749 lines
28 KiB
C++
749 lines
28 KiB
C++
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the RegisterBankInfo class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
#include <algorithm> // For std::max.
|
|
|
|
#define DEBUG_TYPE "registerbankinfo"
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumPartialMappingsCreated,
|
|
"Number of partial mappings dynamically created");
|
|
STATISTIC(NumPartialMappingsAccessed,
|
|
"Number of partial mappings dynamically accessed");
|
|
STATISTIC(NumValueMappingsCreated,
|
|
"Number of value mappings dynamically created");
|
|
STATISTIC(NumValueMappingsAccessed,
|
|
"Number of value mappings dynamically accessed");
|
|
STATISTIC(NumOperandsMappingsCreated,
|
|
"Number of operands mappings dynamically created");
|
|
STATISTIC(NumOperandsMappingsAccessed,
|
|
"Number of operands mappings dynamically accessed");
|
|
STATISTIC(NumInstructionMappingsCreated,
|
|
"Number of instruction mappings dynamically created");
|
|
STATISTIC(NumInstructionMappingsAccessed,
|
|
"Number of instruction mappings dynamically accessed");
|
|
|
|
const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
|
|
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// RegisterBankInfo implementation.
|
|
//------------------------------------------------------------------------------
|
|
RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
|
|
unsigned NumRegBanks)
|
|
: RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
|
|
#ifndef NDEBUG
|
|
for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
|
|
assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
|
|
assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
|
|
#ifndef NDEBUG
|
|
for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
|
|
const RegisterBank &RegBank = getRegBank(Idx);
|
|
assert(Idx == RegBank.getID() &&
|
|
"ID does not match the index in the array");
|
|
DEBUG(dbgs() << "Verify " << RegBank << '\n');
|
|
assert(RegBank.verify(TRI) && "RegBank is invalid");
|
|
}
|
|
#endif // NDEBUG
|
|
return true;
|
|
}
|
|
|
|
const RegisterBank *
|
|
RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI) const {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return &getRegBankFromRegClass(*TRI.getMinimalPhysRegClass(Reg));
|
|
|
|
assert(Reg && "NoRegister does not have a register bank");
|
|
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
|
|
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
|
|
return RB;
|
|
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
|
|
return &getRegBankFromRegClass(*RC);
|
|
return nullptr;
|
|
}
|
|
|
|
const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
|
|
const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI) const {
|
|
// The mapping of the registers may be available via the
|
|
// register class constraints.
|
|
const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
|
|
|
|
if (!RC)
|
|
return nullptr;
|
|
|
|
const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
|
|
// Sanity check that the target properly implemented getRegBankFromRegClass.
|
|
assert(RegBank.covers(*RC) &&
|
|
"The mapping of the register bank does not make sense");
|
|
return &RegBank;
|
|
}
|
|
|
|
const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
|
|
unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
|
|
|
|
// If the register already has a class, fallback to MRI::constrainRegClass.
|
|
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
|
|
if (RegClassOrBank.is<const TargetRegisterClass *>())
|
|
return MRI.constrainRegClass(Reg, &RC);
|
|
|
|
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
|
|
// Otherwise, all we can do is ensure the bank covers the class, and set it.
|
|
if (RB && !RB->covers(RC))
|
|
return nullptr;
|
|
|
|
// If nothing was set or the class is simply compatible, set it.
|
|
MRI.setRegClass(Reg, &RC);
|
|
return &RC;
|
|
}
|
|
|
|
/// Check whether or not \p MI should be treated like a copy
|
|
/// for the mappings.
|
|
/// Copy like instruction are special for mapping because
|
|
/// they don't have actual register constraints. Moreover,
|
|
/// they sometimes have register classes assigned and we can
|
|
/// just use that instead of failing to provide a generic mapping.
|
|
static bool isCopyLike(const MachineInstr &MI) {
|
|
return MI.isCopy() || MI.isPHI() ||
|
|
MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
|
|
}
|
|
|
|
const RegisterBankInfo::InstructionMapping &
|
|
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
|
|
// For copies we want to walk over the operands and try to find one
|
|
// that has a register bank since the instruction itself will not get
|
|
// us any constraint.
|
|
bool IsCopyLike = isCopyLike(MI);
|
|
// For copy like instruction, only the mapping of the definition
|
|
// is important. The rest is not constrained.
|
|
unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
|
|
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
// We may need to query the instruction encoding to guess the mapping.
|
|
const TargetInstrInfo &TII = *STI.getInstrInfo();
|
|
|
|
// Before doing anything complicated check if the mapping is not
|
|
// directly available.
|
|
bool CompleteMapping = true;
|
|
|
|
SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
|
|
for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
|
|
++OpIdx) {
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
// The register bank of Reg is just a side effect of the current
|
|
// excution and in particular, there is no reason to believe this
|
|
// is the best default mapping for the current instruction. Keep
|
|
// it as an alternative register bank if we cannot figure out
|
|
// something.
|
|
const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
|
|
// For copy-like instruction, we want to reuse the register bank
|
|
// that is already set on Reg, if any, since those instructions do
|
|
// not have any constraints.
|
|
const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
|
|
if (!CurRegBank) {
|
|
// If this is a target specific instruction, we can deduce
|
|
// the register bank from the encoding constraints.
|
|
CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
|
|
if (!CurRegBank) {
|
|
// All our attempts failed, give up.
|
|
CompleteMapping = false;
|
|
|
|
if (!IsCopyLike)
|
|
// MI does not carry enough information to guess the mapping.
|
|
return getInvalidInstructionMapping();
|
|
continue;
|
|
}
|
|
}
|
|
const ValueMapping *ValMapping =
|
|
&getValueMapping(0, getSizeInBits(Reg, MRI, TRI), *CurRegBank);
|
|
if (IsCopyLike) {
|
|
OperandsMapping[0] = ValMapping;
|
|
CompleteMapping = true;
|
|
break;
|
|
}
|
|
OperandsMapping[OpIdx] = ValMapping;
|
|
}
|
|
|
|
if (IsCopyLike && !CompleteMapping)
|
|
// No way to deduce the type from what we have.
|
|
return getInvalidInstructionMapping();
|
|
|
|
assert(CompleteMapping && "Setting an uncomplete mapping");
|
|
return getInstructionMapping(
|
|
DefaultMappingID, /*Cost*/ 1,
|
|
/*OperandsMapping*/ getOperandsMapping(OperandsMapping),
|
|
NumOperandsForMapping);
|
|
}
|
|
|
|
/// Hashing function for PartialMapping.
|
|
static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
|
|
const RegisterBank *RegBank) {
|
|
return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
|
|
}
|
|
|
|
/// Overloaded version of hash_value for a PartialMapping.
|
|
hash_code
|
|
llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
|
|
return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
|
|
PartMapping.RegBank);
|
|
}
|
|
|
|
const RegisterBankInfo::PartialMapping &
|
|
RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
|
|
const RegisterBank &RegBank) const {
|
|
++NumPartialMappingsAccessed;
|
|
|
|
hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
|
|
const auto &It = MapOfPartialMappings.find(Hash);
|
|
if (It != MapOfPartialMappings.end())
|
|
return *It->second;
|
|
|
|
++NumPartialMappingsCreated;
|
|
|
|
auto &PartMapping = MapOfPartialMappings[Hash];
|
|
PartMapping = llvm::make_unique<PartialMapping>(StartIdx, Length, RegBank);
|
|
return *PartMapping;
|
|
}
|
|
|
|
const RegisterBankInfo::ValueMapping &
|
|
RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
|
|
const RegisterBank &RegBank) const {
|
|
return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
|
|
}
|
|
|
|
static hash_code
|
|
hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
|
|
unsigned NumBreakDowns) {
|
|
if (LLVM_LIKELY(NumBreakDowns == 1))
|
|
return hash_value(*BreakDown);
|
|
SmallVector<size_t, 8> Hashes(NumBreakDowns);
|
|
for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
|
|
Hashes.push_back(hash_value(BreakDown[Idx]));
|
|
return hash_combine_range(Hashes.begin(), Hashes.end());
|
|
}
|
|
|
|
const RegisterBankInfo::ValueMapping &
|
|
RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
|
|
unsigned NumBreakDowns) const {
|
|
++NumValueMappingsAccessed;
|
|
|
|
hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
|
|
const auto &It = MapOfValueMappings.find(Hash);
|
|
if (It != MapOfValueMappings.end())
|
|
return *It->second;
|
|
|
|
++NumValueMappingsCreated;
|
|
|
|
auto &ValMapping = MapOfValueMappings[Hash];
|
|
ValMapping = llvm::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
|
|
return *ValMapping;
|
|
}
|
|
|
|
template <typename Iterator>
|
|
const RegisterBankInfo::ValueMapping *
|
|
RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
|
|
|
|
++NumOperandsMappingsAccessed;
|
|
|
|
// The addresses of the value mapping are unique.
|
|
// Therefore, we can use them directly to hash the operand mapping.
|
|
hash_code Hash = hash_combine_range(Begin, End);
|
|
auto &Res = MapOfOperandsMappings[Hash];
|
|
if (Res)
|
|
return Res.get();
|
|
|
|
++NumOperandsMappingsCreated;
|
|
|
|
// Create the array of ValueMapping.
|
|
// Note: this array will not hash to this instance of operands
|
|
// mapping, because we use the pointer of the ValueMapping
|
|
// to hash and we expect them to uniquely identify an instance
|
|
// of value mapping.
|
|
Res = llvm::make_unique<ValueMapping[]>(std::distance(Begin, End));
|
|
unsigned Idx = 0;
|
|
for (Iterator It = Begin; It != End; ++It, ++Idx) {
|
|
const ValueMapping *ValMap = *It;
|
|
if (!ValMap)
|
|
continue;
|
|
Res[Idx] = *ValMap;
|
|
}
|
|
return Res.get();
|
|
}
|
|
|
|
const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
|
|
const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
|
|
const {
|
|
return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
|
|
}
|
|
|
|
const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
|
|
std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
|
|
const {
|
|
return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
|
|
}
|
|
|
|
static hash_code
|
|
hashInstructionMapping(unsigned ID, unsigned Cost,
|
|
const RegisterBankInfo::ValueMapping *OperandsMapping,
|
|
unsigned NumOperands) {
|
|
return hash_combine(ID, Cost, OperandsMapping, NumOperands);
|
|
}
|
|
|
|
const RegisterBankInfo::InstructionMapping &
|
|
RegisterBankInfo::getInstructionMappingImpl(
|
|
bool IsInvalid, unsigned ID, unsigned Cost,
|
|
const RegisterBankInfo::ValueMapping *OperandsMapping,
|
|
unsigned NumOperands) const {
|
|
assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
|
|
OperandsMapping == nullptr && NumOperands == 0) ||
|
|
!IsInvalid) &&
|
|
"Mismatch argument for invalid input");
|
|
++NumInstructionMappingsAccessed;
|
|
|
|
hash_code Hash =
|
|
hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
|
|
const auto &It = MapOfInstructionMappings.find(Hash);
|
|
if (It != MapOfInstructionMappings.end())
|
|
return *It->second;
|
|
|
|
++NumInstructionMappingsCreated;
|
|
|
|
auto &InstrMapping = MapOfInstructionMappings[Hash];
|
|
if (IsInvalid)
|
|
InstrMapping = llvm::make_unique<InstructionMapping>();
|
|
else
|
|
InstrMapping = llvm::make_unique<InstructionMapping>(
|
|
ID, Cost, OperandsMapping, NumOperands);
|
|
return *InstrMapping;
|
|
}
|
|
|
|
const RegisterBankInfo::InstructionMapping &
|
|
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
|
|
const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
|
|
if (Mapping.isValid())
|
|
return Mapping;
|
|
llvm_unreachable("The target must implement this");
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMappings
|
|
RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
|
|
InstructionMappings PossibleMappings;
|
|
// Put the default mapping first.
|
|
PossibleMappings.push_back(&getInstrMapping(MI));
|
|
// Then the alternative mapping, if any.
|
|
InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
|
|
for (const InstructionMapping *AltMapping : AltMappings)
|
|
PossibleMappings.push_back(AltMapping);
|
|
#ifndef NDEBUG
|
|
for (const InstructionMapping *Mapping : PossibleMappings)
|
|
assert(Mapping->verify(MI) && "Mapping is invalid");
|
|
#endif
|
|
return PossibleMappings;
|
|
}
|
|
|
|
RegisterBankInfo::InstructionMappings
|
|
RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
|
|
// No alternative for MI.
|
|
return InstructionMappings();
|
|
}
|
|
|
|
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
|
|
MachineInstr &MI = OpdMapper.getMI();
|
|
MachineRegisterInfo &MRI = OpdMapper.getMRI();
|
|
DEBUG(dbgs() << "Applying default-like mapping\n");
|
|
for (unsigned OpIdx = 0,
|
|
EndIdx = OpdMapper.getInstrMapping().getNumOperands();
|
|
OpIdx != EndIdx; ++OpIdx) {
|
|
DEBUG(dbgs() << "OpIdx " << OpIdx);
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (!MO.isReg()) {
|
|
DEBUG(dbgs() << " is not a register, nothing to be done\n");
|
|
continue;
|
|
}
|
|
if (!MO.getReg()) {
|
|
DEBUG(dbgs() << " is %%noreg, nothing to be done\n");
|
|
continue;
|
|
}
|
|
assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
|
|
0 &&
|
|
"Invalid mapping");
|
|
assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
|
|
1 &&
|
|
"This mapping is too complex for this function");
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
|
|
OpdMapper.getVRegs(OpIdx);
|
|
if (NewRegs.begin() == NewRegs.end()) {
|
|
DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
|
|
continue;
|
|
}
|
|
unsigned OrigReg = MO.getReg();
|
|
unsigned NewReg = *NewRegs.begin();
|
|
DEBUG(dbgs() << " changed, replace " << PrintReg(OrigReg, nullptr));
|
|
MO.setReg(NewReg);
|
|
DEBUG(dbgs() << " with " << PrintReg(NewReg, nullptr));
|
|
|
|
// The OperandsMapper creates plain scalar, we may have to fix that.
|
|
// Check if the types match and if not, fix that.
|
|
LLT OrigTy = MRI.getType(OrigReg);
|
|
LLT NewTy = MRI.getType(NewReg);
|
|
if (OrigTy != NewTy) {
|
|
assert(OrigTy.getSizeInBits() == NewTy.getSizeInBits() &&
|
|
"Types with difference size cannot be handled by the default "
|
|
"mapping");
|
|
DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
|
|
<< OrigTy);
|
|
MRI.setType(NewReg, OrigTy);
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
}
|
|
|
|
unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI) {
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// The size is not directly available for physical registers.
|
|
// Instead, we need to access a register class that contains Reg and
|
|
// get the size of that register class.
|
|
RC = TRI.getMinimalPhysRegClass(Reg);
|
|
} else {
|
|
LLT Ty = MRI.getType(Reg);
|
|
unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
|
|
// If Reg is not a generic register, query the register class to
|
|
// get its size.
|
|
if (RegSize)
|
|
return RegSize;
|
|
// Since Reg is not a generic register, it must have a register class.
|
|
RC = MRI.getRegClass(Reg);
|
|
}
|
|
assert(RC && "Unable to deduce the register class");
|
|
return TRI.getRegSizeInBits(*RC);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Helper classes implementation.
|
|
//------------------------------------------------------------------------------
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
bool RegisterBankInfo::PartialMapping::verify() const {
|
|
assert(RegBank && "Register bank not set");
|
|
assert(Length && "Empty mapping");
|
|
assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
|
|
// Check if the minimum width fits into RegBank.
|
|
assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
|
|
return true;
|
|
}
|
|
|
|
void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
|
|
OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
|
|
if (RegBank)
|
|
OS << *RegBank;
|
|
else
|
|
OS << "nullptr";
|
|
}
|
|
|
|
bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
|
|
assert(NumBreakDowns && "Value mapped nowhere?!");
|
|
unsigned OrigValueBitWidth = 0;
|
|
for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
|
|
// Check that each register bank is big enough to hold the partial value:
|
|
// this check is done by PartialMapping::verify
|
|
assert(PartMap.verify() && "Partial mapping is invalid");
|
|
// The original value should completely be mapped.
|
|
// Thus the maximum accessed index + 1 is the size of the original value.
|
|
OrigValueBitWidth =
|
|
std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
|
|
}
|
|
assert(OrigValueBitWidth >= MeaningfulBitWidth &&
|
|
"Meaningful bits not covered by the mapping");
|
|
APInt ValueMask(OrigValueBitWidth, 0);
|
|
for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
|
|
// Check that the union of the partial mappings covers the whole value,
|
|
// without overlaps.
|
|
// The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
|
|
APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
|
|
PartMap.getHighBitIdx() + 1);
|
|
ValueMask ^= PartMapMask;
|
|
assert((ValueMask & PartMapMask) == PartMapMask &&
|
|
"Some partial mappings overlap");
|
|
}
|
|
assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
|
|
return true;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
|
|
OS << "#BreakDown: " << NumBreakDowns << " ";
|
|
bool IsFirst = true;
|
|
for (const PartialMapping &PartMap : *this) {
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
OS << '[' << PartMap << ']';
|
|
IsFirst = false;
|
|
}
|
|
}
|
|
|
|
bool RegisterBankInfo::InstructionMapping::verify(
|
|
const MachineInstr &MI) const {
|
|
// Check that all the register operands are properly mapped.
|
|
// Check the constructor invariant.
|
|
// For PHI, we only care about mapping the definition.
|
|
assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
|
|
"NumOperands must match, see constructor");
|
|
assert(MI.getParent() && MI.getParent()->getParent() &&
|
|
"MI must be connected to a MachineFunction");
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
(void)MF;
|
|
|
|
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
|
|
const MachineOperand &MO = MI.getOperand(Idx);
|
|
if (!MO.isReg()) {
|
|
assert(!getOperandMapping(Idx).isValid() &&
|
|
"We should not care about non-reg mapping");
|
|
continue;
|
|
}
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
assert(getOperandMapping(Idx).isValid() &&
|
|
"We must have a mapping for reg operands");
|
|
const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
|
|
(void)MOMapping;
|
|
// Register size in bits.
|
|
// This size must match what the mapping expects.
|
|
assert(MOMapping.verify(getSizeInBits(
|
|
Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
|
|
"Value mapping is invalid");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
|
|
OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
|
|
|
|
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
|
|
const ValueMapping &ValMapping = getOperandMapping(OpIdx);
|
|
if (OpIdx)
|
|
OS << ", ";
|
|
OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
|
|
}
|
|
}
|
|
|
|
const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
|
|
|
|
RegisterBankInfo::OperandsMapper::OperandsMapper(
|
|
MachineInstr &MI, const InstructionMapping &InstrMapping,
|
|
MachineRegisterInfo &MRI)
|
|
: MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
|
|
unsigned NumOpds = InstrMapping.getNumOperands();
|
|
OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
|
|
assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
|
|
}
|
|
|
|
iterator_range<SmallVectorImpl<unsigned>::iterator>
|
|
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
|
|
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
|
|
unsigned NumPartialVal =
|
|
getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
|
|
int StartIdx = OpToNewVRegIdx[OpIdx];
|
|
|
|
if (StartIdx == OperandsMapper::DontKnowIdx) {
|
|
// This is the first time we try to access OpIdx.
|
|
// Create the cells that will hold all the partial values at the
|
|
// end of the list of NewVReg.
|
|
StartIdx = NewVRegs.size();
|
|
OpToNewVRegIdx[OpIdx] = StartIdx;
|
|
for (unsigned i = 0; i < NumPartialVal; ++i)
|
|
NewVRegs.push_back(0);
|
|
}
|
|
SmallVectorImpl<unsigned>::iterator End =
|
|
getNewVRegsEnd(StartIdx, NumPartialVal);
|
|
|
|
return make_range(&NewVRegs[StartIdx], End);
|
|
}
|
|
|
|
SmallVectorImpl<unsigned>::const_iterator
|
|
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
|
|
unsigned NumVal) const {
|
|
return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
|
|
}
|
|
SmallVectorImpl<unsigned>::iterator
|
|
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
|
|
unsigned NumVal) {
|
|
assert((NewVRegs.size() == StartIdx + NumVal ||
|
|
NewVRegs.size() > StartIdx + NumVal) &&
|
|
"NewVRegs too small to contain all the partial mapping");
|
|
return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
|
|
: &NewVRegs[StartIdx + NumVal];
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
|
|
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
|
|
iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
|
|
getVRegsMem(OpIdx);
|
|
const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
|
|
const PartialMapping *PartMap = ValMapping.begin();
|
|
for (unsigned &NewVReg : NewVRegsForOpIdx) {
|
|
assert(PartMap != ValMapping.end() && "Out-of-bound access");
|
|
assert(NewVReg == 0 && "Register has already been created");
|
|
// The new registers are always bound to scalar with the right size.
|
|
// The actual type has to be set when the target does the mapping
|
|
// of the instruction.
|
|
// The rationale is that this generic code cannot guess how the
|
|
// target plans to split the input type.
|
|
NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
|
|
MRI.setRegBank(NewVReg, *PartMap->RegBank);
|
|
++PartMap;
|
|
}
|
|
}
|
|
|
|
void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
|
|
unsigned PartialMapIdx,
|
|
unsigned NewVReg) {
|
|
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
|
|
assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
|
|
PartialMapIdx &&
|
|
"Out-of-bound access for partial mapping");
|
|
// Make sure the memory is initialized for that operand.
|
|
(void)getVRegsMem(OpIdx);
|
|
assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
|
|
"This value is already set");
|
|
NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
|
|
}
|
|
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator>
|
|
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
|
|
bool ForDebug) const {
|
|
(void)ForDebug;
|
|
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
|
|
int StartIdx = OpToNewVRegIdx[OpIdx];
|
|
|
|
if (StartIdx == OperandsMapper::DontKnowIdx)
|
|
return make_range(NewVRegs.end(), NewVRegs.end());
|
|
|
|
unsigned PartMapSize =
|
|
getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
|
|
SmallVectorImpl<unsigned>::const_iterator End =
|
|
getNewVRegsEnd(StartIdx, PartMapSize);
|
|
iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
|
|
make_range(&NewVRegs[StartIdx], End);
|
|
#ifndef NDEBUG
|
|
for (unsigned VReg : Res)
|
|
assert((VReg || ForDebug) && "Some registers are uninitialized");
|
|
#endif
|
|
return Res;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
|
|
print(dbgs(), true);
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
|
|
bool ForDebug) const {
|
|
unsigned NumOpds = getInstrMapping().getNumOperands();
|
|
if (ForDebug) {
|
|
OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
|
|
// Print out the internal state of the index table.
|
|
OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
|
|
bool IsFirst = true;
|
|
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
|
|
if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
|
|
IsFirst = false;
|
|
}
|
|
}
|
|
OS << '\n';
|
|
} else
|
|
OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
|
|
|
|
OS << "Operand Mapping: ";
|
|
// If we have a function, we can pretty print the name of the registers.
|
|
// Otherwise we will print the raw numbers.
|
|
const TargetRegisterInfo *TRI =
|
|
getMI().getParent() && getMI().getParent()->getParent()
|
|
? getMI().getParent()->getParent()->getSubtarget().getRegisterInfo()
|
|
: nullptr;
|
|
bool IsFirst = true;
|
|
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
|
|
if (OpToNewVRegIdx[Idx] == DontKnowIdx)
|
|
continue;
|
|
if (!IsFirst)
|
|
OS << ", ";
|
|
IsFirst = false;
|
|
OS << '(' << PrintReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
|
|
bool IsFirstNewVReg = true;
|
|
for (unsigned VReg : getVRegs(Idx)) {
|
|
if (!IsFirstNewVReg)
|
|
OS << ", ";
|
|
IsFirstNewVReg = false;
|
|
OS << PrintReg(VReg, TRI);
|
|
}
|
|
OS << "])";
|
|
}
|
|
}
|