cfa866f6a1
Approved by: sbruno
2836 lines
68 KiB
C
2836 lines
68 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2012-2014 Matteo Landi
|
|
* Copyright (C) 2012-2016 Luigi Rizzo
|
|
* Copyright (C) 2012-2016 Giuseppe Lettieri
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef linux
|
|
#include "bsd_glue.h"
|
|
#endif /* linux */
|
|
|
|
#ifdef __APPLE__
|
|
#include "osx_glue.h"
|
|
#endif /* __APPLE__ */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h> /* MALLOC_DEFINE */
|
|
#include <sys/proc.h>
|
|
#include <vm/vm.h> /* vtophys */
|
|
#include <vm/pmap.h> /* vtophys */
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/vnet.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
|
|
/* M_NETMAP only used in here */
|
|
MALLOC_DECLARE(M_NETMAP);
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef _WIN32
|
|
#include <win_glue.h>
|
|
#endif
|
|
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <net/netmap_virt.h>
|
|
#include "netmap_mem2.h"
|
|
|
|
#ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
|
|
#define NETMAP_BUF_MAX_NUM 8*4096 /* if too big takes too much time to allocate */
|
|
#else
|
|
#define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */
|
|
#endif
|
|
|
|
#define NETMAP_POOL_MAX_NAMSZ 32
|
|
|
|
|
|
enum {
|
|
NETMAP_IF_POOL = 0,
|
|
NETMAP_RING_POOL,
|
|
NETMAP_BUF_POOL,
|
|
NETMAP_POOLS_NR
|
|
};
|
|
|
|
|
|
struct netmap_obj_params {
|
|
u_int size;
|
|
u_int num;
|
|
|
|
u_int last_size;
|
|
u_int last_num;
|
|
};
|
|
|
|
struct netmap_obj_pool {
|
|
char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */
|
|
|
|
/* ---------------------------------------------------*/
|
|
/* these are only meaningful if the pool is finalized */
|
|
/* (see 'finalized' field in netmap_mem_d) */
|
|
u_int objtotal; /* actual total number of objects. */
|
|
u_int memtotal; /* actual total memory space */
|
|
u_int numclusters; /* actual number of clusters */
|
|
|
|
u_int objfree; /* number of free objects. */
|
|
|
|
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
|
|
uint32_t *bitmap; /* one bit per buffer, 1 means free */
|
|
uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
|
|
uint32_t bitmap_slots; /* number of uint32 entries in bitmap */
|
|
int alloc_done; /* we have allocated the memory */
|
|
/* ---------------------------------------------------*/
|
|
|
|
/* limits */
|
|
u_int objminsize; /* minimum object size */
|
|
u_int objmaxsize; /* maximum object size */
|
|
u_int nummin; /* minimum number of objects */
|
|
u_int nummax; /* maximum number of objects */
|
|
|
|
/* these are changed only by config */
|
|
u_int _objtotal; /* total number of objects */
|
|
u_int _objsize; /* object size */
|
|
u_int _clustsize; /* cluster size */
|
|
u_int _clustentries; /* objects per cluster */
|
|
u_int _numclusters; /* number of clusters */
|
|
|
|
/* requested values */
|
|
u_int r_objtotal;
|
|
u_int r_objsize;
|
|
};
|
|
|
|
#define NMA_LOCK_T NM_MTX_T
|
|
#define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx)
|
|
#define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx)
|
|
#define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx)
|
|
#define NMA_SPINLOCK(n) NM_MTX_SPINLOCK((n)->nm_mtx)
|
|
#define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx)
|
|
|
|
struct netmap_mem_ops {
|
|
int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
|
|
int (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
|
|
u_int *memflags, uint16_t *id);
|
|
|
|
vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
|
|
int (*nmd_config)(struct netmap_mem_d *);
|
|
int (*nmd_finalize)(struct netmap_mem_d *);
|
|
void (*nmd_deref)(struct netmap_mem_d *);
|
|
ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
|
|
void (*nmd_delete)(struct netmap_mem_d *);
|
|
|
|
struct netmap_if * (*nmd_if_new)(struct netmap_adapter *,
|
|
struct netmap_priv_d *);
|
|
void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
|
|
int (*nmd_rings_create)(struct netmap_adapter *);
|
|
void (*nmd_rings_delete)(struct netmap_adapter *);
|
|
};
|
|
|
|
struct netmap_mem_d {
|
|
NMA_LOCK_T nm_mtx; /* protect the allocator */
|
|
u_int nm_totalsize; /* shorthand */
|
|
|
|
u_int flags;
|
|
#define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */
|
|
#define NETMAP_MEM_HIDDEN 0x8 /* beeing prepared */
|
|
int lasterr; /* last error for curr config */
|
|
int active; /* active users */
|
|
int refcount;
|
|
/* the three allocators */
|
|
struct netmap_obj_pool pools[NETMAP_POOLS_NR];
|
|
|
|
nm_memid_t nm_id; /* allocator identifier */
|
|
int nm_grp; /* iommu groupd id */
|
|
|
|
/* list of all existing allocators, sorted by nm_id */
|
|
struct netmap_mem_d *prev, *next;
|
|
|
|
struct netmap_mem_ops *ops;
|
|
|
|
struct netmap_obj_params params[NETMAP_POOLS_NR];
|
|
|
|
#define NM_MEM_NAMESZ 16
|
|
char name[NM_MEM_NAMESZ];
|
|
};
|
|
|
|
int
|
|
netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
|
|
{
|
|
int rv;
|
|
|
|
NMA_LOCK(nmd);
|
|
rv = nmd->ops->nmd_get_lut(nmd, lut);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
|
|
u_int *memflags, nm_memid_t *memid)
|
|
{
|
|
int rv;
|
|
|
|
NMA_LOCK(nmd);
|
|
rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return rv;
|
|
}
|
|
|
|
vm_paddr_t
|
|
netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
|
|
{
|
|
vm_paddr_t pa;
|
|
|
|
#if defined(__FreeBSD__)
|
|
/* This function is called by netmap_dev_pager_fault(), which holds a
|
|
* non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
|
|
* spin on the trylock. */
|
|
NMA_SPINLOCK(nmd);
|
|
#else
|
|
NMA_LOCK(nmd);
|
|
#endif
|
|
pa = nmd->ops->nmd_ofstophys(nmd, off);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return pa;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_config(struct netmap_mem_d *nmd)
|
|
{
|
|
if (nmd->active) {
|
|
/* already in use. Not fatal, but we
|
|
* cannot change the configuration
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return nmd->ops->nmd_config(nmd);
|
|
}
|
|
|
|
ssize_t
|
|
netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
|
|
{
|
|
ssize_t rv;
|
|
|
|
NMA_LOCK(nmd);
|
|
rv = nmd->ops->nmd_if_offset(nmd, off);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
nmd->ops->nmd_delete(nmd);
|
|
}
|
|
|
|
struct netmap_if *
|
|
netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
|
|
{
|
|
struct netmap_if *nifp;
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
|
|
NMA_LOCK(nmd);
|
|
nifp = nmd->ops->nmd_if_new(na, priv);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return nifp;
|
|
}
|
|
|
|
void
|
|
netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
|
|
{
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
|
|
NMA_LOCK(nmd);
|
|
nmd->ops->nmd_if_delete(na, nif);
|
|
NMA_UNLOCK(nmd);
|
|
}
|
|
|
|
int
|
|
netmap_mem_rings_create(struct netmap_adapter *na)
|
|
{
|
|
int rv;
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
|
|
NMA_LOCK(nmd);
|
|
rv = nmd->ops->nmd_rings_create(na);
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
netmap_mem_rings_delete(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
|
|
NMA_LOCK(nmd);
|
|
nmd->ops->nmd_rings_delete(na);
|
|
NMA_UNLOCK(nmd);
|
|
}
|
|
|
|
static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
|
|
static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
|
|
static int nm_mem_assign_group(struct netmap_mem_d *, struct device *);
|
|
static void nm_mem_release_id(struct netmap_mem_d *);
|
|
|
|
nm_memid_t
|
|
netmap_mem_get_id(struct netmap_mem_d *nmd)
|
|
{
|
|
return nmd->nm_id;
|
|
}
|
|
|
|
#ifdef NM_DEBUG_MEM_PUTGET
|
|
#define NM_DBG_REFC(nmd, func, line) \
|
|
nm_prinf("%s:%d mem[%d] -> %d\n", func, line, (nmd)->nm_id, (nmd)->refcount);
|
|
#else
|
|
#define NM_DBG_REFC(nmd, func, line)
|
|
#endif
|
|
|
|
/* circular list of all existing allocators */
|
|
static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
|
|
NM_MTX_T nm_mem_list_lock;
|
|
|
|
struct netmap_mem_d *
|
|
__netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
|
|
{
|
|
NM_MTX_LOCK(nm_mem_list_lock);
|
|
nmd->refcount++;
|
|
NM_DBG_REFC(nmd, func, line);
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
return nmd;
|
|
}
|
|
|
|
void
|
|
__netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
|
|
{
|
|
int last;
|
|
NM_MTX_LOCK(nm_mem_list_lock);
|
|
last = (--nmd->refcount == 0);
|
|
if (last)
|
|
nm_mem_release_id(nmd);
|
|
NM_DBG_REFC(nmd, func, line);
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
if (last)
|
|
netmap_mem_delete(nmd);
|
|
}
|
|
|
|
int
|
|
netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
|
|
{
|
|
int lasterr = 0;
|
|
if (nm_mem_assign_group(nmd, na->pdev) < 0) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
if (netmap_mem_config(nmd))
|
|
goto out;
|
|
|
|
nmd->active++;
|
|
|
|
nmd->lasterr = nmd->ops->nmd_finalize(nmd);
|
|
|
|
if (!nmd->lasterr && na->pdev) {
|
|
nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
|
|
}
|
|
|
|
out:
|
|
lasterr = nmd->lasterr;
|
|
NMA_UNLOCK(nmd);
|
|
|
|
if (lasterr)
|
|
netmap_mem_deref(nmd, na);
|
|
|
|
return lasterr;
|
|
}
|
|
|
|
static int
|
|
nm_isset(uint32_t *bitmap, u_int i)
|
|
{
|
|
return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
|
|
{
|
|
u_int n, j;
|
|
|
|
if (p->bitmap == NULL) {
|
|
/* Allocate the bitmap */
|
|
n = (p->objtotal + 31) / 32;
|
|
p->bitmap = nm_os_malloc(sizeof(uint32_t) * n);
|
|
if (p->bitmap == NULL) {
|
|
D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
|
|
p->name);
|
|
return ENOMEM;
|
|
}
|
|
p->bitmap_slots = n;
|
|
} else {
|
|
memset(p->bitmap, 0, p->bitmap_slots);
|
|
}
|
|
|
|
p->objfree = 0;
|
|
/*
|
|
* Set all the bits in the bitmap that have
|
|
* corresponding buffers to 1 to indicate they are
|
|
* free.
|
|
*/
|
|
for (j = 0; j < p->objtotal; j++) {
|
|
if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
|
|
D("skipping %s %d", p->name, j);
|
|
continue;
|
|
}
|
|
p->bitmap[ (j>>5) ] |= ( 1U << (j & 31U) );
|
|
p->objfree++;
|
|
}
|
|
|
|
ND("%s free %u", p->name, p->objfree);
|
|
if (p->objfree == 0)
|
|
return ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
|
|
{
|
|
int i, error = 0;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = &nmd->pools[i];
|
|
|
|
error = netmap_init_obj_allocator_bitmap(p);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* buffers 0 and 1 are reserved
|
|
*/
|
|
if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
|
|
if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
|
|
/* XXX This check is a workaround that prevents a
|
|
* NULL pointer crash which currently happens only
|
|
* with ptnetmap guests.
|
|
* Removed shared-info --> is the bug still there? */
|
|
nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
|
|
{
|
|
int last_user = 0;
|
|
NMA_LOCK(nmd);
|
|
if (na->active_fds <= 0)
|
|
netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
|
|
if (nmd->active == 1) {
|
|
last_user = 1;
|
|
/*
|
|
* Reset the allocator when it falls out of use so that any
|
|
* pool resources leaked by unclean application exits are
|
|
* reclaimed.
|
|
*/
|
|
netmap_mem_init_bitmaps(nmd);
|
|
}
|
|
nmd->ops->nmd_deref(nmd);
|
|
|
|
nmd->active--;
|
|
if (!nmd->active)
|
|
nmd->nm_grp = -1;
|
|
|
|
NMA_UNLOCK(nmd);
|
|
return last_user;
|
|
}
|
|
|
|
|
|
/* accessor functions */
|
|
static int
|
|
netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
|
|
{
|
|
lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
|
|
#ifdef __FreeBSD__
|
|
lut->plut = lut->lut;
|
|
#endif
|
|
lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
|
|
lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
|
|
[NETMAP_IF_POOL] = {
|
|
.size = 1024,
|
|
.num = 2,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.size = 5*PAGE_SIZE,
|
|
.num = 4,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.size = 2048,
|
|
.num = 4098,
|
|
},
|
|
};
|
|
|
|
|
|
/*
|
|
* nm_mem is the memory allocator used for all physical interfaces
|
|
* running in netmap mode.
|
|
* Virtual (VALE) ports will have each its own allocator.
|
|
*/
|
|
extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
|
|
struct netmap_mem_d nm_mem = { /* Our memory allocator. */
|
|
.pools = {
|
|
[NETMAP_IF_POOL] = {
|
|
.name = "netmap_if",
|
|
.objminsize = sizeof(struct netmap_if),
|
|
.objmaxsize = 4096,
|
|
.nummin = 10, /* don't be stingy */
|
|
.nummax = 10000, /* XXX very large */
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.name = "netmap_ring",
|
|
.objminsize = sizeof(struct netmap_ring),
|
|
.objmaxsize = 32*PAGE_SIZE,
|
|
.nummin = 2,
|
|
.nummax = 1024,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.name = "netmap_buf",
|
|
.objminsize = 64,
|
|
.objmaxsize = 65536,
|
|
.nummin = 4,
|
|
.nummax = 1000000, /* one million! */
|
|
},
|
|
},
|
|
|
|
.params = {
|
|
[NETMAP_IF_POOL] = {
|
|
.size = 1024,
|
|
.num = 100,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.size = 9*PAGE_SIZE,
|
|
.num = 200,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.size = 2048,
|
|
.num = NETMAP_BUF_MAX_NUM,
|
|
},
|
|
},
|
|
|
|
.nm_id = 1,
|
|
.nm_grp = -1,
|
|
|
|
.prev = &nm_mem,
|
|
.next = &nm_mem,
|
|
|
|
.ops = &netmap_mem_global_ops,
|
|
|
|
.name = "1"
|
|
};
|
|
|
|
|
|
/* blueprint for the private memory allocators */
|
|
/* XXX clang is not happy about using name as a print format */
|
|
static const struct netmap_mem_d nm_blueprint = {
|
|
.pools = {
|
|
[NETMAP_IF_POOL] = {
|
|
.name = "%s_if",
|
|
.objminsize = sizeof(struct netmap_if),
|
|
.objmaxsize = 4096,
|
|
.nummin = 1,
|
|
.nummax = 100,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.name = "%s_ring",
|
|
.objminsize = sizeof(struct netmap_ring),
|
|
.objmaxsize = 32*PAGE_SIZE,
|
|
.nummin = 2,
|
|
.nummax = 1024,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.name = "%s_buf",
|
|
.objminsize = 64,
|
|
.objmaxsize = 65536,
|
|
.nummin = 4,
|
|
.nummax = 1000000, /* one million! */
|
|
},
|
|
},
|
|
|
|
.nm_grp = -1,
|
|
|
|
.flags = NETMAP_MEM_PRIVATE,
|
|
|
|
.ops = &netmap_mem_global_ops,
|
|
};
|
|
|
|
/* memory allocator related sysctls */
|
|
|
|
#define STRINGIFY(x) #x
|
|
|
|
|
|
#define DECLARE_SYSCTLS(id, name) \
|
|
SYSBEGIN(mem2_ ## name); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
|
|
CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
|
|
CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
|
|
CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
|
|
CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
|
|
CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
|
|
"Default size of private netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
|
|
CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
|
|
"Default number of private netmap " STRINGIFY(name) "s"); \
|
|
SYSEND
|
|
|
|
SYSCTL_DECL(_dev_netmap);
|
|
DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
|
|
DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
|
|
DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
|
|
|
|
/* call with nm_mem_list_lock held */
|
|
static int
|
|
nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
|
|
{
|
|
nm_memid_t id;
|
|
struct netmap_mem_d *scan = netmap_last_mem_d;
|
|
int error = ENOMEM;
|
|
|
|
do {
|
|
/* we rely on unsigned wrap around */
|
|
id = scan->nm_id + 1;
|
|
if (id == 0) /* reserve 0 as error value */
|
|
id = 1;
|
|
scan = scan->next;
|
|
if (id != scan->nm_id) {
|
|
nmd->nm_id = id;
|
|
nmd->prev = scan->prev;
|
|
nmd->next = scan;
|
|
scan->prev->next = nmd;
|
|
scan->prev = nmd;
|
|
netmap_last_mem_d = nmd;
|
|
nmd->refcount = 1;
|
|
NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
|
|
error = 0;
|
|
break;
|
|
}
|
|
} while (scan != netmap_last_mem_d);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* call with nm_mem_list_lock *not* held */
|
|
static int
|
|
nm_mem_assign_id(struct netmap_mem_d *nmd)
|
|
{
|
|
int ret;
|
|
|
|
NM_MTX_LOCK(nm_mem_list_lock);
|
|
ret = nm_mem_assign_id_locked(nmd);
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* call with nm_mem_list_lock held */
|
|
static void
|
|
nm_mem_release_id(struct netmap_mem_d *nmd)
|
|
{
|
|
nmd->prev->next = nmd->next;
|
|
nmd->next->prev = nmd->prev;
|
|
|
|
if (netmap_last_mem_d == nmd)
|
|
netmap_last_mem_d = nmd->prev;
|
|
|
|
nmd->prev = nmd->next = NULL;
|
|
}
|
|
|
|
struct netmap_mem_d *
|
|
netmap_mem_find(nm_memid_t id)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
|
|
NM_MTX_LOCK(nm_mem_list_lock);
|
|
nmd = netmap_last_mem_d;
|
|
do {
|
|
if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
|
|
nmd->refcount++;
|
|
NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
return nmd;
|
|
}
|
|
nmd = nmd->next;
|
|
} while (nmd != netmap_last_mem_d);
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev)
|
|
{
|
|
int err = 0, id;
|
|
id = nm_iommu_group_id(dev);
|
|
if (netmap_verbose)
|
|
D("iommu_group %d", id);
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
if (nmd->nm_grp < 0)
|
|
nmd->nm_grp = id;
|
|
|
|
if (nmd->nm_grp != id)
|
|
nmd->lasterr = err = ENOMEM;
|
|
|
|
NMA_UNLOCK(nmd);
|
|
return err;
|
|
}
|
|
|
|
static struct lut_entry *
|
|
nm_alloc_lut(u_int nobj)
|
|
{
|
|
size_t n = sizeof(struct lut_entry) * nobj;
|
|
struct lut_entry *lut;
|
|
#ifdef linux
|
|
lut = vmalloc(n);
|
|
#else
|
|
lut = nm_os_malloc(n);
|
|
#endif
|
|
return lut;
|
|
}
|
|
|
|
static void
|
|
nm_free_lut(struct lut_entry *lut, u_int objtotal)
|
|
{
|
|
bzero(lut, sizeof(struct lut_entry) * objtotal);
|
|
#ifdef linux
|
|
vfree(lut);
|
|
#else
|
|
nm_os_free(lut);
|
|
#endif
|
|
}
|
|
|
|
#if defined(linux) || defined(_WIN32)
|
|
static struct plut_entry *
|
|
nm_alloc_plut(u_int nobj)
|
|
{
|
|
size_t n = sizeof(struct plut_entry) * nobj;
|
|
struct plut_entry *lut;
|
|
lut = vmalloc(n);
|
|
return lut;
|
|
}
|
|
|
|
static void
|
|
nm_free_plut(struct plut_entry * lut)
|
|
{
|
|
vfree(lut);
|
|
}
|
|
#endif /* linux or _WIN32 */
|
|
|
|
|
|
/*
|
|
* First, find the allocator that contains the requested offset,
|
|
* then locate the cluster through a lookup table.
|
|
*/
|
|
static vm_paddr_t
|
|
netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
|
|
{
|
|
int i;
|
|
vm_ooffset_t o = offset;
|
|
vm_paddr_t pa;
|
|
struct netmap_obj_pool *p;
|
|
|
|
p = nmd->pools;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
|
|
if (offset >= p[i].memtotal)
|
|
continue;
|
|
// now lookup the cluster's address
|
|
#ifndef _WIN32
|
|
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
|
|
offset % p[i]._objsize;
|
|
#else
|
|
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
|
|
pa.QuadPart += offset % p[i]._objsize;
|
|
#endif
|
|
return pa;
|
|
}
|
|
/* this is only in case of errors */
|
|
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
|
|
p[NETMAP_IF_POOL].memtotal,
|
|
p[NETMAP_IF_POOL].memtotal
|
|
+ p[NETMAP_RING_POOL].memtotal,
|
|
p[NETMAP_IF_POOL].memtotal
|
|
+ p[NETMAP_RING_POOL].memtotal
|
|
+ p[NETMAP_BUF_POOL].memtotal);
|
|
#ifndef _WIN32
|
|
return 0; /* bad address */
|
|
#else
|
|
vm_paddr_t res;
|
|
res.QuadPart = 0;
|
|
return res;
|
|
#endif
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
/*
|
|
* win32_build_virtual_memory_for_userspace
|
|
*
|
|
* This function get all the object making part of the pools and maps
|
|
* a contiguous virtual memory space for the userspace
|
|
* It works this way
|
|
* 1 - allocate a Memory Descriptor List wide as the sum
|
|
* of the memory needed for the pools
|
|
* 2 - cycle all the objects in every pool and for every object do
|
|
*
|
|
* 2a - cycle all the objects in every pool, get the list
|
|
* of the physical address descriptors
|
|
* 2b - calculate the offset in the array of pages desciptor in the
|
|
* main MDL
|
|
* 2c - copy the descriptors of the object in the main MDL
|
|
*
|
|
* 3 - return the resulting MDL that needs to be mapped in userland
|
|
*
|
|
* In this way we will have an MDL that describes all the memory for the
|
|
* objects in a single object
|
|
*/
|
|
|
|
PMDL
|
|
win32_build_user_vm_map(struct netmap_mem_d* nmd)
|
|
{
|
|
u_int memflags, ofs = 0;
|
|
PMDL mainMdl, tempMdl;
|
|
uint64_t memsize;
|
|
int i, j;
|
|
|
|
if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
|
|
D("memory not finalised yet");
|
|
return NULL;
|
|
}
|
|
|
|
mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
|
|
if (mainMdl == NULL) {
|
|
D("failed to allocate mdl");
|
|
return NULL;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = &nmd->pools[i];
|
|
int clsz = p->_clustsize;
|
|
int clobjs = p->_clustentries; /* objects per cluster */
|
|
int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
|
|
PPFN_NUMBER pSrc, pDst;
|
|
|
|
/* each pool has a different cluster size so we need to reallocate */
|
|
tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
|
|
if (tempMdl == NULL) {
|
|
NMA_UNLOCK(nmd);
|
|
D("fail to allocate tempMdl");
|
|
IoFreeMdl(mainMdl);
|
|
return NULL;
|
|
}
|
|
pSrc = MmGetMdlPfnArray(tempMdl);
|
|
/* create one entry per cluster, the lut[] has one entry per object */
|
|
for (j = 0; j < p->numclusters; j++, ofs += clsz) {
|
|
pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
|
|
MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
|
|
MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
|
|
RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
|
|
mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
|
|
}
|
|
IoFreeMdl(tempMdl);
|
|
}
|
|
NMA_UNLOCK(nmd);
|
|
return mainMdl;
|
|
}
|
|
|
|
#endif /* _WIN32 */
|
|
|
|
/*
|
|
* helper function for OS-specific mmap routines (currently only windows).
|
|
* Given an nmd and a pool index, returns the cluster size and number of clusters.
|
|
* Returns 0 if memory is finalised and the pool is valid, otherwise 1.
|
|
* It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
|
|
*/
|
|
|
|
int
|
|
netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
|
|
{
|
|
if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
|
|
return 1; /* invalid arguments */
|
|
// NMA_LOCK_ASSERT(nmd);
|
|
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
*clustsize = *numclusters = 0;
|
|
return 1; /* not ready yet */
|
|
}
|
|
*clustsize = nmd->pools[pool]._clustsize;
|
|
*numclusters = nmd->pools[pool].numclusters;
|
|
return 0; /* success */
|
|
}
|
|
|
|
static int
|
|
netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
|
|
u_int *memflags, nm_memid_t *id)
|
|
{
|
|
int error = 0;
|
|
error = netmap_mem_config(nmd);
|
|
if (error)
|
|
goto out;
|
|
if (size) {
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED) {
|
|
*size = nmd->nm_totalsize;
|
|
} else {
|
|
int i;
|
|
*size = 0;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = nmd->pools + i;
|
|
*size += (p->_numclusters * p->_clustsize);
|
|
}
|
|
}
|
|
}
|
|
if (memflags)
|
|
*memflags = nmd->flags;
|
|
if (id)
|
|
*id = nmd->nm_id;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* we store objects by kernel address, need to find the offset
|
|
* within the pool to export the value to userspace.
|
|
* Algorithm: scan until we find the cluster, then add the
|
|
* actual offset in the cluster
|
|
*/
|
|
static ssize_t
|
|
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
|
|
{
|
|
int i, k = p->_clustentries, n = p->objtotal;
|
|
ssize_t ofs = 0;
|
|
|
|
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
|
|
const char *base = p->lut[i].vaddr;
|
|
ssize_t relofs = (const char *) vaddr - base;
|
|
|
|
if (relofs < 0 || relofs >= p->_clustsize)
|
|
continue;
|
|
|
|
ofs = ofs + relofs;
|
|
ND("%s: return offset %d (cluster %d) for pointer %p",
|
|
p->name, ofs, i, vaddr);
|
|
return ofs;
|
|
}
|
|
D("address %p is not contained inside any cluster (%s)",
|
|
vaddr, p->name);
|
|
return 0; /* An error occurred */
|
|
}
|
|
|
|
/* Helper functions which convert virtual addresses to offsets */
|
|
#define netmap_if_offset(n, v) \
|
|
netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
|
|
|
|
#define netmap_ring_offset(n, v) \
|
|
((n)->pools[NETMAP_IF_POOL].memtotal + \
|
|
netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
|
|
|
|
static ssize_t
|
|
netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
|
|
{
|
|
return netmap_if_offset(nmd, addr);
|
|
}
|
|
|
|
/*
|
|
* report the index, and use start position as a hint,
|
|
* otherwise buffer allocation becomes terribly expensive.
|
|
*/
|
|
static void *
|
|
netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
|
|
{
|
|
uint32_t i = 0; /* index in the bitmap */
|
|
uint32_t mask, j = 0; /* slot counter */
|
|
void *vaddr = NULL;
|
|
|
|
if (len > p->_objsize) {
|
|
D("%s request size %d too large", p->name, len);
|
|
return NULL;
|
|
}
|
|
|
|
if (p->objfree == 0) {
|
|
D("no more %s objects", p->name);
|
|
return NULL;
|
|
}
|
|
if (start)
|
|
i = *start;
|
|
|
|
/* termination is guaranteed by p->free, but better check bounds on i */
|
|
while (vaddr == NULL && i < p->bitmap_slots) {
|
|
uint32_t cur = p->bitmap[i];
|
|
if (cur == 0) { /* bitmask is fully used */
|
|
i++;
|
|
continue;
|
|
}
|
|
/* locate a slot */
|
|
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
|
|
;
|
|
|
|
p->bitmap[i] &= ~mask; /* mark object as in use */
|
|
p->objfree--;
|
|
|
|
vaddr = p->lut[i * 32 + j].vaddr;
|
|
if (index)
|
|
*index = i * 32 + j;
|
|
}
|
|
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
|
|
|
|
if (start)
|
|
*start = i;
|
|
return vaddr;
|
|
}
|
|
|
|
|
|
/*
|
|
* free by index, not by address.
|
|
* XXX should we also cleanup the content ?
|
|
*/
|
|
static int
|
|
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
|
|
{
|
|
uint32_t *ptr, mask;
|
|
|
|
if (j >= p->objtotal) {
|
|
D("invalid index %u, max %u", j, p->objtotal);
|
|
return 1;
|
|
}
|
|
ptr = &p->bitmap[j / 32];
|
|
mask = (1 << (j % 32));
|
|
if (*ptr & mask) {
|
|
D("ouch, double free on buffer %d", j);
|
|
return 1;
|
|
} else {
|
|
*ptr |= mask;
|
|
p->objfree++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free by address. This is slow but is only used for a few
|
|
* objects (rings, nifp)
|
|
*/
|
|
static void
|
|
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
|
|
{
|
|
u_int i, j, n = p->numclusters;
|
|
|
|
for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
|
|
void *base = p->lut[i * p->_clustentries].vaddr;
|
|
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
|
|
|
|
/* Given address, is out of the scope of the current cluster.*/
|
|
if (base == NULL || vaddr < base || relofs >= p->_clustsize)
|
|
continue;
|
|
|
|
j = j + relofs / p->_objsize;
|
|
/* KASSERT(j != 0, ("Cannot free object 0")); */
|
|
netmap_obj_free(p, j);
|
|
return;
|
|
}
|
|
D("address %p is not contained inside any cluster (%s)",
|
|
vaddr, p->name);
|
|
}
|
|
|
|
unsigned
|
|
netmap_mem_bufsize(struct netmap_mem_d *nmd)
|
|
{
|
|
return nmd->pools[NETMAP_BUF_POOL]._objsize;
|
|
}
|
|
|
|
#define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
|
|
#define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
|
|
#define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
|
|
#define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
|
|
#define netmap_buf_malloc(n, _pos, _index) \
|
|
netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
|
|
|
|
|
|
#if 0 /* currently unused */
|
|
/* Return the index associated to the given packet buffer */
|
|
#define netmap_buf_index(n, v) \
|
|
(netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
|
|
#endif
|
|
|
|
/*
|
|
* allocate extra buffers in a linked list.
|
|
* returns the actual number.
|
|
*/
|
|
uint32_t
|
|
netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
|
|
{
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
*head = 0; /* default, 'null' index ie empty list */
|
|
for (i = 0 ; i < n; i++) {
|
|
uint32_t cur = *head; /* save current head */
|
|
uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
|
|
if (p == NULL) {
|
|
D("no more buffers after %d of %d", i, n);
|
|
*head = cur; /* restore */
|
|
break;
|
|
}
|
|
ND(5, "allocate buffer %d -> %d", *head, cur);
|
|
*p = cur; /* link to previous head */
|
|
}
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return i;
|
|
}
|
|
|
|
static void
|
|
netmap_extra_free(struct netmap_adapter *na, uint32_t head)
|
|
{
|
|
struct lut_entry *lut = na->na_lut.lut;
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
uint32_t i, cur, *buf;
|
|
|
|
ND("freeing the extra list");
|
|
for (i = 0; head >=2 && head < p->objtotal; i++) {
|
|
cur = head;
|
|
buf = lut[head].vaddr;
|
|
head = *buf;
|
|
*buf = 0;
|
|
if (netmap_obj_free(p, cur))
|
|
break;
|
|
}
|
|
if (head != 0)
|
|
D("breaking with head %d", head);
|
|
if (netmap_verbose)
|
|
D("freed %d buffers", i);
|
|
}
|
|
|
|
|
|
/* Return nonzero on error */
|
|
static int
|
|
netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
u_int i = 0; /* slot counter */
|
|
uint32_t pos = 0; /* slot in p->bitmap */
|
|
uint32_t index = 0; /* buffer index */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
|
|
if (vaddr == NULL) {
|
|
D("no more buffers after %d of %d", i, n);
|
|
goto cleanup;
|
|
}
|
|
slot[i].buf_idx = index;
|
|
slot[i].len = p->_objsize;
|
|
slot[i].flags = 0;
|
|
slot[i].ptr = 0;
|
|
}
|
|
|
|
ND("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
|
|
return (0);
|
|
|
|
cleanup:
|
|
while (i > 0) {
|
|
i--;
|
|
netmap_obj_free(p, slot[i].buf_idx);
|
|
}
|
|
bzero(slot, n * sizeof(slot[0]));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
u_int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
slot[i].buf_idx = index;
|
|
slot[i].len = p->_objsize;
|
|
slot[i].flags = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
|
|
if (i < 2 || i >= p->objtotal) {
|
|
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
|
|
return;
|
|
}
|
|
netmap_obj_free(p, i);
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
|
|
{
|
|
u_int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (slot[i].buf_idx > 1)
|
|
netmap_free_buf(nmd, slot[i].buf_idx);
|
|
}
|
|
ND("%s: released some buffers, available: %u",
|
|
p->name, p->objfree);
|
|
}
|
|
|
|
static void
|
|
netmap_reset_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
|
|
if (p == NULL)
|
|
return;
|
|
if (p->bitmap)
|
|
nm_os_free(p->bitmap);
|
|
p->bitmap = NULL;
|
|
if (p->invalid_bitmap)
|
|
nm_os_free(p->invalid_bitmap);
|
|
p->invalid_bitmap = NULL;
|
|
if (!p->alloc_done) {
|
|
/* allocation was done by somebody else.
|
|
* Let them clean up after themselves.
|
|
*/
|
|
return;
|
|
}
|
|
if (p->lut) {
|
|
u_int i;
|
|
|
|
/*
|
|
* Free each cluster allocated in
|
|
* netmap_finalize_obj_allocator(). The cluster start
|
|
* addresses are stored at multiples of p->_clusterentries
|
|
* in the lut.
|
|
*/
|
|
for (i = 0; i < p->objtotal; i += p->_clustentries) {
|
|
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
|
|
}
|
|
nm_free_lut(p->lut, p->objtotal);
|
|
}
|
|
p->lut = NULL;
|
|
p->objtotal = 0;
|
|
p->memtotal = 0;
|
|
p->numclusters = 0;
|
|
p->objfree = 0;
|
|
p->alloc_done = 0;
|
|
}
|
|
|
|
/*
|
|
* Free all resources related to an allocator.
|
|
*/
|
|
static void
|
|
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
if (p == NULL)
|
|
return;
|
|
netmap_reset_obj_allocator(p);
|
|
}
|
|
|
|
/*
|
|
* We receive a request for objtotal objects, of size objsize each.
|
|
* Internally we may round up both numbers, as we allocate objects
|
|
* in small clusters multiple of the page size.
|
|
* We need to keep track of objtotal and clustentries,
|
|
* as they are needed when freeing memory.
|
|
*
|
|
* XXX note -- userspace needs the buffers to be contiguous,
|
|
* so we cannot afford gaps at the end of a cluster.
|
|
*/
|
|
|
|
|
|
/* call with NMA_LOCK held */
|
|
static int
|
|
netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
|
|
{
|
|
int i;
|
|
u_int clustsize; /* the cluster size, multiple of page size */
|
|
u_int clustentries; /* how many objects per entry */
|
|
|
|
/* we store the current request, so we can
|
|
* detect configuration changes later */
|
|
p->r_objtotal = objtotal;
|
|
p->r_objsize = objsize;
|
|
|
|
#define MAX_CLUSTSIZE (1<<22) // 4 MB
|
|
#define LINE_ROUND NM_CACHE_ALIGN // 64
|
|
if (objsize >= MAX_CLUSTSIZE) {
|
|
/* we could do it but there is no point */
|
|
D("unsupported allocation for %d bytes", objsize);
|
|
return EINVAL;
|
|
}
|
|
/* make sure objsize is a multiple of LINE_ROUND */
|
|
i = (objsize & (LINE_ROUND - 1));
|
|
if (i) {
|
|
D("XXX aligning object by %d bytes", LINE_ROUND - i);
|
|
objsize += LINE_ROUND - i;
|
|
}
|
|
if (objsize < p->objminsize || objsize > p->objmaxsize) {
|
|
D("requested objsize %d out of range [%d, %d]",
|
|
objsize, p->objminsize, p->objmaxsize);
|
|
return EINVAL;
|
|
}
|
|
if (objtotal < p->nummin || objtotal > p->nummax) {
|
|
D("requested objtotal %d out of range [%d, %d]",
|
|
objtotal, p->nummin, p->nummax);
|
|
return EINVAL;
|
|
}
|
|
/*
|
|
* Compute number of objects using a brute-force approach:
|
|
* given a max cluster size,
|
|
* we try to fill it with objects keeping track of the
|
|
* wasted space to the next page boundary.
|
|
*/
|
|
for (clustentries = 0, i = 1;; i++) {
|
|
u_int delta, used = i * objsize;
|
|
if (used > MAX_CLUSTSIZE)
|
|
break;
|
|
delta = used % PAGE_SIZE;
|
|
if (delta == 0) { // exact solution
|
|
clustentries = i;
|
|
break;
|
|
}
|
|
}
|
|
/* exact solution not found */
|
|
if (clustentries == 0) {
|
|
D("unsupported allocation for %d bytes", objsize);
|
|
return EINVAL;
|
|
}
|
|
/* compute clustsize */
|
|
clustsize = clustentries * objsize;
|
|
if (netmap_verbose)
|
|
D("objsize %d clustsize %d objects %d",
|
|
objsize, clustsize, clustentries);
|
|
|
|
/*
|
|
* The number of clusters is n = ceil(objtotal/clustentries)
|
|
* objtotal' = n * clustentries
|
|
*/
|
|
p->_clustentries = clustentries;
|
|
p->_clustsize = clustsize;
|
|
p->_numclusters = (objtotal + clustentries - 1) / clustentries;
|
|
|
|
/* actual values (may be larger than requested) */
|
|
p->_objsize = objsize;
|
|
p->_objtotal = p->_numclusters * clustentries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* call with NMA_LOCK held */
|
|
static int
|
|
netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
int i; /* must be signed */
|
|
size_t n;
|
|
|
|
if (p->lut) {
|
|
/* if the lut is already there we assume that also all the
|
|
* clusters have already been allocated, possibily by somebody
|
|
* else (e.g., extmem). In the latter case, the alloc_done flag
|
|
* will remain at zero, so that we will not attempt to
|
|
* deallocate the clusters by ourselves in
|
|
* netmap_reset_obj_allocator.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* optimistically assume we have enough memory */
|
|
p->numclusters = p->_numclusters;
|
|
p->objtotal = p->_objtotal;
|
|
p->alloc_done = 1;
|
|
|
|
p->lut = nm_alloc_lut(p->objtotal);
|
|
if (p->lut == NULL) {
|
|
D("Unable to create lookup table for '%s'", p->name);
|
|
goto clean;
|
|
}
|
|
|
|
/*
|
|
* Allocate clusters, init pointers
|
|
*/
|
|
|
|
n = p->_clustsize;
|
|
for (i = 0; i < (int)p->objtotal;) {
|
|
int lim = i + p->_clustentries;
|
|
char *clust;
|
|
|
|
/*
|
|
* XXX Note, we only need contigmalloc() for buffers attached
|
|
* to native interfaces. In all other cases (nifp, netmap rings
|
|
* and even buffers for VALE ports or emulated interfaces) we
|
|
* can live with standard malloc, because the hardware will not
|
|
* access the pages directly.
|
|
*/
|
|
clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
|
|
(size_t)0, -1UL, PAGE_SIZE, 0);
|
|
if (clust == NULL) {
|
|
/*
|
|
* If we get here, there is a severe memory shortage,
|
|
* so halve the allocated memory to reclaim some.
|
|
*/
|
|
D("Unable to create cluster at %d for '%s' allocator",
|
|
i, p->name);
|
|
if (i < 2) /* nothing to halve */
|
|
goto out;
|
|
lim = i / 2;
|
|
for (i--; i >= lim; i--) {
|
|
if (i % p->_clustentries == 0 && p->lut[i].vaddr)
|
|
contigfree(p->lut[i].vaddr,
|
|
n, M_NETMAP);
|
|
p->lut[i].vaddr = NULL;
|
|
}
|
|
out:
|
|
p->objtotal = i;
|
|
/* we may have stopped in the middle of a cluster */
|
|
p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
|
|
break;
|
|
}
|
|
/*
|
|
* Set lut state for all buffers in the current cluster.
|
|
*
|
|
* [i, lim) is the set of buffer indexes that cover the
|
|
* current cluster.
|
|
*
|
|
* 'clust' is really the address of the current buffer in
|
|
* the current cluster as we index through it with a stride
|
|
* of p->_objsize.
|
|
*/
|
|
for (; i < lim; i++, clust += p->_objsize) {
|
|
p->lut[i].vaddr = clust;
|
|
#if !defined(linux) && !defined(_WIN32)
|
|
p->lut[i].paddr = vtophys(clust);
|
|
#endif
|
|
}
|
|
}
|
|
p->memtotal = p->numclusters * p->_clustsize;
|
|
if (netmap_verbose)
|
|
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
|
|
p->numclusters, p->_clustsize >> 10,
|
|
p->memtotal >> 10, p->name);
|
|
|
|
return 0;
|
|
|
|
clean:
|
|
netmap_reset_obj_allocator(p);
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* call with lock held */
|
|
static int
|
|
netmap_mem_params_changed(struct netmap_obj_params* p)
|
|
{
|
|
int i, rv = 0;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
|
|
p[i].last_size = p[i].size;
|
|
p[i].last_num = p[i].num;
|
|
rv = 1;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_reset_all(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
if (netmap_verbose)
|
|
D("resetting %p", nmd);
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_reset_obj_allocator(&nmd->pools[i]);
|
|
}
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
|
|
{
|
|
int i, lim = p->objtotal;
|
|
struct netmap_lut *lut = &na->na_lut;
|
|
|
|
if (na == NULL || na->pdev == NULL)
|
|
return 0;
|
|
|
|
#if defined(__FreeBSD__)
|
|
/* On FreeBSD mapping and unmapping is performed by the txsync
|
|
* and rxsync routine, packet by packet. */
|
|
(void)i;
|
|
(void)lim;
|
|
(void)lut;
|
|
#elif defined(_WIN32)
|
|
(void)i;
|
|
(void)lim;
|
|
(void)lut;
|
|
D("unsupported on Windows");
|
|
#else /* linux */
|
|
ND("unmapping and freeing plut for %s", na->name);
|
|
if (lut->plut == NULL)
|
|
return 0;
|
|
for (i = 0; i < lim; i += p->_clustentries) {
|
|
if (lut->plut[i].paddr)
|
|
netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
|
|
}
|
|
nm_free_plut(lut->plut);
|
|
lut->plut = NULL;
|
|
#endif /* linux */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
|
|
{
|
|
int error = 0;
|
|
int i, lim = p->objtotal;
|
|
struct netmap_lut *lut = &na->na_lut;
|
|
|
|
if (na->pdev == NULL)
|
|
return 0;
|
|
|
|
#if defined(__FreeBSD__)
|
|
/* On FreeBSD mapping and unmapping is performed by the txsync
|
|
* and rxsync routine, packet by packet. */
|
|
(void)i;
|
|
(void)lim;
|
|
(void)lut;
|
|
#elif defined(_WIN32)
|
|
(void)i;
|
|
(void)lim;
|
|
(void)lut;
|
|
D("unsupported on Windows");
|
|
#else /* linux */
|
|
|
|
if (lut->plut != NULL) {
|
|
ND("plut already allocated for %s", na->name);
|
|
return 0;
|
|
}
|
|
|
|
ND("allocating physical lut for %s", na->name);
|
|
lut->plut = nm_alloc_plut(lim);
|
|
if (lut->plut == NULL) {
|
|
D("Failed to allocate physical lut for %s", na->name);
|
|
return ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < lim; i += p->_clustentries) {
|
|
lut->plut[i].paddr = 0;
|
|
}
|
|
|
|
for (i = 0; i < lim; i += p->_clustentries) {
|
|
int j;
|
|
|
|
if (p->lut[i].vaddr == NULL)
|
|
continue;
|
|
|
|
error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
|
|
p->lut[i].vaddr, p->_clustsize);
|
|
if (error) {
|
|
D("Failed to map cluster #%d from the %s pool", i, p->name);
|
|
break;
|
|
}
|
|
|
|
for (j = 1; j < p->_clustentries; j++) {
|
|
lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
|
|
}
|
|
}
|
|
|
|
if (error)
|
|
netmap_mem_unmap(p, na);
|
|
|
|
#endif /* linux */
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_finalize_all(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED)
|
|
return 0;
|
|
nmd->lasterr = 0;
|
|
nmd->nm_totalsize = 0;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
|
|
if (nmd->lasterr)
|
|
goto error;
|
|
nmd->nm_totalsize += nmd->pools[i].memtotal;
|
|
}
|
|
nmd->lasterr = netmap_mem_init_bitmaps(nmd);
|
|
if (nmd->lasterr)
|
|
goto error;
|
|
|
|
nmd->flags |= NETMAP_MEM_FINALIZED;
|
|
|
|
if (netmap_verbose)
|
|
D("interfaces %d KB, rings %d KB, buffers %d MB",
|
|
nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
|
|
nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
|
|
nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
|
|
|
|
if (netmap_verbose)
|
|
D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
|
|
|
|
|
|
return 0;
|
|
error:
|
|
netmap_mem_reset_all(nmd);
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
/*
|
|
* allocator for private memory
|
|
*/
|
|
static void *
|
|
_netmap_mem_private_new(size_t size, struct netmap_obj_params *p,
|
|
struct netmap_mem_ops *ops, int *perr)
|
|
{
|
|
struct netmap_mem_d *d = NULL;
|
|
int i, err = 0;
|
|
|
|
d = nm_os_malloc(size);
|
|
if (d == NULL) {
|
|
err = ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
*d = nm_blueprint;
|
|
d->ops = ops;
|
|
|
|
err = nm_mem_assign_id(d);
|
|
if (err)
|
|
goto error_free;
|
|
snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
|
|
nm_blueprint.pools[i].name,
|
|
d->name);
|
|
d->params[i].num = p[i].num;
|
|
d->params[i].size = p[i].size;
|
|
}
|
|
|
|
NMA_LOCK_INIT(d);
|
|
|
|
err = netmap_mem_config(d);
|
|
if (err)
|
|
goto error_rel_id;
|
|
|
|
d->flags &= ~NETMAP_MEM_FINALIZED;
|
|
|
|
return d;
|
|
|
|
error_rel_id:
|
|
NMA_LOCK_DESTROY(d);
|
|
nm_mem_release_id(d);
|
|
error_free:
|
|
nm_os_free(d);
|
|
error:
|
|
if (perr)
|
|
*perr = err;
|
|
return NULL;
|
|
}
|
|
|
|
struct netmap_mem_d *
|
|
netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
|
|
u_int extra_bufs, u_int npipes, int *perr)
|
|
{
|
|
struct netmap_mem_d *d = NULL;
|
|
struct netmap_obj_params p[NETMAP_POOLS_NR];
|
|
int i;
|
|
u_int v, maxd;
|
|
/* account for the fake host rings */
|
|
txr++;
|
|
rxr++;
|
|
|
|
/* copy the min values */
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
p[i] = netmap_min_priv_params[i];
|
|
}
|
|
|
|
/* possibly increase them to fit user request */
|
|
v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
|
|
if (p[NETMAP_IF_POOL].size < v)
|
|
p[NETMAP_IF_POOL].size = v;
|
|
v = 2 + 4 * npipes;
|
|
if (p[NETMAP_IF_POOL].num < v)
|
|
p[NETMAP_IF_POOL].num = v;
|
|
maxd = (txd > rxd) ? txd : rxd;
|
|
v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
|
|
if (p[NETMAP_RING_POOL].size < v)
|
|
p[NETMAP_RING_POOL].size = v;
|
|
/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
|
|
* and two rx rings (again, 1 normal and 1 fake host)
|
|
*/
|
|
v = txr + rxr + 8 * npipes;
|
|
if (p[NETMAP_RING_POOL].num < v)
|
|
p[NETMAP_RING_POOL].num = v;
|
|
/* for each pipe we only need the buffers for the 4 "real" rings.
|
|
* On the other end, the pipe ring dimension may be different from
|
|
* the parent port ring dimension. As a compromise, we allocate twice the
|
|
* space actually needed if the pipe rings were the same size as the parent rings
|
|
*/
|
|
v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
|
|
/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
|
|
if (p[NETMAP_BUF_POOL].num < v)
|
|
p[NETMAP_BUF_POOL].num = v;
|
|
|
|
if (netmap_verbose)
|
|
D("req if %d*%d ring %d*%d buf %d*%d",
|
|
p[NETMAP_IF_POOL].num,
|
|
p[NETMAP_IF_POOL].size,
|
|
p[NETMAP_RING_POOL].num,
|
|
p[NETMAP_RING_POOL].size,
|
|
p[NETMAP_BUF_POOL].num,
|
|
p[NETMAP_BUF_POOL].size);
|
|
|
|
d = _netmap_mem_private_new(sizeof(*d), p, &netmap_mem_global_ops, perr);
|
|
|
|
return d;
|
|
}
|
|
|
|
|
|
/* call with lock held */
|
|
static int
|
|
netmap_mem2_config(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
if (!netmap_mem_params_changed(nmd->params))
|
|
goto out;
|
|
|
|
ND("reconfiguring");
|
|
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED) {
|
|
/* reset previous allocation */
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_reset_obj_allocator(&nmd->pools[i]);
|
|
}
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
}
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
|
|
nmd->params[i].num, nmd->params[i].size);
|
|
if (nmd->lasterr)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
static int
|
|
netmap_mem2_finalize(struct netmap_mem_d *nmd)
|
|
{
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED)
|
|
goto out;
|
|
|
|
if (netmap_mem_finalize_all(nmd))
|
|
goto out;
|
|
|
|
nmd->lasterr = 0;
|
|
|
|
out:
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_destroy_obj_allocator(&nmd->pools[i]);
|
|
}
|
|
|
|
NMA_LOCK_DESTROY(nmd);
|
|
if (nmd != &nm_mem)
|
|
nm_os_free(nmd);
|
|
}
|
|
|
|
#ifdef WITH_EXTMEM
|
|
/* doubly linekd list of all existing external allocators */
|
|
static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
|
|
NM_MTX_T nm_mem_ext_list_lock;
|
|
#endif /* WITH_EXTMEM */
|
|
|
|
int
|
|
netmap_mem_init(void)
|
|
{
|
|
NM_MTX_INIT(nm_mem_list_lock);
|
|
NMA_LOCK_INIT(&nm_mem);
|
|
netmap_mem_get(&nm_mem);
|
|
#ifdef WITH_EXTMEM
|
|
NM_MTX_INIT(nm_mem_ext_list_lock);
|
|
#endif /* WITH_EXTMEM */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
netmap_mem_fini(void)
|
|
{
|
|
netmap_mem_put(&nm_mem);
|
|
}
|
|
|
|
static void
|
|
netmap_free_rings(struct netmap_adapter *na)
|
|
{
|
|
enum txrx t;
|
|
|
|
for_rx_tx(t) {
|
|
u_int i;
|
|
for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
|
|
struct netmap_kring *kring = NMR(na, t)[i];
|
|
struct netmap_ring *ring = kring->ring;
|
|
|
|
if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
|
|
if (netmap_verbose)
|
|
D("NOT deleting ring %s (ring %p, users %d neekring %d)",
|
|
kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
|
|
continue;
|
|
}
|
|
if (netmap_verbose)
|
|
D("deleting ring %s", kring->name);
|
|
if (!(kring->nr_kflags & NKR_FAKERING)) {
|
|
ND("freeing bufs for %s", kring->name);
|
|
netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
|
|
} else {
|
|
ND("NOT freeing bufs for %s", kring->name);
|
|
}
|
|
netmap_ring_free(na->nm_mem, ring);
|
|
kring->ring = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* call with NMA_LOCK held *
|
|
*
|
|
* Allocate netmap rings and buffers for this card
|
|
* The rings are contiguous, but have variable size.
|
|
* The kring array must follow the layout described
|
|
* in netmap_krings_create().
|
|
*/
|
|
static int
|
|
netmap_mem2_rings_create(struct netmap_adapter *na)
|
|
{
|
|
enum txrx t;
|
|
|
|
for_rx_tx(t) {
|
|
u_int i;
|
|
|
|
for (i = 0; i <= nma_get_nrings(na, t); i++) {
|
|
struct netmap_kring *kring = NMR(na, t)[i];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int len, ndesc;
|
|
|
|
if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
|
|
/* uneeded, or already created by somebody else */
|
|
if (netmap_verbose)
|
|
D("NOT creating ring %s (ring %p, users %d neekring %d)",
|
|
kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
|
|
continue;
|
|
}
|
|
if (netmap_verbose)
|
|
D("creating %s", kring->name);
|
|
ndesc = kring->nkr_num_slots;
|
|
len = sizeof(struct netmap_ring) +
|
|
ndesc * sizeof(struct netmap_slot);
|
|
ring = netmap_ring_malloc(na->nm_mem, len);
|
|
if (ring == NULL) {
|
|
D("Cannot allocate %s_ring", nm_txrx2str(t));
|
|
goto cleanup;
|
|
}
|
|
ND("txring at %p", ring);
|
|
kring->ring = ring;
|
|
*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
|
|
*(int64_t *)(uintptr_t)&ring->buf_ofs =
|
|
(na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
|
|
na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
|
|
netmap_ring_offset(na->nm_mem, ring);
|
|
|
|
/* copy values from kring */
|
|
ring->head = kring->rhead;
|
|
ring->cur = kring->rcur;
|
|
ring->tail = kring->rtail;
|
|
*(uint32_t *)(uintptr_t)&ring->nr_buf_size =
|
|
netmap_mem_bufsize(na->nm_mem);
|
|
ND("%s h %d c %d t %d", kring->name,
|
|
ring->head, ring->cur, ring->tail);
|
|
ND("initializing slots for %s_ring", nm_txrx2str(txrx));
|
|
if (!(kring->nr_kflags & NKR_FAKERING)) {
|
|
/* this is a real ring */
|
|
ND("allocating buffers for %s", kring->name);
|
|
if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
|
|
D("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
|
|
goto cleanup;
|
|
}
|
|
} else {
|
|
/* this is a fake ring, set all indices to 0 */
|
|
ND("NOT allocating buffers for %s", kring->name);
|
|
netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
|
|
}
|
|
/* ring info */
|
|
*(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
|
|
*(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
/* we cannot actually cleanup here, since we don't own kring->users
|
|
* and kring->nr_klags & NKR_NEEDRING. The caller must decrement
|
|
* the first or zero-out the second, then call netmap_free_rings()
|
|
* to do the cleanup
|
|
*/
|
|
|
|
return ENOMEM;
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_rings_delete(struct netmap_adapter *na)
|
|
{
|
|
/* last instance, release bufs and rings */
|
|
netmap_free_rings(na);
|
|
}
|
|
|
|
|
|
/* call with NMA_LOCK held */
|
|
/*
|
|
* Allocate the per-fd structure netmap_if.
|
|
*
|
|
* We assume that the configuration stored in na
|
|
* (number of tx/rx rings and descs) does not change while
|
|
* the interface is in netmap mode.
|
|
*/
|
|
static struct netmap_if *
|
|
netmap_mem2_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
|
|
{
|
|
struct netmap_if *nifp;
|
|
ssize_t base; /* handy for relative offsets between rings and nifp */
|
|
u_int i, len, n[NR_TXRX], ntot;
|
|
enum txrx t;
|
|
|
|
ntot = 0;
|
|
for_rx_tx(t) {
|
|
/* account for the (eventually fake) host rings */
|
|
n[t] = nma_get_nrings(na, t) + 1;
|
|
ntot += n[t];
|
|
}
|
|
/*
|
|
* the descriptor is followed inline by an array of offsets
|
|
* to the tx and rx rings in the shared memory region.
|
|
*/
|
|
|
|
len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
|
|
nifp = netmap_if_malloc(na->nm_mem, len);
|
|
if (nifp == NULL) {
|
|
NMA_UNLOCK(na->nm_mem);
|
|
return NULL;
|
|
}
|
|
|
|
/* initialize base fields -- override const */
|
|
*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
|
|
*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
|
|
strncpy(nifp->ni_name, na->name, (size_t)IFNAMSIZ);
|
|
|
|
/*
|
|
* fill the slots for the rx and tx rings. They contain the offset
|
|
* between the ring and nifp, so the information is usable in
|
|
* userspace to reach the ring from the nifp.
|
|
*/
|
|
base = netmap_if_offset(na->nm_mem, nifp);
|
|
for (i = 0; i < n[NR_TX]; i++) {
|
|
/* XXX instead of ofs == 0 maybe use the offset of an error
|
|
* ring, like we do for buffers? */
|
|
ssize_t ofs = 0;
|
|
|
|
if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
|
|
&& i < priv->np_qlast[NR_TX]) {
|
|
ofs = netmap_ring_offset(na->nm_mem,
|
|
na->tx_rings[i]->ring) - base;
|
|
}
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
|
|
}
|
|
for (i = 0; i < n[NR_RX]; i++) {
|
|
/* XXX instead of ofs == 0 maybe use the offset of an error
|
|
* ring, like we do for buffers? */
|
|
ssize_t ofs = 0;
|
|
|
|
if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
|
|
&& i < priv->np_qlast[NR_RX]) {
|
|
ofs = netmap_ring_offset(na->nm_mem,
|
|
na->rx_rings[i]->ring) - base;
|
|
}
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
|
|
}
|
|
|
|
return (nifp);
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
|
|
{
|
|
if (nifp == NULL)
|
|
/* nothing to do */
|
|
return;
|
|
if (nifp->ni_bufs_head)
|
|
netmap_extra_free(na, nifp->ni_bufs_head);
|
|
netmap_if_free(na->nm_mem, nifp);
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_deref(struct netmap_mem_d *nmd)
|
|
{
|
|
|
|
if (netmap_verbose)
|
|
D("active = %d", nmd->active);
|
|
|
|
}
|
|
|
|
struct netmap_mem_ops netmap_mem_global_ops = {
|
|
.nmd_get_lut = netmap_mem2_get_lut,
|
|
.nmd_get_info = netmap_mem2_get_info,
|
|
.nmd_ofstophys = netmap_mem2_ofstophys,
|
|
.nmd_config = netmap_mem2_config,
|
|
.nmd_finalize = netmap_mem2_finalize,
|
|
.nmd_deref = netmap_mem2_deref,
|
|
.nmd_delete = netmap_mem2_delete,
|
|
.nmd_if_offset = netmap_mem2_if_offset,
|
|
.nmd_if_new = netmap_mem2_if_new,
|
|
.nmd_if_delete = netmap_mem2_if_delete,
|
|
.nmd_rings_create = netmap_mem2_rings_create,
|
|
.nmd_rings_delete = netmap_mem2_rings_delete
|
|
};
|
|
|
|
int
|
|
netmap_mem_pools_info_get(struct nmreq_pools_info *req,
|
|
struct netmap_mem_d *nmd)
|
|
{
|
|
int ret;
|
|
|
|
ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
|
|
&req->nr_mem_id);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
req->nr_if_pool_offset = 0;
|
|
req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
|
|
req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
|
|
|
|
req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
|
|
req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
|
|
req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
|
|
|
|
req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
|
|
nmd->pools[NETMAP_RING_POOL].memtotal;
|
|
req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
|
|
req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef WITH_EXTMEM
|
|
struct netmap_mem_ext {
|
|
struct netmap_mem_d up;
|
|
|
|
struct nm_os_extmem *os;
|
|
struct netmap_mem_ext *next, *prev;
|
|
};
|
|
|
|
/* call with nm_mem_list_lock held */
|
|
static void
|
|
netmap_mem_ext_register(struct netmap_mem_ext *e)
|
|
{
|
|
NM_MTX_LOCK(nm_mem_ext_list_lock);
|
|
if (netmap_mem_ext_list)
|
|
netmap_mem_ext_list->prev = e;
|
|
e->next = netmap_mem_ext_list;
|
|
netmap_mem_ext_list = e;
|
|
e->prev = NULL;
|
|
NM_MTX_UNLOCK(nm_mem_ext_list_lock);
|
|
}
|
|
|
|
/* call with nm_mem_list_lock held */
|
|
static void
|
|
netmap_mem_ext_unregister(struct netmap_mem_ext *e)
|
|
{
|
|
if (e->prev)
|
|
e->prev->next = e->next;
|
|
else
|
|
netmap_mem_ext_list = e->next;
|
|
if (e->next)
|
|
e->next->prev = e->prev;
|
|
e->prev = e->next = NULL;
|
|
}
|
|
|
|
static struct netmap_mem_ext *
|
|
netmap_mem_ext_search(struct nm_os_extmem *os)
|
|
{
|
|
struct netmap_mem_ext *e;
|
|
|
|
NM_MTX_LOCK(nm_mem_ext_list_lock);
|
|
for (e = netmap_mem_ext_list; e; e = e->next) {
|
|
if (nm_os_extmem_isequal(e->os, os)) {
|
|
netmap_mem_get(&e->up);
|
|
break;
|
|
}
|
|
}
|
|
NM_MTX_UNLOCK(nm_mem_ext_list_lock);
|
|
return e;
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_mem_ext_delete(struct netmap_mem_d *d)
|
|
{
|
|
int i;
|
|
struct netmap_mem_ext *e =
|
|
(struct netmap_mem_ext *)d;
|
|
|
|
netmap_mem_ext_unregister(e);
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = &d->pools[i];
|
|
|
|
if (p->lut) {
|
|
nm_free_lut(p->lut, p->objtotal);
|
|
p->lut = NULL;
|
|
}
|
|
}
|
|
if (e->os)
|
|
nm_os_extmem_delete(e->os);
|
|
netmap_mem2_delete(d);
|
|
}
|
|
|
|
static int
|
|
netmap_mem_ext_config(struct netmap_mem_d *nmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct netmap_mem_ops netmap_mem_ext_ops = {
|
|
.nmd_get_lut = netmap_mem2_get_lut,
|
|
.nmd_get_info = netmap_mem2_get_info,
|
|
.nmd_ofstophys = netmap_mem2_ofstophys,
|
|
.nmd_config = netmap_mem_ext_config,
|
|
.nmd_finalize = netmap_mem2_finalize,
|
|
.nmd_deref = netmap_mem2_deref,
|
|
.nmd_delete = netmap_mem_ext_delete,
|
|
.nmd_if_offset = netmap_mem2_if_offset,
|
|
.nmd_if_new = netmap_mem2_if_new,
|
|
.nmd_if_delete = netmap_mem2_if_delete,
|
|
.nmd_rings_create = netmap_mem2_rings_create,
|
|
.nmd_rings_delete = netmap_mem2_rings_delete
|
|
};
|
|
|
|
struct netmap_mem_d *
|
|
netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
|
|
{
|
|
int error = 0;
|
|
int i, j;
|
|
struct netmap_mem_ext *nme;
|
|
char *clust;
|
|
size_t off;
|
|
struct nm_os_extmem *os = NULL;
|
|
int nr_pages;
|
|
|
|
// XXX sanity checks
|
|
if (pi->nr_if_pool_objtotal == 0)
|
|
pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
|
|
if (pi->nr_if_pool_objsize == 0)
|
|
pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
|
|
if (pi->nr_ring_pool_objtotal == 0)
|
|
pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
|
|
if (pi->nr_ring_pool_objsize == 0)
|
|
pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
|
|
if (pi->nr_buf_pool_objtotal == 0)
|
|
pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
|
|
if (pi->nr_buf_pool_objsize == 0)
|
|
pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
|
|
D("if %d %d ring %d %d buf %d %d",
|
|
pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
|
|
pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
|
|
pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
|
|
|
|
os = nm_os_extmem_create(usrptr, pi, &error);
|
|
if (os == NULL) {
|
|
D("os extmem creation failed");
|
|
goto out;
|
|
}
|
|
|
|
nme = netmap_mem_ext_search(os);
|
|
if (nme) {
|
|
nm_os_extmem_delete(os);
|
|
return &nme->up;
|
|
}
|
|
D("not found, creating new");
|
|
|
|
nme = _netmap_mem_private_new(sizeof(*nme),
|
|
(struct netmap_obj_params[]){
|
|
{ pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
|
|
{ pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
|
|
{ pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
|
|
&netmap_mem_ext_ops,
|
|
&error);
|
|
if (nme == NULL)
|
|
goto out_unmap;
|
|
|
|
nr_pages = nm_os_extmem_nr_pages(os);
|
|
|
|
/* from now on pages will be released by nme destructor;
|
|
* we let res = 0 to prevent release in out_unmap below
|
|
*/
|
|
nme->os = os;
|
|
os = NULL; /* pass ownership */
|
|
|
|
clust = nm_os_extmem_nextpage(nme->os);
|
|
off = 0;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = &nme->up.pools[i];
|
|
struct netmap_obj_params *o = &nme->up.params[i];
|
|
|
|
p->_objsize = o->size;
|
|
p->_clustsize = o->size;
|
|
p->_clustentries = 1;
|
|
|
|
p->lut = nm_alloc_lut(o->num);
|
|
if (p->lut == NULL) {
|
|
error = ENOMEM;
|
|
goto out_delete;
|
|
}
|
|
|
|
p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
|
|
p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
|
|
if (p->invalid_bitmap == NULL) {
|
|
error = ENOMEM;
|
|
goto out_delete;
|
|
}
|
|
|
|
if (nr_pages == 0) {
|
|
p->objtotal = 0;
|
|
p->memtotal = 0;
|
|
p->objfree = 0;
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < o->num && nr_pages > 0; j++) {
|
|
size_t noff;
|
|
|
|
p->lut[j].vaddr = clust + off;
|
|
#if !defined(linux) && !defined(_WIN32)
|
|
p->lut[j].paddr = vtophys(p->lut[j].vaddr);
|
|
#endif
|
|
ND("%s %d at %p", p->name, j, p->lut[j].vaddr);
|
|
noff = off + p->_objsize;
|
|
if (noff < PAGE_SIZE) {
|
|
off = noff;
|
|
continue;
|
|
}
|
|
ND("too big, recomputing offset...");
|
|
while (noff >= PAGE_SIZE) {
|
|
char *old_clust = clust;
|
|
noff -= PAGE_SIZE;
|
|
clust = nm_os_extmem_nextpage(nme->os);
|
|
nr_pages--;
|
|
ND("noff %zu page %p nr_pages %d", noff,
|
|
page_to_virt(*pages), nr_pages);
|
|
if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
|
|
(nr_pages == 0 ||
|
|
old_clust + PAGE_SIZE != clust))
|
|
{
|
|
/* out of space or non contiguous,
|
|
* drop this object
|
|
* */
|
|
p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
|
|
ND("non contiguous at off %zu, drop", noff);
|
|
}
|
|
if (nr_pages == 0)
|
|
break;
|
|
}
|
|
off = noff;
|
|
}
|
|
p->objtotal = j;
|
|
p->numclusters = p->objtotal;
|
|
p->memtotal = j * p->_objsize;
|
|
ND("%d memtotal %u", j, p->memtotal);
|
|
}
|
|
|
|
netmap_mem_ext_register(nme);
|
|
|
|
return &nme->up;
|
|
|
|
out_delete:
|
|
netmap_mem_put(&nme->up);
|
|
out_unmap:
|
|
if (os)
|
|
nm_os_extmem_delete(os);
|
|
out:
|
|
if (perror)
|
|
*perror = error;
|
|
return NULL;
|
|
|
|
}
|
|
#endif /* WITH_EXTMEM */
|
|
|
|
|
|
#ifdef WITH_PTNETMAP_GUEST
|
|
struct mem_pt_if {
|
|
struct mem_pt_if *next;
|
|
struct ifnet *ifp;
|
|
unsigned int nifp_offset;
|
|
};
|
|
|
|
/* Netmap allocator for ptnetmap guests. */
|
|
struct netmap_mem_ptg {
|
|
struct netmap_mem_d up;
|
|
|
|
vm_paddr_t nm_paddr; /* physical address in the guest */
|
|
void *nm_addr; /* virtual address in the guest */
|
|
struct netmap_lut buf_lut; /* lookup table for BUF pool in the guest */
|
|
nm_memid_t host_mem_id; /* allocator identifier in the host */
|
|
struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
|
|
struct mem_pt_if *pt_ifs; /* list of interfaces in passthrough */
|
|
};
|
|
|
|
/* Link a passthrough interface to a passthrough netmap allocator. */
|
|
static int
|
|
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
|
|
unsigned int nifp_offset)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
|
|
|
|
if (!ptif) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
ptif->ifp = ifp;
|
|
ptif->nifp_offset = nifp_offset;
|
|
|
|
if (ptnmd->pt_ifs) {
|
|
ptif->next = ptnmd->pt_ifs;
|
|
}
|
|
ptnmd->pt_ifs = ptif;
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
D("added (ifp=%p,nifp_offset=%u)", ptif->ifp, ptif->nifp_offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with NMA_LOCK(nmd) held. */
|
|
static struct mem_pt_if *
|
|
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *curr;
|
|
|
|
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
|
|
if (curr->ifp == ifp) {
|
|
return curr;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Unlink a passthrough interface from a passthrough netmap allocator. */
|
|
int
|
|
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *prev = NULL;
|
|
struct mem_pt_if *curr;
|
|
int ret = -1;
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
|
|
if (curr->ifp == ifp) {
|
|
if (prev) {
|
|
prev->next = curr->next;
|
|
} else {
|
|
ptnmd->pt_ifs = curr->next;
|
|
}
|
|
D("removed (ifp=%p,nifp_offset=%u)",
|
|
curr->ifp, curr->nifp_offset);
|
|
nm_os_free(curr);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
prev = curr;
|
|
}
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*lut = ptnmd->buf_lut;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
|
|
u_int *memflags, uint16_t *id)
|
|
{
|
|
int error = 0;
|
|
|
|
error = nmd->ops->nmd_config(nmd);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (size)
|
|
*size = nmd->nm_totalsize;
|
|
if (memflags)
|
|
*memflags = nmd->flags;
|
|
if (id)
|
|
*id = nmd->nm_id;
|
|
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
static vm_paddr_t
|
|
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
vm_paddr_t paddr;
|
|
/* if the offset is valid, just return csb->base_addr + off */
|
|
paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
|
|
ND("off %lx padr %lx", off, (unsigned long)paddr);
|
|
return paddr;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
|
|
{
|
|
/* nothing to do, we are configured on creation
|
|
* and configuration never changes thereafter
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
uint64_t mem_size;
|
|
uint32_t bufsize;
|
|
uint32_t nbuffers;
|
|
uint32_t poolofs;
|
|
vm_paddr_t paddr;
|
|
char *vaddr;
|
|
int i;
|
|
int error = 0;
|
|
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED)
|
|
goto out;
|
|
|
|
if (ptnmd->ptn_dev == NULL) {
|
|
D("ptnetmap memdev not attached");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
/* Map memory through ptnetmap-memdev BAR. */
|
|
error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
|
|
&ptnmd->nm_addr, &mem_size);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Initialize the lut using the information contained in the
|
|
* ptnetmap memory device. */
|
|
bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
|
|
PTNET_MDEV_IO_BUF_POOL_OBJSZ);
|
|
nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
|
|
PTNET_MDEV_IO_BUF_POOL_OBJNUM);
|
|
|
|
/* allocate the lut */
|
|
if (ptnmd->buf_lut.lut == NULL) {
|
|
D("allocating lut");
|
|
ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
|
|
if (ptnmd->buf_lut.lut == NULL) {
|
|
D("lut allocation failed");
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* we have physically contiguous memory mapped through PCI BAR */
|
|
poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
|
|
PTNET_MDEV_IO_BUF_POOL_OFS);
|
|
vaddr = (char *)(ptnmd->nm_addr) + poolofs;
|
|
paddr = ptnmd->nm_paddr + poolofs;
|
|
|
|
for (i = 0; i < nbuffers; i++) {
|
|
ptnmd->buf_lut.lut[i].vaddr = vaddr;
|
|
vaddr += bufsize;
|
|
paddr += bufsize;
|
|
}
|
|
|
|
ptnmd->buf_lut.objtotal = nbuffers;
|
|
ptnmd->buf_lut.objsize = bufsize;
|
|
nmd->nm_totalsize = (unsigned int)mem_size;
|
|
|
|
/* Initialize these fields as are needed by
|
|
* netmap_mem_bufsize().
|
|
* XXX please improve this, why do we need this
|
|
* replication? maybe we nmd->pools[] should no be
|
|
* there for the guest allocator? */
|
|
nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
|
|
nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
|
|
|
|
nmd->flags |= NETMAP_MEM_FINALIZED;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
if (nmd->active == 1 &&
|
|
(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
/* unmap ptnetmap-memdev memory */
|
|
if (ptnmd->ptn_dev) {
|
|
nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
|
|
}
|
|
ptnmd->nm_addr = NULL;
|
|
ptnmd->nm_paddr = 0;
|
|
}
|
|
}
|
|
|
|
static ssize_t
|
|
netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
if (nmd == NULL)
|
|
return;
|
|
if (netmap_verbose)
|
|
D("deleting %p", nmd);
|
|
if (nmd->active > 0)
|
|
D("bug: deleting mem allocator with active=%d!", nmd->active);
|
|
if (netmap_verbose)
|
|
D("done deleting %p", nmd);
|
|
NMA_LOCK_DESTROY(nmd);
|
|
nm_os_free(nmd);
|
|
}
|
|
|
|
static struct netmap_if *
|
|
netmap_mem_pt_guest_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
|
|
struct mem_pt_if *ptif;
|
|
struct netmap_if *nifp = NULL;
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
goto out;
|
|
}
|
|
|
|
nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
|
|
ptif->nifp_offset);
|
|
out:
|
|
return nifp;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
|
|
{
|
|
struct mem_pt_if *ptif;
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
}
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
|
|
struct mem_pt_if *ptif;
|
|
struct netmap_if *nifp;
|
|
int i, error = -1;
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
goto out;
|
|
}
|
|
|
|
|
|
/* point each kring to the corresponding backend ring */
|
|
nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
|
|
for (i = 0; i <= na->num_tx_rings; i++) {
|
|
struct netmap_kring *kring = na->tx_rings[i];
|
|
if (kring->ring)
|
|
continue;
|
|
kring->ring = (struct netmap_ring *)
|
|
((char *)nifp + nifp->ring_ofs[i]);
|
|
}
|
|
for (i = 0; i <= na->num_rx_rings; i++) {
|
|
struct netmap_kring *kring = na->rx_rings[i];
|
|
if (kring->ring)
|
|
continue;
|
|
kring->ring = (struct netmap_ring *)
|
|
((char *)nifp +
|
|
nifp->ring_ofs[i + na->num_tx_rings + 1]);
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
|
|
{
|
|
#if 0
|
|
enum txrx t;
|
|
|
|
for_rx_tx(t) {
|
|
u_int i;
|
|
for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
|
|
struct netmap_kring *kring = &NMR(na, t)[i];
|
|
|
|
kring->ring = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
|
|
.nmd_get_lut = netmap_mem_pt_guest_get_lut,
|
|
.nmd_get_info = netmap_mem_pt_guest_get_info,
|
|
.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
|
|
.nmd_config = netmap_mem_pt_guest_config,
|
|
.nmd_finalize = netmap_mem_pt_guest_finalize,
|
|
.nmd_deref = netmap_mem_pt_guest_deref,
|
|
.nmd_if_offset = netmap_mem_pt_guest_if_offset,
|
|
.nmd_delete = netmap_mem_pt_guest_delete,
|
|
.nmd_if_new = netmap_mem_pt_guest_if_new,
|
|
.nmd_if_delete = netmap_mem_pt_guest_if_delete,
|
|
.nmd_rings_create = netmap_mem_pt_guest_rings_create,
|
|
.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
|
|
};
|
|
|
|
/* Called with nm_mem_list_lock held. */
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
|
|
{
|
|
struct netmap_mem_d *mem = NULL;
|
|
struct netmap_mem_d *scan = netmap_last_mem_d;
|
|
|
|
do {
|
|
/* find ptnetmap allocator through host ID */
|
|
if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
|
|
((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
|
|
mem = scan;
|
|
mem->refcount++;
|
|
NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
|
|
break;
|
|
}
|
|
scan = scan->next;
|
|
} while (scan != netmap_last_mem_d);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/* Called with nm_mem_list_lock held. */
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_create(nm_memid_t mem_id)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd;
|
|
int err = 0;
|
|
|
|
ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
|
|
if (ptnmd == NULL) {
|
|
err = ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ptnmd->up.ops = &netmap_mem_pt_guest_ops;
|
|
ptnmd->host_mem_id = mem_id;
|
|
ptnmd->pt_ifs = NULL;
|
|
|
|
/* Assign new id in the guest (We have the lock) */
|
|
err = nm_mem_assign_id_locked(&ptnmd->up);
|
|
if (err)
|
|
goto error;
|
|
|
|
ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
|
|
ptnmd->up.flags |= NETMAP_MEM_IO;
|
|
|
|
NMA_LOCK_INIT(&ptnmd->up);
|
|
|
|
snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
|
|
|
|
|
|
return &ptnmd->up;
|
|
error:
|
|
netmap_mem_pt_guest_delete(&ptnmd->up);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find host id in guest allocators and create guest allocator
|
|
* if it is not there
|
|
*/
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_get(nm_memid_t mem_id)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
|
|
NM_MTX_LOCK(nm_mem_list_lock);
|
|
nmd = netmap_mem_pt_guest_find_memid(mem_id);
|
|
if (nmd == NULL) {
|
|
nmd = netmap_mem_pt_guest_create(mem_id);
|
|
}
|
|
NM_MTX_UNLOCK(nm_mem_list_lock);
|
|
|
|
return nmd;
|
|
}
|
|
|
|
/*
|
|
* The guest allocator can be created by ptnetmap_memdev (during the device
|
|
* attach) or by ptnetmap device (ptnet), during the netmap_attach.
|
|
*
|
|
* The order is not important (we have different order in LINUX and FreeBSD).
|
|
* The first one, creates the device, and the second one simply attaches it.
|
|
*/
|
|
|
|
/* Called when ptnetmap_memdev is attaching, to attach a new allocator in
|
|
* the guest */
|
|
struct netmap_mem_d *
|
|
netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
struct netmap_mem_ptg *ptnmd;
|
|
|
|
nmd = netmap_mem_pt_guest_get(mem_id);
|
|
|
|
/* assign this device to the guest allocator */
|
|
if (nmd) {
|
|
ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
ptnmd->ptn_dev = ptn_dev;
|
|
}
|
|
|
|
return nmd;
|
|
}
|
|
|
|
/* Called when ptnet device is attaching */
|
|
struct netmap_mem_d *
|
|
netmap_mem_pt_guest_new(struct ifnet *ifp,
|
|
unsigned int nifp_offset,
|
|
unsigned int memid)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
|
|
if (ifp == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
|
|
|
|
if (nmd) {
|
|
netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
|
|
}
|
|
|
|
return nmd;
|
|
}
|
|
|
|
#endif /* WITH_PTNETMAP_GUEST */
|