freebsd-nq/sys/vm/vm_glue.c
Alfred Perlstein 2395531439 Introduce a global lock for the vm subsystem (vm_mtx).
vm_mtx does not recurse and is required for most low level
vm operations.

faults can not be taken without holding Giant.

Memory subsystems can now call the base page allocators safely.

Almost all atomic ops were removed as they are covered under the
vm mutex.

Alpha and ia64 now need to catch up to i386's trap handlers.

FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).

Reviewed (partially) by: jake, jhb
2001-05-19 01:28:09 +00:00

628 lines
16 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $FreeBSD$
*/
#include "opt_rlimit.h"
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/shm.h>
#include <sys/vmmeter.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/unistd.h>
#include <machine/limits.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
extern int maxslp;
/*
* System initialization
*
* Note: proc0 from proc.h
*/
static void vm_init_limits __P((void *));
SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
/*
* THIS MUST BE THE LAST INITIALIZATION ITEM!!!
*
* Note: run scheduling should be divorced from the vm system.
*/
static void scheduler __P((void *));
SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
static void swapout __P((struct proc *));
int
kernacc(addr, len, rw)
caddr_t addr;
int len, rw;
{
boolean_t rv;
vm_offset_t saddr, eaddr;
vm_prot_t prot;
KASSERT((rw & (~VM_PROT_ALL)) == 0,
("illegal ``rw'' argument to kernacc (%x)\n", rw));
prot = rw;
saddr = trunc_page((vm_offset_t)addr);
eaddr = round_page((vm_offset_t)addr + len);
vm_map_lock_read(kernel_map);
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
vm_map_unlock_read(kernel_map);
return (rv == TRUE);
}
int
useracc(addr, len, rw)
caddr_t addr;
int len, rw;
{
boolean_t rv;
vm_prot_t prot;
vm_map_t map;
vm_map_entry_t save_hint;
KASSERT((rw & (~VM_PROT_ALL)) == 0,
("illegal ``rw'' argument to useracc (%x)\n", rw));
prot = rw;
/*
* XXX - check separately to disallow access to user area and user
* page tables - they are in the map.
*
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. It was once
* only used (as an end address) in trap.c. Use it as an end address
* here too. This bogusness has spread. I just fixed where it was
* used as a max in vm_mmap.c.
*/
if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
|| (vm_offset_t) addr + len < (vm_offset_t) addr) {
return (FALSE);
}
mtx_lock(&vm_mtx);
map = &curproc->p_vmspace->vm_map;
vm_map_lock_read(map);
/*
* We save the map hint, and restore it. Useracc appears to distort
* the map hint unnecessarily.
*/
save_hint = map->hint;
rv = vm_map_check_protection(map,
trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
map->hint = save_hint;
vm_map_unlock_read(map);
mtx_unlock(&vm_mtx);
return (rv == TRUE);
}
void
vslock(addr, len)
caddr_t addr;
u_int len;
{
mtx_lock(&vm_mtx);
vm_map_pageable(&curproc->p_vmspace->vm_map,
trunc_page((vm_offset_t)addr),
round_page((vm_offset_t)addr + len), FALSE);
mtx_unlock(&vm_mtx);
}
void
vsunlock(addr, len)
caddr_t addr;
u_int len;
{
mtx_lock(&vm_mtx);
vm_map_pageable(&curproc->p_vmspace->vm_map,
trunc_page((vm_offset_t)addr),
round_page((vm_offset_t)addr + len), TRUE);
mtx_unlock(&vm_mtx);
}
/*
* Implement fork's actions on an address space.
* Here we arrange for the address space to be copied or referenced,
* allocate a user struct (pcb and kernel stack), then call the
* machine-dependent layer to fill those in and make the new process
* ready to run. The new process is set up so that it returns directly
* to user mode to avoid stack copying and relocation problems.
*
* Called without vm_mtx.
*/
void
vm_fork(p1, p2, flags)
register struct proc *p1, *p2;
int flags;
{
register struct user *up;
mtx_lock(&vm_mtx);
if ((flags & RFPROC) == 0) {
/*
* Divorce the memory, if it is shared, essentially
* this changes shared memory amongst threads, into
* COW locally.
*/
if ((flags & RFMEM) == 0) {
if (p1->p_vmspace->vm_refcnt > 1) {
vmspace_unshare(p1);
}
}
cpu_fork(p1, p2, flags);
mtx_unlock(&vm_mtx);
return;
}
if (flags & RFMEM) {
p2->p_vmspace = p1->p_vmspace;
p1->p_vmspace->vm_refcnt++;
}
while (vm_page_count_severe()) {
VM_WAIT;
}
if ((flags & RFMEM) == 0) {
p2->p_vmspace = vmspace_fork(p1->p_vmspace);
pmap_pinit2(vmspace_pmap(p2->p_vmspace));
if (p1->p_vmspace->vm_shm)
shmfork(p1, p2);
}
pmap_new_proc(p2);
up = p2->p_addr;
/*
* p_stats currently points at fields in the user struct
* but not at &u, instead at p_addr. Copy parts of
* p_stats; zero the rest of p_stats (statistics).
*
* If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
* to share sigacts, so we use the up->u_sigacts.
*/
p2->p_stats = &up->u_stats;
if (p2->p_sigacts == NULL) {
if (p2->p_procsig->ps_refcnt != 1)
printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
p2->p_sigacts = &up->u_sigacts;
up->u_sigacts = *p1->p_sigacts;
}
bzero(&up->u_stats.pstat_startzero,
(unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
(caddr_t) &up->u_stats.pstat_startzero));
bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
((caddr_t) &up->u_stats.pstat_endcopy -
(caddr_t) &up->u_stats.pstat_startcopy));
/*
* cpu_fork will copy and update the pcb, set up the kernel stack,
* and make the child ready to run.
*/
cpu_fork(p1, p2, flags);
mtx_unlock(&vm_mtx);
}
/*
* Set default limits for VM system.
* Called for proc 0, and then inherited by all others.
*
* XXX should probably act directly on proc0.
*/
static void
vm_init_limits(udata)
void *udata;
{
register struct proc *p = udata;
int rss_limit;
/*
* Set up the initial limits on process VM. Set the maximum resident
* set size to be half of (reasonably) available memory. Since this
* is a soft limit, it comes into effect only when the system is out
* of memory - half of main memory helps to favor smaller processes,
* and reduces thrashing of the object cache.
*/
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
/* limit the limit to no less than 2MB */
rss_limit = max(cnt.v_free_count, 512);
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
}
/*
* Must be called with the proc struc mutex held.
*/
void
faultin(p)
struct proc *p;
{
PROC_LOCK_ASSERT(p, MA_OWNED);
mtx_lock_spin(&sched_lock);
if ((p->p_sflag & PS_INMEM) == 0) {
++p->p_lock;
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
mtx_assert(&Giant, MA_OWNED);
pmap_swapin_proc(p);
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
if (p->p_stat == SRUN) {
setrunqueue(p);
}
p->p_sflag |= PS_INMEM;
/* undo the effect of setting SLOCK above */
--p->p_lock;
}
mtx_unlock_spin(&sched_lock);
}
/*
* This swapin algorithm attempts to swap-in processes only if there
* is enough space for them. Of course, if a process waits for a long
* time, it will be swapped in anyway.
*
* Giant is still held at this point, to be released in tsleep.
*/
/* ARGSUSED*/
static void
scheduler(dummy)
void *dummy;
{
register struct proc *p;
register int pri;
struct proc *pp;
int ppri;
mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
loop:
mtx_lock(&vm_mtx);
if (vm_page_count_min()) {
VM_WAIT;
mtx_unlock(&vm_mtx);
goto loop;
}
mtx_unlock(&vm_mtx);
mtx_unlock(&Giant);
pp = NULL;
ppri = INT_MIN;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
mtx_lock_spin(&sched_lock);
if (p->p_stat == SRUN &&
(p->p_sflag & (PS_INMEM | PS_SWAPPING)) == 0) {
pri = p->p_swtime + p->p_slptime;
if ((p->p_sflag & PS_SWAPINREQ) == 0) {
pri -= p->p_nice * 8;
}
/*
* if this process is higher priority and there is
* enough space, then select this process instead of
* the previous selection.
*/
if (pri > ppri) {
pp = p;
ppri = pri;
}
}
mtx_unlock_spin(&sched_lock);
}
sx_sunlock(&allproc_lock);
/*
* Nothing to do, back to sleep.
*/
if ((p = pp) == NULL) {
tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
mtx_lock(&Giant);
goto loop;
}
mtx_lock_spin(&sched_lock);
p->p_sflag &= ~PS_SWAPINREQ;
mtx_unlock_spin(&sched_lock);
/*
* We would like to bring someone in. (only if there is space).
*/
mtx_lock(&Giant);
PROC_LOCK(p);
faultin(p);
PROC_UNLOCK(p);
mtx_lock_spin(&sched_lock);
p->p_swtime = 0;
mtx_unlock_spin(&sched_lock);
goto loop;
}
#ifndef NO_SWAPPING
/*
* Swap_idle_threshold1 is the guaranteed swapped in time for a process
*/
static int swap_idle_threshold1 = 2;
SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
CTLFLAG_RW, &swap_idle_threshold1, 0, "");
/*
* Swap_idle_threshold2 is the time that a process can be idle before
* it will be swapped out, if idle swapping is enabled.
*/
static int swap_idle_threshold2 = 10;
SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
CTLFLAG_RW, &swap_idle_threshold2, 0, "");
/*
* Swapout is driven by the pageout daemon. Very simple, we find eligible
* procs and unwire their u-areas. We try to always "swap" at least one
* process in case we need the room for a swapin.
* If any procs have been sleeping/stopped for at least maxslp seconds,
* they are swapped. Else, we swap the longest-sleeping or stopped process,
* if any, otherwise the longest-resident process.
*
* Can block
* must be called with vm_mtx
*/
void
swapout_procs(action)
int action;
{
register struct proc *p;
struct proc *outp, *outp2;
int outpri, outpri2;
int didswap = 0;
mtx_assert(&vm_mtx, MA_OWNED);
mtx_unlock(&vm_mtx);
outp = outp2 = NULL;
outpri = outpri2 = INT_MIN;
sx_slock(&allproc_lock);
retry:
LIST_FOREACH(p, &allproc, p_list) {
struct vmspace *vm;
PROC_LOCK(p);
if (p->p_lock != 0 ||
(p->p_flag & (P_TRACED|P_SYSTEM|P_WEXIT)) != 0) {
PROC_UNLOCK(p);
continue;
}
/*
* only aiod changes vmspace, however it will be
* skipped because of the if statement above checking
* for P_SYSTEM
*/
vm = p->p_vmspace;
mtx_lock_spin(&sched_lock);
if ((p->p_sflag & (PS_INMEM|PS_SWAPPING)) != PS_INMEM) {
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
continue;
}
switch (p->p_stat) {
default:
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
continue;
case SSLEEP:
case SSTOP:
/*
* do not swapout a realtime process
*/
if (PRI_IS_REALTIME(p->p_pri.pri_class)) {
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
continue;
}
/*
* Do not swapout a process waiting on a critical
* event of some kind. Also guarantee swap_idle_threshold1
* time in memory.
*/
if (((p->p_pri.pri_level) < PSOCK) ||
(p->p_slptime < swap_idle_threshold1)) {
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
continue;
}
/*
* If the system is under memory stress, or if we are swapping
* idle processes >= swap_idle_threshold2, then swap the process
* out.
*/
if (((action & VM_SWAP_NORMAL) == 0) &&
(((action & VM_SWAP_IDLE) == 0) ||
(p->p_slptime < swap_idle_threshold2))) {
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
continue;
}
mtx_unlock_spin(&sched_lock);
mtx_lock(&vm_mtx);
#if 0
/*
* XXX: This is broken. We release the lock we
* acquire before calling swapout, so we could
* still deadlock if another CPU locks this process'
* VM data structures after we release the lock but
* before we call swapout().
*/
++vm->vm_refcnt;
/*
* do not swapout a process that is waiting for VM
* data structures there is a possible deadlock.
*/
if (lockmgr(&vm->vm_map.lock,
LK_EXCLUSIVE | LK_NOWAIT,
NULL, curproc)) {
vmspace_free(vm);
PROC_UNLOCK(p);
continue;
}
vm_map_unlock(&vm->vm_map);
#endif
/*
* If the process has been asleep for awhile and had
* most of its pages taken away already, swap it out.
*/
if ((action & VM_SWAP_NORMAL) ||
((action & VM_SWAP_IDLE) &&
(p->p_slptime > swap_idle_threshold2))) {
swapout(p);
vmspace_free(vm);
didswap++;
mtx_unlock(&vm_mtx);
goto retry;
}
mtx_unlock(&vm_mtx);
PROC_UNLOCK(p);
}
}
sx_sunlock(&allproc_lock);
/*
* If we swapped something out, and another process needed memory,
* then wakeup the sched process.
*/
mtx_lock(&vm_mtx);
if (didswap)
wakeup(&proc0);
}
static void
swapout(p)
register struct proc *p;
{
PROC_LOCK_ASSERT(p, MA_OWNED);
#if defined(SWAP_DEBUG)
printf("swapping out %d\n", p->p_pid);
#endif
++p->p_stats->p_ru.ru_nswap;
/*
* remember the process resident count
*/
p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
mtx_lock_spin(&sched_lock);
p->p_sflag &= ~PS_INMEM;
p->p_sflag |= PS_SWAPPING;
PROC_UNLOCK_NOSWITCH(p);
if (p->p_stat == SRUN)
remrunqueue(p);
mtx_unlock_spin(&sched_lock);
pmap_swapout_proc(p);
mtx_lock_spin(&sched_lock);
p->p_sflag &= ~PS_SWAPPING;
p->p_swtime = 0;
mtx_unlock_spin(&sched_lock);
}
#endif /* !NO_SWAPPING */