freebsd-nq/sys/dev/re/if_re.c
Warner Losh ad4f426ef6 Make sure that we call if_free(ifp) after bus_teardown_intr. Since we
could get an interrupt after we free the ifp, and the interrupt
handler depended on the ifp being still alive, this could, in theory,
cause a crash.  Eliminate this possibility by moving the if_free to
after the bus_teardown_intr() call.
2005-09-19 03:10:21 +00:00

2493 lines
59 KiB
C

/*-
* Copyright (c) 1997, 1998-2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* RealTek 8139C+/8169/8169S/8110S PCI NIC driver
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* This driver is designed to support RealTek's next generation of
* 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
* four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
* and the RTL8110S.
*
* The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
* with the older 8139 family, however it also supports a special
* C+ mode of operation that provides several new performance enhancing
* features. These include:
*
* o Descriptor based DMA mechanism. Each descriptor represents
* a single packet fragment. Data buffers may be aligned on
* any byte boundary.
*
* o 64-bit DMA
*
* o TCP/IP checksum offload for both RX and TX
*
* o High and normal priority transmit DMA rings
*
* o VLAN tag insertion and extraction
*
* o TCP large send (segmentation offload)
*
* Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
* programming API is fairly straightforward. The RX filtering, EEPROM
* access and PHY access is the same as it is on the older 8139 series
* chips.
*
* The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
* same programming API and feature set as the 8139C+ with the following
* differences and additions:
*
* o 1000Mbps mode
*
* o Jumbo frames
*
* o GMII and TBI ports/registers for interfacing with copper
* or fiber PHYs
*
* o RX and TX DMA rings can have up to 1024 descriptors
* (the 8139C+ allows a maximum of 64)
*
* o Slight differences in register layout from the 8139C+
*
* The TX start and timer interrupt registers are at different locations
* on the 8169 than they are on the 8139C+. Also, the status word in the
* RX descriptor has a slightly different bit layout. The 8169 does not
* have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
* copper gigE PHY.
*
* The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
* (the 'S' stands for 'single-chip'). These devices have the same
* programming API as the older 8169, but also have some vendor-specific
* registers for the on-board PHY. The 8110S is a LAN-on-motherboard
* part designed to be pin-compatible with the RealTek 8100 10/100 chip.
*
* This driver takes advantage of the RX and TX checksum offload and
* VLAN tag insertion/extraction features. It also implements TX
* interrupt moderation using the timer interrupt registers, which
* significantly reduces TX interrupt load. There is also support
* for jumbo frames, however the 8169/8169S/8110S can not transmit
* jumbo frames larger than 7440, so the max MTU possible with this
* driver is 7422 bytes.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(re, pci, 1, 1, 1);
MODULE_DEPEND(re, ether, 1, 1, 1);
MODULE_DEPEND(re, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Default to using PIO access for this driver.
*/
#define RE_USEIOSPACE
#include <pci/if_rlreg.h>
#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types and their names.
*/
static struct rl_type re_devs[] = {
{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
"RealTek 8139C+ 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
"RealTek 8169 Gigabit Ethernet" },
{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
"RealTek 8169S Single-chip Gigabit Ethernet" },
{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
"RealTek 8169SB Single-chip Gigabit Ethernet" },
{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
"RealTek 8110S Single-chip Gigabit Ethernet" },
{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
{ 0, 0, 0, NULL }
};
static struct rl_hwrev re_hwrevs[] = {
{ RL_HWREV_8139, RL_8139, "" },
{ RL_HWREV_8139A, RL_8139, "A" },
{ RL_HWREV_8139AG, RL_8139, "A-G" },
{ RL_HWREV_8139B, RL_8139, "B" },
{ RL_HWREV_8130, RL_8139, "8130" },
{ RL_HWREV_8139C, RL_8139, "C" },
{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
{ RL_HWREV_8169, RL_8169, "8169"},
{ RL_HWREV_8169S, RL_8169, "8169S"},
{ RL_HWREV_8169SB, RL_8169, "8169SB"},
{ RL_HWREV_8110S, RL_8169, "8110S"},
{ RL_HWREV_8100, RL_8139, "8100"},
{ RL_HWREV_8101, RL_8139, "8101"},
{ 0, 0, NULL }
};
static int re_probe (device_t);
static int re_attach (device_t);
static int re_detach (device_t);
static int re_encap (struct rl_softc *, struct mbuf **, int *);
static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static void re_dma_map_desc (void *, bus_dma_segment_t *, int,
bus_size_t, int);
static int re_allocmem (device_t, struct rl_softc *);
static int re_newbuf (struct rl_softc *, int, struct mbuf *);
static int re_rx_list_init (struct rl_softc *);
static int re_tx_list_init (struct rl_softc *);
#ifdef RE_FIXUP_RX
static __inline void re_fixup_rx
(struct mbuf *);
#endif
static void re_rxeof (struct rl_softc *);
static void re_txeof (struct rl_softc *);
#ifdef DEVICE_POLLING
static void re_poll (struct ifnet *, enum poll_cmd, int);
static void re_poll_locked (struct ifnet *, enum poll_cmd, int);
#endif
static void re_intr (void *);
static void re_tick (void *);
static void re_tick_locked (struct rl_softc *);
static void re_start (struct ifnet *);
static void re_start_locked (struct ifnet *);
static int re_ioctl (struct ifnet *, u_long, caddr_t);
static void re_init (void *);
static void re_init_locked (struct rl_softc *);
static void re_stop (struct rl_softc *);
static void re_watchdog (struct ifnet *);
static int re_suspend (device_t);
static int re_resume (device_t);
static void re_shutdown (device_t);
static int re_ifmedia_upd (struct ifnet *);
static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void re_eeprom_putbyte (struct rl_softc *, int);
static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *);
static void re_read_eeprom (struct rl_softc *, caddr_t, int, int, int);
static int re_gmii_readreg (device_t, int, int);
static int re_gmii_writereg (device_t, int, int, int);
static int re_miibus_readreg (device_t, int, int);
static int re_miibus_writereg (device_t, int, int, int);
static void re_miibus_statchg (device_t);
static void re_setmulti (struct rl_softc *);
static void re_reset (struct rl_softc *);
static int re_diag (struct rl_softc *);
#ifdef RE_USEIOSPACE
#define RL_RES SYS_RES_IOPORT
#define RL_RID RL_PCI_LOIO
#else
#define RL_RES SYS_RES_MEMORY
#define RL_RID RL_PCI_LOMEM
#endif
static device_method_t re_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, re_probe),
DEVMETHOD(device_attach, re_attach),
DEVMETHOD(device_detach, re_detach),
DEVMETHOD(device_suspend, re_suspend),
DEVMETHOD(device_resume, re_resume),
DEVMETHOD(device_shutdown, re_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, re_miibus_readreg),
DEVMETHOD(miibus_writereg, re_miibus_writereg),
DEVMETHOD(miibus_statchg, re_miibus_statchg),
{ 0, 0 }
};
static driver_t re_driver = {
"re",
re_methods,
sizeof(struct rl_softc)
};
static devclass_t re_devclass;
DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
re_eeprom_putbyte(sc, addr)
struct rl_softc *sc;
int addr;
{
register int d, i;
d = addr | sc->rl_eecmd_read;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
re_eeprom_getword(sc, addr, dest)
struct rl_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
re_eeprom_putbyte(sc, addr);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
re_read_eeprom(sc, dest, off, cnt, swap)
struct rl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
re_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
static int
re_gmii_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct rl_softc *sc;
u_int32_t rval;
int i;
if (phy != 1)
return (0);
sc = device_get_softc(dev);
/* Let the rgephy driver read the GMEDIASTAT register */
if (reg == RL_GMEDIASTAT) {
rval = CSR_READ_1(sc, RL_GMEDIASTAT);
return (rval);
}
CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
DELAY(1000);
for (i = 0; i < RL_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RL_PHYAR);
if (rval & RL_PHYAR_BUSY)
break;
DELAY(100);
}
if (i == RL_TIMEOUT) {
printf ("re%d: PHY read failed\n", sc->rl_unit);
return (0);
}
return (rval & RL_PHYAR_PHYDATA);
}
static int
re_gmii_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct rl_softc *sc;
u_int32_t rval;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
(data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
DELAY(1000);
for (i = 0; i < RL_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RL_PHYAR);
if (!(rval & RL_PHYAR_BUSY))
break;
DELAY(100);
}
if (i == RL_TIMEOUT) {
printf ("re%d: PHY write failed\n", sc->rl_unit);
return (0);
}
return (0);
}
static int
re_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct rl_softc *sc;
u_int16_t rval = 0;
u_int16_t re8139_reg = 0;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8169) {
rval = re_gmii_readreg(dev, phy, reg);
return (rval);
}
/* Pretend the internal PHY is only at address 0 */
if (phy) {
return (0);
}
switch (reg) {
case MII_BMCR:
re8139_reg = RL_BMCR;
break;
case MII_BMSR:
re8139_reg = RL_BMSR;
break;
case MII_ANAR:
re8139_reg = RL_ANAR;
break;
case MII_ANER:
re8139_reg = RL_ANER;
break;
case MII_ANLPAR:
re8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RL_MEDIASTAT:
rval = CSR_READ_1(sc, RL_MEDIASTAT);
return (rval);
default:
printf("re%d: bad phy register\n", sc->rl_unit);
return (0);
}
rval = CSR_READ_2(sc, re8139_reg);
return (rval);
}
static int
re_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct rl_softc *sc;
u_int16_t re8139_reg = 0;
int rval = 0;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8169) {
rval = re_gmii_writereg(dev, phy, reg, data);
return (rval);
}
/* Pretend the internal PHY is only at address 0 */
if (phy)
return (0);
switch (reg) {
case MII_BMCR:
re8139_reg = RL_BMCR;
break;
case MII_BMSR:
re8139_reg = RL_BMSR;
break;
case MII_ANAR:
re8139_reg = RL_ANAR;
break;
case MII_ANER:
re8139_reg = RL_ANER;
break;
case MII_ANLPAR:
re8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
break;
default:
printf("re%d: bad phy register\n", sc->rl_unit);
return (0);
}
CSR_WRITE_2(sc, re8139_reg, data);
return (0);
}
static void
re_miibus_statchg(dev)
device_t dev;
{
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
re_setmulti(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
rxfilt = CSR_READ_4(sc, RL_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, RL_MAR0, 0);
CSR_WRITE_4(sc, RL_MAR4, 0);
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= RL_RXCFG_RX_MULTI;
else
rxfilt &= ~RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
}
static void
re_reset(sc)
struct rl_softc *sc;
{
register int i;
RL_LOCK_ASSERT(sc);
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
printf("re%d: reset never completed!\n", sc->rl_unit);
CSR_WRITE_1(sc, 0x82, 1);
}
/*
* The following routine is designed to test for a defect on some
* 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
* lines connected to the bus, however for a 32-bit only card, they
* should be pulled high. The result of this defect is that the
* NIC will not work right if you plug it into a 64-bit slot: DMA
* operations will be done with 64-bit transfers, which will fail
* because the 64-bit data lines aren't connected.
*
* There's no way to work around this (short of talking a soldering
* iron to the board), however we can detect it. The method we use
* here is to put the NIC into digital loopback mode, set the receiver
* to promiscuous mode, and then try to send a frame. We then compare
* the frame data we sent to what was received. If the data matches,
* then the NIC is working correctly, otherwise we know the user has
* a defective NIC which has been mistakenly plugged into a 64-bit PCI
* slot. In the latter case, there's no way the NIC can work correctly,
* so we print out a message on the console and abort the device attach.
*/
static int
re_diag(sc)
struct rl_softc *sc;
{
struct ifnet *ifp = sc->rl_ifp;
struct mbuf *m0;
struct ether_header *eh;
struct rl_desc *cur_rx;
u_int16_t status;
u_int32_t rxstat;
int total_len, i, error = 0;
u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
/* Allocate a single mbuf */
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return (ENOBUFS);
RL_LOCK(sc);
/*
* Initialize the NIC in test mode. This sets the chip up
* so that it can send and receive frames, but performs the
* following special functions:
* - Puts receiver in promiscuous mode
* - Enables digital loopback mode
* - Leaves interrupts turned off
*/
ifp->if_flags |= IFF_PROMISC;
sc->rl_testmode = 1;
re_init_locked(sc);
re_stop(sc);
DELAY(100000);
re_init_locked(sc);
/* Put some data in the mbuf */
eh = mtod(m0, struct ether_header *);
bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
eh->ether_type = htons(ETHERTYPE_IP);
m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
/*
* Queue the packet, start transmission.
* Note: IF_HANDOFF() ultimately calls re_start() for us.
*/
CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
RL_UNLOCK(sc);
/* XXX: re_diag must not be called when in ALTQ mode */
IF_HANDOFF(&ifp->if_snd, m0, ifp);
RL_LOCK(sc);
m0 = NULL;
/* Wait for it to propagate through the chip */
DELAY(100000);
for (i = 0; i < RL_TIMEOUT; i++) {
status = CSR_READ_2(sc, RL_ISR);
if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
(RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
break;
DELAY(10);
}
if (i == RL_TIMEOUT) {
printf("re%d: diagnostic failed, failed to receive packet "
"in loopback mode\n", sc->rl_unit);
error = EIO;
goto done;
}
/*
* The packet should have been dumped into the first
* entry in the RX DMA ring. Grab it from there.
*/
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[0],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[0]);
m0 = sc->rl_ldata.rl_rx_mbuf[0];
sc->rl_ldata.rl_rx_mbuf[0] = NULL;
eh = mtod(m0, struct ether_header *);
cur_rx = &sc->rl_ldata.rl_rx_list[0];
total_len = RL_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->rl_cmdstat);
if (total_len != ETHER_MIN_LEN) {
printf("re%d: diagnostic failed, received short packet\n",
sc->rl_unit);
error = EIO;
goto done;
}
/* Test that the received packet data matches what we sent. */
if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
ntohs(eh->ether_type) != ETHERTYPE_IP) {
printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
dst, ":", src, ":", ETHERTYPE_IP);
printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
eh->ether_dhost, ":", eh->ether_shost, ":",
ntohs(eh->ether_type));
printf("re%d: You may have a defective 32-bit NIC plugged "
"into a 64-bit PCI slot.\n", sc->rl_unit);
printf("re%d: Please re-install the NIC in a 32-bit slot "
"for proper operation.\n", sc->rl_unit);
printf("re%d: Read the re(4) man page for more details.\n",
sc->rl_unit);
error = EIO;
}
done:
/* Turn interface off, release resources */
sc->rl_testmode = 0;
ifp->if_flags &= ~IFF_PROMISC;
re_stop(sc);
if (m0 != NULL)
m_freem(m0);
RL_UNLOCK(sc);
return (error);
}
/*
* Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
re_probe(dev)
device_t dev;
{
struct rl_type *t;
struct rl_softc *sc;
int rid;
u_int32_t hwrev;
t = re_devs;
sc = device_get_softc(dev);
while (t->rl_name != NULL) {
if ((pci_get_vendor(dev) == t->rl_vid) &&
(pci_get_device(dev) == t->rl_did)) {
/*
* Temporarily map the I/O space
* so we can read the chip ID register.
*/
rid = RL_RID;
sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
RF_ACTIVE);
if (sc->rl_res == NULL) {
device_printf(dev,
"couldn't map ports/memory\n");
return (ENXIO);
}
sc->rl_btag = rman_get_bustag(sc->rl_res);
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
bus_release_resource(dev, RL_RES,
RL_RID, sc->rl_res);
if (t->rl_basetype == hwrev) {
device_set_desc(dev, t->rl_name);
return (BUS_PROBE_DEFAULT);
}
}
t++;
}
return (ENXIO);
}
/*
* This routine takes the segment list provided as the result of
* a bus_dma_map_load() operation and assigns the addresses/lengths
* to RealTek DMA descriptors. This can be called either by the RX
* code or the TX code. In the RX case, we'll probably wind up mapping
* at most one segment. For the TX case, there could be any number of
* segments since TX packets may span multiple mbufs. In either case,
* if the number of segments is larger than the rl_maxsegs limit
* specified by the caller, we abort the mapping operation. Sadly,
* whoever designed the buffer mapping API did not provide a way to
* return an error from here, so we have to fake it a bit.
*/
static void
re_dma_map_desc(arg, segs, nseg, mapsize, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
bus_size_t mapsize;
int error;
{
struct rl_dmaload_arg *ctx;
struct rl_desc *d = NULL;
int i = 0, idx;
if (error)
return;
ctx = arg;
/* Signal error to caller if there's too many segments */
if (nseg > ctx->rl_maxsegs) {
ctx->rl_maxsegs = 0;
return;
}
/*
* Map the segment array into descriptors. Note that we set the
* start-of-frame and end-of-frame markers for either TX or RX, but
* they really only have meaning in the TX case. (In the RX case,
* it's the chip that tells us where packets begin and end.)
* We also keep track of the end of the ring and set the
* end-of-ring bits as needed, and we set the ownership bits
* in all except the very first descriptor. (The caller will
* set this descriptor later when it start transmission or
* reception.)
*/
idx = ctx->rl_idx;
for (;;) {
u_int32_t cmdstat;
d = &ctx->rl_ring[idx];
if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
ctx->rl_maxsegs = 0;
return;
}
cmdstat = segs[i].ds_len;
d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
if (i == 0)
cmdstat |= RL_TDESC_CMD_SOF;
else
cmdstat |= RL_TDESC_CMD_OWN;
if (idx == (RL_RX_DESC_CNT - 1))
cmdstat |= RL_TDESC_CMD_EOR;
d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
i++;
if (i == nseg)
break;
RL_DESC_INC(idx);
}
d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
ctx->rl_maxsegs = nseg;
ctx->rl_idx = idx;
}
/*
* Map a single buffer address.
*/
static void
re_dma_map_addr(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
bus_addr_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static int
re_allocmem(dev, sc)
device_t dev;
struct rl_softc *sc;
{
int error;
int nseg;
int i;
/*
* Allocate map for RX mbufs.
*/
nseg = 32;
error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->rl_ldata.rl_mtag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/*
* Allocate map for TX descriptor list.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for the TX ring */
error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
(void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->rl_ldata.rl_tx_list_map);
if (error)
return (ENOMEM);
/* Load the map for the TX ring. */
error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
RL_TX_LIST_SZ, re_dma_map_addr,
&sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
/* Create DMA maps for TX buffers */
for (i = 0; i < RL_TX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
&sc->rl_ldata.rl_tx_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for TX\n");
return (ENOMEM);
}
}
/*
* Allocate map for RX descriptor list.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for the RX ring */
error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
(void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->rl_ldata.rl_rx_list_map);
if (error)
return (ENOMEM);
/* Load the map for the RX ring. */
error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
RL_RX_LIST_SZ, re_dma_map_addr,
&sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
/* Create DMA maps for RX buffers */
for (i = 0; i < RL_RX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
&sc->rl_ldata.rl_rx_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
return (ENOMEM);
}
}
return (0);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
re_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
u_int16_t as[3];
struct rl_softc *sc;
struct ifnet *ifp;
struct rl_hwrev *hw_rev;
int hwrev;
u_int16_t re_did = 0;
int unit, error = 0, rid, i;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = RL_RID;
sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
RF_ACTIVE);
if (sc->rl_res == NULL) {
printf ("re%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->rl_btag = rman_get_bustag(sc->rl_res);
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
/* Allocate interrupt */
rid = 0;
sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->rl_irq == NULL) {
printf("re%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
RL_LOCK(sc);
re_reset(sc);
RL_UNLOCK(sc);
hw_rev = re_hwrevs;
hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
while (hw_rev->rl_desc != NULL) {
if (hw_rev->rl_rev == hwrev) {
sc->rl_type = hw_rev->rl_type;
break;
}
hw_rev++;
}
if (sc->rl_type == RL_8169) {
/* Set RX length mask */
sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
/* Force station address autoload from the EEPROM */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
for (i = 0; i < RL_TIMEOUT; i++) {
if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
break;
DELAY(100);
}
if (i == RL_TIMEOUT)
printf ("re%d: eeprom autoload timed out\n", unit);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
} else {
/* Set RX length mask */
sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
if (re_did != 0x8129)
sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
/*
* Get station address from the EEPROM.
*/
re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
for (i = 0; i < 3; i++) {
eaddr[(i * 2) + 0] = as[i] & 0xff;
eaddr[(i * 2) + 1] = as[i] >> 8;
}
}
sc->rl_unit = unit;
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define RL_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rl_parent_tag);
if (error)
goto fail;
error = re_allocmem(dev, sc);
if (error)
goto fail;
ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
printf("re%d: can not if_alloc()\n", sc->rl_unit);
error = ENOSPC;
goto fail;
}
/* Do MII setup */
if (mii_phy_probe(dev, &sc->rl_miibus,
re_ifmedia_upd, re_ifmedia_sts)) {
printf("re%d: MII without any phy!\n", sc->rl_unit);
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = re_ioctl;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_start = re_start;
ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_watchdog = re_watchdog;
ifp->if_init = re_init;
if (sc->rl_type == RL_8169)
ifp->if_baudrate = 1000000000;
else
ifp->if_baudrate = 100000000;
IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
callout_handle_init(&sc->rl_stat_ch);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Perform hardware diagnostic. */
error = re_diag(sc);
if (error) {
printf("re%d: attach aborted due to hardware diag failure\n",
unit);
ether_ifdetach(ifp);
goto fail;
}
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
re_intr, sc, &sc->rl_intrhand);
if (error) {
printf("re%d: couldn't set up irq\n", unit);
ether_ifdetach(ifp);
}
fail:
if (error)
re_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
re_detach(dev)
device_t dev;
{
struct rl_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
ifp = sc->rl_ifp;
KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
RL_LOCK(sc);
#if 0
sc->suspended = 1;
#endif
re_stop(sc);
RL_UNLOCK(sc);
/*
* Force off the IFF_UP flag here, in case someone
* still had a BPF descriptor attached to this
* interface. If they do, ether_ifdetach() will cause
* the BPF code to try and clear the promisc mode
* flag, which will bubble down to re_ioctl(),
* which will try to call re_init() again. This will
* turn the NIC back on and restart the MII ticker,
* which will panic the system when the kernel tries
* to invoke the re_tick() function that isn't there
* anymore.
*/
ifp->if_flags &= ~IFF_UP;
ether_ifdetach(ifp);
}
if (sc->rl_miibus)
device_delete_child(dev, sc->rl_miibus);
bus_generic_detach(dev);
/*
* The rest is resource deallocation, so we should already be
* stopped here.
*/
if (sc->rl_intrhand)
bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
if (ifp != NULL)
if_free(ifp);
if (sc->rl_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
if (sc->rl_res)
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
/* Unload and free the RX DMA ring memory and map */
if (sc->rl_ldata.rl_rx_list_tag) {
bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map);
bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list,
sc->rl_ldata.rl_rx_list_map);
bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
}
/* Unload and free the TX DMA ring memory and map */
if (sc->rl_ldata.rl_tx_list_tag) {
bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map);
bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list,
sc->rl_ldata.rl_tx_list_map);
bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
}
/* Destroy all the RX and TX buffer maps */
if (sc->rl_ldata.rl_mtag) {
for (i = 0; i < RL_TX_DESC_CNT; i++)
bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_tx_dmamap[i]);
for (i = 0; i < RL_RX_DESC_CNT; i++)
bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[i]);
bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
}
/* Unload and free the stats buffer and map */
if (sc->rl_ldata.rl_stag) {
bus_dmamap_unload(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_rx_list_map);
bus_dmamem_free(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_stats,
sc->rl_ldata.rl_smap);
bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
}
if (sc->rl_parent_tag)
bus_dma_tag_destroy(sc->rl_parent_tag);
mtx_destroy(&sc->rl_mtx);
return (0);
}
static int
re_newbuf(sc, idx, m)
struct rl_softc *sc;
int idx;
struct mbuf *m;
{
struct rl_dmaload_arg arg;
struct mbuf *n = NULL;
int error;
if (m == NULL) {
n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (n == NULL)
return (ENOBUFS);
m = n;
} else
m->m_data = m->m_ext.ext_buf;
m->m_len = m->m_pkthdr.len = MCLBYTES;
#ifdef RE_FIXUP_RX
/*
* This is part of an evil trick to deal with non-x86 platforms.
* The RealTek chip requires RX buffers to be aligned on 64-bit
* boundaries, but that will hose non-x86 machines. To get around
* this, we leave some empty space at the start of each buffer
* and for non-x86 hosts, we copy the buffer back six bytes
* to achieve word alignment. This is slightly more efficient
* than allocating a new buffer, copying the contents, and
* discarding the old buffer.
*/
m_adj(m, RE_ETHER_ALIGN);
#endif
arg.sc = sc;
arg.rl_idx = idx;
arg.rl_maxsegs = 1;
arg.rl_flags = 0;
arg.rl_ring = sc->rl_ldata.rl_rx_list;
error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
&arg, BUS_DMA_NOWAIT);
if (error || arg.rl_maxsegs != 1) {
if (n != NULL)
m_freem(n);
return (ENOMEM);
}
sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
sc->rl_ldata.rl_rx_mbuf[idx] = m;
bus_dmamap_sync(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[idx],
BUS_DMASYNC_PREREAD);
return (0);
}
#ifdef RE_FIXUP_RX
static __inline void
re_fixup_rx(m)
struct mbuf *m;
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
return;
}
#endif
static int
re_tx_list_init(sc)
struct rl_softc *sc;
{
RL_LOCK_ASSERT(sc);
bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
(RL_TX_DESC_CNT * sizeof(struct mbuf *)));
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
sc->rl_ldata.rl_tx_prodidx = 0;
sc->rl_ldata.rl_tx_considx = 0;
sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
return (0);
}
static int
re_rx_list_init(sc)
struct rl_softc *sc;
{
int i;
bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
(RL_RX_DESC_CNT * sizeof(struct mbuf *)));
for (i = 0; i < RL_RX_DESC_CNT; i++) {
if (re_newbuf(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
}
/* Flush the RX descriptors */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_rx_prodidx = 0;
sc->rl_head = sc->rl_tail = NULL;
return (0);
}
/*
* RX handler for C+ and 8169. For the gigE chips, we support
* the reception of jumbo frames that have been fragmented
* across multiple 2K mbuf cluster buffers.
*/
static void
re_rxeof(sc)
struct rl_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
int i, total_len;
struct rl_desc *cur_rx;
u_int32_t rxstat, rxvlan;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
i = sc->rl_ldata.rl_rx_prodidx;
/* Invalidate the descriptor memory */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_POSTREAD);
while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
cur_rx = &sc->rl_ldata.rl_rx_list[i];
m = sc->rl_ldata.rl_rx_mbuf[i];
total_len = RL_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->rl_cmdstat);
rxvlan = le32toh(cur_rx->rl_vlanctl);
/* Invalidate the RX mbuf and unload its map */
bus_dmamap_sync(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[i]);
if (!(rxstat & RL_RDESC_STAT_EOF)) {
m->m_len = RE_RX_DESC_BUFLEN;
if (sc->rl_head == NULL)
sc->rl_head = sc->rl_tail = m;
else {
m->m_flags &= ~M_PKTHDR;
sc->rl_tail->m_next = m;
sc->rl_tail = m;
}
re_newbuf(sc, i, NULL);
RL_DESC_INC(i);
continue;
}
/*
* NOTE: for the 8139C+, the frame length field
* is always 12 bits in size, but for the gigE chips,
* it is 13 bits (since the max RX frame length is 16K).
* Unfortunately, all 32 bits in the status word
* were already used, so to make room for the extra
* length bit, RealTek took out the 'frame alignment
* error' bit and shifted the other status bits
* over one slot. The OWN, EOR, FS and LS bits are
* still in the same places. We have already extracted
* the frame length and checked the OWN bit, so rather
* than using an alternate bit mapping, we shift the
* status bits one space to the right so we can evaluate
* them using the 8169 status as though it was in the
* same format as that of the 8139C+.
*/
if (sc->rl_type == RL_8169)
rxstat >>= 1;
/*
* if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
* set, but if CRC is clear, it will still be a valid frame.
*/
if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
(rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
ifp->if_ierrors++;
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
re_newbuf(sc, i, m);
RL_DESC_INC(i);
continue;
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (re_newbuf(sc, i, NULL)) {
ifp->if_ierrors++;
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
re_newbuf(sc, i, m);
RL_DESC_INC(i);
continue;
}
RL_DESC_INC(i);
if (sc->rl_head != NULL) {
m->m_len = total_len % RE_RX_DESC_BUFLEN;
if (m->m_len == 0)
m->m_len = RE_RX_DESC_BUFLEN;
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->rl_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->rl_tail->m_next = m;
}
m = sc->rl_head;
sc->rl_head = sc->rl_tail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
#ifdef RE_FIXUP_RX
re_fixup_rx(m);
#endif
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
/* Do RX checksumming if enabled */
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Check IP header checksum */
if (rxstat & RL_RDESC_STAT_PROTOID)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
/* Check TCP/UDP checksum */
if ((RL_TCPPKT(rxstat) &&
!(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
(RL_UDPPKT(rxstat) &&
!(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
if (rxvlan & RL_RDESC_VLANCTL_TAG)
VLAN_INPUT_TAG(ifp, m,
ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
RL_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
RL_LOCK(sc);
}
/* Flush the RX DMA ring */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_rx_prodidx = i;
}
static void
re_txeof(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
u_int32_t txstat;
int idx;
ifp = sc->rl_ifp;
idx = sc->rl_ldata.rl_tx_considx;
/* Invalidate the TX descriptor list */
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map,
BUS_DMASYNC_POSTREAD);
while (idx != sc->rl_ldata.rl_tx_prodidx) {
txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
if (txstat & RL_TDESC_CMD_OWN)
break;
/*
* We only stash mbufs in the last descriptor
* in a fragment chain, which also happens to
* be the only place where the TX status bits
* are valid.
*/
if (txstat & RL_TDESC_CMD_EOF) {
m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
bus_dmamap_unload(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_tx_dmamap[idx]);
if (txstat & (RL_TDESC_STAT_EXCESSCOL|
RL_TDESC_STAT_COLCNT))
ifp->if_collisions++;
if (txstat & RL_TDESC_STAT_TXERRSUM)
ifp->if_oerrors++;
else
ifp->if_opackets++;
}
sc->rl_ldata.rl_tx_free++;
RL_DESC_INC(idx);
}
/* No changes made to the TX ring, so no flush needed */
if (idx != sc->rl_ldata.rl_tx_considx) {
sc->rl_ldata.rl_tx_considx = idx;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_timer = 0;
}
/*
* If not all descriptors have been released reaped yet,
* reload the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
}
static void
re_tick(xsc)
void *xsc;
{
struct rl_softc *sc;
sc = xsc;
RL_LOCK(sc);
re_tick_locked(sc);
RL_UNLOCK(sc);
}
static void
re_tick_locked(sc)
struct rl_softc *sc;
{
struct mii_data *mii;
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
mii_tick(mii);
sc->rl_stat_ch = timeout(re_tick, sc, hz);
}
#ifdef DEVICE_POLLING
static void
re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
RL_LOCK(sc);
re_poll_locked(ifp, cmd, count);
RL_UNLOCK(sc);
}
static void
re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
RL_LOCK_ASSERT(sc);
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
return;
}
sc->rxcycles = count;
re_rxeof(sc);
re_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
u_int16_t status;
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xffff)
return;
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & RL_ISR_SYSTEM_ERR) {
re_reset(sc);
re_init_locked(sc);
}
}
}
#endif /* DEVICE_POLLING */
static void
re_intr(arg)
void *arg;
{
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
RL_LOCK(sc);
ifp = sc->rl_ifp;
if (sc->suspended || !(ifp->if_flags & IFF_UP))
goto done_locked;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done_locked;
if ((ifp->if_capenable & IFCAP_POLLING) &&
ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
re_poll_locked(ifp, 0, 1);
goto done_locked;
}
#endif /* DEVICE_POLLING */
for (;;) {
status = CSR_READ_2(sc, RL_ISR);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xffff)
break;
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & RL_INTRS_CPLUS) == 0)
break;
if ((status & RL_ISR_RX_OK) ||
(status & RL_ISR_RX_ERR))
re_rxeof(sc);
if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
(status & RL_ISR_TX_ERR) ||
(status & RL_ISR_TX_DESC_UNAVAIL))
re_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
re_reset(sc);
re_init_locked(sc);
}
if (status & RL_ISR_LINKCHG) {
untimeout(re_tick, sc, sc->rl_stat_ch);
re_tick_locked(sc);
}
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
done_locked:
RL_UNLOCK(sc);
}
static int
re_encap(sc, m_head, idx)
struct rl_softc *sc;
struct mbuf **m_head;
int *idx;
{
struct mbuf *m_new = NULL;
struct rl_dmaload_arg arg;
bus_dmamap_t map;
int error;
struct m_tag *mtag;
RL_LOCK_ASSERT(sc);
if (sc->rl_ldata.rl_tx_free <= 4)
return (EFBIG);
/*
* Set up checksum offload. Note: checksum offload bits must
* appear in all descriptors of a multi-descriptor transmit
* attempt. This is according to testing done with an 8169
* chip. This is a requirement.
*/
arg.rl_flags = 0;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
arg.sc = sc;
arg.rl_idx = *idx;
arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
if (arg.rl_maxsegs > 4)
arg.rl_maxsegs -= 4;
arg.rl_ring = sc->rl_ldata.rl_tx_list;
map = sc->rl_ldata.rl_tx_dmamap[*idx];
error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
*m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
return (ENOBUFS);
}
/* Too many segments to map, coalesce into a single mbuf */
if (error || arg.rl_maxsegs == 0) {
m_new = m_defrag(*m_head, M_DONTWAIT);
if (m_new == NULL)
return (ENOBUFS);
else
*m_head = m_new;
arg.sc = sc;
arg.rl_idx = *idx;
arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
arg.rl_ring = sc->rl_ldata.rl_tx_list;
error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
*m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
if (error) {
printf("re%d: can't map mbuf (error %d)\n",
sc->rl_unit, error);
return (EFBIG);
}
}
/*
* Insure that the map for this transmission
* is placed at the array index of the last descriptor
* in this chain. (Swap last and first dmamaps.)
*/
sc->rl_ldata.rl_tx_dmamap[*idx] =
sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
/*
* Set up hardware VLAN tagging. Note: vlan tag info must
* appear in the first descriptor of a multi-descriptor
* transmission attempt.
*/
mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head);
if (mtag != NULL)
sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
/* Transfer ownership of packet to the chip. */
sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
htole32(RL_TDESC_CMD_OWN);
if (*idx != arg.rl_idx)
sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
htole32(RL_TDESC_CMD_OWN);
RL_DESC_INC(arg.rl_idx);
*idx = arg.rl_idx;
return (0);
}
static void
re_start(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
sc = ifp->if_softc;
RL_LOCK(sc);
re_start_locked(ifp);
RL_UNLOCK(sc);
}
/*
* Main transmit routine for C+ and gigE NICs.
*/
static void
re_start_locked(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mbuf *m_head = NULL;
int idx, queued = 0;
sc = ifp->if_softc;
RL_LOCK_ASSERT(sc);
idx = sc->rl_ldata.rl_tx_prodidx;
while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (re_encap(sc, &m_head, &idx)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
queued++;
}
if (queued == 0)
return;
/* Flush the TX descriptors */
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_tx_prodidx = idx;
/*
* RealTek put the TX poll request register in a different
* location on the 8169 gigE chip. I don't know why.
*/
if (sc->rl_type == RL_8169)
CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
else
CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset the
* countdown timer, which will begin counting until it hits
* the value in the TIMERINT register, and then trigger an
* interrupt. Each time we write to the TIMERCNT register,
* the timer count is reset to 0.
*/
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
static void
re_init(xsc)
void *xsc;
{
struct rl_softc *sc = xsc;
RL_LOCK(sc);
re_init_locked(sc);
RL_UNLOCK(sc);
}
static void
re_init_locked(sc)
struct rl_softc *sc;
{
struct ifnet *ifp = sc->rl_ifp;
struct mii_data *mii;
u_int32_t rxcfg = 0;
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
re_stop(sc);
/*
* Enable C+ RX and TX mode, as well as VLAN stripping and
* RX checksum offload. We must configure the C+ register
* before all others.
*/
CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
RL_CPLUSCMD_VLANSTRIP|
(ifp->if_capenable & IFCAP_RXCSUM ?
RL_CPLUSCMD_RXCSUM_ENB : 0));
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
CSR_WRITE_STREAM_4(sc, RL_IDR0,
*(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
CSR_WRITE_STREAM_4(sc, RL_IDR4,
*(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
/*
* For C+ mode, initialize the RX descriptors and mbufs.
*/
re_rx_list_init(sc);
re_tx_list_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
if (sc->rl_testmode) {
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TXCFG,
RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
else
CSR_WRITE_4(sc, RL_TXCFG,
RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
} else
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RL_RXCFG);
rxcfg |= RL_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= RL_RXCFG_RX_ALLPHYS;
else
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
rxcfg |= RL_RXCFG_RX_BROAD;
else
rxcfg &= ~RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
/*
* Program the multicast filter, if necessary.
*/
re_setmulti(sc);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_flags & IFF_POLLING)
CSR_WRITE_2(sc, RL_IMR, 0);
else /* otherwise ... */
#endif /* DEVICE_POLLING */
/*
* Enable interrupts.
*/
if (sc->rl_testmode)
CSR_WRITE_2(sc, RL_IMR, 0);
else
CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
/* Set initial TX threshold */
sc->rl_txthresh = RL_TX_THRESH_INIT;
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
#ifdef notdef
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
#endif
/*
* Load the addresses of the RX and TX lists into the chip.
*/
CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
/*
* Initialize the timer interrupt register so that
* a timer interrupt will be generated once the timer
* reaches a certain number of ticks. The timer is
* reloaded on each transmit. This gives us TX interrupt
* moderation, which dramatically improves TX frame rate.
*/
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
else
CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
/*
* For 8169 gigE NICs, set the max allowed RX packet
* size so we can receive jumbo frames.
*/
if (sc->rl_type == RL_8169)
CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
if (sc->rl_testmode)
return;
mii_mediachg(mii);
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->rl_stat_ch = timeout(re_tick, sc, hz);
}
/*
* Set media options.
*/
static int
re_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
mii_mediachg(mii);
return (0);
}
/*
* Report current media status.
*/
static void
re_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct rl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
re_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch (command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > RL_JUMBO_MTU)
error = EINVAL;
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
RL_LOCK(sc);
if (ifp->if_flags & IFF_UP)
re_init_locked(sc);
else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
re_stop(sc);
RL_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
RL_LOCK(sc);
re_setmulti(sc);
RL_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->rl_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
ifp->if_capenable |=
ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = RE_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
re_init(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
re_watchdog(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
sc = ifp->if_softc;
RL_LOCK(sc);
printf("re%d: watchdog timeout\n", sc->rl_unit);
ifp->if_oerrors++;
re_txeof(sc);
re_rxeof(sc);
re_init_locked(sc);
RL_UNLOCK(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
re_stop(sc)
struct rl_softc *sc;
{
register int i;
struct ifnet *ifp;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
ifp->if_timer = 0;
untimeout(re_tick, sc, sc->rl_stat_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < RL_TX_DESC_CNT; i++) {
if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_tx_dmamap[i]);
m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
sc->rl_ldata.rl_tx_mbuf[i] = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < RL_RX_DESC_CNT; i++) {
if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->rl_ldata.rl_mtag,
sc->rl_ldata.rl_rx_dmamap[i]);
m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
sc->rl_ldata.rl_rx_mbuf[i] = NULL;
}
}
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
re_suspend(dev)
device_t dev;
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
re_stop(sc);
sc->suspended = 1;
RL_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
re_resume(dev)
device_t dev;
{
struct rl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
RL_LOCK(sc);
ifp = sc->rl_ifp;
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
re_init_locked(sc);
sc->suspended = 0;
RL_UNLOCK(sc);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
re_shutdown(dev)
device_t dev;
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
re_stop(sc);
/*
* Mark interface as down since otherwise we will panic if
* interrupt comes in later on, which can happen in some
* cases.
*/
sc->rl_ifp->if_flags &= ~IFF_UP;
RL_UNLOCK(sc);
}