Rui Paulo 8e648814b0 MFV illumos
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation is missing checks

MFC after:	2 weeks
2014-06-26 23:21:11 +00:00

1046 lines
28 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <ctf_impl.h>
#include <sys/mman.h>
#include <sys/zmod.h>
static const ctf_dmodel_t _libctf_models[] = {
{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
{ NULL, 0, 0, 0, 0, 0, 0 }
};
const char _CTF_SECTION[] = ".SUNW_ctf";
const char _CTF_NULLSTR[] = "";
int _libctf_version = CTF_VERSION; /* library client version */
int _libctf_debug = 0; /* debugging messages enabled */
static ushort_t
get_kind_v1(ushort_t info)
{
return (CTF_INFO_KIND_V1(info));
}
static ushort_t
get_kind_v2(ushort_t info)
{
return (CTF_INFO_KIND(info));
}
static ushort_t
get_root_v1(ushort_t info)
{
return (CTF_INFO_ISROOT_V1(info));
}
static ushort_t
get_root_v2(ushort_t info)
{
return (CTF_INFO_ISROOT(info));
}
static ushort_t
get_vlen_v1(ushort_t info)
{
return (CTF_INFO_VLEN_V1(info));
}
static ushort_t
get_vlen_v2(ushort_t info)
{
return (CTF_INFO_VLEN(info));
}
static const ctf_fileops_t ctf_fileops[] = {
{ NULL, NULL },
{ get_kind_v1, get_root_v1, get_vlen_v1 },
{ get_kind_v2, get_root_v2, get_vlen_v2 },
};
/*
* Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
*/
static Elf64_Sym *
sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
{
dst->st_name = src->st_name;
dst->st_value = src->st_value;
dst->st_size = src->st_size;
dst->st_info = src->st_info;
dst->st_other = src->st_other;
dst->st_shndx = src->st_shndx;
return (dst);
}
/*
* Initialize the symtab translation table by filling each entry with the
* offset of the CTF type or function data corresponding to each STT_FUNC or
* STT_OBJECT entry in the symbol table.
*/
static int
init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
const ctf_sect_t *sp, const ctf_sect_t *strp)
{
const uchar_t *symp = sp->cts_data;
uint_t *xp = fp->ctf_sxlate;
uint_t *xend = xp + fp->ctf_nsyms;
uint_t objtoff = hp->cth_objtoff;
uint_t funcoff = hp->cth_funcoff;
ushort_t info, vlen;
Elf64_Sym sym, *gsp;
const char *name;
/*
* The CTF data object and function type sections are ordered to match
* the relative order of the respective symbol types in the symtab.
* If no type information is available for a symbol table entry, a
* pad is inserted in the CTF section. As a further optimization,
* anonymous or undefined symbols are omitted from the CTF data.
*/
for (; xp < xend; xp++, symp += sp->cts_entsize) {
if (sp->cts_entsize == sizeof (Elf32_Sym))
gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
else
gsp = (Elf64_Sym *)(uintptr_t)symp;
if (gsp->st_name < strp->cts_size)
name = (const char *)strp->cts_data + gsp->st_name;
else
name = _CTF_NULLSTR;
if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
strcmp(name, "_START_") == 0 ||
strcmp(name, "_END_") == 0) {
*xp = -1u;
continue;
}
switch (ELF64_ST_TYPE(gsp->st_info)) {
case STT_OBJECT:
if (objtoff >= hp->cth_funcoff ||
(gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
*xp = -1u;
break;
}
*xp = objtoff;
objtoff += sizeof (ushort_t);
break;
case STT_FUNC:
if (funcoff >= hp->cth_typeoff) {
*xp = -1u;
break;
}
*xp = funcoff;
info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
vlen = LCTF_INFO_VLEN(fp, info);
/*
* If we encounter a zero pad at the end, just skip it.
* Otherwise skip over the function and its return type
* (+2) and the argument list (vlen).
*/
if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
vlen == 0)
funcoff += sizeof (ushort_t); /* skip pad */
else
funcoff += sizeof (ushort_t) * (vlen + 2);
break;
default:
*xp = -1u;
break;
}
}
ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
return (0);
}
/*
* Initialize the type ID translation table with the byte offset of each type,
* and initialize the hash tables of each named type.
*/
static int
init_types(ctf_file_t *fp, const ctf_header_t *cth)
{
/* LINTED - pointer alignment */
const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
/* LINTED - pointer alignment */
const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
ulong_t pop[CTF_K_MAX + 1] = { 0 };
const ctf_type_t *tp;
ctf_hash_t *hp;
ushort_t id, dst;
uint_t *xp;
/*
* We initially determine whether the container is a child or a parent
* based on the value of cth_parname. To support containers that pre-
* date cth_parname, we also scan the types themselves for references
* to values in the range reserved for child types in our first pass.
*/
int child = cth->cth_parname != 0;
int nlstructs = 0, nlunions = 0;
int err;
/*
* We make two passes through the entire type section. In this first
* pass, we count the number of each type and the total number of types.
*/
for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
ssize_t size, increment;
size_t vbytes;
uint_t n;
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
vbytes = sizeof (uint_t);
break;
case CTF_K_ARRAY:
vbytes = sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH) {
ctf_member_t *mp = (ctf_member_t *)
((uintptr_t)tp + increment);
vbytes = sizeof (ctf_member_t) * vlen;
for (n = vlen; n != 0; n--, mp++)
child |= CTF_TYPE_ISCHILD(mp->ctm_type);
} else {
ctf_lmember_t *lmp = (ctf_lmember_t *)
((uintptr_t)tp + increment);
vbytes = sizeof (ctf_lmember_t) * vlen;
for (n = vlen; n != 0; n--, lmp++)
child |=
CTF_TYPE_ISCHILD(lmp->ctlm_type);
}
break;
case CTF_K_ENUM:
vbytes = sizeof (ctf_enum_t) * vlen;
break;
case CTF_K_FORWARD:
/*
* For forward declarations, ctt_type is the CTF_K_*
* kind for the tag, so bump that population count too.
* If ctt_type is unknown, treat the tag as a struct.
*/
if (tp->ctt_type == CTF_K_UNKNOWN ||
tp->ctt_type >= CTF_K_MAX)
pop[CTF_K_STRUCT]++;
else
pop[tp->ctt_type]++;
/*FALLTHRU*/
case CTF_K_UNKNOWN:
vbytes = 0;
break;
case CTF_K_POINTER:
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
child |= CTF_TYPE_ISCHILD(tp->ctt_type);
vbytes = 0;
break;
default:
ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
return (ECTF_CORRUPT);
}
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
pop[kind]++;
}
/*
* If we detected a reference to a child type ID, then we know this
* container is a child and may have a parent's types imported later.
*/
if (child) {
ctf_dprintf("CTF container %p is a child\n", (void *)fp);
fp->ctf_flags |= LCTF_CHILD;
} else
ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
/*
* Now that we've counted up the number of each type, we can allocate
* the hash tables, type translation table, and pointer table.
*/
if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
return (err);
if ((err = ctf_hash_create(&fp->ctf_names,
pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
return (err);
fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
return (EAGAIN); /* memory allocation failed */
xp = fp->ctf_txlate;
*xp++ = 0; /* type id 0 is used as a sentinel value */
bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
/*
* In the second pass through the types, we fill in each entry of the
* type and pointer tables and add names to the appropriate hashes.
*/
for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
ssize_t size, increment;
const char *name;
size_t vbytes;
ctf_helem_t *hep;
ctf_encoding_t cte;
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
name = ctf_strptr(fp, tp->ctt_name);
switch (kind) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
/*
* Only insert a new integer base type definition if
* this type name has not been defined yet. We re-use
* the names with different encodings for bit-fields.
*/
if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
name, strlen(name))) == NULL) {
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
} else if (ctf_type_encoding(fp, hep->h_type,
&cte) == 0 && cte.cte_bits == 0) {
/*
* Work-around SOS8 stabs bug: replace existing
* intrinsic w/ same name if it was zero bits.
*/
hep->h_type = CTF_INDEX_TO_TYPE(id, child);
}
vbytes = sizeof (uint_t);
break;
case CTF_K_ARRAY:
vbytes = sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
err = ctf_hash_define(&fp->ctf_structs, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH)
vbytes = sizeof (ctf_member_t) * vlen;
else {
vbytes = sizeof (ctf_lmember_t) * vlen;
nlstructs++;
}
break;
case CTF_K_UNION:
err = ctf_hash_define(&fp->ctf_unions, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT_THRESH)
vbytes = sizeof (ctf_member_t) * vlen;
else {
vbytes = sizeof (ctf_lmember_t) * vlen;
nlunions++;
}
break;
case CTF_K_ENUM:
err = ctf_hash_define(&fp->ctf_enums, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = sizeof (ctf_enum_t) * vlen;
break;
case CTF_K_TYPEDEF:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
vbytes = 0;
break;
case CTF_K_FORWARD:
/*
* Only insert forward tags into the given hash if the
* type or tag name is not already present.
*/
switch (tp->ctt_type) {
case CTF_K_STRUCT:
hp = &fp->ctf_structs;
break;
case CTF_K_UNION:
hp = &fp->ctf_unions;
break;
case CTF_K_ENUM:
hp = &fp->ctf_enums;
break;
default:
hp = &fp->ctf_structs;
}
if (ctf_hash_lookup(hp, fp,
name, strlen(name)) == NULL) {
err = ctf_hash_insert(hp, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
}
vbytes = 0;
break;
case CTF_K_POINTER:
/*
* If the type referenced by the pointer is in this CTF
* container, then store the index of the pointer type
* in fp->ctf_ptrtab[ index of referenced type ].
*/
if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
fp->ctf_ptrtab[
CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
/*FALLTHRU*/
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
err = ctf_hash_insert(&fp->ctf_names, fp,
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
if (err != 0 && err != ECTF_STRTAB)
return (err);
/*FALLTHRU*/
default:
vbytes = 0;
break;
}
*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
}
ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
ctf_dprintf("%u struct names hashed (%d long)\n",
ctf_hash_size(&fp->ctf_structs), nlstructs);
ctf_dprintf("%u union names hashed (%d long)\n",
ctf_hash_size(&fp->ctf_unions), nlunions);
ctf_dprintf("%u base type names hashed\n",
ctf_hash_size(&fp->ctf_names));
/*
* Make an additional pass through the pointer table to find pointers
* that point to anonymous typedef nodes. If we find one, modify the
* pointer table so that the pointer is also known to point to the
* node that is referenced by the anonymous typedef node.
*/
for (id = 1; id <= fp->ctf_typemax; id++) {
if ((dst = fp->ctf_ptrtab[id]) != 0) {
tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
fp->ctf_ptrtab[
CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
}
}
return (0);
}
/*
* Decode the specified CTF buffer and optional symbol table and create a new
* CTF container representing the symbolic debugging information. This code
* can be used directly by the debugger, or it can be used as the engine for
* ctf_fdopen() or ctf_open(), below.
*/
ctf_file_t *
ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
const ctf_sect_t *strsect, int *errp)
{
const ctf_preamble_t *pp;
ctf_header_t hp;
ctf_file_t *fp;
void *buf, *base;
size_t size, hdrsz;
int err;
if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
return (ctf_set_open_errno(errp, EINVAL));
if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
symsect->cts_entsize != sizeof (Elf64_Sym))
return (ctf_set_open_errno(errp, ECTF_SYMTAB));
if (symsect != NULL && symsect->cts_data == NULL)
return (ctf_set_open_errno(errp, ECTF_SYMBAD));
if (strsect != NULL && strsect->cts_data == NULL)
return (ctf_set_open_errno(errp, ECTF_STRBAD));
if (ctfsect->cts_size < sizeof (ctf_preamble_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
pp = (const ctf_preamble_t *)ctfsect->cts_data;
ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
pp->ctp_magic, pp->ctp_version);
/*
* Validate each part of the CTF header (either V1 or V2).
* First, we validate the preamble (common to all versions). At that
* point, we know specific header version, and can validate the
* version-specific parts including section offsets and alignments.
*/
if (pp->ctp_magic != CTF_MAGIC)
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
if (pp->ctp_version == CTF_VERSION_2) {
if (ctfsect->cts_size < sizeof (ctf_header_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
bcopy(ctfsect->cts_data, &hp, sizeof (hp));
hdrsz = sizeof (ctf_header_t);
} else if (pp->ctp_version == CTF_VERSION_1) {
const ctf_header_v1_t *h1p =
(const ctf_header_v1_t *)ctfsect->cts_data;
if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
bzero(&hp, sizeof (hp));
hp.cth_preamble = h1p->cth_preamble;
hp.cth_objtoff = h1p->cth_objtoff;
hp.cth_funcoff = h1p->cth_funcoff;
hp.cth_typeoff = h1p->cth_typeoff;
hp.cth_stroff = h1p->cth_stroff;
hp.cth_strlen = h1p->cth_strlen;
hdrsz = sizeof (ctf_header_v1_t);
} else
return (ctf_set_open_errno(errp, ECTF_CTFVERS));
size = hp.cth_stroff + hp.cth_strlen;
ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
hp.cth_funcoff > size || hp.cth_typeoff > size ||
hp.cth_stroff > size)
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
if (hp.cth_lbloff > hp.cth_objtoff ||
hp.cth_objtoff > hp.cth_funcoff ||
hp.cth_funcoff > hp.cth_typeoff ||
hp.cth_typeoff > hp.cth_stroff)
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
(hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
/*
* Once everything is determined to be valid, attempt to decompress
* the CTF data buffer if it is compressed. Otherwise we just put
* the data section's buffer pointer into ctf_buf, below.
*/
if (hp.cth_flags & CTF_F_COMPRESS) {
size_t srclen, dstlen;
const void *src;
int rc = Z_OK;
if (ctf_zopen(errp) == NULL)
return (NULL); /* errp is set for us */
if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
return (ctf_set_open_errno(errp, ECTF_ZALLOC));
bcopy(ctfsect->cts_data, base, hdrsz);
((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
buf = (uchar_t *)base + hdrsz;
src = (uchar_t *)ctfsect->cts_data + hdrsz;
srclen = ctfsect->cts_size - hdrsz;
dstlen = size;
if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
ctf_data_free(base, size + hdrsz);
return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
}
if (dstlen != size) {
ctf_dprintf("zlib inflate short -- got %lu of %lu "
"bytes\n", (ulong_t)dstlen, (ulong_t)size);
ctf_data_free(base, size + hdrsz);
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
}
ctf_data_protect(base, size + hdrsz);
} else {
base = (void *)ctfsect->cts_data;
buf = (uchar_t *)base + hdrsz;
}
/*
* Once we have uncompressed and validated the CTF data buffer, we can
* proceed with allocating a ctf_file_t and initializing it.
*/
if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
return (ctf_set_open_errno(errp, EAGAIN));
bzero(fp, sizeof (ctf_file_t));
fp->ctf_version = hp.cth_version;
fp->ctf_fileops = &ctf_fileops[hp.cth_version];
bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
if (symsect != NULL) {
bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
}
if (fp->ctf_data.cts_name != NULL)
fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
if (fp->ctf_symtab.cts_name != NULL)
fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
if (fp->ctf_strtab.cts_name != NULL)
fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
if (fp->ctf_data.cts_name == NULL)
fp->ctf_data.cts_name = _CTF_NULLSTR;
if (fp->ctf_symtab.cts_name == NULL)
fp->ctf_symtab.cts_name = _CTF_NULLSTR;
if (fp->ctf_strtab.cts_name == NULL)
fp->ctf_strtab.cts_name = _CTF_NULLSTR;
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
if (strsect != NULL) {
fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
}
fp->ctf_base = base;
fp->ctf_buf = buf;
fp->ctf_size = size + hdrsz;
/*
* If we have a parent container name and label, store the relocated
* string pointers in the CTF container for easy access later.
*/
if (hp.cth_parlabel != 0)
fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
if (hp.cth_parname != 0)
fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
fp->ctf_parname ? fp->ctf_parname : "<NULL>",
fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
/*
* If we have a symbol table section, allocate and initialize
* the symtab translation table, pointed to by ctf_sxlate.
*/
if (symsect != NULL) {
fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
if (fp->ctf_sxlate == NULL) {
(void) ctf_set_open_errno(errp, EAGAIN);
goto bad;
}
if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
(void) ctf_set_open_errno(errp, err);
goto bad;
}
}
if ((err = init_types(fp, &hp)) != 0) {
(void) ctf_set_open_errno(errp, err);
goto bad;
}
/*
* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
* array of type name prefixes and the corresponding ctf_hash to use.
* NOTE: This code must be kept in sync with the code in ctf_update().
*/
fp->ctf_lookups[0].ctl_prefix = "struct";
fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
fp->ctf_lookups[1].ctl_prefix = "union";
fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
fp->ctf_lookups[2].ctl_prefix = "enum";
fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
fp->ctf_lookups[4].ctl_prefix = NULL;
fp->ctf_lookups[4].ctl_len = 0;
fp->ctf_lookups[4].ctl_hash = NULL;
if (symsect != NULL) {
if (symsect->cts_entsize == sizeof (Elf64_Sym))
(void) ctf_setmodel(fp, CTF_MODEL_LP64);
else
(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
} else
(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
fp->ctf_refcnt = 1;
return (fp);
bad:
ctf_close(fp);
return (NULL);
}
/*
* Dupliate a ctf_file_t and its underlying section information into a new
* container. This works by copying the three ctf_sect_t's of the original
* container if they exist and passing those into ctf_bufopen. To copy those, we
* mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
* the cheapest thing, but it's what we've got.
*/
ctf_file_t *
ctf_dup(ctf_file_t *ofp)
{
ctf_file_t *fp;
ctf_sect_t ctfsect, symsect, strsect;
ctf_sect_t *ctp, *symp, *strp;
void *cbuf, *symbuf, *strbuf;
int err;
cbuf = symbuf = strbuf = NULL;
/*
* The ctfsect isn't allowed to not exist, but the symbol and string
* section might not. We only need to copy the data of the section, not
* the name, as ctf_bufopen will take care of that.
*/
bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
cbuf = ctf_data_alloc(ctfsect.cts_size);
if (cbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
return (NULL);
}
bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
ctf_data_protect(cbuf, ctfsect.cts_size);
ctfsect.cts_data = cbuf;
ctfsect.cts_offset = 0;
ctp = &ctfsect;
if (ofp->ctf_symtab.cts_data != NULL) {
bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
symbuf = ctf_data_alloc(symsect.cts_size);
if (symbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
goto err;
}
bcopy(symsect.cts_data, symbuf, symsect.cts_size);
ctf_data_protect(symbuf, symsect.cts_size);
symsect.cts_data = symbuf;
symsect.cts_offset = 0;
symp = &symsect;
} else {
symp = NULL;
}
if (ofp->ctf_strtab.cts_data != NULL) {
bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
strbuf = ctf_data_alloc(strsect.cts_size);
if (strbuf == NULL) {
(void) ctf_set_errno(ofp, ECTF_MMAP);
goto err;
}
bcopy(strsect.cts_data, strbuf, strsect.cts_size);
ctf_data_protect(strbuf, strsect.cts_size);
strsect.cts_data = strbuf;
strsect.cts_offset = 0;
strp = &strsect;
} else {
strp = NULL;
}
fp = ctf_bufopen(ctp, symp, strp, &err);
if (fp == NULL) {
(void) ctf_set_errno(ofp, err);
goto err;
}
fp->ctf_flags |= LCTF_MMAP;
return (fp);
err:
ctf_data_free(cbuf, ctfsect.cts_size);
if (symbuf != NULL)
ctf_data_free(symbuf, symsect.cts_size);
if (strbuf != NULL)
ctf_data_free(strbuf, strsect.cts_size);
return (NULL);
}
/*
* Close the specified CTF container and free associated data structures. Note
* that ctf_close() is a reference counted operation: if the specified file is
* the parent of other active containers, its reference count will be greater
* than one and it will be freed later when no active children exist.
*/
void
ctf_close(ctf_file_t *fp)
{
ctf_dtdef_t *dtd, *ntd;
if (fp == NULL)
return; /* allow ctf_close(NULL) to simplify caller code */
ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
if (fp->ctf_refcnt > 1) {
fp->ctf_refcnt--;
return;
}
if (fp->ctf_parent != NULL)
ctf_close(fp->ctf_parent);
/*
* Note, to work properly with reference counting on the dynamic
* section, we must delete the list in reverse.
*/
for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
ntd = ctf_list_prev(dtd);
ctf_dtd_delete(fp, dtd);
}
ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
if (fp->ctf_flags & LCTF_MMAP) {
if (fp->ctf_data.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_data);
if (fp->ctf_symtab.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_symtab);
if (fp->ctf_strtab.cts_data != NULL)
ctf_sect_munmap(&fp->ctf_strtab);
}
if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
fp->ctf_data.cts_name != NULL) {
ctf_free((char *)fp->ctf_data.cts_name,
strlen(fp->ctf_data.cts_name) + 1);
}
if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
fp->ctf_symtab.cts_name != NULL) {
ctf_free((char *)fp->ctf_symtab.cts_name,
strlen(fp->ctf_symtab.cts_name) + 1);
}
if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
fp->ctf_strtab.cts_name != NULL) {
ctf_free((char *)fp->ctf_strtab.cts_name,
strlen(fp->ctf_strtab.cts_name) + 1);
}
if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
if (fp->ctf_sxlate != NULL)
ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
if (fp->ctf_txlate != NULL) {
ctf_free(fp->ctf_txlate,
sizeof (uint_t) * (fp->ctf_typemax + 1));
}
if (fp->ctf_ptrtab != NULL) {
ctf_free(fp->ctf_ptrtab,
sizeof (ushort_t) * (fp->ctf_typemax + 1));
}
ctf_hash_destroy(&fp->ctf_structs);
ctf_hash_destroy(&fp->ctf_unions);
ctf_hash_destroy(&fp->ctf_enums);
ctf_hash_destroy(&fp->ctf_names);
ctf_free(fp, sizeof (ctf_file_t));
}
/*
* Return the CTF handle for the parent CTF container, if one exists.
* Otherwise return NULL to indicate this container has no imported parent.
*/
ctf_file_t *
ctf_parent_file(ctf_file_t *fp)
{
return (fp->ctf_parent);
}
/*
* Return the name of the parent CTF container, if one exists. Otherwise
* return NULL to indicate this container is a root container.
*/
const char *
ctf_parent_name(ctf_file_t *fp)
{
return (fp->ctf_parname);
}
/*
* Import the types from the specified parent container by storing a pointer
* to it in ctf_parent and incrementing its reference count. Only one parent
* is allowed: if a parent already exists, it is replaced by the new parent.
*/
int
ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
{
if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
return (ctf_set_errno(fp, EINVAL));
if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
return (ctf_set_errno(fp, ECTF_DMODEL));
if (fp->ctf_parent != NULL)
ctf_close(fp->ctf_parent);
if (pfp != NULL) {
fp->ctf_flags |= LCTF_CHILD;
pfp->ctf_refcnt++;
}
fp->ctf_parent = pfp;
return (0);
}
/*
* Set the data model constant for the CTF container.
*/
int
ctf_setmodel(ctf_file_t *fp, int model)
{
const ctf_dmodel_t *dp;
for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
if (dp->ctd_code == model) {
fp->ctf_dmodel = dp;
return (0);
}
}
return (ctf_set_errno(fp, EINVAL));
}
/*
* Return the data model constant for the CTF container.
*/
int
ctf_getmodel(ctf_file_t *fp)
{
return (fp->ctf_dmodel->ctd_code);
}
void
ctf_setspecific(ctf_file_t *fp, void *data)
{
fp->ctf_specific = data;
}
void *
ctf_getspecific(ctf_file_t *fp)
{
return (fp->ctf_specific);
}