freebsd-nq/sys/dev/uart/uart_tty.c
Poul-Henning Kamp dc08ffec87 Device megapatch 4/6:
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.

Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
2004-02-21 21:10:55 +00:00

573 lines
14 KiB
C

/*
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/reboot.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/termios.h>
#include <sys/tty.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include "uart_if.h"
#define UART_MINOR_CALLOUT 0x10000
static cn_probe_t uart_cnprobe;
static cn_init_t uart_cninit;
static cn_term_t uart_cnterm;
static cn_getc_t uart_cngetc;
static cn_checkc_t uart_cncheckc;
static cn_putc_t uart_cnputc;
CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc,
uart_cncheckc, uart_cnputc, NULL);
static d_open_t uart_tty_open;
static d_close_t uart_tty_close;
static d_ioctl_t uart_tty_ioctl;
static struct cdevsw uart_cdevsw = {
.d_version = D_VERSION,
.d_open = uart_tty_open,
.d_close = uart_tty_close,
.d_ioctl = uart_tty_ioctl,
.d_name = uart_driver_name,
.d_flags = D_TTY | D_NEEDGIANT,
};
static struct uart_devinfo uart_console;
static void
uart_cnprobe(struct consdev *cp)
{
cp->cn_pri = CN_DEAD;
KASSERT(uart_console.cookie == NULL, ("foo"));
if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console))
return;
if (uart_probe(&uart_console))
return;
cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
cp->cn_arg = &uart_console;
}
static void
uart_cninit(struct consdev *cp)
{
struct uart_devinfo *di;
/*
* Yedi trick: we need to be able to define cn_dev before we go
* single- or multi-user. The problem is that we don't know at
* this time what the device will be. Hence, we need to link from
* the uart_devinfo to the consdev that corresponds to it so that
* we can define cn_dev in uart_bus_attach() when we find the
* device during bus enumeration. That's when we'll know what the
* the unit number will be.
*/
di = cp->cn_arg;
KASSERT(di->cookie == NULL, ("foo"));
di->cookie = cp;
di->type = UART_DEV_CONSOLE;
uart_add_sysdev(di);
uart_init(di);
}
static void
uart_cnterm(struct consdev *cp)
{
uart_term(cp->cn_arg);
}
static void
uart_cnputc(struct consdev *cp, int c)
{
uart_putc(cp->cn_arg, c);
}
static int
uart_cncheckc(struct consdev *cp)
{
return (uart_poll(cp->cn_arg));
}
static int
uart_cngetc(struct consdev *cp)
{
return (uart_getc(cp->cn_arg));
}
static void
uart_tty_oproc(struct tty *tp)
{
struct uart_softc *sc;
KASSERT(tp->t_dev != NULL, ("foo"));
sc = tp->t_dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return;
/*
* Handle input flow control. Note that if we have hardware support,
* we don't do anything here. We continue to receive until our buffer
* is full. At that time we cannot empty the UART itself and it will
* de-assert RTS for us. In that situation we're completely stuffed.
* Without hardware support, we need to toggle RTS ourselves.
*/
if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) {
if ((tp->t_state & TS_TBLOCK) &&
(sc->sc_hwsig & UART_SIG_RTS))
UART_SETSIG(sc, UART_SIG_DRTS);
else if (!(tp->t_state & TS_TBLOCK) &&
!(sc->sc_hwsig & UART_SIG_RTS))
UART_SETSIG(sc, UART_SIG_DRTS|UART_SIG_RTS);
}
if (tp->t_state & TS_TTSTOP)
return;
if ((tp->t_state & TS_BUSY) || sc->sc_txbusy)
return;
if (tp->t_outq.c_cc == 0) {
ttwwakeup(tp);
return;
}
sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz);
tp->t_state |= TS_BUSY;
UART_TRANSMIT(sc);
ttwwakeup(tp);
}
static int
uart_tty_param(struct tty *tp, struct termios *t)
{
struct uart_softc *sc;
int databits, parity, stopbits;
KASSERT(tp->t_dev != NULL, ("foo"));
sc = tp->t_dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0)
return (EINVAL);
/* Fixate certain parameters for system devices. */
if (sc->sc_sysdev != NULL) {
t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate;
t->c_cflag |= CLOCAL;
t->c_cflag &= ~HUPCL;
}
if (t->c_ospeed == 0) {
UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS);
return (0);
}
switch (t->c_cflag & CSIZE) {
case CS5: databits = 5; break;
case CS6: databits = 6; break;
case CS7: databits = 7; break;
default: databits = 8; break;
}
stopbits = (t->c_cflag & CSTOPB) ? 2 : 1;
if (t->c_cflag & PARENB)
parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD
: UART_PARITY_EVEN;
else
parity = UART_PARITY_NONE;
if (UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity) != 0)
return (EINVAL);
UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR);
/* Set input flow control state. */
if (!sc->sc_hwiflow) {
if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK))
UART_SETSIG(sc, UART_SIG_DRTS);
else
UART_SETSIG(sc, UART_SIG_DRTS | UART_SIG_RTS);
} else
UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW));
/* Set output flow control state. */
if (sc->sc_hwoflow)
UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW));
ttsetwater(tp);
return (0);
}
static void
uart_tty_stop(struct tty *tp, int rw)
{
struct uart_softc *sc;
KASSERT(tp->t_dev != NULL, ("foo"));
sc = tp->t_dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return;
if (rw & FWRITE) {
if (sc->sc_txbusy) {
sc->sc_txbusy = 0;
UART_FLUSH(sc, UART_FLUSH_TRANSMITTER);
}
tp->t_state &= ~TS_BUSY;
}
if (rw & FREAD) {
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
sc->sc_rxget = sc->sc_rxput = 0;
}
}
void
uart_tty_intr(void *arg)
{
struct uart_softc *sc = arg;
struct tty *tp;
int c, pend, sig, xc;
if (sc->sc_leaving)
return;
pend = atomic_readandclear_32(&sc->sc_ttypend);
if (!(pend & UART_IPEND_MASK))
return;
tp = sc->sc_u.u_tty.tp;
if (pend & UART_IPEND_RXREADY) {
while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) {
xc = uart_rx_get(sc);
c = xc & 0xff;
if (xc & UART_STAT_FRAMERR)
c |= TTY_FE;
if (xc & UART_STAT_PARERR)
c |= TTY_PE;
(*linesw[tp->t_line].l_rint)(c, tp);
}
}
if (pend & UART_IPEND_BREAK) {
if (tp != NULL && !(tp->t_iflag & IGNBRK))
(*linesw[tp->t_line].l_rint)(0, tp);
}
if (pend & UART_IPEND_SIGCHG) {
sig = pend & UART_IPEND_SIGMASK;
if (sig & UART_SIG_DDCD)
(*linesw[tp->t_line].l_modem)(tp, sig & UART_SIG_DCD);
if ((sig & UART_SIG_DCTS) && (tp->t_cflag & CCTS_OFLOW) &&
!sc->sc_hwoflow) {
if (sig & UART_SIG_CTS) {
tp->t_state &= ~TS_TTSTOP;
(*linesw[tp->t_line].l_start)(tp);
} else
tp->t_state |= TS_TTSTOP;
}
}
if (pend & UART_IPEND_TXIDLE) {
tp->t_state &= ~TS_BUSY;
(*linesw[tp->t_line].l_start)(tp);
}
}
int
uart_tty_attach(struct uart_softc *sc)
{
struct tty *tp;
tp = ttymalloc(NULL);
sc->sc_u.u_tty.tp = tp;
sc->sc_u.u_tty.si[0] = make_dev(&uart_cdevsw,
device_get_unit(sc->sc_dev), UID_ROOT, GID_WHEEL, 0600, "ttyu%r",
device_get_unit(sc->sc_dev));
sc->sc_u.u_tty.si[0]->si_drv1 = sc;
sc->sc_u.u_tty.si[0]->si_tty = tp;
sc->sc_u.u_tty.si[1] = make_dev(&uart_cdevsw,
device_get_unit(sc->sc_dev) | UART_MINOR_CALLOUT, UID_UUCP,
GID_DIALER, 0660, "uart%r", device_get_unit(sc->sc_dev));
sc->sc_u.u_tty.si[1]->si_drv1 = sc;
sc->sc_u.u_tty.si[1]->si_tty = tp;
tp->t_oproc = uart_tty_oproc;
tp->t_param = uart_tty_param;
tp->t_stop = uart_tty_stop;
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name,
"ttyu%r", device_get_unit(sc->sc_dev));
}
swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY,
INTR_TYPE_TTY, &sc->sc_softih);
return (0);
}
int uart_tty_detach(struct uart_softc *sc)
{
ithread_remove_handler(sc->sc_softih);
destroy_dev(sc->sc_u.u_tty.si[0]);
destroy_dev(sc->sc_u.u_tty.si[1]);
/* ttyfree(sc->sc_u.u_tty.tp); */
return (0);
}
static int
uart_tty_open(dev_t dev, int flags, int mode, struct thread *td)
{
struct uart_softc *sc;
struct tty *tp;
int error;
sc = dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
tp = dev->si_tty;
loop:
if (sc->sc_opened) {
KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
/*
* The device is open, so everything has been initialized.
* Handle conflicts.
*/
if (minor(dev) & UART_MINOR_CALLOUT) {
if (!sc->sc_callout)
return (EBUSY);
} else {
if (sc->sc_callout) {
if (flags & O_NONBLOCK)
return (EBUSY);
error = tsleep(sc, TTIPRI|PCATCH, "uartbi", 0);
if (error)
return (error);
sc = dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
goto loop;
}
}
if (tp->t_state & TS_XCLUDE && suser(td) != 0)
return (EBUSY);
} else {
KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
/*
* The device isn't open, so there are no conflicts.
* Initialize it. Initialization is done twice in many
* cases: to preempt sleeping callin opens if we are
* callout, and to complete a callin open after DCD rises.
*/
sc->sc_callout = (minor(dev) & UART_MINOR_CALLOUT) ? 1 : 0;
tp->t_dev = dev;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_iflag = TTYDEF_IFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
ttychars(tp);
error = uart_tty_param(tp, &tp->t_termios);
if (error)
return (error);
/*
* Handle initial DCD.
*/
if ((sc->sc_hwsig & UART_SIG_DCD) || sc->sc_callout)
(*linesw[tp->t_line].l_modem)(tp, 1);
}
/*
* Wait for DCD if necessary.
*/
if (!(tp->t_state & TS_CARR_ON) && !sc->sc_callout &&
!(tp->t_cflag & CLOCAL) && !(flags & O_NONBLOCK)) {
error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "uartdcd", 0);
if (error)
return (error);
sc = dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
goto loop;
}
error = ttyopen(dev, tp);
if (error)
return (error);
error = (*linesw[tp->t_line].l_open)(dev, tp);
if (error)
return (error);
KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
sc->sc_opened = 1;
return (0);
}
static int
uart_tty_close(dev_t dev, int flags, int mode, struct thread *td)
{
struct uart_softc *sc;
struct tty *tp;
sc = dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
tp = dev->si_tty;
if (!sc->sc_opened) {
KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
return (0);
}
KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
if (sc->sc_hwiflow)
UART_IOCTL(sc, UART_IOCTL_IFLOW, 0);
if (sc->sc_hwoflow)
UART_IOCTL(sc, UART_IOCTL_OFLOW, 0);
if (sc->sc_sysdev == NULL)
UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS);
/* Disable pulse capturing. */
sc->sc_pps.ppsparam.mode = 0;
(*linesw[tp->t_line].l_close)(tp, flags);
ttyclose(tp);
wakeup(sc);
wakeup(TSA_CARR_ON(tp));
KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
sc->sc_opened = 0;
return (0);
}
static int
uart_tty_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
struct thread *td)
{
struct uart_softc *sc;
struct tty *tp;
int bits, error, sig;
sc = dev->si_drv1;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
tp = dev->si_tty;
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, td);
if (error != ENOIOCTL)
return (error);
error = ttioctl(tp, cmd, data, flags);
if (error != ENOIOCTL)
return (error);
error = 0;
switch (cmd) {
case TIOCSBRK:
UART_IOCTL(sc, UART_IOCTL_BREAK, 1);
break;
case TIOCCBRK:
UART_IOCTL(sc, UART_IOCTL_BREAK, 0);
break;
case TIOCSDTR:
UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR);
break;
case TIOCCDTR:
UART_SETSIG(sc, UART_SIG_DDTR);
break;
case TIOCMSET:
bits = *(int*)data;
sig = UART_SIG_DDTR | UART_SIG_DRTS;
if (bits & TIOCM_DTR)
sig |= UART_SIG_DTR;
if (bits & TIOCM_RTS)
sig |= UART_SIG_RTS;
UART_SETSIG(sc, sig);
break;
case TIOCMBIS:
bits = *(int*)data;
sig = 0;
if (bits & TIOCM_DTR)
sig |= UART_SIG_DDTR | UART_SIG_DTR;
if (bits & TIOCM_RTS)
sig |= UART_SIG_DRTS | UART_SIG_RTS;
UART_SETSIG(sc, sig);
break;
case TIOCMBIC:
bits = *(int*)data;
sig = 0;
if (bits & TIOCM_DTR)
sig |= UART_SIG_DDTR;
if (bits & TIOCM_RTS)
sig |= UART_SIG_DRTS;
UART_SETSIG(sc, sig);
break;
case TIOCMGET:
sig = sc->sc_hwsig;
bits = TIOCM_LE;
if (sig & UART_SIG_DTR)
bits |= TIOCM_DTR;
if (sig & UART_SIG_RTS)
bits |= TIOCM_RTS;
if (sig & UART_SIG_DSR)
bits |= TIOCM_DSR;
if (sig & UART_SIG_CTS)
bits |= TIOCM_CTS;
if (sig & UART_SIG_DCD)
bits |= TIOCM_CD;
if (sig & (UART_SIG_DRI | UART_SIG_RI))
bits |= TIOCM_RI;
*(int*)data = bits;
break;
default:
error = pps_ioctl(cmd, data, &sc->sc_pps);
if (error == ENODEV)
error = ENOTTY;
break;
}
return (error);
}