d131070105
built with clang. When these are defined the lists are defined similar to: asm(".section .ctors"); STATIC func_ptr __CTOR_LIST__[1] = { (func_ptr) (-1) }; asm(".section .dtors"); STATIC func_ptr __DTOR_LIST__[1] = { (func_ptr) (-1) }; The problem is clang will move the two arrays out of the .ctors and .dtors sections causing these sections to contain a single null address. By not defining these macros we use the version of the code that places the arrays is their sections by using __attribute__((section(".ctors"))) and similar for .dtors. Submitted by: Daisuke Aoyama <aoyama AT peach.ne.jp>
2601 lines
91 KiB
C
2601 lines
91 KiB
C
/* Definitions of target machine for GNU compiler, for ARM.
|
||
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
|
||
and Martin Simmons (@harleqn.co.uk).
|
||
More major hacks by Richard Earnshaw (rearnsha@arm.com)
|
||
Minor hacks by Nick Clifton (nickc@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published
|
||
by the Free Software Foundation; either version 2, or (at your
|
||
option) any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#ifndef GCC_ARM_H
|
||
#define GCC_ARM_H
|
||
|
||
/* The architecture define. */
|
||
extern char arm_arch_name[];
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() \
|
||
do \
|
||
{ \
|
||
/* Define __arm__ even when in thumb mode, for \
|
||
consistency with armcc. */ \
|
||
builtin_define ("__arm__"); \
|
||
builtin_define ("__APCS_32__"); \
|
||
if (TARGET_THUMB) \
|
||
builtin_define ("__thumb__"); \
|
||
\
|
||
if (TARGET_BIG_END) \
|
||
{ \
|
||
builtin_define ("__ARMEB__"); \
|
||
if (TARGET_THUMB) \
|
||
builtin_define ("__THUMBEB__"); \
|
||
if (TARGET_LITTLE_WORDS) \
|
||
builtin_define ("__ARMWEL__"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define ("__ARMEL__"); \
|
||
if (TARGET_THUMB) \
|
||
builtin_define ("__THUMBEL__"); \
|
||
} \
|
||
\
|
||
if (TARGET_SOFT_FLOAT) \
|
||
builtin_define ("__SOFTFP__"); \
|
||
\
|
||
if (TARGET_VFP) \
|
||
builtin_define ("__VFP_FP__"); \
|
||
\
|
||
/* Add a define for interworking. \
|
||
Needed when building libgcc.a. */ \
|
||
if (arm_cpp_interwork) \
|
||
builtin_define ("__THUMB_INTERWORK__"); \
|
||
\
|
||
builtin_assert ("cpu=arm"); \
|
||
builtin_assert ("machine=arm"); \
|
||
\
|
||
builtin_define (arm_arch_name); \
|
||
if (arm_arch_cirrus) \
|
||
builtin_define ("__MAVERICK__"); \
|
||
if (arm_arch_xscale) \
|
||
builtin_define ("__XSCALE__"); \
|
||
if (arm_arch_iwmmxt) \
|
||
builtin_define ("__IWMMXT__"); \
|
||
if (TARGET_AAPCS_BASED) \
|
||
builtin_define ("__ARM_EABI__"); \
|
||
} while (0)
|
||
|
||
/* The various ARM cores. */
|
||
enum processor_type
|
||
{
|
||
#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
|
||
IDENT,
|
||
#include "arm-cores.def"
|
||
#undef ARM_CORE
|
||
/* Used to indicate that no processor has been specified. */
|
||
arm_none
|
||
};
|
||
|
||
enum target_cpus
|
||
{
|
||
#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
|
||
TARGET_CPU_##IDENT,
|
||
#include "arm-cores.def"
|
||
#undef ARM_CORE
|
||
TARGET_CPU_generic
|
||
};
|
||
|
||
/* The processor for which instructions should be scheduled. */
|
||
extern enum processor_type arm_tune;
|
||
|
||
typedef enum arm_cond_code
|
||
{
|
||
ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
|
||
ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
|
||
}
|
||
arm_cc;
|
||
|
||
extern arm_cc arm_current_cc;
|
||
|
||
#define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
|
||
|
||
extern int arm_target_label;
|
||
extern int arm_ccfsm_state;
|
||
extern GTY(()) rtx arm_target_insn;
|
||
/* Define the information needed to generate branch insns. This is
|
||
stored from the compare operation. */
|
||
extern GTY(()) rtx arm_compare_op0;
|
||
extern GTY(()) rtx arm_compare_op1;
|
||
/* The label of the current constant pool. */
|
||
extern rtx pool_vector_label;
|
||
/* Set to 1 when a return insn is output, this means that the epilogue
|
||
is not needed. */
|
||
extern int return_used_this_function;
|
||
/* Used to produce AOF syntax assembler. */
|
||
extern GTY(()) rtx aof_pic_label;
|
||
|
||
/* Just in case configure has failed to define anything. */
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT TARGET_CPU_generic
|
||
#endif
|
||
|
||
|
||
#undef CPP_SPEC
|
||
#define CPP_SPEC "%(subtarget_cpp_spec) \
|
||
%{msoft-float:%{mhard-float: \
|
||
%e-msoft-float and -mhard_float may not be used together}} \
|
||
%{mbig-endian:%{mlittle-endian: \
|
||
%e-mbig-endian and -mlittle-endian may not be used together}}"
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC ""
|
||
#endif
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GCC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
#define EXTRA_SPECS \
|
||
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#ifndef SUBTARGET_CPP_SPEC
|
||
#define SUBTARGET_CPP_SPEC ""
|
||
#endif
|
||
|
||
/* Run-time Target Specification. */
|
||
#ifndef TARGET_VERSION
|
||
#define TARGET_VERSION fputs (" (ARM/generic)", stderr);
|
||
#endif
|
||
|
||
#define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
|
||
/* Use hardware floating point instructions. */
|
||
#define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
|
||
/* Use hardware floating point calling convention. */
|
||
#define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
|
||
#define TARGET_FPA (arm_fp_model == ARM_FP_MODEL_FPA)
|
||
#define TARGET_MAVERICK (arm_fp_model == ARM_FP_MODEL_MAVERICK)
|
||
#define TARGET_VFP (arm_fp_model == ARM_FP_MODEL_VFP)
|
||
#define TARGET_IWMMXT (arm_arch_iwmmxt)
|
||
#define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_ARM)
|
||
#define TARGET_IWMMXT_ABI (TARGET_ARM && arm_abi == ARM_ABI_IWMMXT)
|
||
#define TARGET_ARM (! TARGET_THUMB)
|
||
#define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
|
||
#define TARGET_BACKTRACE (leaf_function_p () \
|
||
? TARGET_TPCS_LEAF_FRAME \
|
||
: TARGET_TPCS_FRAME)
|
||
#define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
|
||
#define TARGET_AAPCS_BASED \
|
||
(arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
|
||
|
||
#define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
|
||
#define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
|
||
|
||
/* True iff the full BPABI is being used. If TARGET_BPABI is true,
|
||
then TARGET_AAPCS_BASED must be true -- but the converse does not
|
||
hold. TARGET_BPABI implies the use of the BPABI runtime library,
|
||
etc., in addition to just the AAPCS calling conventions. */
|
||
#ifndef TARGET_BPABI
|
||
#define TARGET_BPABI false
|
||
#endif
|
||
|
||
/* Support for a compile-time default CPU, et cetera. The rules are:
|
||
--with-arch is ignored if -march or -mcpu are specified.
|
||
--with-cpu is ignored if -march or -mcpu are specified, and is overridden
|
||
by --with-arch.
|
||
--with-tune is ignored if -mtune or -mcpu are specified (but not affected
|
||
by -march).
|
||
--with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are
|
||
specified.
|
||
--with-fpu is ignored if -mfpu is specified.
|
||
--with-abi is ignored is -mabi is specified. */
|
||
#define OPTION_DEFAULT_SPECS \
|
||
{"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
|
||
{"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
|
||
{"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
|
||
{"float", \
|
||
"%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \
|
||
{"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
|
||
{"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
|
||
{"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
|
||
|
||
/* Which floating point model to use. */
|
||
enum arm_fp_model
|
||
{
|
||
ARM_FP_MODEL_UNKNOWN,
|
||
/* FPA model (Hardware or software). */
|
||
ARM_FP_MODEL_FPA,
|
||
/* Cirrus Maverick floating point model. */
|
||
ARM_FP_MODEL_MAVERICK,
|
||
/* VFP floating point model. */
|
||
ARM_FP_MODEL_VFP
|
||
};
|
||
|
||
extern enum arm_fp_model arm_fp_model;
|
||
|
||
/* Which floating point hardware is available. Also update
|
||
fp_model_for_fpu in arm.c when adding entries to this list. */
|
||
enum fputype
|
||
{
|
||
/* No FP hardware. */
|
||
FPUTYPE_NONE,
|
||
/* Full FPA support. */
|
||
FPUTYPE_FPA,
|
||
/* Emulated FPA hardware, Issue 2 emulator (no LFM/SFM). */
|
||
FPUTYPE_FPA_EMU2,
|
||
/* Emulated FPA hardware, Issue 3 emulator. */
|
||
FPUTYPE_FPA_EMU3,
|
||
/* Cirrus Maverick floating point co-processor. */
|
||
FPUTYPE_MAVERICK,
|
||
/* VFP. */
|
||
FPUTYPE_VFP
|
||
};
|
||
|
||
/* Recast the floating point class to be the floating point attribute. */
|
||
#define arm_fpu_attr ((enum attr_fpu) arm_fpu_tune)
|
||
|
||
/* What type of floating point to tune for */
|
||
extern enum fputype arm_fpu_tune;
|
||
|
||
/* What type of floating point instructions are available */
|
||
extern enum fputype arm_fpu_arch;
|
||
|
||
enum float_abi_type
|
||
{
|
||
ARM_FLOAT_ABI_SOFT,
|
||
ARM_FLOAT_ABI_SOFTFP,
|
||
ARM_FLOAT_ABI_HARD
|
||
};
|
||
|
||
extern enum float_abi_type arm_float_abi;
|
||
|
||
#ifndef TARGET_DEFAULT_FLOAT_ABI
|
||
#define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
|
||
#endif
|
||
|
||
/* Which ABI to use. */
|
||
enum arm_abi_type
|
||
{
|
||
ARM_ABI_APCS,
|
||
ARM_ABI_ATPCS,
|
||
ARM_ABI_AAPCS,
|
||
ARM_ABI_IWMMXT,
|
||
ARM_ABI_AAPCS_LINUX
|
||
};
|
||
|
||
extern enum arm_abi_type arm_abi;
|
||
|
||
#ifndef ARM_DEFAULT_ABI
|
||
#define ARM_DEFAULT_ABI ARM_ABI_APCS
|
||
#endif
|
||
|
||
/* Which thread pointer access sequence to use. */
|
||
enum arm_tp_type {
|
||
TP_AUTO,
|
||
TP_SOFT,
|
||
TP_CP15
|
||
};
|
||
|
||
extern enum arm_tp_type target_thread_pointer;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 3M extensions. */
|
||
extern int arm_arch3m;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 4 extensions. */
|
||
extern int arm_arch4;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 4T extensions. */
|
||
extern int arm_arch4t;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5 extensions. */
|
||
extern int arm_arch5;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5E extensions. */
|
||
extern int arm_arch5e;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 6 extensions. */
|
||
extern int arm_arch6;
|
||
|
||
/* Nonzero if this chip can benefit from load scheduling. */
|
||
extern int arm_ld_sched;
|
||
|
||
/* Nonzero if generating thumb code. */
|
||
extern int thumb_code;
|
||
|
||
/* Nonzero if this chip is a StrongARM. */
|
||
extern int arm_tune_strongarm;
|
||
|
||
/* Nonzero if this chip is a Cirrus variant. */
|
||
extern int arm_arch_cirrus;
|
||
|
||
/* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
|
||
extern int arm_arch_iwmmxt;
|
||
|
||
/* Nonzero if this chip is an XScale. */
|
||
extern int arm_arch_xscale;
|
||
|
||
/* Nonzero if tuning for XScale. */
|
||
extern int arm_tune_xscale;
|
||
|
||
/* Nonzero if tuning for stores via the write buffer. */
|
||
extern int arm_tune_wbuf;
|
||
|
||
/* Nonzero if we should define __THUMB_INTERWORK__ in the
|
||
preprocessor.
|
||
XXX This is a bit of a hack, it's intended to help work around
|
||
problems in GLD which doesn't understand that armv5t code is
|
||
interworking clean. */
|
||
extern int arm_cpp_interwork;
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT (MASK_APCS_FRAME)
|
||
#endif
|
||
|
||
/* The frame pointer register used in gcc has nothing to do with debugging;
|
||
that is controlled by the APCS-FRAME option. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
#define OVERRIDE_OPTIONS arm_override_options ()
|
||
|
||
/* Nonzero if PIC code requires explicit qualifiers to generate
|
||
PLT and GOT relocs rather than the assembler doing so implicitly.
|
||
Subtargets can override these if required. */
|
||
#ifndef NEED_GOT_RELOC
|
||
#define NEED_GOT_RELOC 0
|
||
#endif
|
||
#ifndef NEED_PLT_RELOC
|
||
#define NEED_PLT_RELOC 0
|
||
#endif
|
||
|
||
/* Nonzero if we need to refer to the GOT with a PC-relative
|
||
offset. In other words, generate
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
|
||
|
||
rather than
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
|
||
|
||
The default is true, which matches NetBSD. Subtargets can
|
||
override this if required. */
|
||
#ifndef GOT_PCREL
|
||
#define GOT_PCREL 1
|
||
#endif
|
||
|
||
/* Target machine storage Layout. */
|
||
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
/* It is far faster to zero extend chars than to sign extend them */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
{ \
|
||
if (MODE == QImode) \
|
||
UNSIGNEDP = 1; \
|
||
else if (MODE == HImode) \
|
||
UNSIGNEDP = 1; \
|
||
(MODE) = SImode; \
|
||
}
|
||
|
||
#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if ((GET_MODE_CLASS (MODE) == MODE_INT \
|
||
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT) \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
(MODE) = SImode; \
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered.
|
||
Most ARM processors are run in little endian mode, so that is the default.
|
||
If you want to have it run-time selectable, change the definition in a
|
||
cover file to be TARGET_BIG_ENDIAN. */
|
||
#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered.
|
||
This is always false, even when in big-endian mode. */
|
||
#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
|
||
|
||
/* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
|
||
on processor pre-defineds when compiling libgcc2.c. */
|
||
#if defined(__ARMEB__) && !defined(__ARMWEL__)
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
|
||
/* Define this if most significant word of doubles is the lowest numbered.
|
||
The rules are different based on whether or not we use FPA-format,
|
||
VFP-format or some other floating point co-processor's format doubles. */
|
||
#define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
|
||
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* True if natural alignment is used for doubleword types. */
|
||
#define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
|
||
|
||
#define DOUBLEWORD_ALIGNMENT 64
|
||
|
||
#define PARM_BOUNDARY 32
|
||
|
||
#define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
|
||
|
||
#define PREFERRED_STACK_BOUNDARY \
|
||
(arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
|
||
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* The lowest bit is used to indicate Thumb-mode functions, so the
|
||
vbit must go into the delta field of pointers to member
|
||
functions. */
|
||
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
|
||
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
#define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
|
||
|
||
/* XXX Blah -- this macro is used directly by libobjc. Since it
|
||
supports no vector modes, cut out the complexity and fall back
|
||
on BIGGEST_FIELD_ALIGNMENT. */
|
||
#ifdef IN_TARGET_LIBS
|
||
#define BIGGEST_FIELD_ALIGNMENT 64
|
||
#endif
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
|
||
? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
|
||
|
||
/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
|
||
value set in previous versions of this toolchain was 8, which produces more
|
||
compact structures. The command line option -mstructure_size_boundary=<n>
|
||
can be used to change this value. For compatibility with the ARM SDK
|
||
however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
|
||
0020D) page 2-20 says "Structures are aligned on word boundaries".
|
||
The AAPCS specifies a value of 8. */
|
||
#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
|
||
extern int arm_structure_size_boundary;
|
||
|
||
/* This is the value used to initialize arm_structure_size_boundary. If a
|
||
particular arm target wants to change the default value it should change
|
||
the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
|
||
for an example of this. */
|
||
#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
|
||
#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
|
||
#endif
|
||
|
||
/* Nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* wchar_t is unsigned under the AAPCS. */
|
||
#ifndef WCHAR_TYPE
|
||
#define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
|
||
#undef WCHAR_TYPE_SIZE
|
||
#define WCHAR_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
|
||
#endif
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
|
||
#endif
|
||
|
||
/* AAPCS requires that structure alignment is affected by bitfields. */
|
||
#ifndef PCC_BITFIELD_TYPE_MATTERS
|
||
#define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
|
||
#endif
|
||
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
|
||
(S - saved over call).
|
||
|
||
r0 * argument word/integer result
|
||
r1-r3 argument word
|
||
|
||
r4-r8 S register variable
|
||
r9 S (rfp) register variable (real frame pointer)
|
||
|
||
r10 F S (sl) stack limit (used by -mapcs-stack-check)
|
||
r11 F S (fp) argument pointer
|
||
r12 (ip) temp workspace
|
||
r13 F S (sp) lower end of current stack frame
|
||
r14 (lr) link address/workspace
|
||
r15 F (pc) program counter
|
||
|
||
f0 floating point result
|
||
f1-f3 floating point scratch
|
||
|
||
f4-f7 S floating point variable
|
||
|
||
cc This is NOT a real register, but is used internally
|
||
to represent things that use or set the condition
|
||
codes.
|
||
sfp This isn't either. It is used during rtl generation
|
||
since the offset between the frame pointer and the
|
||
auto's isn't known until after register allocation.
|
||
afp Nor this, we only need this because of non-local
|
||
goto. Without it fp appears to be used and the
|
||
elimination code won't get rid of sfp. It tracks
|
||
fp exactly at all times.
|
||
|
||
*: See CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/*
|
||
mvf0 Cirrus floating point result
|
||
mvf1-mvf3 Cirrus floating point scratch
|
||
mvf4-mvf15 S Cirrus floating point variable. */
|
||
|
||
/* s0-s15 VFP scratch (aka d0-d7).
|
||
s16-s31 S VFP variable (aka d8-d15).
|
||
vfpcc Not a real register. Represents the VFP condition
|
||
code flags. */
|
||
|
||
/* The stack backtrace structure is as follows:
|
||
fp points to here: | save code pointer | [fp]
|
||
| return link value | [fp, #-4]
|
||
| return sp value | [fp, #-8]
|
||
| return fp value | [fp, #-12]
|
||
[| saved r10 value |]
|
||
[| saved r9 value |]
|
||
[| saved r8 value |]
|
||
[| saved r7 value |]
|
||
[| saved r6 value |]
|
||
[| saved r5 value |]
|
||
[| saved r4 value |]
|
||
[| saved r3 value |]
|
||
[| saved r2 value |]
|
||
[| saved r1 value |]
|
||
[| saved r0 value |]
|
||
[| saved f7 value |] three words
|
||
[| saved f6 value |] three words
|
||
[| saved f5 value |] three words
|
||
[| saved f4 value |] three words
|
||
r0-r3 are not normally saved in a C function. */
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
0,0,0,0,0,0,0,0, \
|
||
0,0,0,0,0,1,0,1, \
|
||
0,0,0,0,0,0,0,0, \
|
||
1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1 \
|
||
}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
The CC is not preserved over function calls on the ARM 6, so it is
|
||
easier to assume this for all. SFP is preserved, since FP is. */
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
1,1,1,1,0,0,0,0, \
|
||
0,0,0,0,1,1,1,1, \
|
||
1,1,1,1,0,0,0,0, \
|
||
1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1,1,1,1,1,1,1,1, \
|
||
1 \
|
||
}
|
||
|
||
#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#endif
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
int regno; \
|
||
\
|
||
if (TARGET_SOFT_FLOAT || TARGET_THUMB || !TARGET_FPA) \
|
||
{ \
|
||
for (regno = FIRST_FPA_REGNUM; \
|
||
regno <= LAST_FPA_REGNUM; ++regno) \
|
||
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
} \
|
||
\
|
||
if (TARGET_THUMB && optimize_size) \
|
||
{ \
|
||
/* When optimizing for size, it's better not to use \
|
||
the HI regs, because of the overhead of stacking \
|
||
them. */ \
|
||
for (regno = FIRST_HI_REGNUM; \
|
||
regno <= LAST_HI_REGNUM; ++regno) \
|
||
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
} \
|
||
\
|
||
/* The link register can be clobbered by any branch insn, \
|
||
but we have no way to track that at present, so mark \
|
||
it as unavailable. */ \
|
||
if (TARGET_THUMB) \
|
||
fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1; \
|
||
\
|
||
if (TARGET_ARM && TARGET_HARD_FLOAT) \
|
||
{ \
|
||
if (TARGET_MAVERICK) \
|
||
{ \
|
||
for (regno = FIRST_FPA_REGNUM; \
|
||
regno <= LAST_FPA_REGNUM; ++ regno) \
|
||
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
for (regno = FIRST_CIRRUS_FP_REGNUM; \
|
||
regno <= LAST_CIRRUS_FP_REGNUM; ++ regno) \
|
||
{ \
|
||
fixed_regs[regno] = 0; \
|
||
call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \
|
||
} \
|
||
} \
|
||
if (TARGET_VFP) \
|
||
{ \
|
||
for (regno = FIRST_VFP_REGNUM; \
|
||
regno <= LAST_VFP_REGNUM; ++ regno) \
|
||
{ \
|
||
fixed_regs[regno] = 0; \
|
||
call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16; \
|
||
} \
|
||
} \
|
||
} \
|
||
\
|
||
if (TARGET_REALLY_IWMMXT) \
|
||
{ \
|
||
regno = FIRST_IWMMXT_GR_REGNUM; \
|
||
/* The 2002/10/09 revision of the XScale ABI has wCG0 \
|
||
and wCG1 as call-preserved registers. The 2002/11/21 \
|
||
revision changed this so that all wCG registers are \
|
||
scratch registers. */ \
|
||
for (regno = FIRST_IWMMXT_GR_REGNUM; \
|
||
regno <= LAST_IWMMXT_GR_REGNUM; ++ regno) \
|
||
fixed_regs[regno] = 0; \
|
||
/* The XScale ABI has wR0 - wR9 as scratch registers, \
|
||
the rest as call-preserved registers. */ \
|
||
for (regno = FIRST_IWMMXT_REGNUM; \
|
||
regno <= LAST_IWMMXT_REGNUM; ++ regno) \
|
||
{ \
|
||
fixed_regs[regno] = 0; \
|
||
call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \
|
||
} \
|
||
} \
|
||
\
|
||
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
} \
|
||
else if (TARGET_APCS_STACK) \
|
||
{ \
|
||
fixed_regs[10] = 1; \
|
||
call_used_regs[10] = 1; \
|
||
} \
|
||
/* -mcaller-super-interworking reserves r11 for calls to \
|
||
_interwork_r11_call_via_rN(). Making the register global \
|
||
is an easy way of ensuring that it remains valid for all \
|
||
calls. */ \
|
||
if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING \
|
||
|| TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) \
|
||
{ \
|
||
fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
|
||
call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
|
||
if (TARGET_CALLER_INTERWORKING) \
|
||
global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
|
||
} \
|
||
SUBTARGET_CONDITIONAL_REGISTER_USAGE \
|
||
}
|
||
|
||
/* These are a couple of extensions to the formats accepted
|
||
by asm_fprintf:
|
||
%@ prints out ASM_COMMENT_START
|
||
%r prints out REGISTER_PREFIX reg_names[arg] */
|
||
#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
|
||
case '@': \
|
||
fputs (ASM_COMMENT_START, FILE); \
|
||
break; \
|
||
\
|
||
case 'r': \
|
||
fputs (REGISTER_PREFIX, FILE); \
|
||
fputs (reg_names [va_arg (ARGS, int)], FILE); \
|
||
break;
|
||
|
||
/* Round X up to the nearest word. */
|
||
#define ROUND_UP_WORD(X) (((X) + 3) & ~3)
|
||
|
||
/* Convert fron bytes to ints. */
|
||
#define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* The number of (integer) registers required to hold a quantity of type MODE.
|
||
Also used for VFP registers. */
|
||
#define ARM_NUM_REGS(MODE) \
|
||
ARM_NUM_INTS (GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) registers required to hold a quantity of TYPE MODE. */
|
||
#define ARM_NUM_REGS2(MODE, TYPE) \
|
||
ARM_NUM_INTS ((MODE) == BLKmode ? \
|
||
int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) argument register available. */
|
||
#define NUM_ARG_REGS 4
|
||
|
||
/* Return the register number of the N'th (integer) argument. */
|
||
#define ARG_REGISTER(N) (N - 1)
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* The number of the last argument register. */
|
||
#define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
|
||
|
||
/* The numbers of the Thumb register ranges. */
|
||
#define FIRST_LO_REGNUM 0
|
||
#define LAST_LO_REGNUM 7
|
||
#define FIRST_HI_REGNUM 8
|
||
#define LAST_HI_REGNUM 11
|
||
|
||
#ifndef TARGET_UNWIND_INFO
|
||
/* We use sjlj exceptions for backwards compatibility. */
|
||
#define MUST_USE_SJLJ_EXCEPTIONS 1
|
||
#endif
|
||
|
||
/* We can generate DWARF2 Unwind info, even though we don't use it. */
|
||
#define DWARF2_UNWIND_INFO 1
|
||
|
||
/* Use r0 and r1 to pass exception handling information. */
|
||
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
|
||
|
||
/* The register that holds the return address in exception handlers. */
|
||
#define ARM_EH_STACKADJ_REGNUM 2
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
|
||
|
||
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
|
||
as an invisible last argument (possible since varargs don't exist in
|
||
Pascal), so the following is not true. */
|
||
#define STATIC_CHAIN_REGNUM (TARGET_ARM ? 12 : 9)
|
||
|
||
/* Define this to be where the real frame pointer is if it is not possible to
|
||
work out the offset between the frame pointer and the automatic variables
|
||
until after register allocation has taken place. FRAME_POINTER_REGNUM
|
||
should point to a special register that we will make sure is eliminated.
|
||
|
||
For the Thumb we have another problem. The TPCS defines the frame pointer
|
||
as r11, and GCC believes that it is always possible to use the frame pointer
|
||
as base register for addressing purposes. (See comments in
|
||
find_reloads_address()). But - the Thumb does not allow high registers,
|
||
including r11, to be used as base address registers. Hence our problem.
|
||
|
||
The solution used here, and in the old thumb port is to use r7 instead of
|
||
r11 as the hard frame pointer and to have special code to generate
|
||
backtrace structures on the stack (if required to do so via a command line
|
||
option) using r11. This is the only 'user visible' use of r11 as a frame
|
||
pointer. */
|
||
#define ARM_HARD_FRAME_POINTER_REGNUM 11
|
||
#define THUMB_HARD_FRAME_POINTER_REGNUM 7
|
||
|
||
#define HARD_FRAME_POINTER_REGNUM \
|
||
(TARGET_ARM \
|
||
? ARM_HARD_FRAME_POINTER_REGNUM \
|
||
: THUMB_HARD_FRAME_POINTER_REGNUM)
|
||
|
||
#define FP_REGNUM HARD_FRAME_POINTER_REGNUM
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM SP_REGNUM
|
||
|
||
/* ARM floating pointer registers. */
|
||
#define FIRST_FPA_REGNUM 16
|
||
#define LAST_FPA_REGNUM 23
|
||
#define IS_FPA_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
|
||
|
||
#define FIRST_IWMMXT_GR_REGNUM 43
|
||
#define LAST_IWMMXT_GR_REGNUM 46
|
||
#define FIRST_IWMMXT_REGNUM 47
|
||
#define LAST_IWMMXT_REGNUM 62
|
||
#define IS_IWMMXT_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
|
||
#define IS_IWMMXT_GR_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 25
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 26
|
||
|
||
#define FIRST_CIRRUS_FP_REGNUM 27
|
||
#define LAST_CIRRUS_FP_REGNUM 42
|
||
#define IS_CIRRUS_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
|
||
|
||
#define FIRST_VFP_REGNUM 63
|
||
#define LAST_VFP_REGNUM 94
|
||
#define IS_VFP_REGNUM(REGNUM) \
|
||
(((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
|
||
|
||
/* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
|
||
/* + 16 Cirrus registers take us up to 43. */
|
||
/* Intel Wireless MMX Technology registers add 16 + 4 more. */
|
||
/* VFP adds 32 + 1 more. */
|
||
#define FIRST_PSEUDO_REGISTER 96
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms may be accessed
|
||
via the stack pointer) in functions that seem suitable.
|
||
If we have to have a frame pointer we might as well make use of it.
|
||
APCS says that the frame pointer does not need to be pushed in leaf
|
||
functions, or simple tail call functions. */
|
||
|
||
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
|
||
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
|
||
#endif
|
||
|
||
#define FRAME_POINTER_REQUIRED \
|
||
(current_function_has_nonlocal_label \
|
||
|| SUBTARGET_FRAME_POINTER_REQUIRED \
|
||
|| (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()))
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
|
||
mode. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((TARGET_ARM \
|
||
&& REGNO >= FIRST_FPA_REGNUM \
|
||
&& REGNO != FRAME_POINTER_REGNUM \
|
||
&& REGNO != ARG_POINTER_REGNUM) \
|
||
&& !IS_VFP_REGNUM (REGNO) \
|
||
? 1 : ARM_NUM_REGS (MODE))
|
||
|
||
/* Return true if REGNO is suitable for holding a quantity of type MODE. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
arm_hard_regno_mode_ok ((REGNO), (MODE))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
||
|
||
#define VALID_IWMMXT_REG_MODE(MODE) \
|
||
(arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
|
||
|
||
/* The order in which register should be allocated. It is good to use ip
|
||
since no saving is required (though calls clobber it) and it never contains
|
||
function parameters. It is quite good to use lr since other calls may
|
||
clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
|
||
least likely to contain a function parameter; in addition results are
|
||
returned in r0. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
3, 2, 1, 0, 12, 14, 4, 5, \
|
||
6, 7, 8, 10, 9, 11, 13, 15, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, \
|
||
27, 28, 29, 30, 31, 32, 33, 34, \
|
||
35, 36, 37, 38, 39, 40, 41, 42, \
|
||
43, 44, 45, 46, 47, 48, 49, 50, \
|
||
51, 52, 53, 54, 55, 56, 57, 58, \
|
||
59, 60, 61, 62, \
|
||
24, 25, 26, \
|
||
78, 77, 76, 75, 74, 73, 72, 71, \
|
||
70, 69, 68, 67, 66, 65, 64, 63, \
|
||
79, 80, 81, 82, 83, 84, 85, 86, \
|
||
87, 88, 89, 90, 91, 92, 93, 94, \
|
||
95 \
|
||
}
|
||
|
||
/* Interrupt functions can only use registers that have already been
|
||
saved by the prologue, even if they would normally be
|
||
call-clobbered. */
|
||
#define HARD_REGNO_RENAME_OK(SRC, DST) \
|
||
(! IS_INTERRUPT (cfun->machine->func_type) || \
|
||
regs_ever_live[DST])
|
||
|
||
/* Register and constant classes. */
|
||
|
||
/* Register classes: used to be simple, just all ARM regs or all FPA regs
|
||
Now that the Thumb is involved it has become more complicated. */
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
FPA_REGS,
|
||
CIRRUS_REGS,
|
||
VFP_REGS,
|
||
IWMMXT_GR_REGS,
|
||
IWMMXT_REGS,
|
||
LO_REGS,
|
||
STACK_REG,
|
||
BASE_REGS,
|
||
HI_REGS,
|
||
CC_REG,
|
||
VFPCC_REG,
|
||
GENERAL_REGS,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"FPA_REGS", \
|
||
"CIRRUS_REGS", \
|
||
"VFP_REGS", \
|
||
"IWMMXT_GR_REGS", \
|
||
"IWMMXT_REGS", \
|
||
"LO_REGS", \
|
||
"STACK_REG", \
|
||
"BASE_REGS", \
|
||
"HI_REGS", \
|
||
"CC_REG", \
|
||
"VFPCC_REG", \
|
||
"GENERAL_REGS", \
|
||
"ALL_REGS", \
|
||
}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
||
{ 0x00FF0000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
|
||
{ 0xF8000000, 0x000007FF, 0x00000000 }, /* CIRRUS_REGS */ \
|
||
{ 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_REGS */ \
|
||
{ 0x00000000, 0x00007800, 0x00000000 }, /* IWMMXT_GR_REGS */ \
|
||
{ 0x00000000, 0x7FFF8000, 0x00000000 }, /* IWMMXT_REGS */ \
|
||
{ 0x000000FF, 0x00000000, 0x00000000 }, /* LO_REGS */ \
|
||
{ 0x00002000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
|
||
{ 0x000020FF, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
|
||
{ 0x0000FF00, 0x00000000, 0x00000000 }, /* HI_REGS */ \
|
||
{ 0x01000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
|
||
{ 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
|
||
{ 0x0200FFFF, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
|
||
{ 0xFAFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
#define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
|
||
|
||
/* FPA registers can't do subreg as all values are reformatted to internal
|
||
precision. VFP registers may only be accessed in the mode they
|
||
were set. */
|
||
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
||
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
|
||
? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
|
||
|| reg_classes_intersect_p (VFP_REGS, (CLASS)) \
|
||
: 0)
|
||
|
||
/* We need to define this for LO_REGS on thumb. Otherwise we can end up
|
||
using r0-r4 for function arguments, r7 for the stack frame and don't
|
||
have enough left over to do doubleword arithmetic. */
|
||
#define CLASS_LIKELY_SPILLED_P(CLASS) \
|
||
((TARGET_THUMB && (CLASS) == LO_REGS) \
|
||
|| (CLASS) == CC_REG)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
|
||
#define BASE_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
|
||
|
||
/* For the Thumb the high registers cannot be used as base registers
|
||
when addressing quantities in QI or HI mode; if we don't know the
|
||
mode, then we must be conservative. */
|
||
#define MODE_BASE_REG_CLASS(MODE) \
|
||
(TARGET_ARM ? GENERAL_REGS : \
|
||
(((MODE) == SImode) ? BASE_REGS : LO_REGS))
|
||
|
||
/* For Thumb we can not support SP+reg addressing, so we return LO_REGS
|
||
instead of BASE_REGS. */
|
||
#define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
|
||
|
||
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
|
||
registers explicitly used in the rtl to be used as spill registers
|
||
but prevents the compiler from extending the lifetime of these
|
||
registers. */
|
||
#define SMALL_REGISTER_CLASSES TARGET_THUMB
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS, but for the Thumb we prefer
|
||
a LO_REGS class or a subset. */
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
(TARGET_ARM ? (CLASS) : \
|
||
((CLASS) == BASE_REGS ? (CLASS) : LO_REGS))
|
||
|
||
/* Must leave BASE_REGS reloads alone */
|
||
#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS)
|
||
|
||
#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS)
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
/* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
|
||
((TARGET_VFP && TARGET_HARD_FLOAT \
|
||
&& (CLASS) == VFP_REGS) \
|
||
? coproc_secondary_reload_class (MODE, X, FALSE) \
|
||
: (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
|
||
? coproc_secondary_reload_class (MODE, X, TRUE) \
|
||
: TARGET_ARM \
|
||
? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
|
||
|
||
/* If we need to load shorts byte-at-a-time, then we need a scratch. */
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
/* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
|
||
((TARGET_VFP && TARGET_HARD_FLOAT \
|
||
&& (CLASS) == VFP_REGS) \
|
||
? coproc_secondary_reload_class (MODE, X, FALSE) : \
|
||
(TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
|
||
coproc_secondary_reload_class (MODE, X, TRUE) : \
|
||
/* Cannot load constants into Cirrus registers. */ \
|
||
(TARGET_MAVERICK && TARGET_HARD_FLOAT \
|
||
&& (CLASS) == CIRRUS_REGS \
|
||
&& (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
|
||
? GENERAL_REGS : \
|
||
(TARGET_ARM ? \
|
||
(((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
|
||
&& CONSTANT_P (X)) \
|
||
? GENERAL_REGS : \
|
||
(((MODE) == HImode && ! arm_arch4 \
|
||
&& (GET_CODE (X) == MEM \
|
||
|| ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
|
||
&& true_regnum (X) == -1))) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
|
||
|
||
/* Try a machine-dependent way of reloading an illegitimate address
|
||
operand. If we find one, push the reload and jump to WIN. This
|
||
macro is used in only one place: `find_reloads_address' in reload.c.
|
||
|
||
For the ARM, we wish to handle large displacements off a base
|
||
register by splitting the addend across a MOV and the mem insn.
|
||
This can cut the number of reloads needed. */
|
||
#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
|
||
do \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
|
||
&& REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
|
||
HOST_WIDE_INT low, high; \
|
||
\
|
||
if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT)) \
|
||
low = ((val & 0xf) ^ 0x8) - 0x8; \
|
||
else if (TARGET_MAVERICK && TARGET_HARD_FLOAT) \
|
||
/* Need to be careful, -256 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
|
||
else if (MODE == SImode \
|
||
|| (MODE == SFmode && TARGET_SOFT_FLOAT) \
|
||
|| ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
|
||
/* Need to be careful, -4096 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
|
||
else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
|
||
/* Need to be careful, -256 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
|
||
else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
&& TARGET_HARD_FLOAT && TARGET_FPA) \
|
||
/* Need to be careful, -1024 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
|
||
else \
|
||
break; \
|
||
\
|
||
high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
|
||
^ (unsigned HOST_WIDE_INT) 0x80000000) \
|
||
- (unsigned HOST_WIDE_INT) 0x80000000); \
|
||
/* Check for overflow or zero */ \
|
||
if (low == 0 || high == 0 || (high + low != val)) \
|
||
break; \
|
||
\
|
||
/* Reload the high part into a base reg; leave the low part \
|
||
in the mem. */ \
|
||
X = gen_rtx_PLUS (GET_MODE (X), \
|
||
gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
|
||
GEN_INT (high)), \
|
||
GEN_INT (low)); \
|
||
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
|
||
MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
|
||
VOIDmode, 0, 0, OPNUM, TYPE); \
|
||
goto WIN; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* XXX If an HImode FP+large_offset address is converted to an HImode
|
||
SP+large_offset address, then reload won't know how to fix it. It sees
|
||
only that SP isn't valid for HImode, and so reloads the SP into an index
|
||
register, but the resulting address is still invalid because the offset
|
||
is too big. We fix it here instead by reloading the entire address. */
|
||
/* We could probably achieve better results by defining PROMOTE_MODE to help
|
||
cope with the variances between the Thumb's signed and unsigned byte and
|
||
halfword load instructions. */
|
||
#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
|
||
do { \
|
||
rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
|
||
if (new_x) \
|
||
{ \
|
||
X = new_x; \
|
||
goto WIN; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
|
||
if (TARGET_ARM) \
|
||
ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
|
||
else \
|
||
THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS.
|
||
ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
|
||
|
||
/* If defined, gives a class of registers that cannot be used as the
|
||
operand of a SUBREG that changes the mode of the object illegally. */
|
||
|
||
/* Moves between FPA_REGS and GENERAL_REGS are two memory insns. */
|
||
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
|
||
(TARGET_ARM ? \
|
||
((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
|
||
(FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
|
||
(FROM) == VFP_REGS && (TO) != VFP_REGS ? 10 : \
|
||
(FROM) != VFP_REGS && (TO) == VFP_REGS ? 10 : \
|
||
(FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
|
||
(FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
|
||
(FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
|
||
(FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
|
||
(FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
|
||
2) \
|
||
: \
|
||
((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
|
||
/* Define this to nonzero if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
|
||
When present, it is one word in size, and sits at the top of the frame,
|
||
between the soft frame pointer and either r7 or r11.
|
||
|
||
We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
|
||
and only then if some outgoing arguments are passed on the stack. It would
|
||
be tempting to also check whether the stack arguments are passed by indirect
|
||
calls, but there seems to be no reason in principle why a post-reload pass
|
||
couldn't convert a direct call into an indirect one. */
|
||
#define CALLER_INTERWORKING_SLOT_SIZE \
|
||
(TARGET_CALLER_INTERWORKING \
|
||
&& current_function_outgoing_args_size != 0 \
|
||
? UNITS_PER_WORD : 0)
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
/* The push insns do not do this rounding implicitly.
|
||
So don't define this. */
|
||
/* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
|
||
|
||
/* Define this if the maximum size of all the outgoing args is to be
|
||
accumulated and pushed during the prologue. The amount can be
|
||
found in the variable current_function_outgoing_args_size. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
|
||
|
||
/* Value is the number of byte of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the ARM, the caller does not pop any of its arguments that were passed
|
||
on the stack. */
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
|
||
&& GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
|
||
: TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
|
||
&& GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
|
||
: TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
|
||
? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
|
||
: gen_rtx_REG (MODE, ARG_REGISTER (1)))
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
arm_function_value (VALTYPE, FUNC);
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the ARM, only r0 and f0 can return results. */
|
||
/* On a Cirrus chip, mvf0 can return results. */
|
||
#define FUNCTION_VALUE_REGNO_P(REGNO) \
|
||
((REGNO) == ARG_REGISTER (1) \
|
||
|| (TARGET_ARM && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
|
||
&& TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
|
||
|| ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
|
||
|| (TARGET_ARM && ((REGNO) == FIRST_FPA_REGNUM) \
|
||
&& TARGET_HARD_FLOAT_ABI && TARGET_FPA))
|
||
|
||
/* Amount of memory needed for an untyped call to save all possible return
|
||
registers. */
|
||
#define APPLY_RESULT_SIZE arm_apply_result_size()
|
||
|
||
/* How large values are returned */
|
||
/* A C expression which can inhibit the returning of certain function values
|
||
in registers, based on the type of value. */
|
||
#define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE)
|
||
|
||
/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
|
||
values must be in memory. On the ARM, they need only do so if larger
|
||
than a word, or if they contain elements offset from zero in the struct. */
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
|
||
/* Flags for the call/call_value rtl operations set up by function_arg. */
|
||
#define CALL_NORMAL 0x00000000 /* No special processing. */
|
||
#define CALL_LONG 0x00000001 /* Always call indirect. */
|
||
#define CALL_SHORT 0x00000002 /* Never call indirect. */
|
||
|
||
/* These bits describe the different types of function supported
|
||
by the ARM backend. They are exclusive. i.e. a function cannot be both a
|
||
normal function and an interworked function, for example. Knowing the
|
||
type of a function is important for determining its prologue and
|
||
epilogue sequences.
|
||
Note value 7 is currently unassigned. Also note that the interrupt
|
||
function types all have bit 2 set, so that they can be tested for easily.
|
||
Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
|
||
machine_function structure is initialized (to zero) func_type will
|
||
default to unknown. This will force the first use of arm_current_func_type
|
||
to call arm_compute_func_type. */
|
||
#define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
|
||
#define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
|
||
#define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
|
||
#define ARM_FT_ISR 4 /* An interrupt service routine. */
|
||
#define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
|
||
#define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
|
||
|
||
#define ARM_FT_TYPE_MASK ((1 << 3) - 1)
|
||
|
||
/* In addition functions can have several type modifiers,
|
||
outlined by these bit masks: */
|
||
#define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
|
||
#define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
|
||
#define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
|
||
#define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
|
||
|
||
/* Some macros to test these flags. */
|
||
#define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
|
||
#define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
|
||
#define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
|
||
#define IS_NAKED(t) (t & ARM_FT_NAKED)
|
||
#define IS_NESTED(t) (t & ARM_FT_NESTED)
|
||
|
||
|
||
/* Structure used to hold the function stack frame layout. Offsets are
|
||
relative to the stack pointer on function entry. Positive offsets are
|
||
in the direction of stack growth.
|
||
Only soft_frame is used in thumb mode. */
|
||
|
||
typedef struct arm_stack_offsets GTY(())
|
||
{
|
||
int saved_args; /* ARG_POINTER_REGNUM. */
|
||
int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
|
||
int saved_regs;
|
||
int soft_frame; /* FRAME_POINTER_REGNUM. */
|
||
int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
|
||
int outgoing_args; /* STACK_POINTER_REGNUM. */
|
||
}
|
||
arm_stack_offsets;
|
||
|
||
/* A C structure for machine-specific, per-function data.
|
||
This is added to the cfun structure. */
|
||
typedef struct machine_function GTY(())
|
||
{
|
||
/* Additional stack adjustment in __builtin_eh_throw. */
|
||
rtx eh_epilogue_sp_ofs;
|
||
/* Records if LR has to be saved for far jumps. */
|
||
int far_jump_used;
|
||
/* Records if ARG_POINTER was ever live. */
|
||
int arg_pointer_live;
|
||
/* Records if the save of LR has been eliminated. */
|
||
int lr_save_eliminated;
|
||
/* The size of the stack frame. Only valid after reload. */
|
||
arm_stack_offsets stack_offsets;
|
||
/* Records the type of the current function. */
|
||
unsigned long func_type;
|
||
/* Record if the function has a variable argument list. */
|
||
int uses_anonymous_args;
|
||
/* Records if sibcalls are blocked because an argument
|
||
register is needed to preserve stack alignment. */
|
||
int sibcall_blocked;
|
||
/* The PIC register for this function. This might be a pseudo. */
|
||
rtx pic_reg;
|
||
/* Labels for per-function Thumb call-via stubs. One per potential calling
|
||
register. We can never call via LR or PC. We can call via SP if a
|
||
trampoline happens to be on the top of the stack. */
|
||
rtx call_via[14];
|
||
}
|
||
machine_function;
|
||
|
||
/* As in the machine_function, a global set of call-via labels, for code
|
||
that is in text_section. */
|
||
extern GTY(()) rtx thumb_call_via_label[14];
|
||
|
||
/* A C type for declaring a variable that is used as the first argument of
|
||
`FUNCTION_ARG' and other related values. For some target machines, the
|
||
type `int' suffices and can hold the number of bytes of argument so far. */
|
||
typedef struct
|
||
{
|
||
/* This is the number of registers of arguments scanned so far. */
|
||
int nregs;
|
||
/* This is the number of iWMMXt register arguments scanned so far. */
|
||
int iwmmxt_nregs;
|
||
int named_count;
|
||
int nargs;
|
||
/* One of CALL_NORMAL, CALL_LONG or CALL_SHORT. */
|
||
int call_cookie;
|
||
int can_split;
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
|
||
other arguments are passed on the stack. If (NAMED == 0) (which happens
|
||
only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
|
||
defined), say it is passed in the stack (function_prologue will
|
||
indeed make it pass in the stack if necessary). */
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
|
||
(arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
|
||
|
||
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
|
||
(arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
|
||
|
||
/* For AAPCS, padding should never be below the argument. For other ABIs,
|
||
* mimic the default. */
|
||
#define PAD_VARARGS_DOWN \
|
||
((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
On the ARM, the offset starts at 0. */
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
||
arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
(CUM).nargs += 1; \
|
||
if (arm_vector_mode_supported_p (MODE) \
|
||
&& (CUM).named_count > (CUM).nargs) \
|
||
(CUM).iwmmxt_nregs += 1; \
|
||
else \
|
||
(CUM).nregs += ARM_NUM_REGS2 (MODE, TYPE)
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in bits, of an
|
||
argument with the specified mode and type. If it is not defined,
|
||
`PARM_BOUNDARY' is used for all arguments. */
|
||
#define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \
|
||
((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \
|
||
? DOUBLEWORD_ALIGNMENT \
|
||
: PARM_BOUNDARY )
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the ARM, r0-r3 are used to pass args. */
|
||
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
||
(IN_RANGE ((REGNO), 0, 3) \
|
||
|| (TARGET_IWMMXT_ABI \
|
||
&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
|
||
|
||
|
||
/* If your target environment doesn't prefix user functions with an
|
||
underscore, you may wish to re-define this to prevent any conflicts.
|
||
e.g. AOF may prefix mcount with an underscore. */
|
||
#ifndef ARM_MCOUNT_NAME
|
||
#define ARM_MCOUNT_NAME "*mcount"
|
||
#endif
|
||
|
||
/* Call the function profiler with a given profile label. The Acorn
|
||
compiler puts this BEFORE the prolog but gcc puts it afterwards.
|
||
On the ARM the full profile code will look like:
|
||
.data
|
||
LP1
|
||
.word 0
|
||
.text
|
||
mov ip, lr
|
||
bl mcount
|
||
.word LP1
|
||
|
||
profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
|
||
will output the .text section.
|
||
|
||
The ``mov ip,lr'' seems like a good idea to stick with cc convention.
|
||
``prof'' doesn't seem to mind about this!
|
||
|
||
Note - this version of the code is designed to work in both ARM and
|
||
Thumb modes. */
|
||
#ifndef ARM_FUNCTION_PROFILER
|
||
#define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
{ \
|
||
char temp[20]; \
|
||
rtx sym; \
|
||
\
|
||
asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
|
||
IP_REGNUM, LR_REGNUM); \
|
||
assemble_name (STREAM, ARM_MCOUNT_NAME); \
|
||
fputc ('\n', STREAM); \
|
||
ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
|
||
sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, sym); \
|
||
}
|
||
#endif
|
||
|
||
#ifdef THUMB_FUNCTION_PROFILER
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
if (TARGET_ARM) \
|
||
ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
|
||
else \
|
||
THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
|
||
#else
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
ARM_FUNCTION_PROFILER (STREAM, LABELNO)
|
||
#endif
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero.
|
||
|
||
On the ARM, the function epilogue recovers the stack pointer from the
|
||
frame. */
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
#define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM)
|
||
|
||
/* Determine if the epilogue should be output as RTL.
|
||
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
|
||
#define USE_RETURN_INSN(ISCOND) \
|
||
(TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0)
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
We have two registers that can be eliminated on the ARM. First, the
|
||
arg pointer register can often be eliminated in favor of the stack
|
||
pointer register. Secondly, the pseudo frame pointer register can always
|
||
be eliminated; it is replaced with either the stack or the real frame
|
||
pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
|
||
because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is
|
||
allowed. Frame pointer elimination is automatically handled.
|
||
|
||
All eliminations are permissible. Note that ARG_POINTER_REGNUM and
|
||
HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
|
||
pointer, we must eliminate FRAME_POINTER_REGNUM into
|
||
HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
|
||
ARG_POINTER_REGNUM. */
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
(((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 : \
|
||
((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : \
|
||
((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 : \
|
||
((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 : \
|
||
1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the
|
||
other its replacement, at the start of a routine. */
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
if (TARGET_ARM) \
|
||
(OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
|
||
else \
|
||
(OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
|
||
|
||
/* Special case handling of the location of arguments passed on the stack. */
|
||
#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
|
||
|
||
/* Initialize data used by insn expanders. This is called from insn_emit,
|
||
once for every function before code is generated. */
|
||
#define INIT_EXPANDERS arm_init_expanders ()
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts.
|
||
|
||
On the ARM, (if r8 is the static chain regnum, and remembering that
|
||
referencing pc adds an offset of 8) the trampoline looks like:
|
||
ldr r8, [pc, #0]
|
||
ldr pc, [pc]
|
||
.word static chain value
|
||
.word function's address
|
||
XXX FIXME: When the trampoline returns, r8 will be clobbered. */
|
||
#define ARM_TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
|
||
STATIC_CHAIN_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
|
||
PC_REGNUM, PC_REGNUM); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
|
||
}
|
||
|
||
/* On the Thumb we always switch into ARM mode to execute the trampoline.
|
||
Why - because it is easier. This code will always be branched to via
|
||
a BX instruction and since the compiler magically generates the address
|
||
of the function the linker has no opportunity to ensure that the
|
||
bottom bit is set. Thus the processor will be in ARM mode when it
|
||
reaches this code. So we duplicate the ARM trampoline code and add
|
||
a switch into Thumb mode as well. */
|
||
#define THUMB_TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
fprintf (FILE, "\t.code 32\n"); \
|
||
fprintf (FILE, ".Ltrampoline_start:\n"); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
|
||
STATIC_CHAIN_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
|
||
IP_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\torr\t%r, %r, #1\n", \
|
||
IP_REGNUM, IP_REGNUM); \
|
||
asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM); \
|
||
fprintf (FILE, "\t.word\t0\n"); \
|
||
fprintf (FILE, "\t.word\t0\n"); \
|
||
fprintf (FILE, "\t.code 16\n"); \
|
||
}
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
if (TARGET_ARM) \
|
||
ARM_TRAMPOLINE_TEMPLATE (FILE) \
|
||
else \
|
||
THUMB_TRAMPOLINE_TEMPLATE (FILE)
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
#define TRAMPOLINE_SIZE (TARGET_ARM ? 16 : 24)
|
||
|
||
/* Alignment required for a trampoline in bits. */
|
||
#define TRAMPOLINE_ALIGNMENT 32
|
||
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
#ifndef INITIALIZE_TRAMPOLINE
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn (gen_rtx_MEM (SImode, \
|
||
plus_constant (TRAMP, \
|
||
TARGET_ARM ? 8 : 16)), \
|
||
CXT); \
|
||
emit_move_insn (gen_rtx_MEM (SImode, \
|
||
plus_constant (TRAMP, \
|
||
TARGET_ARM ? 12 : 20)), \
|
||
FNADDR); \
|
||
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), \
|
||
0, VOIDmode, 2, TRAMP, Pmode, \
|
||
plus_constant (TRAMP, TRAMPOLINE_SIZE), Pmode); \
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_PRE_INCREMENT TARGET_ARM
|
||
#define HAVE_POST_DECREMENT TARGET_ARM
|
||
#define HAVE_PRE_DECREMENT TARGET_ARM
|
||
#define HAVE_PRE_MODIFY_DISP TARGET_ARM
|
||
#define HAVE_POST_MODIFY_DISP TARGET_ARM
|
||
#define HAVE_PRE_MODIFY_REG TARGET_ARM
|
||
#define HAVE_POST_MODIFY_REG TARGET_ARM
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
#define TEST_REGNO(R, TEST, VALUE) \
|
||
((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
|
||
|
||
/* On the ARM, don't allow the pc to be used. */
|
||
#define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(TEST_REGNO (REGNO, <, PC_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
|
||
|
||
#define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
|
||
|
||
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
|
||
: ARM_REGNO_OK_FOR_BASE_P (REGNO))
|
||
|
||
/* Nonzero if X can be the base register in a reg+reg addressing mode.
|
||
For Thumb, we can not use SP + reg, so reject SP. */
|
||
#define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
|
||
REGNO_OK_FOR_INDEX_P (X)
|
||
|
||
/* For ARM code, we don't care about the mode, but for Thumb, the index
|
||
must be suitable for use in a QImode load. */
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address.
|
||
Shifts in addresses can't be by a register. */
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
/* XXX We can address any constant, eventually... */
|
||
|
||
#ifdef AOF_ASSEMBLER
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
|
||
|
||
#else
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
&& (CONSTANT_POOL_ADDRESS_P (X) \
|
||
|| (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
|
||
|
||
#endif /* AOF_ASSEMBLER */
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
||
|
||
On the ARM, allow any integer (invalid ones are removed later by insn
|
||
patterns), nice doubles and symbol_refs which refer to the function's
|
||
constant pool XXX.
|
||
|
||
When generating pic allow anything. */
|
||
#define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
|
||
|
||
#define THUMB_LEGITIMATE_CONSTANT_P(X) \
|
||
( GET_CODE (X) == CONST_INT \
|
||
|| GET_CODE (X) == CONST_DOUBLE \
|
||
|| CONSTANT_ADDRESS_P (X) \
|
||
|| flag_pic)
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(!arm_tls_referenced_p (X) \
|
||
&& (TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X) \
|
||
: THUMB_LEGITIMATE_CONSTANT_P (X)))
|
||
|
||
/* Special characters prefixed to function names
|
||
in order to encode attribute like information.
|
||
Note, '@' and '*' have already been taken. */
|
||
#define SHORT_CALL_FLAG_CHAR '^'
|
||
#define LONG_CALL_FLAG_CHAR '#'
|
||
|
||
#define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME) \
|
||
(*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR)
|
||
|
||
#define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME) \
|
||
(*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR)
|
||
|
||
#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#define SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#endif
|
||
|
||
/* This is a C fragment for the inside of a switch statement.
|
||
Each case label should return the number of characters to
|
||
be stripped from the start of a function's name, if that
|
||
name starts with the indicated character. */
|
||
#define ARM_NAME_ENCODING_LENGTHS \
|
||
case SHORT_CALL_FLAG_CHAR: return 1; \
|
||
case LONG_CALL_FLAG_CHAR: return 1; \
|
||
case '*': return 1; \
|
||
SUBTARGET_NAME_ENCODING_LENGTHS
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
#undef ASM_OUTPUT_LABELREF
|
||
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
|
||
arm_asm_output_labelref (FILE, NAME)
|
||
|
||
/* The EABI specifies that constructors should go in .init_array.
|
||
Other targets use .ctors for compatibility. */
|
||
#ifndef ARM_EABI_CTORS_SECTION_OP
|
||
#define ARM_EABI_CTORS_SECTION_OP \
|
||
"\t.section\t.init_array,\"aw\",%init_array"
|
||
#endif
|
||
#ifndef ARM_EABI_DTORS_SECTION_OP
|
||
#define ARM_EABI_DTORS_SECTION_OP \
|
||
"\t.section\t.fini_array,\"aw\",%fini_array"
|
||
#endif
|
||
#define ARM_CTORS_SECTION_OP \
|
||
"\t.section\t.ctors,\"aw\",%progbits"
|
||
#define ARM_DTORS_SECTION_OP \
|
||
"\t.section\t.dtors,\"aw\",%progbits"
|
||
|
||
/* Define CTORS_SECTION_ASM_OP. */
|
||
#undef CTORS_SECTION_ASM_OP
|
||
#undef DTORS_SECTION_ASM_OP
|
||
#ifndef IN_LIBGCC2
|
||
# define CTORS_SECTION_ASM_OP \
|
||
(TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
|
||
# define DTORS_SECTION_ASM_OP \
|
||
(TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
|
||
#else /* !defined (IN_LIBGCC2) */
|
||
/* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
|
||
so we cannot use the definition above. */
|
||
# ifdef __ARM_EABI__
|
||
/* The .ctors section is not part of the EABI, so we do not define
|
||
CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
|
||
from trying to use it. We do define it when doing normal
|
||
compilation, as .init_array can be used instead of .ctors. */
|
||
/* There is no need to emit begin or end markers when using
|
||
init_array; the dynamic linker will compute the size of the
|
||
array itself based on special symbols created by the static
|
||
linker. However, we do need to arrange to set up
|
||
exception-handling here. */
|
||
# define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
|
||
# define CTOR_LIST_END /* empty */
|
||
# define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
|
||
# define DTOR_LIST_END /* empty */
|
||
# else /* !defined (__ARM_EABI__) */
|
||
# ifndef __clang__
|
||
# define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
|
||
# define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
|
||
# endif
|
||
# endif /* !defined (__ARM_EABI__) */
|
||
#endif /* !defined (IN_LIBCC2) */
|
||
|
||
/* True if the operating system can merge entities with vague linkage
|
||
(e.g., symbols in COMDAT group) during dynamic linking. */
|
||
#ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
|
||
#define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
|
||
#endif
|
||
|
||
/* Set the short-call flag for any function compiled in the current
|
||
compilation unit. We skip this for functions with the section
|
||
attribute when long-calls are in effect as this tells the compiler
|
||
that the section might be placed a long way from the caller.
|
||
See arm_is_longcall_p() for more information. */
|
||
#define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
|
||
if (!TARGET_LONG_CALLS || ! DECL_SECTION_NAME (DECL)) \
|
||
arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR)
|
||
|
||
#define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
|
||
|
||
#ifdef TARGET_UNWIND_INFO
|
||
#define ARM_EABI_UNWIND_TABLES \
|
||
((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables)
|
||
#else
|
||
#define ARM_EABI_UNWIND_TABLES 0
|
||
#endif
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used. */
|
||
#ifndef REG_OK_STRICT
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
(REGNO (X) <= LAST_ARM_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(REGNO (X) <= LAST_LO_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& (REGNO (X) == STACK_POINTER_REGNUM \
|
||
|| (X) == hard_frame_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)))
|
||
|
||
#define REG_STRICT_P 0
|
||
|
||
#else /* REG_OK_STRICT */
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
|
||
|
||
#define REG_STRICT_P 1
|
||
|
||
#endif /* REG_OK_STRICT */
|
||
|
||
/* Now define some helpers in terms of the above. */
|
||
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE) \
|
||
: ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
#define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X)
|
||
|
||
/* For Thumb, a valid index register is anything that can be used in
|
||
a byte load instruction. */
|
||
#define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode)
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. On the Thumb, the stack pointer
|
||
is not suitable. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REG_OK_FOR_INDEX_P (X) \
|
||
: ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* Nonzero if X can be the base register in a reg+reg addressing mode.
|
||
For Thumb, we can not use SP + reg, so reject SP. */
|
||
#define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
|
||
REG_OK_FOR_INDEX_P (X)
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address. */
|
||
|
||
#define ARM_BASE_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
#define ARM_INDEX_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
#define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN) \
|
||
{ \
|
||
if (arm_legitimate_address_p (MODE, X, SET, REG_STRICT_P)) \
|
||
goto WIN; \
|
||
}
|
||
|
||
#define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN) \
|
||
{ \
|
||
if (thumb_legitimate_address_p (MODE, X, REG_STRICT_P)) \
|
||
goto WIN; \
|
||
}
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
|
||
if (TARGET_ARM) \
|
||
ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) \
|
||
else /* if (TARGET_THUMB) */ \
|
||
THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)
|
||
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address. */
|
||
#define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
do { \
|
||
X = arm_legitimize_address (X, OLDX, MODE); \
|
||
} while (0)
|
||
|
||
#define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
do { \
|
||
X = thumb_legitimize_address (X, OLDX, MODE); \
|
||
} while (0)
|
||
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
do { \
|
||
if (TARGET_ARM) \
|
||
ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN); \
|
||
else \
|
||
THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN); \
|
||
\
|
||
if (memory_address_p (MODE, X)) \
|
||
goto WIN; \
|
||
} while (0)
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
#define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
{ \
|
||
if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
|
||
|| GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* Nothing helpful to do for the Thumb */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
if (TARGET_ARM) \
|
||
ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE Pmode
|
||
|
||
/* signed 'char' is most compatible, but RISC OS wants it unsigned.
|
||
unsigned is probably best, but may break some code. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
#endif
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
#undef MOVE_RATIO
|
||
#define MOVE_RATIO (arm_tune_xscale ? 4 : 2)
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, UNKNOWN if none. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
(TARGET_THUMB ? ZERO_EXTEND : \
|
||
((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
|
||
: ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
|
||
|
||
/* Immediate shift counts are truncated by the output routines (or was it
|
||
the assembler?). Shift counts in a register are truncated by ARM. Note
|
||
that the native compiler puts too large (> 32) immediate shift counts
|
||
into a register and shifts by the register, letting the ARM decide what
|
||
to do instead of doing that itself. */
|
||
/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
|
||
code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
|
||
On the arm, Y in a register is used modulo 256 for the shift. Only for
|
||
rotates is modulo 32 used. */
|
||
/* #define SHIFT_COUNT_TRUNCATED 1 */
|
||
|
||
/* All integers have the same format so truncation is easy. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Calling from registers is a massive pain. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* The machine modes of pointers and functions */
|
||
#define Pmode SImode
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
#define ARM_FRAME_RTX(X) \
|
||
( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)
|
||
|
||
/* Moves to and from memory are quite expensive */
|
||
#define MEMORY_MOVE_COST(M, CLASS, IN) \
|
||
(TARGET_ARM ? 10 : \
|
||
((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
|
||
* (CLASS == LO_REGS ? 1 : 2)))
|
||
|
||
/* Try to generate sequences that don't involve branches, we can then use
|
||
conditional instructions */
|
||
#define BRANCH_COST \
|
||
(TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0))
|
||
|
||
/* Position Independent Code. */
|
||
/* We decide which register to use based on the compilation options and
|
||
the assembler in use; this is more general than the APCS restriction of
|
||
using sb (r9) all the time. */
|
||
extern unsigned arm_pic_register;
|
||
|
||
/* The register number of the register used to address a table of static
|
||
data addresses in memory. */
|
||
#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
|
||
|
||
/* We can't directly access anything that contains a symbol,
|
||
nor can we indirect via the constant pool. One exception is
|
||
UNSPEC_TLS, which is always PIC. */
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
||
(!(symbol_mentioned_p (X) \
|
||
|| label_mentioned_p (X) \
|
||
|| (GET_CODE (X) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (X) \
|
||
&& (symbol_mentioned_p (get_pool_constant (X)) \
|
||
|| label_mentioned_p (get_pool_constant (X))))) \
|
||
|| tls_mentioned_p (X))
|
||
|
||
/* We need to know when we are making a constant pool; this determines
|
||
whether data needs to be in the GOT or can be referenced via a GOT
|
||
offset. */
|
||
extern int making_const_table;
|
||
|
||
/* Handle pragmas for compatibility with Intel's compilers. */
|
||
#define REGISTER_TARGET_PRAGMAS() do { \
|
||
c_register_pragma (0, "long_calls", arm_pr_long_calls); \
|
||
c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
|
||
c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
|
||
} while (0)
|
||
|
||
/* Condition code information. */
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. */
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
|
||
|
||
#define REVERSIBLE_CC_MODE(MODE) 1
|
||
|
||
#define REVERSE_CONDITION(CODE,MODE) \
|
||
(((MODE) == CCFPmode || (MODE) == CCFPEmode) \
|
||
? reverse_condition_maybe_unordered (code) \
|
||
: reverse_condition (code))
|
||
|
||
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
|
||
do \
|
||
{ \
|
||
if (GET_CODE (OP1) == CONST_INT \
|
||
&& ! (const_ok_for_arm (INTVAL (OP1)) \
|
||
|| (const_ok_for_arm (- INTVAL (OP1))))) \
|
||
{ \
|
||
rtx const_op = OP1; \
|
||
CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0), \
|
||
&const_op); \
|
||
OP1 = const_op; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* The arm5 clz instruction returns 32. */
|
||
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
|
||
|
||
#undef ASM_APP_OFF
|
||
#define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "")
|
||
|
||
/* Output a push or a pop instruction (only used when profiling). */
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
|
||
do \
|
||
{ \
|
||
if (TARGET_ARM) \
|
||
asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
|
||
STACK_POINTER_REGNUM, REGNO); \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
|
||
} while (0)
|
||
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
|
||
do \
|
||
{ \
|
||
if (TARGET_ARM) \
|
||
asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
|
||
STACK_POINTER_REGNUM, REGNO); \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
|
||
} while (0)
|
||
|
||
/* This is how to output a label which precedes a jumptable. Since
|
||
Thumb instructions are 2 bytes, we may need explicit alignment here. */
|
||
#undef ASM_OUTPUT_CASE_LABEL
|
||
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB) \
|
||
ASM_OUTPUT_ALIGN (FILE, 2); \
|
||
(*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB) \
|
||
{ \
|
||
if (is_called_in_ARM_mode (DECL) \
|
||
|| current_function_is_thunk) \
|
||
fprintf (STREAM, "\t.code 32\n") ; \
|
||
else \
|
||
fprintf (STREAM, "\t.code 16\n\t.thumb_func\n") ; \
|
||
} \
|
||
if (TARGET_POKE_FUNCTION_NAME) \
|
||
arm_poke_function_name (STREAM, (char *) NAME); \
|
||
} \
|
||
while (0)
|
||
|
||
/* For aliases of functions we use .thumb_set instead. */
|
||
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
|
||
do \
|
||
{ \
|
||
const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
|
||
const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
|
||
\
|
||
if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
|
||
{ \
|
||
fprintf (FILE, "\t.thumb_set "); \
|
||
assemble_name (FILE, LABEL1); \
|
||
fprintf (FILE, ","); \
|
||
assemble_name (FILE, LABEL2); \
|
||
fprintf (FILE, "\n"); \
|
||
} \
|
||
else \
|
||
ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
|
||
} \
|
||
while (0)
|
||
|
||
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
|
||
/* To support -falign-* switches we need to use .p2align so
|
||
that alignment directives in code sections will be padded
|
||
with no-op instructions, rather than zeroes. */
|
||
#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
|
||
if ((LOG) != 0) \
|
||
{ \
|
||
if ((MAX_SKIP) == 0) \
|
||
fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
|
||
else \
|
||
fprintf ((FILE), "\t.p2align %d,,%d\n", \
|
||
(int) (LOG), (int) (MAX_SKIP)); \
|
||
}
|
||
#endif
|
||
|
||
/* Only perform branch elimination (by making instructions conditional) if
|
||
we're optimizing. Otherwise it's of no use anyway. */
|
||
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
if (TARGET_ARM && optimize) \
|
||
arm_final_prescan_insn (INSN); \
|
||
else if (TARGET_THUMB) \
|
||
thumb_final_prescan_insn (INSN)
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
(CODE == '@' || CODE == '|' \
|
||
|| (TARGET_ARM && (CODE == '?')) \
|
||
|| (TARGET_THUMB && (CODE == '_')))
|
||
|
||
/* Output an operand of an instruction. */
|
||
#define PRINT_OPERAND(STREAM, X, CODE) \
|
||
arm_print_operand (STREAM, X, CODE)
|
||
|
||
#define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
|
||
(HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
|
||
: ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
|
||
((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
|
||
? ((~ (unsigned HOST_WIDE_INT) 0) \
|
||
& ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
|
||
: 0))))
|
||
|
||
/* Output the address of an operand. */
|
||
#define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
{ \
|
||
int is_minus = GET_CODE (X) == MINUS; \
|
||
\
|
||
if (GET_CODE (X) == REG) \
|
||
asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
|
||
else if (GET_CODE (X) == PLUS || is_minus) \
|
||
{ \
|
||
rtx base = XEXP (X, 0); \
|
||
rtx index = XEXP (X, 1); \
|
||
HOST_WIDE_INT offset = 0; \
|
||
if (GET_CODE (base) != REG) \
|
||
{ \
|
||
/* Ensure that BASE is a register. */ \
|
||
/* (one of them must be). */ \
|
||
rtx temp = base; \
|
||
base = index; \
|
||
index = temp; \
|
||
} \
|
||
switch (GET_CODE (index)) \
|
||
{ \
|
||
case CONST_INT: \
|
||
offset = INTVAL (index); \
|
||
if (is_minus) \
|
||
offset = -offset; \
|
||
asm_fprintf (STREAM, "[%r, #%wd]", \
|
||
REGNO (base), offset); \
|
||
break; \
|
||
\
|
||
case REG: \
|
||
asm_fprintf (STREAM, "[%r, %s%r]", \
|
||
REGNO (base), is_minus ? "-" : "", \
|
||
REGNO (index)); \
|
||
break; \
|
||
\
|
||
case MULT: \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFT: \
|
||
case ROTATERT: \
|
||
{ \
|
||
asm_fprintf (STREAM, "[%r, %s%r", \
|
||
REGNO (base), is_minus ? "-" : "", \
|
||
REGNO (XEXP (index, 0))); \
|
||
arm_print_operand (STREAM, index, 'S'); \
|
||
fputs ("]", STREAM); \
|
||
break; \
|
||
} \
|
||
\
|
||
default: \
|
||
gcc_unreachable (); \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
|
||
|| GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
|
||
{ \
|
||
extern enum machine_mode output_memory_reference_mode; \
|
||
\
|
||
gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
|
||
\
|
||
if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
|
||
asm_fprintf (STREAM, "[%r, #%s%d]!", \
|
||
REGNO (XEXP (X, 0)), \
|
||
GET_CODE (X) == PRE_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode)); \
|
||
else \
|
||
asm_fprintf (STREAM, "[%r], #%s%d", \
|
||
REGNO (XEXP (X, 0)), \
|
||
GET_CODE (X) == POST_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode)); \
|
||
} \
|
||
else if (GET_CODE (X) == PRE_MODIFY) \
|
||
{ \
|
||
asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0))); \
|
||
if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
|
||
asm_fprintf (STREAM, "#%wd]!", \
|
||
INTVAL (XEXP (XEXP (X, 1), 1))); \
|
||
else \
|
||
asm_fprintf (STREAM, "%r]!", \
|
||
REGNO (XEXP (XEXP (X, 1), 1))); \
|
||
} \
|
||
else if (GET_CODE (X) == POST_MODIFY) \
|
||
{ \
|
||
asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0))); \
|
||
if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
|
||
asm_fprintf (STREAM, "#%wd", \
|
||
INTVAL (XEXP (XEXP (X, 1), 1))); \
|
||
else \
|
||
asm_fprintf (STREAM, "%r", \
|
||
REGNO (XEXP (XEXP (X, 1), 1))); \
|
||
} \
|
||
else output_addr_const (STREAM, X); \
|
||
}
|
||
|
||
#define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
{ \
|
||
if (GET_CODE (X) == REG) \
|
||
asm_fprintf (STREAM, "[%r]", REGNO (X)); \
|
||
else if (GET_CODE (X) == POST_INC) \
|
||
asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
asm_fprintf (STREAM, "[%r, #%wd]", \
|
||
REGNO (XEXP (X, 0)), \
|
||
INTVAL (XEXP (X, 1))); \
|
||
else \
|
||
asm_fprintf (STREAM, "[%r, %r]", \
|
||
REGNO (XEXP (X, 0)), \
|
||
REGNO (XEXP (X, 1))); \
|
||
} \
|
||
else \
|
||
output_addr_const (STREAM, X); \
|
||
}
|
||
|
||
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
if (TARGET_ARM) \
|
||
ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
|
||
else \
|
||
THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
|
||
|
||
#define OUTPUT_ADDR_CONST_EXTRA(file, x, fail) \
|
||
if (arm_output_addr_const_extra (file, x) == FALSE) \
|
||
goto fail
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame. */
|
||
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
arm_return_addr (COUNT, FRAME)
|
||
|
||
/* Mask of the bits in the PC that contain the real return address
|
||
when running in 26-bit mode. */
|
||
#define RETURN_ADDR_MASK26 (0x03fffffc)
|
||
|
||
/* Pick up the return address upon entry to a procedure. Used for
|
||
dwarf2 unwind information. This also enables the table driven
|
||
mechanism. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
|
||
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
|
||
|
||
/* Used to mask out junk bits from the return address, such as
|
||
processor state, interrupt status, condition codes and the like. */
|
||
#define MASK_RETURN_ADDR \
|
||
/* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
|
||
in 26 bit mode, the condition codes must be masked out of the \
|
||
return address. This does not apply to ARM6 and later processors \
|
||
when running in 32 bit mode. */ \
|
||
((arm_arch4 || TARGET_THUMB) \
|
||
? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
|
||
: arm_gen_return_addr_mask ())
|
||
|
||
|
||
enum arm_builtins
|
||
{
|
||
ARM_BUILTIN_GETWCX,
|
||
ARM_BUILTIN_SETWCX,
|
||
|
||
ARM_BUILTIN_WZERO,
|
||
|
||
ARM_BUILTIN_WAVG2BR,
|
||
ARM_BUILTIN_WAVG2HR,
|
||
ARM_BUILTIN_WAVG2B,
|
||
ARM_BUILTIN_WAVG2H,
|
||
|
||
ARM_BUILTIN_WACCB,
|
||
ARM_BUILTIN_WACCH,
|
||
ARM_BUILTIN_WACCW,
|
||
|
||
ARM_BUILTIN_WMACS,
|
||
ARM_BUILTIN_WMACSZ,
|
||
ARM_BUILTIN_WMACU,
|
||
ARM_BUILTIN_WMACUZ,
|
||
|
||
ARM_BUILTIN_WSADB,
|
||
ARM_BUILTIN_WSADBZ,
|
||
ARM_BUILTIN_WSADH,
|
||
ARM_BUILTIN_WSADHZ,
|
||
|
||
ARM_BUILTIN_WALIGN,
|
||
|
||
ARM_BUILTIN_TMIA,
|
||
ARM_BUILTIN_TMIAPH,
|
||
ARM_BUILTIN_TMIABB,
|
||
ARM_BUILTIN_TMIABT,
|
||
ARM_BUILTIN_TMIATB,
|
||
ARM_BUILTIN_TMIATT,
|
||
|
||
ARM_BUILTIN_TMOVMSKB,
|
||
ARM_BUILTIN_TMOVMSKH,
|
||
ARM_BUILTIN_TMOVMSKW,
|
||
|
||
ARM_BUILTIN_TBCSTB,
|
||
ARM_BUILTIN_TBCSTH,
|
||
ARM_BUILTIN_TBCSTW,
|
||
|
||
ARM_BUILTIN_WMADDS,
|
||
ARM_BUILTIN_WMADDU,
|
||
|
||
ARM_BUILTIN_WPACKHSS,
|
||
ARM_BUILTIN_WPACKWSS,
|
||
ARM_BUILTIN_WPACKDSS,
|
||
ARM_BUILTIN_WPACKHUS,
|
||
ARM_BUILTIN_WPACKWUS,
|
||
ARM_BUILTIN_WPACKDUS,
|
||
|
||
ARM_BUILTIN_WADDB,
|
||
ARM_BUILTIN_WADDH,
|
||
ARM_BUILTIN_WADDW,
|
||
ARM_BUILTIN_WADDSSB,
|
||
ARM_BUILTIN_WADDSSH,
|
||
ARM_BUILTIN_WADDSSW,
|
||
ARM_BUILTIN_WADDUSB,
|
||
ARM_BUILTIN_WADDUSH,
|
||
ARM_BUILTIN_WADDUSW,
|
||
ARM_BUILTIN_WSUBB,
|
||
ARM_BUILTIN_WSUBH,
|
||
ARM_BUILTIN_WSUBW,
|
||
ARM_BUILTIN_WSUBSSB,
|
||
ARM_BUILTIN_WSUBSSH,
|
||
ARM_BUILTIN_WSUBSSW,
|
||
ARM_BUILTIN_WSUBUSB,
|
||
ARM_BUILTIN_WSUBUSH,
|
||
ARM_BUILTIN_WSUBUSW,
|
||
|
||
ARM_BUILTIN_WAND,
|
||
ARM_BUILTIN_WANDN,
|
||
ARM_BUILTIN_WOR,
|
||
ARM_BUILTIN_WXOR,
|
||
|
||
ARM_BUILTIN_WCMPEQB,
|
||
ARM_BUILTIN_WCMPEQH,
|
||
ARM_BUILTIN_WCMPEQW,
|
||
ARM_BUILTIN_WCMPGTUB,
|
||
ARM_BUILTIN_WCMPGTUH,
|
||
ARM_BUILTIN_WCMPGTUW,
|
||
ARM_BUILTIN_WCMPGTSB,
|
||
ARM_BUILTIN_WCMPGTSH,
|
||
ARM_BUILTIN_WCMPGTSW,
|
||
|
||
ARM_BUILTIN_TEXTRMSB,
|
||
ARM_BUILTIN_TEXTRMSH,
|
||
ARM_BUILTIN_TEXTRMSW,
|
||
ARM_BUILTIN_TEXTRMUB,
|
||
ARM_BUILTIN_TEXTRMUH,
|
||
ARM_BUILTIN_TEXTRMUW,
|
||
ARM_BUILTIN_TINSRB,
|
||
ARM_BUILTIN_TINSRH,
|
||
ARM_BUILTIN_TINSRW,
|
||
|
||
ARM_BUILTIN_WMAXSW,
|
||
ARM_BUILTIN_WMAXSH,
|
||
ARM_BUILTIN_WMAXSB,
|
||
ARM_BUILTIN_WMAXUW,
|
||
ARM_BUILTIN_WMAXUH,
|
||
ARM_BUILTIN_WMAXUB,
|
||
ARM_BUILTIN_WMINSW,
|
||
ARM_BUILTIN_WMINSH,
|
||
ARM_BUILTIN_WMINSB,
|
||
ARM_BUILTIN_WMINUW,
|
||
ARM_BUILTIN_WMINUH,
|
||
ARM_BUILTIN_WMINUB,
|
||
|
||
ARM_BUILTIN_WMULUM,
|
||
ARM_BUILTIN_WMULSM,
|
||
ARM_BUILTIN_WMULUL,
|
||
|
||
ARM_BUILTIN_PSADBH,
|
||
ARM_BUILTIN_WSHUFH,
|
||
|
||
ARM_BUILTIN_WSLLH,
|
||
ARM_BUILTIN_WSLLW,
|
||
ARM_BUILTIN_WSLLD,
|
||
ARM_BUILTIN_WSRAH,
|
||
ARM_BUILTIN_WSRAW,
|
||
ARM_BUILTIN_WSRAD,
|
||
ARM_BUILTIN_WSRLH,
|
||
ARM_BUILTIN_WSRLW,
|
||
ARM_BUILTIN_WSRLD,
|
||
ARM_BUILTIN_WRORH,
|
||
ARM_BUILTIN_WRORW,
|
||
ARM_BUILTIN_WRORD,
|
||
ARM_BUILTIN_WSLLHI,
|
||
ARM_BUILTIN_WSLLWI,
|
||
ARM_BUILTIN_WSLLDI,
|
||
ARM_BUILTIN_WSRAHI,
|
||
ARM_BUILTIN_WSRAWI,
|
||
ARM_BUILTIN_WSRADI,
|
||
ARM_BUILTIN_WSRLHI,
|
||
ARM_BUILTIN_WSRLWI,
|
||
ARM_BUILTIN_WSRLDI,
|
||
ARM_BUILTIN_WRORHI,
|
||
ARM_BUILTIN_WRORWI,
|
||
ARM_BUILTIN_WRORDI,
|
||
|
||
ARM_BUILTIN_WUNPCKIHB,
|
||
ARM_BUILTIN_WUNPCKIHH,
|
||
ARM_BUILTIN_WUNPCKIHW,
|
||
ARM_BUILTIN_WUNPCKILB,
|
||
ARM_BUILTIN_WUNPCKILH,
|
||
ARM_BUILTIN_WUNPCKILW,
|
||
|
||
ARM_BUILTIN_WUNPCKEHSB,
|
||
ARM_BUILTIN_WUNPCKEHSH,
|
||
ARM_BUILTIN_WUNPCKEHSW,
|
||
ARM_BUILTIN_WUNPCKEHUB,
|
||
ARM_BUILTIN_WUNPCKEHUH,
|
||
ARM_BUILTIN_WUNPCKEHUW,
|
||
ARM_BUILTIN_WUNPCKELSB,
|
||
ARM_BUILTIN_WUNPCKELSH,
|
||
ARM_BUILTIN_WUNPCKELSW,
|
||
ARM_BUILTIN_WUNPCKELUB,
|
||
ARM_BUILTIN_WUNPCKELUH,
|
||
ARM_BUILTIN_WUNPCKELUW,
|
||
|
||
ARM_BUILTIN_THREAD_POINTER,
|
||
|
||
ARM_BUILTIN_MAX
|
||
};
|
||
#endif /* ! GCC_ARM_H */
|