freebsd-nq/sys/dev/mly/mly_cam.c
Mike Smith e07acca5f0 This is the initial import of a new driver for the current family of
PCI:SCSI RAID controllers from Mylex.
2000-08-23 03:22:41 +00:00

514 lines
15 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* CAM interface for FreeBSD
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/devicestat.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <dev/mly/mlyreg.h>
#include <dev/mly/mlyvar.h>
#include <dev/mly/mly_tables.h>
static void mly_cam_poll(struct cam_sim *sim);
static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
static void mly_cam_complete(struct mly_command *mc);
static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
/********************************************************************************
* CAM-specific queue primitives
*/
static __inline void
mly_enqueue_ccb(struct mly_softc *sc, union ccb *ccb)
{
int s;
s = splcam();
TAILQ_INSERT_TAIL(&sc->mly_cam_ccbq, &ccb->ccb_h, sim_links.tqe);
splx(s);
}
static __inline void
mly_requeue_ccb(struct mly_softc *sc, union ccb *ccb)
{
int s;
s = splcam();
TAILQ_INSERT_HEAD(&sc->mly_cam_ccbq, &ccb->ccb_h, sim_links.tqe);
splx(s);
}
static __inline union ccb *
mly_dequeue_ccb(struct mly_softc *sc)
{
union ccb *ccb;
int s;
s = splcam();
if ((ccb = (union ccb *)TAILQ_FIRST(&sc->mly_cam_ccbq)) != NULL)
TAILQ_REMOVE(&sc->mly_cam_ccbq, &ccb->ccb_h, sim_links.tqe);
splx(s);
return(ccb);
}
/********************************************************************************
* space-fill a character string
*/
static __inline void
padstr(char *targ, char *src, int len)
{
while (len-- > 0) {
if (*src != 0) {
*targ++ = *src++;
} else {
*targ++ = ' ';
}
}
}
/********************************************************************************
* Attach the real and virtual SCSI busses to CAM
*/
int
mly_cam_attach(struct mly_softc *sc)
{
struct cam_devq *devq;
int chn, nchn;
debug_called(1);
/* initialise the CCB queue */
TAILQ_INIT(&sc->mly_cam_ccbq);
/*
* Allocate a devq for all our channels combined.
*/
if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
mly_printf(sc, "can't allocate CAM SIM\n");
return(ENOMEM);
}
/*
* Iterate over channels, registering them with CAM.
*/
nchn = sc->mly_controllerinfo->physical_channels_present +
sc->mly_controllerinfo->virtual_channels_present;
for (chn = 0; chn < nchn; chn++) {
/* allocate a sim */
if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action,
mly_cam_poll,
"mly",
sc,
device_get_unit(sc->mly_dev),
1,
sc->mly_controllerinfo->maximum_parallel_commands,
devq)) == NULL) {
cam_simq_free(devq);
mly_printf(sc, "CAM SIM attach failed\n");
return(ENOMEM);
}
/* register the bus ID so we can get it later */
if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
mly_printf(sc, "CAM XPT bus registration failed\n");
return(ENXIO);
}
debug(1, "registered sim %p bus %d", sc->mly_cam_sim[chn], chn);
}
return(0);
}
/********************************************************************************
* Detach from CAM
*/
void
mly_cam_detach(struct mly_softc *sc)
{
int chn, nchn, first;
debug_called(1);
nchn = sc->mly_controllerinfo->physical_channels_present +
sc->mly_controllerinfo->virtual_channels_present;
/*
* Iterate over channels, deregistering as we go.
*/
nchn = sc->mly_controllerinfo->physical_channels_present +
sc->mly_controllerinfo->virtual_channels_present;
for (chn = 0, first = 1; chn < nchn; chn++) {
/*
* If a sim was registered for this channel, free it.
*/
if (sc->mly_cam_sim[chn] != NULL) {
debug(1, "deregister bus %d", chn);
xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[chn]));
debug(1, "free sim for channel %d (%sfree queue)", chn, first ? "" : "don't ");
cam_sim_free(sc->mly_cam_sim[chn], first ? TRUE : FALSE);
first = 0;
}
}
}
/********************************************************************************
* Handle an action requested by CAM
*/
static void
mly_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct mly_softc *sc = cam_sim_softc(sim);
debug_called(2);
switch (ccb->ccb_h.func_code) {
/* perform SCSI I/O */
case XPT_SCSI_IO:
{
struct ccb_scsiio *csio = &ccb->csio;
int bus, target;
bus = cam_sim_bus(sim);
target = csio->ccb_h.target_id;
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, ccb->ccb_h.target_lun);
/* check for I/O attempt to a protected device */
if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
debug(2, " device protected");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check for I/O attempt to nonexistent device */
if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
debug(2, " device does not exist");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* XXX increase if/when we support large SCSI commands */
if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
debug(2, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check that the CDB pointer is not to a physical address */
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
debug(2, " CDB pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* if there is data transfer, it must be to/from a virtual address */
if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
debug(2, " data pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
debug(2, " data has premature s/g setup");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
}
/* abandon aborted ccbs or those that have failed validation */
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
debug(2, "abandoning CCB due to abort/validation failure");
break;
}
/* save the channel number in the ccb */
csio->ccb_h.sim_priv.entries[0].field = bus;
/* enqueue the ccb and start I/O */
mly_enqueue_ccb(sc, ccb);
mly_startio(sc);
return;
}
/* perform geometry calculations */
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg = &ccb->ccg;
u_int32_t secs_per_cylinder;
debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else { /* MLY_BIOSGEOM_2G */
ccg->heads = 128;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
/* handle path attribute inquiry */
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->max_target = MLY_MAX_TARGETS - 1;
cpi->max_lun = MLY_MAX_LUNS - 1;
cpi->initiator_id = sc->mly_controllerparam->initiator_id;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "BSDi", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
default: /* we can't do this */
debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/********************************************************************************
* Check for possibly-completed commands.
*/
static void
mly_cam_poll(struct cam_sim *sim)
{
struct mly_softc *sc = cam_sim_softc(sim);
debug_called(2);
mly_done(sc);
}
/********************************************************************************
* Pull a CCB off the work queue and turn it into a command.
*/
int
mly_cam_command(struct mly_softc *sc, struct mly_command **mcp)
{
struct mly_command *mc;
struct mly_command_scsi_small *ss;
struct ccb_scsiio *csio;
int error;
debug_called(2);
error = 0;
mc = NULL;
csio = NULL;
/* check for a CCB */
if (!(csio = (struct ccb_scsiio *)mly_dequeue_ccb(sc)))
goto out;
/* get a command to back it */
if (mly_alloc_command(sc, &mc)) {
error = ENOMEM;
goto out;
}
/* build the command */
MLY_CMD_SETSTATE(mc, MLY_CMD_SETUP);
mc->mc_data = csio->data_ptr;
mc->mc_length = csio->dxfer_len;
mc->mc_complete = mly_cam_complete;
mc->mc_private = csio;
/* build the packet for the controller */
ss = &mc->mc_packet->scsi_small;
ss->opcode = MDACMD_SCSI;
if (csio->ccb_h.flags * CAM_DIS_DISCONNECT)
ss->command_control.disable_disconnect = 1;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
ss->command_control.data_direction = MLY_CCB_WRITE;
ss->data_size = csio->dxfer_len;
ss->addr.phys.lun = csio->ccb_h.target_lun;
ss->addr.phys.target = csio->ccb_h.target_id;
ss->addr.phys.channel = csio->ccb_h.sim_priv.entries[0].field;
if (csio->ccb_h.timeout < (60 * 1000)) {
ss->timeout.value = csio->ccb_h.timeout / 1000;
ss->timeout.scale = MLY_TIMEOUT_SECONDS;
} else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
ss->timeout.scale = MLY_TIMEOUT_MINUTES;
} else {
ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
ss->timeout.scale = MLY_TIMEOUT_HOURS;
}
ss->maximum_sense_size = csio->sense_len;
ss->cdb_length = csio->cdb_len;
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
}
out:
if (error != 0) {
if (mc != NULL) {
mly_release_command(mc);
mc = NULL;
}
if (csio != NULL)
mly_requeue_ccb(sc, (union ccb *)csio);
}
*mcp = mc;
return(error);
}
/********************************************************************************
* Handle completion of a command - pass results back through the CCB
*/
static void
mly_cam_complete(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
struct mly_btl *btl;
u_int8_t cmd;
int bus, target;
debug_called(2);
csio->scsi_status = mc->mc_status;
switch(mc->mc_status) {
case SCSI_STATUS_OK:
/*
* In order to report logical device type and status, we overwrite
* the result of the INQUIRY command to logical devices.
*/
bus = csio->ccb_h.sim_priv.entries[0].field;
if (bus >= sc->mly_controllerinfo->physical_channels_present) {
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
cmd = *csio->cdb_io.cdb_ptr;
} else {
cmd = csio->cdb_io.cdb_bytes[0];
}
if (cmd == INQUIRY) {
target = csio->ccb_h.target_id;
btl = &sc->mly_btl[bus][target];
padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
padstr(inq->revision, "", 4);
}
}
debug(2, "SCSI_STATUS_OK");
csio->ccb_h.status = CAM_REQ_CMP;
break;
case SCSI_STATUS_CHECK_COND:
debug(2, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
bzero(&csio->sense_data, SSD_FULL_SIZE);
bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
csio->sense_len = mc->mc_sense;
csio->ccb_h.status |= CAM_AUTOSNS_VALID;
csio->resid = mc->mc_resid; /* XXX this is a signed value... */
break;
case SCSI_STATUS_BUSY:
debug(2, "SCSI_STATUS_BUSY");
csio->ccb_h.status = CAM_SCSI_BUSY;
break;
default:
debug(2, "unknown status 0x%x", csio->scsi_status);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
xpt_done((union ccb *)csio);
mly_release_command(mc);
}
/********************************************************************************
* Find a peripheral attahed at (bus),(target)
*/
static struct cam_periph *
mly_find_periph(struct mly_softc *sc, int bus, int target)
{
struct cam_periph *periph;
struct cam_path *path;
int status;
status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
if (status == CAM_REQ_CMP) {
periph = cam_periph_find(path, NULL);
xpt_free_path(path);
} else {
periph = NULL;
}
return(periph);
}
/********************************************************************************
* Name the device at (bus)(target)
*/
int
mly_name_device(struct mly_softc *sc, int bus, int target)
{
struct cam_periph *periph;
if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
return(0);
}
sc->mly_btl[bus][target].mb_name[0] = 0;
return(ENOENT);
}