freebsd-nq/sys/dev/nvme/nvme_ctrlr.c
2012-10-18 00:41:31 +00:00

862 lines
21 KiB
C

/*-
* Copyright (C) 2012 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/smp.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "nvme_private.h"
static void
nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
{
struct nvme_completion *cpl = arg;
struct mtx *mtx;
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(cpl, status, sizeof(*cpl));
mtx = mtx_pool_find(mtxpool_sleep, cpl);
mtx_lock(mtx);
wakeup(cpl);
mtx_unlock(mtx);
}
static int
nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
{
/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
ctrlr->resource_id = PCIR_BAR(2);
else
ctrlr->resource_id = PCIR_BAR(0);
ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
&ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
if(ctrlr->resource == NULL) {
device_printf(ctrlr->dev, "unable to allocate pci resource\n");
return (ENOMEM);
}
ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
return (0);
}
#ifdef CHATHAM2
static int
nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
{
ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
RF_ACTIVE);
if(ctrlr->chatham_resource == NULL) {
device_printf(ctrlr->dev, "unable to alloc pci resource\n");
return (ENOMEM);
}
ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
ctrlr->chatham_bus_handle =
rman_get_bushandle(ctrlr->chatham_resource);
return (0);
}
static void
nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
{
uint64_t reg1, reg2, reg3;
uint64_t temp1, temp2;
uint32_t temp3;
uint32_t use_flash_timings = 0;
DELAY(10000);
temp3 = chatham_read_4(ctrlr, 0x8080);
device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
device_printf(ctrlr->dev, "Chatham size: %lld\n",
(long long)ctrlr->chatham_size);
reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
if (use_flash_timings) {
device_printf(ctrlr->dev, "Chatham: using flash timings\n");
temp1 = 0x00001b58000007d0LL;
temp2 = 0x000000cb00000131LL;
} else {
device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
temp1 = temp2 = 0x0LL;
}
chatham_write_8(ctrlr, 0x8000, reg1);
chatham_write_8(ctrlr, 0x8008, reg2);
chatham_write_8(ctrlr, 0x8010, reg3);
chatham_write_8(ctrlr, 0x8020, temp1);
temp3 = chatham_read_4(ctrlr, 0x8020);
chatham_write_8(ctrlr, 0x8028, temp2);
temp3 = chatham_read_4(ctrlr, 0x8028);
chatham_write_8(ctrlr, 0x8030, temp1);
chatham_write_8(ctrlr, 0x8038, temp2);
chatham_write_8(ctrlr, 0x8040, temp1);
chatham_write_8(ctrlr, 0x8048, temp2);
chatham_write_8(ctrlr, 0x8050, temp1);
chatham_write_8(ctrlr, 0x8058, temp2);
DELAY(10000);
}
static void
nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
{
struct nvme_controller_data *cdata;
cdata = &ctrlr->cdata;
cdata->vid = 0x8086;
cdata->ssvid = 0x2011;
/*
* Chatham2 puts garbage data in these fields when we
* invoke IDENTIFY_CONTROLLER, so we need to re-zero
* the fields before calling bcopy().
*/
memset(cdata->sn, 0, sizeof(cdata->sn));
memcpy(cdata->sn, "2012", strlen("2012"));
memset(cdata->mn, 0, sizeof(cdata->mn));
memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
memset(cdata->fr, 0, sizeof(cdata->fr));
memcpy(cdata->fr, "0", strlen("0"));
cdata->rab = 8;
cdata->aerl = 3;
cdata->lpa.ns_smart = 1;
cdata->sqes.min = 6;
cdata->sqes.max = 6;
cdata->sqes.min = 4;
cdata->sqes.max = 4;
cdata->nn = 1;
/* Chatham2 doesn't support DSM command */
cdata->oncs.dsm = 0;
cdata->vwc.present = 1;
}
#endif /* CHATHAM2 */
static void
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
uint32_t num_entries;
qpair = &ctrlr->adminq;
num_entries = NVME_ADMIN_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
/*
* If admin_entries was overridden to an invalid value, revert it
* back to our default value.
*/
if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
num_entries > NVME_MAX_ADMIN_ENTRIES) {
printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
num_entries);
num_entries = NVME_ADMIN_ENTRIES;
}
/*
* The admin queue's max xfer size is treated differently than the
* max I/O xfer size. 16KB is sufficient here - maybe even less?
*/
nvme_qpair_construct(qpair, 0, 0, num_entries, 16*1024, ctrlr);
}
static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
union cap_lo_register cap_lo;
int i, num_entries;
num_entries = NVME_IO_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
num_entries = max(num_entries, NVME_MIN_IO_ENTRIES);
/*
* NVMe spec sets a hard limit of 64K max entries, but
* devices may specify a smaller limit, so we need to check
* the MQES field in the capabilities register.
*/
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
num_entries = min(num_entries, cap_lo.bits.mqes+1);
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
/*
* Check that tunable doesn't specify a size greater than what our
* driver supports, and is an even PAGE_SIZE multiple.
*/
if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
ctrlr->max_xfer_size % PAGE_SIZE)
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
M_NVME, M_ZERO | M_NOWAIT);
if (ctrlr->ioq == NULL)
return (ENOMEM);
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
/*
* Admin queue has ID=0. IO queues start at ID=1 -
* hence the 'i+1' here.
*
* For I/O queues, use the controller-wide max_xfer_size
* calculated in nvme_attach().
*/
nvme_qpair_construct(qpair,
i+1, /* qpair ID */
ctrlr->msix_enabled ? i+1 : 0, /* vector */
num_entries,
ctrlr->max_xfer_size,
ctrlr);
if (ctrlr->per_cpu_io_queues)
bus_bind_intr(ctrlr->dev, qpair->res, i);
}
return (0);
}
static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
{
int ms_waited;
union cc_register cc;
union csts_register csts;
cc.raw = nvme_mmio_read_4(ctrlr, cc);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (!cc.bits.en) {
device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
__func__);
return (ENXIO);
}
ms_waited = 0;
while (!csts.bits.rdy) {
DELAY(1000);
if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
device_printf(ctrlr->dev, "controller did not become "
"ready within %d ms\n", ctrlr->ready_timeout_in_ms);
return (ENXIO);
}
csts.raw = nvme_mmio_read_4(ctrlr, csts);
}
return (0);
}
static void
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
union cc_register cc;
union csts_register csts;
cc.raw = nvme_mmio_read_4(ctrlr, cc);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (cc.bits.en == 1 && csts.bits.rdy == 0)
nvme_ctrlr_wait_for_ready(ctrlr);
cc.bits.en = 0;
nvme_mmio_write_4(ctrlr, cc, cc.raw);
DELAY(5000);
}
static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
union cc_register cc;
union csts_register csts;
union aqa_register aqa;
cc.raw = nvme_mmio_read_4(ctrlr, cc);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (cc.bits.en == 1) {
if (csts.bits.rdy == 1)
return (0);
else
return (nvme_ctrlr_wait_for_ready(ctrlr));
}
nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
DELAY(5000);
nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
DELAY(5000);
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = ctrlr->adminq.num_entries-1;
aqa.bits.asqs = ctrlr->adminq.num_entries-1;
nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
DELAY(5000);
cc.bits.en = 1;
cc.bits.css = 0;
cc.bits.ams = 0;
cc.bits.shn = 0;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
/* This evaluates to 0, which is according to spec. */
cc.bits.mps = (PAGE_SIZE >> 13);
nvme_mmio_write_4(ctrlr, cc, cc.raw);
DELAY(5000);
return (nvme_ctrlr_wait_for_ready(ctrlr));
}
int
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
nvme_ctrlr_disable(ctrlr);
return (nvme_ctrlr_enable(ctrlr));
}
/*
* Disable this code for now, since Chatham doesn't support
* AERs so I have no good way to test them.
*/
#if 0
static void
nvme_async_event_cb(void *arg, const struct nvme_completion *status)
{
struct nvme_controller *ctrlr = arg;
printf("Asynchronous event occurred.\n");
/* TODO: decode async event type based on status */
/* TODO: check status for any error bits */
/*
* Repost an asynchronous event request so that it can be
* used again by the controller.
*/
nvme_ctrlr_cmd_asynchronous_event_request(ctrlr, nvme_async_event_cb,
ctrlr);
}
#endif
static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
struct mtx *mtx;
struct nvme_completion cpl;
int status;
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
mtx_lock(mtx);
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_ctrlr_cb, &cpl);
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
mtx_unlock(mtx);
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
printf("nvme_identify_controller failed!\n");
return (ENXIO);
}
#ifdef CHATHAM2
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
nvme_chatham_populate_cdata(ctrlr);
#endif
return (0);
}
static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
struct mtx *mtx;
struct nvme_completion cpl;
int cq_allocated, sq_allocated, status;
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
mtx_lock(mtx);
nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
nvme_ctrlr_cb, &cpl);
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
mtx_unlock(mtx);
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
printf("nvme_set_num_queues failed!\n");
return (ENXIO);
}
/*
* Data in cdw0 is 0-based.
* Lower 16-bits indicate number of submission queues allocated.
* Upper 16-bits indicate number of completion queues allocated.
*/
sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
cq_allocated = (cpl.cdw0 >> 16) + 1;
/*
* Check that the controller was able to allocate the number of
* queues we requested. If not, revert to one IO queue.
*/
if (sq_allocated < ctrlr->num_io_queues ||
cq_allocated < ctrlr->num_io_queues) {
ctrlr->num_io_queues = 1;
ctrlr->per_cpu_io_queues = 0;
/* TODO: destroy extra queues that were created
* previously but now found to be not needed.
*/
}
return (0);
}
static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
struct mtx *mtx;
struct nvme_qpair *qpair;
struct nvme_completion cpl;
int i, status;
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
mtx_lock(mtx);
nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
nvme_ctrlr_cb, &cpl);
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
mtx_unlock(mtx);
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
printf("nvme_create_io_cq failed!\n");
return (ENXIO);
}
mtx_lock(mtx);
nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
nvme_ctrlr_cb, &cpl);
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
mtx_unlock(mtx);
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
printf("nvme_create_io_sq failed!\n");
return (ENXIO);
}
}
return (0);
}
static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
struct nvme_namespace *ns;
int i, status;
for (i = 0; i < ctrlr->cdata.nn; i++) {
ns = &ctrlr->ns[i];
status = nvme_ns_construct(ns, i+1, ctrlr);
if (status != 0)
return (status);
}
return (0);
}
static void
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
union nvme_critical_warning_state state;
uint8_t num_async_events;
state.raw = 0xFF;
state.bits.reserved = 0;
nvme_ctrlr_cmd_set_asynchronous_event_config(ctrlr, state, NULL, NULL);
/* aerl is a zero-based value, so we need to add 1 here. */
num_async_events = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
/*
* Disable this code for now, since Chatham doesn't support
* AERs so I have no good way to test them.
*/
#if 0
for (int i = 0; i < num_async_events; i++)
nvme_ctrlr_cmd_asynchronous_event_request(ctrlr,
nvme_async_event_cb, ctrlr);
#endif
}
static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
{
ctrlr->int_coal_time = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
&ctrlr->int_coal_time);
ctrlr->int_coal_threshold = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
&ctrlr->int_coal_threshold);
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
ctrlr->int_coal_threshold, NULL, NULL);
}
void
nvme_ctrlr_start(void *ctrlr_arg)
{
struct nvme_controller *ctrlr = ctrlr_arg;
if (nvme_ctrlr_identify(ctrlr) != 0)
goto err;
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
goto err;
if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
goto err;
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
goto err;
nvme_ctrlr_configure_aer(ctrlr);
nvme_ctrlr_configure_int_coalescing(ctrlr);
ctrlr->is_started = TRUE;
err:
/*
* Initialize sysctls, even if controller failed to start, to
* assist with debugging admin queue pair.
*/
nvme_sysctl_initialize_ctrlr(ctrlr);
config_intrhook_disestablish(&ctrlr->config_hook);
}
static void
nvme_ctrlr_intx_task(void *arg, int pending)
{
struct nvme_controller *ctrlr = arg;
nvme_qpair_process_completions(&ctrlr->adminq);
if (ctrlr->ioq[0].cpl)
nvme_qpair_process_completions(&ctrlr->ioq[0]);
nvme_mmio_write_4(ctrlr, intmc, 1);
}
static void
nvme_ctrlr_intx_handler(void *arg)
{
struct nvme_controller *ctrlr = arg;
nvme_mmio_write_4(ctrlr, intms, 1);
taskqueue_enqueue_fast(ctrlr->taskqueue, &ctrlr->task);
}
static int
nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
{
ctrlr->num_io_queues = 1;
ctrlr->per_cpu_io_queues = 0;
ctrlr->rid = 0;
ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
&ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
if (ctrlr->res == NULL) {
device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
return (ENOMEM);
}
bus_setup_intr(ctrlr->dev, ctrlr->res,
INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
ctrlr, &ctrlr->tag);
if (ctrlr->tag == NULL) {
device_printf(ctrlr->dev,
"unable to setup legacy interrupt handler\n");
return (ENOMEM);
}
TASK_INIT(&ctrlr->task, 0, nvme_ctrlr_intx_task, ctrlr);
ctrlr->taskqueue = taskqueue_create_fast("nvme_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &ctrlr->taskqueue);
taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_NET,
"%s intx taskq", device_get_nameunit(ctrlr->dev));
return (0);
}
static int
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
struct thread *td)
{
struct nvme_controller *ctrlr;
struct nvme_completion cpl;
struct mtx *mtx;
ctrlr = cdev->si_drv1;
switch (cmd) {
case NVME_IDENTIFY_CONTROLLER:
#ifdef CHATHAM2
/*
* Don't refresh data on Chatham, since Chatham returns
* garbage on IDENTIFY anyways.
*/
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
break;
}
#endif
/* Refresh data before returning to user. */
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
mtx_lock(mtx);
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_ctrlr_cb, &cpl);
msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
mtx_unlock(mtx);
if (cpl.sf_sc || cpl.sf_sct)
return (ENXIO);
memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
break;
default:
return (ENOTTY);
}
return (0);
}
static struct cdevsw nvme_ctrlr_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_ioctl = nvme_ctrlr_ioctl
};
int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
{
union cap_lo_register cap_lo;
union cap_hi_register cap_hi;
int num_vectors, per_cpu_io_queues, status = 0;
ctrlr->dev = dev;
ctrlr->is_started = FALSE;
status = nvme_ctrlr_allocate_bar(ctrlr);
if (status != 0)
return (status);
#ifdef CHATHAM2
if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
if (status != 0)
return (status);
nvme_ctrlr_setup_chatham(ctrlr);
}
#endif
/*
* Software emulators may set the doorbell stride to something
* other than zero, but this driver is not set up to handle that.
*/
cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
if (cap_hi.bits.dstrd != 0)
return (ENXIO);
/* Get ready timeout value from controller, in units of 500ms. */
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
per_cpu_io_queues = 1;
TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
if (ctrlr->per_cpu_io_queues)
ctrlr->num_io_queues = mp_ncpus;
else
ctrlr->num_io_queues = 1;
ctrlr->force_intx = 0;
TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
ctrlr->msix_enabled = 1;
if (ctrlr->force_intx) {
ctrlr->msix_enabled = 0;
goto intx;
}
/* One vector per IO queue, plus one vector for admin queue. */
num_vectors = ctrlr->num_io_queues + 1;
if (pci_msix_count(dev) < num_vectors) {
ctrlr->msix_enabled = 0;
goto intx;
}
if (pci_alloc_msix(dev, &num_vectors) != 0)
ctrlr->msix_enabled = 0;
intx:
if (!ctrlr->msix_enabled)
nvme_ctrlr_configure_intx(ctrlr);
nvme_ctrlr_construct_admin_qpair(ctrlr);
status = nvme_ctrlr_construct_io_qpairs(ctrlr);
if (status != 0)
return (status);
ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
"nvme%d", device_get_unit(dev));
if (ctrlr->cdev == NULL)
return (ENXIO);
ctrlr->cdev->si_drv1 = (void *)ctrlr;
return (0);
}
void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
struct nvme_qpair *qpair;
struct nvme_tracker *tr;
int err;
qpair = &ctrlr->adminq;
mtx_lock(&qpair->lock);
tr = nvme_qpair_allocate_tracker(qpair);
tr->req = req;
if (req->payload_size > 0) {
err = bus_dmamap_load(tr->qpair->dma_tag, tr->payload_dma_map,
req->payload, req->payload_size,
nvme_payload_map, tr, 0);
if (err != 0)
panic("bus_dmamap_load returned non-zero!\n");
} else
nvme_qpair_submit_cmd(tr->qpair, tr);
mtx_unlock(&qpair->lock);
}
void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
struct nvme_qpair *qpair;
struct nvme_tracker *tr;
int err;
if (ctrlr->per_cpu_io_queues)
qpair = &ctrlr->ioq[curcpu];
else
qpair = &ctrlr->ioq[0];
mtx_lock(&qpair->lock);
tr = nvme_qpair_allocate_tracker(qpair);
tr->req = req;
if (req->uio == NULL) {
if (req->payload_size > 0) {
err = bus_dmamap_load(tr->qpair->dma_tag,
tr->payload_dma_map, req->payload,
req->payload_size,
nvme_payload_map, tr, 0);
if (err != 0)
panic("bus_dmamap_load returned non-zero!\n");
} else
nvme_qpair_submit_cmd(tr->qpair, tr);
} else {
err = bus_dmamap_load_uio(tr->qpair->dma_tag,
tr->payload_dma_map, req->uio,
nvme_payload_map_uio, tr, 0);
if (err != 0)
panic("bus_dmamap_load returned non-zero!\n");
}
mtx_unlock(&qpair->lock);
}