freebsd-nq/sys/dev/netmap/netmap_mem1.c
Luigi Rizzo d76bf4ff7b A bit of cleanup in the names of fields of netmap-related structures.
Use the name 'ring' instead of 'queue' in all fields.
Bump NETMAP_API.
2012-04-13 16:03:07 +00:00

522 lines
16 KiB
C

/*
* Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*
* The original netmap memory allocator, using a single large
* chunk of memory allocated with contigmalloc.
*/
/*
* Default amount of memory pre-allocated by the module.
* We start with a large size and then shrink our demand
* according to what is avalable when the module is loaded.
*/
#define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE)
static void * netmap_malloc(size_t size, const char *msg);
static void netmap_free(void *addr, const char *msg);
#define netmap_if_malloc(len) netmap_malloc(len, "nifp")
#define netmap_if_free(v) netmap_free((v), "nifp")
#define netmap_ring_malloc(len) netmap_malloc(len, "ring")
#define netmap_free_rings(na) \
netmap_free((na)->tx_rings[0].ring, "shadow rings");
/*
* Allocator for a pool of packet buffers. For each buffer we have
* one entry in the bitmap to signal the state. Allocation scans
* the bitmap, but since this is done only on attach, we are not
* too worried about performance
* XXX if we need to allocate small blocks, a translation
* table is used both for kernel virtual address and physical
* addresses.
*/
struct netmap_buf_pool {
u_int total_buffers; /* total buffers. */
u_int free;
u_int bufsize;
char *base; /* buffer base address */
uint32_t *bitmap; /* one bit per buffer, 1 means free */
};
struct netmap_buf_pool nm_buf_pool;
SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers,
CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers");
SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers,
CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers");
/*
* Allocate n buffers from the ring, and fill the slot.
* Buffer 0 is the 'junk' buffer.
*/
static void
netmap_new_bufs(struct netmap_if *nifp __unused,
struct netmap_slot *slot, u_int n)
{
struct netmap_buf_pool *p = &nm_buf_pool;
uint32_t bi = 0; /* index in the bitmap */
uint32_t mask, j, i = 0; /* slot counter */
if (n > p->free) {
D("only %d out of %d buffers available", i, n);
return;
}
/* termination is guaranteed by p->free */
while (i < n && p->free > 0) {
uint32_t cur = p->bitmap[bi];
if (cur == 0) { /* bitmask is fully used */
bi++;
continue;
}
/* locate a slot */
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ;
p->bitmap[bi] &= ~mask; /* slot in use */
p->free--;
slot[i].buf_idx = bi*32+j;
slot[i].len = p->bufsize;
slot[i].flags = NS_BUF_CHANGED;
i++;
}
ND("allocated %d buffers, %d available", n, p->free);
}
static void
netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i)
{
struct netmap_buf_pool *p = &nm_buf_pool;
uint32_t pos, mask;
if (i >= p->total_buffers) {
D("invalid free index %d", i);
return;
}
pos = i / 32;
mask = 1 << (i % 32);
if (p->bitmap[pos] & mask) {
D("slot %d already free", i);
return;
}
p->bitmap[pos] |= mask;
p->free++;
}
/* Descriptor of the memory objects handled by our memory allocator. */
struct netmap_mem_obj {
TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the
chain. */
int nmo_used; /* flag set on used memory objects. */
size_t nmo_size; /* size of the memory area reserved for the
object. */
void *nmo_data; /* pointer to the memory area. */
};
/* Wrap our memory objects to make them ``chainable``. */
TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj);
/* Descriptor of our custom memory allocator. */
struct netmap_mem_d {
struct mtx nm_mtx; /* lock used to handle the chain of memory
objects. */
struct netmap_mem_obj_h nm_molist; /* list of memory objects */
size_t nm_size; /* total amount of memory used for rings etc. */
size_t nm_totalsize; /* total amount of allocated memory
(the difference is used for buffers) */
size_t nm_buf_start; /* offset of packet buffers.
This is page-aligned. */
size_t nm_buf_len; /* total memory for buffers */
void *nm_buffer; /* pointer to the whole pre-allocated memory
area. */
};
/* Shorthand to compute a netmap interface offset. */
#define netmap_if_offset(v) \
((char *) (v) - (char *) nm_mem->nm_buffer)
/* .. and get a physical address given a memory offset */
#define netmap_ofstophys(o) \
(vtophys(nm_mem->nm_buffer) + (o))
/*------ netmap memory allocator -------*/
/*
* Request for a chunk of memory.
*
* Memory objects are arranged into a list, hence we need to walk this
* list until we find an object with the needed amount of data free.
* This sounds like a completely inefficient implementation, but given
* the fact that data allocation is done once, we can handle it
* flawlessly.
*
* Return NULL on failure.
*/
static void *
netmap_malloc(size_t size, __unused const char *msg)
{
struct netmap_mem_obj *mem_obj, *new_mem_obj;
void *ret = NULL;
NMA_LOCK();
TAILQ_FOREACH(mem_obj, &nm_mem->nm_molist, nmo_next) {
if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size)
continue;
new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
M_WAITOK | M_ZERO);
TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next);
new_mem_obj->nmo_used = 1;
new_mem_obj->nmo_size = size;
new_mem_obj->nmo_data = mem_obj->nmo_data;
memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size);
mem_obj->nmo_size -= size;
mem_obj->nmo_data = (char *) mem_obj->nmo_data + size;
if (mem_obj->nmo_size == 0) {
TAILQ_REMOVE(&nm_mem->nm_molist, mem_obj,
nmo_next);
free(mem_obj, M_NETMAP);
}
ret = new_mem_obj->nmo_data;
break;
}
NMA_UNLOCK();
ND("%s: %d bytes at %p", msg, size, ret);
return (ret);
}
/*
* Return the memory to the allocator.
*
* While freeing a memory object, we try to merge adjacent chunks in
* order to reduce memory fragmentation.
*/
static void
netmap_free(void *addr, const char *msg)
{
size_t size;
struct netmap_mem_obj *cur, *prev, *next;
if (addr == NULL) {
D("NULL addr for %s", msg);
return;
}
NMA_LOCK();
TAILQ_FOREACH(cur, &nm_mem->nm_molist, nmo_next) {
if (cur->nmo_data == addr && cur->nmo_used)
break;
}
if (cur == NULL) {
NMA_UNLOCK();
D("invalid addr %s %p", msg, addr);
return;
}
size = cur->nmo_size;
cur->nmo_used = 0;
/* merge current chunk of memory with the previous one,
if present. */
prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next);
if (prev && prev->nmo_used == 0) {
TAILQ_REMOVE(&nm_mem->nm_molist, cur, nmo_next);
prev->nmo_size += cur->nmo_size;
free(cur, M_NETMAP);
cur = prev;
}
/* merge with the next one */
next = TAILQ_NEXT(cur, nmo_next);
if (next && next->nmo_used == 0) {
TAILQ_REMOVE(&nm_mem->nm_molist, next, nmo_next);
cur->nmo_size += next->nmo_size;
free(next, M_NETMAP);
}
NMA_UNLOCK();
ND("freed %s %d bytes at %p", msg, size, addr);
}
/*
* Create and return a new ``netmap_if`` object, and possibly also
* rings and packet buffors.
*
* Return NULL on failure.
*/
static void *
netmap_if_new(const char *ifname, struct netmap_adapter *na)
{
struct netmap_if *nifp;
struct netmap_ring *ring;
struct netmap_kring *kring;
char *buff;
u_int i, len, ofs, numdesc;
u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack queue */
u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack queue */
/*
* the descriptor is followed inline by an array of offsets
* to the tx and rx rings in the shared memory region.
*/
len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
nifp = netmap_if_malloc(len);
if (nifp == NULL)
return (NULL);
/* initialize base fields */
*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
strncpy(nifp->ni_name, ifname, IFNAMSIZ);
(na->refcount)++; /* XXX atomic ? we are under lock */
if (na->refcount > 1)
goto final;
/*
* First instance. Allocate the netmap rings
* (one for each hw queue, one pair for the host).
* The rings are contiguous, but have variable size.
* The entire block is reachable at
* na->tx_rings[0]
*/
len = (ntx + nrx) * sizeof(struct netmap_ring) +
(ntx * na->num_tx_desc + nrx * na->num_rx_desc) *
sizeof(struct netmap_slot);
buff = netmap_ring_malloc(len);
if (buff == NULL) {
D("failed to allocate %d bytes for %s shadow ring",
len, ifname);
error:
(na->refcount)--;
netmap_if_free(nifp);
return (NULL);
}
/* Check whether we have enough buffers */
len = ntx * na->num_tx_desc + nrx * na->num_rx_desc;
NMA_LOCK();
if (nm_buf_pool.free < len) {
NMA_UNLOCK();
netmap_free(buff, "not enough bufs");
goto error;
}
/*
* in the kring, store the pointers to the shared rings
* and initialize the rings. We are under NMA_LOCK().
*/
ofs = 0;
for (i = 0; i < ntx; i++) { /* Transmit rings */
kring = &na->tx_rings[i];
numdesc = na->num_tx_desc;
bzero(kring, sizeof(*kring));
kring->na = na;
ring = kring->ring = (struct netmap_ring *)(buff + ofs);
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
nm_buf_pool.base - (char *)ring;
ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs);
*(uint32_t *)(uintptr_t)&ring->num_slots =
kring->nkr_num_slots = numdesc;
/*
* IMPORTANT:
* Always keep one slot empty, so we can detect new
* transmissions comparing cur and nr_hwcur (they are
* the same only if there are no new transmissions).
*/
ring->avail = kring->nr_hwavail = numdesc - 1;
ring->cur = kring->nr_hwcur = 0;
*(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
netmap_new_bufs(nifp, ring->slot, numdesc);
ofs += sizeof(struct netmap_ring) +
numdesc * sizeof(struct netmap_slot);
}
for (i = 0; i < nrx; i++) { /* Receive rings */
kring = &na->rx_rings[i];
numdesc = na->num_rx_desc;
bzero(kring, sizeof(*kring));
kring->na = na;
ring = kring->ring = (struct netmap_ring *)(buff + ofs);
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
nm_buf_pool.base - (char *)ring;
ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs);
*(uint32_t *)(uintptr_t)&ring->num_slots =
kring->nkr_num_slots = numdesc;
ring->cur = kring->nr_hwcur = 0;
ring->avail = kring->nr_hwavail = 0; /* empty */
*(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
netmap_new_bufs(nifp, ring->slot, numdesc);
ofs += sizeof(struct netmap_ring) +
numdesc * sizeof(struct netmap_slot);
}
NMA_UNLOCK();
// XXX initialize the selrecord structs.
final:
/*
* fill the slots for the rx and tx queues. They contain the offset
* between the ring and nifp, so the information is usable in
* userspace to reach the ring from the nifp.
*/
for (i = 0; i < ntx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
(char *)na->tx_rings[i].ring - (char *)nifp;
}
for (i = 0; i < nrx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
(char *)na->rx_rings[i].ring - (char *)nifp;
}
return (nifp);
}
/*
* Initialize the memory allocator.
*
* Create the descriptor for the memory , allocate the pool of memory
* and initialize the list of memory objects with a single chunk
* containing the whole pre-allocated memory marked as free.
*
* Start with a large size, then halve as needed if we fail to
* allocate the block. While halving, always add one extra page
* because buffers 0 and 1 are used for special purposes.
* Return 0 on success, errno otherwise.
*/
static int
netmap_memory_init(void)
{
struct netmap_mem_obj *mem_obj;
void *buf = NULL;
int i, n, sz = NETMAP_MEMORY_SIZE;
int extra_sz = 0; // space for rings and two spare buffers
for (; sz >= 1<<20; sz >>=1) {
extra_sz = sz/200;
extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
buf = contigmalloc(sz + extra_sz,
M_NETMAP,
M_WAITOK | M_ZERO,
0, /* low address */
-1UL, /* high address */
PAGE_SIZE, /* alignment */
0 /* boundary */
);
if (buf)
break;
}
if (buf == NULL)
return (ENOMEM);
sz += extra_sz;
nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
M_WAITOK | M_ZERO);
mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
MTX_DEF);
TAILQ_INIT(&nm_mem->nm_molist);
nm_mem->nm_buffer = buf;
nm_mem->nm_totalsize = sz;
/*
* A buffer takes 2k, a slot takes 8 bytes + ring overhead,
* so the ratio is 200:1. In other words, we can use 1/200 of
* the memory for the rings, and the rest for the buffers,
* and be sure we never run out.
*/
nm_mem->nm_size = sz/200;
nm_mem->nm_buf_start =
(nm_mem->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
nm_mem->nm_buf_len = sz - nm_mem->nm_buf_start;
nm_buf_pool.base = nm_mem->nm_buffer;
nm_buf_pool.base += nm_mem->nm_buf_start;
netmap_buffer_base = nm_buf_pool.base;
D("netmap_buffer_base %p (offset %d)",
netmap_buffer_base, (int)nm_mem->nm_buf_start);
/* number of buffers, they all start as free */
netmap_total_buffers = nm_buf_pool.total_buffers =
nm_mem->nm_buf_len / NETMAP_BUF_SIZE;
nm_buf_pool.bufsize = NETMAP_BUF_SIZE;
D("Have %d MB, use %dKB for rings, %d buffers at %p",
(sz >> 20), (int)(nm_mem->nm_size >> 10),
nm_buf_pool.total_buffers, nm_buf_pool.base);
/* allocate and initialize the bitmap. Entry 0 is considered
* always busy (used as default when there are no buffers left).
*/
n = (nm_buf_pool.total_buffers + 31) / 32;
nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP,
M_WAITOK | M_ZERO);
nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */
for (i = 1; i < n; i++)
nm_buf_pool.bitmap[i] = ~0;
nm_buf_pool.free = nm_buf_pool.total_buffers - 2;
mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
M_WAITOK | M_ZERO);
TAILQ_INSERT_HEAD(&nm_mem->nm_molist, mem_obj, nmo_next);
mem_obj->nmo_used = 0;
mem_obj->nmo_size = nm_mem->nm_size;
mem_obj->nmo_data = nm_mem->nm_buffer;
return (0);
}
/*
* Finalize the memory allocator.
*
* Free all the memory objects contained inside the list, and deallocate
* the pool of memory; finally free the memory allocator descriptor.
*/
static void
netmap_memory_fini(void)
{
struct netmap_mem_obj *mem_obj;
while (!TAILQ_EMPTY(&nm_mem->nm_molist)) {
mem_obj = TAILQ_FIRST(&nm_mem->nm_molist);
TAILQ_REMOVE(&nm_mem->nm_molist, mem_obj, nmo_next);
if (mem_obj->nmo_used == 1) {
printf("netmap: leaked %d bytes at %p\n",
(int)mem_obj->nmo_size,
mem_obj->nmo_data);
}
free(mem_obj, M_NETMAP);
}
contigfree(nm_mem->nm_buffer, nm_mem->nm_totalsize, M_NETMAP);
// XXX mutex_destroy(nm_mtx);
free(nm_mem, M_NETMAP);
}
/*------------- end of memory allocator -----------------*/