFSDRECALLLOCK();
NFSLOCKLAYOUT(lhyp);
error = nfsrv_findlayout(&nd->nd_clientid, &fh,
layouttype, p, &lyp);
NFSD_DEBUG(4, "layoutret findlay=%d\n", error);
if (error == 0 &&
stateidp->other[0] == lyp->lay_stateid.other[0] &&
stateidp->other[1] == lyp->lay_stateid.other[1] &&
stateidp->other[2] == lyp->lay_stateid.other[2]) {
NFSD_DEBUG(4, "nfsrv_layoutreturn: stateid %d"
" %x %x %x laystateid %d %x %x %x"
" off=%ju len=%ju flgs=0x%x\n",
stateidp->seqid, stateidp->other[0],
stateidp->other[1], stateidp->other[2],
lyp->lay_stateid.seqid,
lyp->lay_stateid.other[0],
lyp->lay_stateid.other[1],
lyp->lay_stateid.other[2],
(uintmax_t)offset, (uintmax_t)len,
lyp->lay_flags);
if (++lyp->lay_stateid.seqid == 0)
lyp->lay_stateid.seqid = 1;
stateidp->seqid = lyp->lay_stateid.seqid;
if (offset == 0 && len == UINT64_MAX) {
if ((iomode & NFSLAYOUTIOMODE_READ) !=
0)
lyp->lay_flags &= ~NFSLAY_READ;
if ((iomode & NFSLAYOUTIOMODE_RW) != 0)
lyp->lay_flags &= ~NFSLAY_RW;
if ((lyp->lay_flags & (NFSLAY_READ |
NFSLAY_RW)) == 0)
nfsrv_freelayout(&lhyp->list,
lyp);
else
*fndp = 1;
} else
*fndp = 1;
}
NFSUNLOCKLAYOUT(lhyp);
/* Search the nfsrv_recalllist for a match. */
TAILQ_FOREACH(lyp, &nfsrv_recalllisthead, lay_list) {
if (NFSBCMP(&lyp->lay_fh, &fh,
sizeof(fh)) == 0 &&
lyp->lay_clientid.qval ==
nd->nd_clientid.qval &&
stateidp->other[0] ==
lyp->lay_stateid.other[0] &&
stateidp->other[1] ==
lyp->lay_stateid.other[1] &&
stateidp->other[2] ==
lyp->lay_stateid.other[2]) {
lyp->lay_flags |= NFSLAY_RETURNED;
wakeup(lyp);
error = 0;
}
}
NFSDRECALLUNLOCK();
}
if (layouttype == NFSLAYOUT_FLEXFILE)
nfsrv_flexlayouterr(nd, layp, maxcnt, p);
} else if (kind == NFSV4LAYOUTRET_FSID)
nfsrv_freelayouts(&nd->nd_clientid,
&vp->v_mount->mnt_stat.f_fsid, layouttype, iomode);
else if (kind == NFSV4LAYOUTRET_ALL)
nfsrv_freelayouts(&nd->nd_clientid, NULL, layouttype, iomode);
else
error = NFSERR_INVAL;
if (error == -1)
error = 0;
return (error);
}
/*
* Look for an existing layout.
*/
static int
nfsrv_findlayout(nfsquad_t *clientidp, fhandle_t *fhp, int laytype,
NFSPROC_T *p, struct nfslayout **lypp)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp;
int ret;
*lypp = NULL;
ret = 0;
lhyp = NFSLAYOUTHASH(fhp);
TAILQ_FOREACH(lyp, &lhyp->list, lay_list) {
if (NFSBCMP(&lyp->lay_fh, fhp, sizeof(*fhp)) == 0 &&
lyp->lay_clientid.qval == clientidp->qval &&
lyp->lay_type == laytype)
break;
}
if (lyp != NULL)
*lypp = lyp;
else
ret = -1;
return (ret);
}
/*
* Add the new layout, as required.
*/
static int
nfsrv_addlayout(struct nfsrv_descript *nd, struct nfslayout **lypp,
nfsv4stateid_t *stateidp, char *layp, int *layoutlenp, NFSPROC_T *p)
{
struct nfsclient *clp;
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
fhandle_t *fhp;
int error;
KASSERT((nd->nd_flag & ND_IMPLIEDCLID) != 0,
("nfsrv_layoutget: no nd_clientid\n"));
lyp = *lypp;
fhp = &lyp->lay_fh;
NFSLOCKSTATE();
error = nfsrv_getclient((nfsquad_t)((u_quad_t)0), CLOPS_RENEW, &clp,
NULL, (nfsquad_t)((u_quad_t)0), 0, nd, p);
if (error != 0) {
NFSUNLOCKSTATE();
return (error);
}
lyp->lay_stateid.seqid = stateidp->seqid = 1;
lyp->lay_stateid.other[0] = stateidp->other[0] =
clp->lc_clientid.lval[0];
lyp->lay_stateid.other[1] = stateidp->other[1] =
clp->lc_clientid.lval[1];
lyp->lay_stateid.other[2] = stateidp->other[2] =
nfsrv_nextstateindex(clp);
NFSUNLOCKSTATE();
lhyp = NFSLAYOUTHASH(fhp);
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH(nlyp, &lhyp->list, lay_list) {
if (NFSBCMP(&nlyp->lay_fh, fhp, sizeof(*fhp)) == 0 &&
nlyp->lay_clientid.qval == nd->nd_clientid.qval)
break;
}
if (nlyp != NULL) {
/* A layout already exists, so use it. */
nlyp->lay_flags |= (lyp->lay_flags & (NFSLAY_READ | NFSLAY_RW));
NFSBCOPY(nlyp->lay_xdr, layp, nlyp->lay_layoutlen);
*layoutlenp = nlyp->lay_layoutlen;
if (++nlyp->lay_stateid.seqid == 0)
nlyp->lay_stateid.seqid = 1;
stateidp->seqid = nlyp->lay_stateid.seqid;
stateidp->other[0] = nlyp->lay_stateid.other[0];
stateidp->other[1] = nlyp->lay_stateid.other[1];
stateidp->other[2] = nlyp->lay_stateid.other[2];
NFSUNLOCKLAYOUT(lhyp);
return (0);
}
/* Insert the new layout in the lists. */
*lypp = NULL;
atomic_add_int(&nfsrv_layoutcnt, 1);
NFSBCOPY(lyp->lay_xdr, layp, lyp->lay_layoutlen);
*layoutlenp = lyp->lay_layoutlen;
TAILQ_INSERT_HEAD(&lhyp->list, lyp, lay_list);
NFSUNLOCKLAYOUT(lhyp);
return (0);
}
/*
* Get the devinfo for a deviceid.
*/
int
nfsrv_getdevinfo(char *devid, int layouttype, uint32_t *maxcnt,
uint32_t *notify, int *devaddrlen, char **devaddr)
{
struct nfsdevice *ds;
if ((layouttype != NFSLAYOUT_NFSV4_1_FILES && layouttype !=
NFSLAYOUT_FLEXFILE) ||
(nfsrv_maxpnfsmirror > 1 && layouttype == NFSLAYOUT_NFSV4_1_FILES))
return (NFSERR_UNKNLAYOUTTYPE);
/*
* Now, search for the device id. Note that the structures won't go
* away, but the order changes in the list. As such, the lock only
* needs to be held during the search through the list.
*/
NFSDDSLOCK();
TAILQ_FOREACH(ds, &nfsrv_devidhead, nfsdev_list) {
if (NFSBCMP(devid, ds->nfsdev_deviceid, NFSX_V4DEVICEID) == 0 &&
ds->nfsdev_nmp != NULL)
break;
}
NFSDDSUNLOCK();
if (ds == NULL)
return (NFSERR_NOENT);
/* If the correct nfsdev_XXXXaddrlen is > 0, we have the device info. */
*devaddrlen = 0;
if (layouttype == NFSLAYOUT_NFSV4_1_FILES) {
*devaddrlen = ds->nfsdev_fileaddrlen;
*devaddr = ds->nfsdev_fileaddr;
} else if (layouttype == NFSLAYOUT_FLEXFILE) {
*devaddrlen = ds->nfsdev_flexaddrlen;
*devaddr = ds->nfsdev_flexaddr;
}
if (*devaddrlen == 0)
return (NFSERR_UNKNLAYOUTTYPE);
/*
* The XDR overhead is 3 unsigned values: layout_type,
* length_of_address and notify bitmap.
* If the notify array is changed to not all zeros, the
* count of unsigned values must be increased.
*/
if (*maxcnt > 0 && *maxcnt < NFSM_RNDUP(*devaddrlen) +
3 * NFSX_UNSIGNED) {
*maxcnt = NFSM_RNDUP(*devaddrlen) + 3 * NFSX_UNSIGNED;
return (NFSERR_TOOSMALL);
}
return (0);
}
/*
* Free a list of layout state structures.
*/
static void
nfsrv_freelayoutlist(nfsquad_t clientid)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
int i;
for (i = 0; i < nfsrv_layouthashsize; i++) {
lhyp = &nfslayouthash[i];
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp) {
if (lyp->lay_clientid.qval == clientid.qval)
nfsrv_freelayout(&lhyp->list, lyp);
}
NFSUNLOCKLAYOUT(lhyp);
}
}
/*
* Free up a layout.
*/
static void
nfsrv_freelayout(struct nfslayouthead *lhp, struct nfslayout *lyp)
{
NFSD_DEBUG(4, "Freelayout=%p\n", lyp);
atomic_add_int(&nfsrv_layoutcnt, -1);
TAILQ_REMOVE(lhp, lyp, lay_list);
free(lyp, M_NFSDSTATE);
}
/*
* Free up a device id.
*/
void
nfsrv_freeonedevid(struct nfsdevice *ds)
{
int i;
atomic_add_int(&nfsrv_devidcnt, -1);
vrele(ds->nfsdev_dvp);
for (i = 0; i < nfsrv_dsdirsize; i++)
if (ds->nfsdev_dsdir[i] != NULL)
vrele(ds->nfsdev_dsdir[i]);
free(ds->nfsdev_fileaddr, M_NFSDSTATE);
free(ds->nfsdev_flexaddr, M_NFSDSTATE);
free(ds->nfsdev_host, M_NFSDSTATE);
free(ds, M_NFSDSTATE);
}
/*
* Free up a device id and its mirrors.
*/
static void
nfsrv_freedevid(struct nfsdevice *ds)
{
TAILQ_REMOVE(&nfsrv_devidhead, ds, nfsdev_list);
nfsrv_freeonedevid(ds);
}
/*
* Free all layouts and device ids.
* Done when the nfsd threads are shut down since there may be a new
* modified device id list created when the nfsd is restarted.
*/
void
nfsrv_freealllayoutsanddevids(void)
{
struct nfsdontlist *mrp, *nmrp;
struct nfslayout *lyp, *nlyp;
/* Get rid of the deviceid structures. */
nfsrv_freealldevids();
TAILQ_INIT(&nfsrv_devidhead);
nfsrv_devidcnt = 0;
/* Get rid of all layouts. */
nfsrv_freealllayouts();
/* Get rid of any nfsdontlist entries. */
LIST_FOREACH_SAFE(mrp, &nfsrv_dontlisthead, nfsmr_list, nmrp)
free(mrp, M_NFSDSTATE);
LIST_INIT(&nfsrv_dontlisthead);
nfsrv_dontlistlen = 0;
/* Free layouts in the recall list. */
TAILQ_FOREACH_SAFE(lyp, &nfsrv_recalllisthead, lay_list, nlyp)
nfsrv_freelayout(&nfsrv_recalllisthead, lyp);
TAILQ_INIT(&nfsrv_recalllisthead);
}
/*
* Free layouts that match the arguments.
*/
static void
nfsrv_freelayouts(nfsquad_t *clid, fsid_t *fs, int laytype, int iomode)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
int i;
for (i = 0; i < nfsrv_layouthashsize; i++) {
lhyp = &nfslayouthash[i];
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp) {
if (clid->qval != lyp->lay_clientid.qval)
continue;
if (fs != NULL && (fs->val[0] != lyp->lay_fsid.val[0] ||
fs->val[1] != lyp->lay_fsid.val[1]))
continue;
if (laytype != lyp->lay_type)
continue;
if ((iomode & NFSLAYOUTIOMODE_READ) != 0)
lyp->lay_flags &= ~NFSLAY_READ;
if ((iomode & NFSLAYOUTIOMODE_RW) != 0)
lyp->lay_flags &= ~NFSLAY_RW;
if ((lyp->lay_flags & (NFSLAY_READ | NFSLAY_RW)) == 0)
nfsrv_freelayout(&lhyp->list, lyp);
}
NFSUNLOCKLAYOUT(lhyp);
}
}
/*
* Free all layouts for the argument file.
*/
void
nfsrv_freefilelayouts(fhandle_t *fhp)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
lhyp = NFSLAYOUTHASH(fhp);
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp) {
if (NFSBCMP(&lyp->lay_fh, fhp, sizeof(*fhp)) == 0)
nfsrv_freelayout(&lhyp->list, lyp);
}
NFSUNLOCKLAYOUT(lhyp);
}
/*
* Free all layouts.
*/
static void
nfsrv_freealllayouts(void)
{
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
int i;
for (i = 0; i < nfsrv_layouthashsize; i++) {
lhyp = &nfslayouthash[i];
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp)
nfsrv_freelayout(&lhyp->list, lyp);
NFSUNLOCKLAYOUT(lhyp);
}
}
/*
* Look up the mount path for the DS server.
*/
static int
nfsrv_setdsserver(char *dspathp, NFSPROC_T *p, struct nfsdevice **dsp)
{
struct nameidata nd;
struct nfsdevice *ds;
int error, i;
char *dsdirpath;
size_t dsdirsize;
NFSD_DEBUG(4, "setdssrv path=%s\n", dspathp);
*dsp = NULL;
NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE,
dspathp, p);
error = namei(&nd);
NFSD_DEBUG(4, "lookup=%d\n", error);
if (error != 0)
return (error);
if (nd.ni_vp->v_type != VDIR) {
vput(nd.ni_vp);
NFSD_DEBUG(4, "dspath not dir\n");
return (ENOTDIR);
}
if (strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, "nfs") != 0) {
vput(nd.ni_vp);
NFSD_DEBUG(4, "dspath not an NFS mount\n");
return (ENXIO);
}
/*
* Allocate a DS server structure with the NFS mounted directory
* vnode reference counted, so that a non-forced dismount will
* fail with EBUSY.
*/
*dsp = ds = malloc(sizeof(*ds) + nfsrv_dsdirsize * sizeof(vnode_t),
M_NFSDSTATE, M_WAITOK | M_ZERO);
ds->nfsdev_dvp = nd.ni_vp;
ds->nfsdev_nmp = VFSTONFS(nd.ni_vp->v_mount);
NFSVOPUNLOCK(nd.ni_vp, 0);
dsdirsize = strlen(dspathp) + 16;
dsdirpath = malloc(dsdirsize, M_TEMP, M_WAITOK);
/* Now, create the DS directory structures. */
for (i = 0; i < nfsrv_dsdirsize; i++) {
snprintf(dsdirpath, dsdirsize, "%s/ds%d", dspathp, i);
NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
UIO_SYSSPACE, dsdirpath, p);
error = namei(&nd);
NFSD_DEBUG(4, "dsdirpath=%s lookup=%d\n", dsdirpath, error);
if (error != 0)
break;
if (nd.ni_vp->v_type != VDIR) {
vput(nd.ni_vp);
error = ENOTDIR;
NFSD_DEBUG(4, "dsdirpath not a VDIR\n");
break;
}
if (strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, "nfs") != 0) {
vput(nd.ni_vp);
error = ENXIO;
NFSD_DEBUG(4, "dsdirpath not an NFS mount\n");
break;
}
ds->nfsdev_dsdir[i] = nd.ni_vp;
NFSVOPUNLOCK(nd.ni_vp, 0);
}
free(dsdirpath, M_TEMP);
TAILQ_INSERT_TAIL(&nfsrv_devidhead, ds, nfsdev_list);
atomic_add_int(&nfsrv_devidcnt, 1);
return (error);
}
/*
* Look up the mount path for the DS server and delete it.
*/
int
nfsrv_deldsserver(char *dspathp, NFSPROC_T *p)
{
struct mount *mp;
struct nfsmount *nmp;
struct nfsdevice *ds;
int error;
NFSD_DEBUG(4, "deldssrv path=%s\n", dspathp);
/*
* Search for the path in the mount list. Avoid looking the path
* up, since this mount point may be hung, with associated locked
* vnodes, etc.
* Set NFSMNTP_CANCELRPCS so that any forced dismount will be blocked
* until this completes.
* As noted in the man page, this should be done before any forced
* dismount on the mount point, but at least the handshake on
* NFSMNTP_CANCELRPCS should make it safe.
*/
error = 0;
ds = NULL;
nmp = NULL;
mtx_lock(&mountlist_mtx);
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (strcmp(mp->mnt_stat.f_mntonname, dspathp) == 0 &&
strcmp(mp->mnt_stat.f_fstypename, "nfs") == 0 &&
mp->mnt_data != NULL) {
nmp = VFSTONFS(mp);
NFSLOCKMNT(nmp);
if ((nmp->nm_privflag & (NFSMNTP_FORCEDISM |
NFSMNTP_CANCELRPCS)) == 0) {
nmp->nm_privflag |= NFSMNTP_CANCELRPCS;
NFSUNLOCKMNT(nmp);
} else {
NFSUNLOCKMNT(nmp);
nmp = NULL;
}
break;
}
}
mtx_unlock(&mountlist_mtx);
if (nmp != NULL) {
ds = nfsrv_deldsnmp(nmp, p);
NFSD_DEBUG(4, "deldsnmp=%p\n", ds);
if (ds != NULL) {
nfsrv_killrpcs(nmp);
NFSD_DEBUG(4, "aft killrpcs\n");
} else
error = ENXIO;
NFSLOCKMNT(nmp);
nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS;
wakeup(nmp);
NFSUNLOCKMNT(nmp);
} else
error = EINVAL;
return (error);
}
/*
* Search for and remove a DS entry which matches the "nmp" argument.
* The nfsdevice structure pointer is returned so that the caller can
* free it via nfsrv_freeonedevid().
*/
struct nfsdevice *
nfsrv_deldsnmp(struct nfsmount *nmp, NFSPROC_T *p)
{
struct nfsdevice *fndds;
NFSD_DEBUG(4, "deldsdvp\n");
NFSDDSLOCK();
if (nfsrv_faildscnt <= 0) {
NFSDDSUNLOCK();
return (NULL);
}
fndds = nfsv4_findmirror(nmp);
if (fndds != NULL)
nfsrv_deleteds(fndds);
NFSDDSUNLOCK();
if (fndds != NULL) {
nfsrv_flexmirrordel(fndds->nfsdev_deviceid, p);
printf("pNFS server: mirror %s failed\n", fndds->nfsdev_host);
}
return (fndds);
}
/*
* Similar to nfsrv_deldsnmp(), except that the DS is indicated by deviceid.
* This function also calls nfsrv_killrpcs() to unblock RPCs on the mount
* point.
* Also, returns an error instead of the nfsdevice found.
*/
static int
nfsrv_delds(char *devid, NFSPROC_T *p)
{
struct nfsdevice *ds, *fndds;
struct nfsmount *nmp;
int fndmirror;
NFSD_DEBUG(4, "delds\n");
/*
* Search the DS server list for a match with devid.
* Remove the DS entry if found and there is a mirror.
*/
fndds = NULL;
nmp = NULL;
fndmirror = 0;
NFSDDSLOCK();
if (nfsrv_faildscnt <= 0) {
NFSDDSUNLOCK();
return (ENXIO);
}
TAILQ_FOREACH(ds, &nfsrv_devidhead, nfsdev_list) {
if (NFSBCMP(ds->nfsdev_deviceid, devid, NFSX_V4DEVICEID) == 0 &&
ds->nfsdev_nmp != NULL) {
NFSD_DEBUG(4, "fnd main ds\n");
fndds = ds;
} else if (ds->nfsdev_nmp != NULL)
fndmirror = 1;
if (fndds != NULL && fndmirror != 0)
break;
}
if (fndds != NULL && fndmirror != 0) {
nmp = fndds->nfsdev_nmp;
NFSLOCKMNT(nmp);
if ((nmp->nm_privflag & (NFSMNTP_FORCEDISM |
NFSMNTP_CANCELRPCS)) == 0) {
nmp->nm_privflag |= NFSMNTP_CANCELRPCS;
NFSUNLOCKMNT(nmp);
nfsrv_deleteds(fndds);
} else {
NFSUNLOCKMNT(nmp);
nmp = NULL;
}
}
NFSDDSUNLOCK();
if (fndds != NULL && nmp != NULL) {
nfsrv_flexmirrordel(fndds->nfsdev_deviceid, p);
printf("pNFS server: mirror %s failed\n", fndds->nfsdev_host);
nfsrv_killrpcs(nmp);
NFSLOCKMNT(nmp);
nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS;
wakeup(nmp);
NFSUNLOCKMNT(nmp);
return (0);
}
return (ENXIO);
}
/*
* Mark a DS as disabled by setting nfsdev_nmp = NULL.
*/
static void
nfsrv_deleteds(struct nfsdevice *fndds)
{
NFSD_DEBUG(4, "deleteds: deleting a mirror\n");
fndds->nfsdev_nmp = NULL;
nfsrv_faildscnt--;
}
/*
* Fill in the addr structures for the File and Flex File layouts.
*/
static void
nfsrv_allocdevid(struct nfsdevice *ds, char *addr, char *dnshost)
{
uint32_t *tl;
char *netprot;
int addrlen;
static uint64_t new_devid = 0;
if (strchr(addr, ':') != NULL)
netprot = "tcp6";
else
netprot = "tcp";
/* Fill in the device id. */
NFSBCOPY(&nfsdev_time, ds->nfsdev_deviceid, sizeof(nfsdev_time));
new_devid++;
NFSBCOPY(&new_devid, &ds->nfsdev_deviceid[sizeof(nfsdev_time)],
sizeof(new_devid));
/*
* Fill in the file addr (actually the nfsv4_file_layout_ds_addr4
* as defined in RFC5661) in XDR.
*/
addrlen = NFSM_RNDUP(strlen(addr)) + NFSM_RNDUP(strlen(netprot)) +
6 * NFSX_UNSIGNED;
NFSD_DEBUG(4, "hn=%s addr=%s netprot=%s\n", dnshost, addr, netprot);
ds->nfsdev_fileaddrlen = addrlen;
tl = malloc(addrlen, M_NFSDSTATE, M_WAITOK | M_ZERO);
ds->nfsdev_fileaddr = (char *)tl;
*tl++ = txdr_unsigned(1); /* One stripe with index 0. */
*tl++ = 0;
*tl++ = txdr_unsigned(1); /* One multipath list */
*tl++ = txdr_unsigned(1); /* with one entry in it. */
/* The netaddr for this one entry. */
*tl++ = txdr_unsigned(strlen(netprot));
NFSBCOPY(netprot, tl, strlen(netprot));
tl += (NFSM_RNDUP(strlen(netprot)) / NFSX_UNSIGNED);
*tl++ = txdr_unsigned(strlen(addr));
NFSBCOPY(addr, tl, strlen(addr));
/*
* Fill in the flex file addr (actually the ff_device_addr4
* as defined for Flexible File Layout) in XDR.
*/
addrlen = NFSM_RNDUP(strlen(addr)) + NFSM_RNDUP(strlen(netprot)) +
9 * NFSX_UNSIGNED;
ds->nfsdev_flexaddrlen = addrlen;
tl = malloc(addrlen, M_NFSDSTATE, M_WAITOK | M_ZERO);
ds->nfsdev_flexaddr = (char *)tl;
*tl++ = txdr_unsigned(1); /* One multipath entry. */
/* The netaddr for this one entry. */
*tl++ = txdr_unsigned(strlen(netprot));
NFSBCOPY(netprot, tl, strlen(netprot));
tl += (NFSM_RNDUP(strlen(netprot)) / NFSX_UNSIGNED);
*tl++ = txdr_unsigned(strlen(addr));
NFSBCOPY(addr, tl, strlen(addr));
tl += (NFSM_RNDUP(strlen(addr)) / NFSX_UNSIGNED);
*tl++ = txdr_unsigned(1); /* One NFS Version. */
*tl++ = txdr_unsigned(NFS_VER4); /* NFSv4. */
*tl++ = txdr_unsigned(NFSV41_MINORVERSION); /* Minor version 1. */
*tl++ = txdr_unsigned(NFS_SRVMAXIO); /* DS max rsize. */
*tl++ = txdr_unsigned(NFS_SRVMAXIO); /* DS max wsize. */
*tl = newnfs_true; /* Tightly coupled. */
ds->nfsdev_hostnamelen = strlen(dnshost);
ds->nfsdev_host = malloc(ds->nfsdev_hostnamelen + 1, M_NFSDSTATE,
M_WAITOK);
NFSBCOPY(dnshost, ds->nfsdev_host, ds->nfsdev_hostnamelen + 1);
}
/*
* Create the device id list.
* Return 0 if the nfsd threads are to run and ENXIO if the "-p" argument
* is misconfigured.
*/
int
nfsrv_createdevids(struct nfsd_nfsd_args *args, NFSPROC_T *p)
{
struct nfsdevice *ds;
char *addrp, *dnshostp, *dspathp;
int error, i;
addrp = args->addr;
dnshostp = args->dnshost;
dspathp = args->dspath;
nfsrv_maxpnfsmirror = args->mirrorcnt;
if (addrp == NULL || dnshostp == NULL || dspathp == NULL)
return (0);
/*
* Loop around for each nul-terminated string in args->addr,
* args->dnshost and args->dnspath.
*/
while (addrp < (args->addr + args->addrlen) &&
dnshostp < (args->dnshost + args->dnshostlen) &&
dspathp < (args->dspath + args->dspathlen)) {
error = nfsrv_setdsserver(dspathp, p, &ds);
if (error != 0) {
/* Free all DS servers. */
nfsrv_freealldevids();
nfsrv_devidcnt = 0;
return (ENXIO);
}
nfsrv_allocdevid(ds, addrp, dnshostp);
addrp += (strlen(addrp) + 1);
dnshostp += (strlen(dnshostp) + 1);
dspathp += (strlen(dspathp) + 1);
}
if (nfsrv_devidcnt < nfsrv_maxpnfsmirror) {
/* Free all DS servers. */
nfsrv_freealldevids();
nfsrv_devidcnt = 0;
nfsrv_maxpnfsmirror = 1;
return (ENXIO);
}
/* We can fail at most one less DS than the mirror level. */
nfsrv_faildscnt = nfsrv_maxpnfsmirror - 1;
/*
* Allocate the nfslayout hash table now, since this is a pNFS server.
* Make it 1% of the high water mark and at least 100.
*/
if (nfslayouthash == NULL) {
nfsrv_layouthashsize = nfsrv_layouthighwater / 100;
if (nfsrv_layouthashsize < 100)
nfsrv_layouthashsize = 100;
nfslayouthash = mallocarray(nfsrv_layouthashsize,
sizeof(struct nfslayouthash), M_NFSDSESSION, M_WAITOK |
M_ZERO);
for (i = 0; i < nfsrv_layouthashsize; i++) {
mtx_init(&nfslayouthash[i].mtx, "nfslm", NULL, MTX_DEF);
TAILQ_INIT(&nfslayouthash[i].list);
}
}
return (0);
}
/*
* Free all device ids.
*/
static void
nfsrv_freealldevids(void)
{
struct nfsdevice *ds, *nds;
TAILQ_FOREACH_SAFE(ds, &nfsrv_devidhead, nfsdev_list, nds)
nfsrv_freedevid(ds);
}
/*
* Check to see if there is a Read/Write Layout plus either:
* - A Write Delegation
* or
* - An Open with Write_access.
* Return 1 if this is the case and 0 otherwise.
* This function is used by nfsrv_proxyds() to decide if doing a Proxy
* Getattr RPC to the Data Server (DS) is necessary.
*/
#define NFSCLIDVECSIZE 6
APPLESTATIC int
nfsrv_checkdsattr(struct nfsrv_descript *nd, vnode_t vp, NFSPROC_T *p)
{
fhandle_t fh, *tfhp;
struct nfsstate *stp;
struct nfslayout *lyp;
struct nfslayouthash *lhyp;
struct nfslockhashhead *hp;
struct nfslockfile *lfp;
nfsquad_t clid[NFSCLIDVECSIZE];
int clidcnt, ret;
ret = nfsvno_getfh(vp, &fh, p);
if (ret != 0)
return (0);
/* First check for a Read/Write Layout. */
clidcnt = 0;
lhyp = NFSLAYOUTHASH(&fh);
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH(lyp, &lhyp->list, lay_list) {
if (NFSBCMP(&lyp->lay_fh, &fh, sizeof(fh)) == 0 &&
((lyp->lay_flags & NFSLAY_RW) != 0 ||
((lyp->lay_flags & NFSLAY_READ) != 0 &&
nfsrv_pnfsatime != 0))) {
if (clidcnt < NFSCLIDVECSIZE)
clid[clidcnt].qval = lyp->lay_clientid.qval;
clidcnt++;
}
}
NFSUNLOCKLAYOUT(lhyp);
if (clidcnt == 0) {
/* None found, so return 0. */
return (0);
}
/* Get the nfslockfile for this fh. */
NFSLOCKSTATE();
hp = NFSLOCKHASH(&fh);
LIST_FOREACH(lfp, hp, lf_hash) {
tfhp = &lfp->lf_fh;
if (NFSVNO_CMPFH(&fh, tfhp))
break;
}
if (lfp == NULL) {
/* None found, so return 0. */
NFSUNLOCKSTATE();
return (0);
}
/* Now, look for a Write delegation for this clientid. */
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
if ((stp->ls_flags & NFSLCK_DELEGWRITE) != 0 &&
nfsrv_fndclid(clid, stp->ls_clp->lc_clientid, clidcnt) != 0)
break;
}
if (stp != NULL) {
/* Found one, so return 1. */
NFSUNLOCKSTATE();
return (1);
}
/* No Write delegation, so look for an Open with Write_access. */
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
KASSERT((stp->ls_flags & NFSLCK_OPEN) != 0,
("nfsrv_checkdsattr: Non-open in Open list\n"));
if ((stp->ls_flags & NFSLCK_WRITEACCESS) != 0 &&
nfsrv_fndclid(clid, stp->ls_clp->lc_clientid, clidcnt) != 0)
break;
}
NFSUNLOCKSTATE();
if (stp != NULL)
return (1);
return (0);
}
/*
* Look for a matching clientid in the vector. Return 1 if one might match.
*/
static int
nfsrv_fndclid(nfsquad_t *clidvec, nfsquad_t clid, int clidcnt)
{
int i;
/* If too many for the vector, return 1 since there might be a match. */
if (clidcnt > NFSCLIDVECSIZE)
return (1);
for (i = 0; i < clidcnt; i++)
if (clidvec[i].qval == clid.qval)
return (1);
return (0);
}
/*
* Check the don't list for "vp" and see if issuing an rw layout is allowed.
* Return 1 if issuing an rw layout isn't allowed, 0 otherwise.
*/
static int
nfsrv_dontlayout(fhandle_t *fhp)
{
struct nfsdontlist *mrp;
int ret;
if (nfsrv_dontlistlen == 0)
return (0);
ret = 0;
NFSDDONTLISTLOCK();
LIST_FOREACH(mrp, &nfsrv_dontlisthead, nfsmr_list) {
if (NFSBCMP(fhp, &mrp->nfsmr_fh, sizeof(*fhp)) == 0 &&
(mrp->nfsmr_flags & NFSMR_DONTLAYOUT) != 0) {
ret = 1;
break;
}
}
NFSDDONTLISTUNLOCK();
return (ret);
}
#define PNFSDS_COPYSIZ 65536
/*
* Create a new file on a DS and copy the contents of an extant DS file to it.
* This can be used for recovery of a DS file onto a recovered DS.
* The steps are:
* - When called, the MDS file's vnode is locked, blocking LayoutGet operations.
* - Disable issuing of read/write layouts for the file via the nfsdontlist,
* so that they will be disabled after the MDS file's vnode is unlocked.
* - Set up the nfsrv_recalllist so that recall of read/write layouts can
* be done.
* - Unlock the MDS file's vnode, so that the client(s) can perform proxied
* writes, LayoutCommits and LayoutReturns for the file when completing the
* LayoutReturn requested by the LayoutRecall callback.
* - Issue a LayoutRecall callback for all read/write layouts and wait for
* them to be returned. (If the LayoutRecall callback replies
* NFSERR_NOMATCHLAYOUT, they are gone and no LayoutReturn is needed.)
* - Exclusively lock the MDS file's vnode. This ensures that no proxied
* writes are in progress or can occur during the DS file copy.
* It also blocks Setattr operations.
* - Create the file on the recovered mirror.
* - Copy the file from the operational DS.
* - Copy any ACL from the MDS file to the new DS file.
* - Set the modify time of the new DS file to that of the MDS file.
* - Update the extended attribute for the MDS file.
* - Enable issuing of rw layouts by deleting the nfsdontlist entry.
* - The caller will unlock the MDS file's vnode allowing operations
* to continue normally, since it is now on the mirror again.
*/
int
nfsrv_copymr(vnode_t vp, vnode_t fvp, vnode_t dvp, struct nfsdevice *ds,
struct pnfsdsfile *pf, struct pnfsdsfile *wpf, int mirrorcnt,
struct ucred *cred, NFSPROC_T *p)
{
struct nfsdontlist *mrp, *nmrp;
struct nfslayouthash *lhyp;
struct nfslayout *lyp, *nlyp;
struct nfslayouthead thl;
struct mount *mp;
struct acl *aclp;
struct vattr va;
struct timespec mtime;
fhandle_t fh;
vnode_t tvp;
off_t rdpos, wrpos;
ssize_t aresid;
char *dat;
int didprintf, ret, retacl, xfer;
ASSERT_VOP_LOCKED(fvp, "nfsrv_copymr fvp");
ASSERT_VOP_LOCKED(vp, "nfsrv_copymr vp");
/*
* Allocate a nfsdontlist entry and set the NFSMR_DONTLAYOUT flag
* so that no more RW layouts will get issued.
*/
ret = nfsvno_getfh(vp, &fh, p);
if (ret != 0) {
NFSD_DEBUG(4, "nfsrv_copymr: getfh=%d\n", ret);
return (ret);
}
nmrp = malloc(sizeof(*nmrp), M_NFSDSTATE, M_WAITOK);
nmrp->nfsmr_flags = NFSMR_DONTLAYOUT;
NFSBCOPY(&fh, &nmrp->nfsmr_fh, sizeof(fh));
NFSDDONTLISTLOCK();
LIST_FOREACH(mrp, &nfsrv_dontlisthead, nfsmr_list) {
if (NFSBCMP(&fh, &mrp->nfsmr_fh, sizeof(fh)) == 0)
break;
}
if (mrp == NULL) {
LIST_INSERT_HEAD(&nfsrv_dontlisthead, nmrp, nfsmr_list);
mrp = nmrp;
nmrp = NULL;
nfsrv_dontlistlen++;
NFSD_DEBUG(4, "nfsrv_copymr: in dontlist\n");
} else {
NFSDDONTLISTUNLOCK();
free(nmrp, M_NFSDSTATE);
NFSD_DEBUG(4, "nfsrv_copymr: dup dontlist\n");
return (ENXIO);
}
NFSDDONTLISTUNLOCK();
/*
* Search for all RW layouts for this file. Move them to the
* recall list, so they can be recalled and their return noted.
*/
lhyp = NFSLAYOUTHASH(&fh);
NFSDRECALLLOCK();
NFSLOCKLAYOUT(lhyp);
TAILQ_FOREACH_SAFE(lyp, &lhyp->list, lay_list, nlyp) {
if (NFSBCMP(&lyp->lay_fh, &fh, sizeof(fh)) == 0 &&
(lyp->lay_flags & NFSLAY_RW) != 0) {
TAILQ_REMOVE(&lhyp->list, lyp, lay_list);
TAILQ_INSERT_HEAD(&nfsrv_recalllisthead, lyp, lay_list);
lyp->lay_trycnt = 0;
}
}
NFSUNLOCKLAYOUT(lhyp);
NFSDRECALLUNLOCK();
ret = 0;
didprintf = 0;
TAILQ_INIT(&thl);
/* Unlock the MDS vp, so that a LayoutReturn can be done on it. */
NFSVOPUNLOCK(vp, 0);
/* Now, do a recall for all layouts not yet recalled. */
tryagain:
NFSDRECALLLOCK();
TAILQ_FOREACH(lyp, &nfsrv_recalllisthead, lay_list) {
if (NFSBCMP(&lyp->lay_fh, &fh, sizeof(fh)) == 0 &&
(lyp->lay_flags & NFSLAY_RECALL) == 0) {
lyp->lay_flags |= NFSLAY_RECALL;
/*
* The layout stateid.seqid needs to be incremented
* before doing a LAYOUT_RECALL callback.
*/
if (++lyp->lay_stateid.seqid == 0)
lyp->lay_stateid.seqid = 1;
NFSDRECALLUNLOCK();
nfsrv_recalllayout(lyp->lay_clientid, &lyp->lay_stateid,
&lyp->lay_fh, lyp, &nfsrv_recalllisthead,
lyp->lay_type, p);
NFSD_DEBUG(4, "nfsrv_copymr: recalled layout\n");
goto tryagain;
}
}
/* Now wait for them to be returned. */
tryagain2:
TAILQ_FOREACH(lyp, &nfsrv_recalllisthead, lay_list) {
if (NFSBCMP(&lyp->lay_fh, &fh, sizeof(fh)) == 0) {
if ((lyp->lay_flags & NFSLAY_RETURNED) != 0) {
TAILQ_REMOVE(&nfsrv_recalllisthead, lyp,
lay_list);
TAILQ_INSERT_HEAD(&thl, lyp, lay_list);
NFSD_DEBUG(4,
"nfsrv_copymr: layout returned\n");
} else {
ret = mtx_sleep(lyp, NFSDRECALLMUTEXPTR,
PVFS | PCATCH, "nfsmrl", hz);
NFSD_DEBUG(4, "nfsrv_copymr: aft sleep=%d\n",
ret);
if (ret == EINTR || ret == ERESTART)
break;
if ((lyp->lay_flags & NFSLAY_RETURNED) == 0 &&
didprintf == 0) {
printf("nfsrv_copymr: layout not "
"returned\n");
didprintf = 1;
}
}
goto tryagain2;
}
}
NFSDRECALLUNLOCK();
/* We can now get rid of the layouts that have been returned. */
TAILQ_FOREACH_SAFE(lyp, &thl, lay_list, nlyp)
nfsrv_freelayout(&thl, lyp);
/*
* LK_EXCLUSIVE lock the MDS vnode, so that any
* proxied writes through the MDS will be blocked until we have
* completed the copy and update of the extended attributes.
* This will also ensure that any attributes and ACL will not be
* changed until the copy is complete.
*/
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
if ((vp->v_iflag & VI_DOOMED) != 0) {
NFSD_DEBUG(4, "nfsrv_copymr: lk_exclusive doomed\n");
ret = ESTALE;
}
/* Create the data file on the recovered DS. */
if (ret == 0)
ret = nfsrv_createdsfile(vp, &fh, pf, dvp, ds, cred, p, &tvp);
/* Copy the DS file, if created successfully. */
if (ret == 0) {
/*
* Get any NFSv4 ACL on the MDS file, so that it can be set
* on the new DS file.
*/
aclp = acl_alloc(M_WAITOK | M_ZERO);
retacl = VOP_GETACL(vp, ACL_TYPE_NFS4, aclp, cred, p);
if (retacl != 0 && retacl != ENOATTR)
NFSD_DEBUG(1, "nfsrv_copymr: vop_getacl=%d\n", retacl);
dat = malloc(PNFSDS_COPYSIZ, M_TEMP, M_WAITOK);
rdpos = wrpos = 0;
mp = NULL;
ret = vn_start_write(tvp, &mp, V_WAIT | PCATCH);
aresid = 0;
while (ret == 0 && aresid == 0) {
ret = vn_rdwr(UIO_READ, fvp, dat, PNFSDS_COPYSIZ,
rdpos, UIO_SYSSPACE, IO_NODELOCKED, cred, NULL,
&aresid, p);
xfer = PNFSDS_COPYSIZ - aresid;
if (ret == 0 && xfer > 0) {
rdpos += xfer;
ret = vn_rdwr(UIO_WRITE, tvp, dat, xfer,
wrpos, UIO_SYSSPACE, IO_NODELOCKED,
cred, NULL, NULL, p);
if (ret == 0)
wrpos += xfer;
}
}
/* If there is an ACL and the copy succeeded, set the ACL. */
if (ret == 0 && retacl == 0) {
ret = VOP_SETACL(tvp, ACL_TYPE_NFS4, aclp, cred, p);
/*
* Don't consider these as errors, since VOP_GETACL()
* can return an ACL when they are not actually
* supported. For example, for UFS, VOP_GETACL()
* will return a trivial ACL based on the uid/gid/mode
* when there is no ACL on the file.
* This case should be recognized as a trivial ACL
* by UFS's VOP_SETACL() and succeed, but...
*/
if (ret == ENOATTR || ret == EOPNOTSUPP || ret == EPERM)
ret = 0;
}
if (mp != NULL)
vn_finished_write(mp);
if (ret == 0)
ret = VOP_FSYNC(tvp, MNT_WAIT, p);
/* Set the DS data file's modify time that of the MDS file. */
if (ret == 0)
ret = VOP_GETATTR(vp, &va, cred);
if (ret == 0) {
mtime = va.va_mtime;
VATTR_NULL(&va);
va.va_mtime = mtime;
ret = VOP_SETATTR(tvp, &va, cred);
}
vput(tvp);
acl_free(aclp);
free(dat, M_TEMP);
}
/* Update the extended attributes for the newly created DS file. */
if (ret == 0) {
mp = NULL;
ret = vn_start_write(vp, &mp, V_WAIT | PCATCH);
if (ret == 0)
ret = vn_extattr_set(vp, IO_NODELOCKED,
EXTATTR_NAMESPACE_SYSTEM, "pnfsd.dsfile",
sizeof(*wpf) * mirrorcnt, (char *)wpf, p);
if (mp != NULL)
vn_finished_write(mp);
}
/* Get rid of the dontlist entry, so that Layouts can be issued. */
NFSDDONTLISTLOCK();
LIST_REMOVE(mrp, nfsmr_list);
NFSDDONTLISTUNLOCK();
free(mrp, M_NFSDSTATE);
return (ret);
}
/*
* Create a data storage file on the recovered DS.
*/
static int
nfsrv_createdsfile(vnode_t vp, fhandle_t *fhp, struct pnfsdsfile *pf,
vnode_t dvp, struct nfsdevice *ds, struct ucred *cred, NFSPROC_T *p,
vnode_t *tvpp)
{
struct vattr va, nva;
int error;
/* Make data file name based on FH. */
error = VOP_GETATTR(vp, &va, cred);
if (error == 0) {
/* Set the attributes for "vp" to Setattr the DS vp. */
VATTR_NULL(&nva);
nva.va_uid = va.va_uid;
nva.va_gid = va.va_gid;
nva.va_mode = va.va_mode;
nva.va_size = 0;
VATTR_NULL(&va);
va.va_type = VREG;
va.va_mode = nva.va_mode;
NFSD_DEBUG(4, "nfsrv_dscreatefile: dvp=%p pf=%p\n", dvp, pf);
error = nfsrv_dscreate(dvp, &va, &nva, fhp, pf, NULL,
pf->dsf_filename, cred, p, tvpp);
}
return (error);
}
/*
* Look up the MDS file shared locked, and then get the extended attribute
* to find the extant DS file to be copied to the new mirror.
* If successful, *vpp is set to the MDS file's vp and *nvpp is
* set to a DS data file for the MDS file, both exclusively locked.
* The "buf" argument has the pnfsdsfile structure from the MDS file
* in it and buflen is set to its length.
*/
int
nfsrv_mdscopymr(char *mdspathp, char *dspathp, char *curdspathp, char *buf,
int *buflenp, char *fname, NFSPROC_T *p, struct vnode **vpp,
struct vnode **nvpp, struct pnfsdsfile **pfp, struct nfsdevice **dsp,
struct nfsdevice **fdsp)
{
struct nameidata nd;
struct vnode *vp, *curvp;
struct pnfsdsfile *pf;
struct nfsmount *nmp, *curnmp;
int dsdir, error, mirrorcnt, ippos;
vp = NULL;
curvp = NULL;
curnmp = NULL;
*dsp = NULL;
*fdsp = NULL;
if (dspathp == NULL && curdspathp != NULL)
return (EPERM);
/*
* Look up the MDS file shared locked. The lock will be upgraded
* to an exclusive lock after any rw layouts have been returned.
*/
NFSD_DEBUG(4, "mdsopen path=%s\n", mdspathp);
NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE,
mdspathp, p);
error = namei(&nd);
NFSD_DEBUG(4, "lookup=%d\n", error);
if (error != 0)
return (error);
if (nd.ni_vp->v_type != VREG) {
vput(nd.ni_vp);
NFSD_DEBUG(4, "mdspath not reg\n");
return (EISDIR);
}
vp = nd.ni_vp;
if (curdspathp != NULL) {
/*
* Look up the current DS path and find the nfsdev structure for
* it.
*/
NFSD_DEBUG(4, "curmdsdev path=%s\n", curdspathp);
NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
UIO_SYSSPACE, curdspathp, p);
error = namei(&nd);
NFSD_DEBUG(4, "ds lookup=%d\n", error);
if (error != 0) {
vput(vp);
return (error);
}
if (nd.ni_vp->v_type != VDIR) {
vput(nd.ni_vp);
vput(vp);
NFSD_DEBUG(4, "curdspath not dir\n");
return (ENOTDIR);
}
if (strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, "nfs") != 0) {
vput(nd.ni_vp);
vput(vp);
NFSD_DEBUG(4, "curdspath not an NFS mount\n");
return (ENXIO);
}
curnmp = VFSTONFS(nd.ni_vp->v_mount);
/* Search the nfsdev list for a match. */
NFSDDSLOCK();
*fdsp = nfsv4_findmirror(curnmp);
NFSDDSUNLOCK();
if (*fdsp == NULL)
curnmp = NULL;
if (curnmp == NULL) {
vput(nd.ni_vp);
vput(vp);
NFSD_DEBUG(4, "mdscopymr: no current ds\n");
return (ENXIO);
}
curvp = nd.ni_vp;
}
if (dspathp != NULL) {
/* Look up the nfsdev path and find the nfsdev structure. */
NFSD_DEBUG(4, "mdsdev path=%s\n", dspathp);
NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
UIO_SYSSPACE, dspathp, p);
error = namei(&nd);
NFSD_DEBUG(4, "ds lookup=%d\n", error);
if (error != 0) {
vput(vp);
if (curvp != NULL)
vput(curvp);
return (error);
}
if (nd.ni_vp->v_type != VDIR || nd.ni_vp == curvp) {
vput(nd.ni_vp);
vput(vp);
if (curvp != NULL)
vput(curvp);
NFSD_DEBUG(4, "dspath not dir\n");
if (nd.ni_vp == curvp)
return (EPERM);
return (ENOTDIR);
}
if (strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, "nfs") != 0) {
vput(nd.ni_vp);
vput(vp);
if (curvp != NULL)
vput(curvp);
NFSD_DEBUG(4, "dspath not an NFS mount\n");
return (ENXIO);
}
nmp = VFSTONFS(nd.ni_vp->v_mount);
/* Search the nfsdev list for a match. */
NFSDDSLOCK();
*dsp = nfsv4_findmirror(nmp);
NFSDDSUNLOCK();
if (*dsp == NULL) {
vput(nd.ni_vp);
vput(vp);
if (curvp != NULL)
vput(curvp);
NFSD_DEBUG(4, "mdscopymr: no ds\n");
return (ENXIO);
}
} else {
nd.ni_vp = NULL;
nmp = NULL;
}
/*
* Get a vp for an available DS data file using the extended
* attribute on the MDS file.
* If there is a valid entry for the new DS in the extended attribute
* on the MDS file (as checked via the nmp argument),
* nfsrv_dsgetsockmnt() returns EEXIST, so no copying will occur.
*/
error = nfsrv_dsgetsockmnt(vp, 0, buf, buflenp, &mirrorcnt, p,
NULL, NULL, NULL, fname, nvpp, &nmp, curnmp, &ippos, &dsdir);
if (curvp != NULL)
vput(curvp);
if (nd.ni_vp == NULL) {
if (error == 0 && nmp != NULL) {
/* Search the nfsdev list for a match. */
NFSDDSLOCK();
*dsp = nfsv4_findmirror(nmp);
NFSDDSUNLOCK();
}
if (error == 0 && (nmp == NULL || *dsp == NULL)) {
if (nvpp != NULL && *nvpp != NULL) {
vput(*nvpp);
*nvpp = NULL;
}
error = ENXIO;
}
} else
vput(nd.ni_vp);
/*
* When dspathp != NULL and curdspathp == NULL, this is a recovery
* and is only allowed if there is a 0.0.0.0 IP address entry.
* When curdspathp != NULL, the ippos will be set to that entry.
*/
if (error == 0 && dspathp != NULL && ippos == -1) {
if (nvpp != NULL && *nvpp != NULL) {
vput(*nvpp);
*nvpp = NULL;
}
error = ENXIO;
}
if (error == 0) {
*vpp = vp;
pf = (struct pnfsdsfile *)buf;
if (ippos == -1) {
/* If no zeroip pnfsdsfile, add one. */
ippos = *buflenp / sizeof(*pf);
*buflenp += sizeof(*pf);
pf += ippos;
pf->dsf_dir = dsdir;
strlcpy(pf->dsf_filename, fname,
sizeof(pf->dsf_filename));
} else
pf += ippos;
*pfp = pf;
} else
vput(vp);
return (error);
}