Josef Karthauser 3b7efc56d0 Use the hw.usb sysctl tree instead of debug.usb.
Requested by:	imp
2002-08-08 12:05:51 +00:00

3395 lines
84 KiB
C

/* $NetBSD: uhci.c,v 1.160 2002/05/28 12:42:39 augustss Exp $ */
/* $FreeBSD$ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Universal Host Controller driver.
* Handles e.g. PIIX3 and PIIX4.
*
* UHCI spec: http://developer.intel.com/design/USB/UHCI11D.htm
* USB spec: http://www.usb.org/developers/data/usbspec.zip
* PIIXn spec: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
* ftp://download.intel.com/design/intarch/datashts/29056201.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/device.h>
#include <sys/select.h>
#elif defined(__FreeBSD__)
#include <sys/endian.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#if defined(DIAGNOSTIC) && defined(__i386__)
#include <machine/cpu.h>
#endif
#endif
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
/* Use bandwidth reclamation for control transfers. Some devices choke on it. */
/*#define UHCI_CTL_LOOP */
#if defined(__FreeBSD__)
#include <machine/clock.h>
#define delay(d) DELAY(d)
#endif
#define MS_TO_TICKS(ms) ((ms) * hz / 1000)
#if defined(__OpenBSD__)
struct cfdriver uhci_cd = {
NULL, "uhci", DV_DULL
};
#endif
#ifdef USB_DEBUG
uhci_softc_t *thesc;
#define DPRINTF(x) if (uhcidebug) printf x
#define DPRINTFN(n,x) if (uhcidebug>(n)) printf x
int uhcidebug = 0;
int uhcinoloop = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, uhci, CTLFLAG_RW, 0, "USB uhci");
SYSCTL_INT(_hw_usb_uhci, OID_AUTO, debug, CTLFLAG_RW,
&uhcidebug, 0, "uhci debug level");
SYSCTL_INT(_hw_usb_uhci, OID_AUTO, loop, CTLFLAG_RW,
&uhcinoloop, 0, "uhci noloop");
#ifndef __NetBSD__
#define bitmask_snprintf(q,f,b,l) snprintf((b), (l), "%b", (q), (f))
#endif
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* The UHCI controller is little endian, so on big endian machines
* the data strored in memory needs to be swapped.
*/
#if defined(__OpenBSD__)
#if BYTE_ORDER == BIG_ENDIAN
#define htole32(x) (bswap32(x))
#define le32toh(x) (bswap32(x))
#else
#define htole32(x) (x)
#define le32toh(x) (x)
#endif
#endif
struct uhci_pipe {
struct usbd_pipe pipe;
int nexttoggle;
u_char aborting;
usbd_xfer_handle abortstart, abortend;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t reqdma;
uhci_soft_td_t *setup, *stat;
u_int length;
} ctl;
/* Interrupt pipe */
struct {
int npoll;
uhci_soft_qh_t **qhs;
} intr;
/* Bulk pipe */
struct {
uhci_soft_qh_t *sqh;
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
uhci_soft_td_t **stds;
int next, inuse;
} iso;
} u;
};
Static void uhci_globalreset(uhci_softc_t *);
Static void uhci_reset(uhci_softc_t *);
#if defined(__NetBSD__) || defined(__OpenBSD__)
Static void uhci_shutdown(void *v);
Static void uhci_power(int, void *);
#endif
Static usbd_status uhci_run(uhci_softc_t *, int run);
Static uhci_soft_td_t *uhci_alloc_std(uhci_softc_t *);
Static void uhci_free_std(uhci_softc_t *, uhci_soft_td_t *);
Static uhci_soft_qh_t *uhci_alloc_sqh(uhci_softc_t *);
Static void uhci_free_sqh(uhci_softc_t *, uhci_soft_qh_t *);
#if 0
Static void uhci_enter_ctl_q(uhci_softc_t *, uhci_soft_qh_t *,
uhci_intr_info_t *);
Static void uhci_exit_ctl_q(uhci_softc_t *, uhci_soft_qh_t *);
#endif
Static void uhci_free_std_chain(uhci_softc_t *,
uhci_soft_td_t *, uhci_soft_td_t *);
Static usbd_status uhci_alloc_std_chain(struct uhci_pipe *,
uhci_softc_t *, int, int, u_int16_t, usb_dma_t *,
uhci_soft_td_t **, uhci_soft_td_t **);
Static void uhci_poll_hub(void *);
Static void uhci_waitintr(uhci_softc_t *, usbd_xfer_handle);
Static void uhci_check_intr(uhci_softc_t *, uhci_intr_info_t *);
Static void uhci_idone(uhci_intr_info_t *);
Static void uhci_abort_xfer(usbd_xfer_handle, usbd_status status);
Static void uhci_timeout(void *);
Static void uhci_timeout_task(void *);
Static void uhci_add_ls_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_hs_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_bulk(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_ls_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_hs_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_bulk(uhci_softc_t *,uhci_soft_qh_t *);
Static int uhci_str(usb_string_descriptor_t *, int, char *);
Static void uhci_add_loop(uhci_softc_t *sc);
Static void uhci_rem_loop(uhci_softc_t *sc);
Static usbd_status uhci_setup_isoc(usbd_pipe_handle pipe);
Static void uhci_device_isoc_enter(usbd_xfer_handle);
Static usbd_status uhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
Static void uhci_freem(struct usbd_bus *, usb_dma_t *);
Static usbd_xfer_handle uhci_allocx(struct usbd_bus *);
Static void uhci_freex(struct usbd_bus *, usbd_xfer_handle);
Static usbd_status uhci_device_ctrl_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_ctrl_start(usbd_xfer_handle);
Static void uhci_device_ctrl_abort(usbd_xfer_handle);
Static void uhci_device_ctrl_close(usbd_pipe_handle);
Static void uhci_device_ctrl_done(usbd_xfer_handle);
Static usbd_status uhci_device_intr_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_intr_start(usbd_xfer_handle);
Static void uhci_device_intr_abort(usbd_xfer_handle);
Static void uhci_device_intr_close(usbd_pipe_handle);
Static void uhci_device_intr_done(usbd_xfer_handle);
Static usbd_status uhci_device_bulk_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_bulk_start(usbd_xfer_handle);
Static void uhci_device_bulk_abort(usbd_xfer_handle);
Static void uhci_device_bulk_close(usbd_pipe_handle);
Static void uhci_device_bulk_done(usbd_xfer_handle);
Static usbd_status uhci_device_isoc_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_isoc_start(usbd_xfer_handle);
Static void uhci_device_isoc_abort(usbd_xfer_handle);
Static void uhci_device_isoc_close(usbd_pipe_handle);
Static void uhci_device_isoc_done(usbd_xfer_handle);
Static usbd_status uhci_root_ctrl_transfer(usbd_xfer_handle);
Static usbd_status uhci_root_ctrl_start(usbd_xfer_handle);
Static void uhci_root_ctrl_abort(usbd_xfer_handle);
Static void uhci_root_ctrl_close(usbd_pipe_handle);
Static void uhci_root_ctrl_done(usbd_xfer_handle);
Static usbd_status uhci_root_intr_transfer(usbd_xfer_handle);
Static usbd_status uhci_root_intr_start(usbd_xfer_handle);
Static void uhci_root_intr_abort(usbd_xfer_handle);
Static void uhci_root_intr_close(usbd_pipe_handle);
Static void uhci_root_intr_done(usbd_xfer_handle);
Static usbd_status uhci_open(usbd_pipe_handle);
Static void uhci_poll(struct usbd_bus *);
Static void uhci_softintr(void *);
Static usbd_status uhci_device_request(usbd_xfer_handle xfer);
Static void uhci_add_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static usbd_status uhci_device_setintr(uhci_softc_t *sc,
struct uhci_pipe *pipe, int ival);
Static void uhci_device_clear_toggle(usbd_pipe_handle pipe);
Static void uhci_noop(usbd_pipe_handle pipe);
Static __inline__ uhci_soft_qh_t *uhci_find_prev_qh(uhci_soft_qh_t *,
uhci_soft_qh_t *);
#ifdef USB_DEBUG
Static void uhci_dump_all(uhci_softc_t *);
Static void uhci_dumpregs(uhci_softc_t *);
Static void uhci_dump_qhs(uhci_soft_qh_t *);
Static void uhci_dump_qh(uhci_soft_qh_t *);
Static void uhci_dump_tds(uhci_soft_td_t *);
Static void uhci_dump_td(uhci_soft_td_t *);
Static void uhci_dump_ii(uhci_intr_info_t *ii);
void uhci_dump(void);
#endif
#define UBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define UWRITE1(sc, r, x) \
do { UBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define UWRITE2(sc, r, x) \
do { UBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define UWRITE4(sc, r, x) \
do { UBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define UREAD1(sc, r) (UBARR(sc), bus_space_read_1((sc)->iot, (sc)->ioh, (r)))
#define UREAD2(sc, r) (UBARR(sc), bus_space_read_2((sc)->iot, (sc)->ioh, (r)))
#define UREAD4(sc, r) (UBARR(sc), bus_space_read_4((sc)->iot, (sc)->ioh, (r)))
#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)
#define UHCI_RESET_TIMEOUT 100 /* ms, reset timeout */
#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)
#define UHCI_INTR_ENDPT 1
struct usbd_bus_methods uhci_bus_methods = {
uhci_open,
uhci_softintr,
uhci_poll,
uhci_allocm,
uhci_freem,
uhci_allocx,
uhci_freex,
};
struct usbd_pipe_methods uhci_root_ctrl_methods = {
uhci_root_ctrl_transfer,
uhci_root_ctrl_start,
uhci_root_ctrl_abort,
uhci_root_ctrl_close,
uhci_noop,
uhci_root_ctrl_done,
};
struct usbd_pipe_methods uhci_root_intr_methods = {
uhci_root_intr_transfer,
uhci_root_intr_start,
uhci_root_intr_abort,
uhci_root_intr_close,
uhci_noop,
uhci_root_intr_done,
};
struct usbd_pipe_methods uhci_device_ctrl_methods = {
uhci_device_ctrl_transfer,
uhci_device_ctrl_start,
uhci_device_ctrl_abort,
uhci_device_ctrl_close,
uhci_noop,
uhci_device_ctrl_done,
};
struct usbd_pipe_methods uhci_device_intr_methods = {
uhci_device_intr_transfer,
uhci_device_intr_start,
uhci_device_intr_abort,
uhci_device_intr_close,
uhci_device_clear_toggle,
uhci_device_intr_done,
};
struct usbd_pipe_methods uhci_device_bulk_methods = {
uhci_device_bulk_transfer,
uhci_device_bulk_start,
uhci_device_bulk_abort,
uhci_device_bulk_close,
uhci_device_clear_toggle,
uhci_device_bulk_done,
};
struct usbd_pipe_methods uhci_device_isoc_methods = {
uhci_device_isoc_transfer,
uhci_device_isoc_start,
uhci_device_isoc_abort,
uhci_device_isoc_close,
uhci_noop,
uhci_device_isoc_done,
};
#define uhci_add_intr_info(sc, ii) \
LIST_INSERT_HEAD(&(sc)->sc_intrhead, (ii), list);
#define uhci_del_intr_info(ii) \
LIST_REMOVE((ii), list)
Static __inline__ uhci_soft_qh_t *
uhci_find_prev_qh(uhci_soft_qh_t *pqh, uhci_soft_qh_t *sqh)
{
DPRINTFN(15,("uhci_find_prev_qh: pqh=%p sqh=%p\n", pqh, sqh));
for (; pqh->hlink != sqh; pqh = pqh->hlink) {
#if defined(DIAGNOSTIC) || defined(USB_DEBUG)
if (le32toh(pqh->qh.qh_hlink) & UHCI_PTR_T) {
printf("uhci_find_prev_qh: QH not found\n");
return (NULL);
}
#endif
}
return (pqh);
}
void
uhci_globalreset(uhci_softc_t *sc)
{
UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
UHCICMD(sc, 0); /* do nothing */
}
usbd_status
uhci_init(uhci_softc_t *sc)
{
usbd_status err;
int i, j;
uhci_soft_qh_t *clsqh, *chsqh, *bsqh, *sqh, *lsqh;
uhci_soft_td_t *std;
DPRINTFN(1,("uhci_init: start\n"));
#ifdef USB_DEBUG
thesc = sc;
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_globalreset(sc); /* reset the controller */
uhci_reset(sc);
/* Allocate and initialize real frame array. */
err = usb_allocmem(&sc->sc_bus,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
UHCI_FRAMELIST_ALIGN, &sc->sc_dma);
if (err)
return (err);
sc->sc_pframes = KERNADDR(&sc->sc_dma, 0);
UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0)); /* set frame list*/
/*
* Allocate a TD, inactive, that hangs from the last QH.
* This is to avoid a bug in the PIIX that makes it run berserk
* otherwise.
*/
std = uhci_alloc_std(sc);
if (std == NULL)
return (USBD_NOMEM);
std->link.std = NULL;
std->td.td_link = htole32(UHCI_PTR_T);
std->td.td_status = htole32(0); /* inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
/* Allocate the dummy QH marking the end and used for looping the QHs.*/
lsqh = uhci_alloc_sqh(sc);
if (lsqh == NULL)
return (USBD_NOMEM);
lsqh->hlink = NULL;
lsqh->qh.qh_hlink = htole32(UHCI_PTR_T); /* end of QH chain */
lsqh->elink = std;
lsqh->qh.qh_elink = htole32(std->physaddr | UHCI_PTR_TD);
sc->sc_last_qh = lsqh;
/* Allocate the dummy QH where bulk traffic will be queued. */
bsqh = uhci_alloc_sqh(sc);
if (bsqh == NULL)
return (USBD_NOMEM);
bsqh->hlink = lsqh;
bsqh->qh.qh_hlink = htole32(lsqh->physaddr | UHCI_PTR_QH);
bsqh->elink = NULL;
bsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
/* Allocate dummy QH where high speed control traffic will be queued. */
chsqh = uhci_alloc_sqh(sc);
if (chsqh == NULL)
return (USBD_NOMEM);
chsqh->hlink = bsqh;
chsqh->qh.qh_hlink = htole32(bsqh->physaddr | UHCI_PTR_QH);
chsqh->elink = NULL;
chsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_hctl_start = sc->sc_hctl_end = chsqh;
/* Allocate dummy QH where control traffic will be queued. */
clsqh = uhci_alloc_sqh(sc);
if (clsqh == NULL)
return (USBD_NOMEM);
clsqh->hlink = bsqh;
clsqh->qh.qh_hlink = htole32(chsqh->physaddr | UHCI_PTR_QH);
clsqh->elink = NULL;
clsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_lctl_start = sc->sc_lctl_end = clsqh;
/*
* Make all (virtual) frame list pointers point to the interrupt
* queue heads and the interrupt queue heads at the control
* queue head and point the physical frame list to the virtual.
*/
for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
sqh = uhci_alloc_sqh(sc);
if (std == NULL || sqh == NULL)
return (USBD_NOMEM);
std->link.sqh = sqh;
std->td.td_link = htole32(sqh->physaddr | UHCI_PTR_QH);
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
sqh->hlink = clsqh;
sqh->qh.qh_hlink = htole32(clsqh->physaddr | UHCI_PTR_QH);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_vframes[i].htd = std;
sc->sc_vframes[i].etd = std;
sc->sc_vframes[i].hqh = sqh;
sc->sc_vframes[i].eqh = sqh;
for (j = i;
j < UHCI_FRAMELIST_COUNT;
j += UHCI_VFRAMELIST_COUNT)
sc->sc_pframes[j] = htole32(std->physaddr);
}
LIST_INIT(&sc->sc_intrhead);
SIMPLEQ_INIT(&sc->sc_free_xfers);
usb_callout_init(sc->sc_poll_handle);
/* Set up the bus struct. */
sc->sc_bus.methods = &uhci_bus_methods;
sc->sc_bus.pipe_size = sizeof(struct uhci_pipe);
#if defined(__NetBSD__) || defined(__OpenBSD__)
sc->sc_suspend = PWR_RESUME;
sc->sc_powerhook = powerhook_establish(uhci_power, sc);
sc->sc_shutdownhook = shutdownhook_establish(uhci_shutdown, sc);
#endif
DPRINTFN(1,("uhci_init: enabling\n"));
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */
UHCICMD(sc, UHCI_CMD_MAXP); /* Assume 64 byte packets at frame end */
return (uhci_run(sc, 1)); /* and here we go... */
}
#if defined(__NetBSD__) || defined(__OpenBSD__)
int
uhci_activate(device_ptr_t self, enum devact act)
{
struct uhci_softc *sc = (struct uhci_softc *)self;
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
break;
case DVACT_DEACTIVATE:
if (sc->sc_child != NULL)
rv = config_deactivate(sc->sc_child);
break;
}
return (rv);
}
int
uhci_detach(struct uhci_softc *sc, int flags)
{
usbd_xfer_handle xfer;
int rv = 0;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return (rv);
#if defined(__NetBSD__) || defined(__OpenBSD__)
powerhook_disestablish(sc->sc_powerhook);
shutdownhook_disestablish(sc->sc_shutdownhook);
#endif
/* Free all xfers associated with this HC. */
for (;;) {
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer == NULL)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, xfer, next);
free(xfer, M_USB);
}
/* XXX free other data structures XXX */
return (rv);
}
#endif
usbd_status
uhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
{
return (usb_allocmem(&((struct uhci_softc *)bus)->sc_bus, size, 0,
dma));
}
void
uhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
{
usb_freemem(&((struct uhci_softc *)bus)->sc_bus, dma);
}
usbd_xfer_handle
uhci_allocx(struct usbd_bus *bus)
{
struct uhci_softc *sc = (struct uhci_softc *)bus;
usbd_xfer_handle xfer;
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, xfer, next);
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_FREE) {
printf("uhci_allocx: xfer=%p not free, 0x%08x\n", xfer,
xfer->busy_free);
}
#endif
} else {
xfer = malloc(sizeof(struct uhci_xfer), M_USB, M_NOWAIT);
}
if (xfer != NULL) {
memset(xfer, 0, sizeof (struct uhci_xfer));
UXFER(xfer)->iinfo.sc = sc;
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
xfer->busy_free = XFER_BUSY;
#endif
}
return (xfer);
}
void
uhci_freex(struct usbd_bus *bus, usbd_xfer_handle xfer)
{
struct uhci_softc *sc = (struct uhci_softc *)bus;
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
printf("uhci_freex: xfer=%p not busy, 0x%08x\n", xfer,
xfer->busy_free);
return;
}
xfer->busy_free = XFER_FREE;
if (!UXFER(xfer)->iinfo.isdone) {
printf("uhci_freex: !isdone\n");
return;
}
#endif
SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, next);
}
/*
* Shut down the controller when the system is going down.
*/
void
uhci_shutdown(void *v)
{
uhci_softc_t *sc = v;
DPRINTF(("uhci_shutdown: stopping the HC\n"));
uhci_run(sc, 0); /* stop the controller */
}
/*
* Handle suspend/resume.
*
* We need to switch to polling mode here, because this routine is
* called from an interrupt context. This is all right since we
* are almost suspended anyway.
*/
void
uhci_power(int why, void *v)
{
uhci_softc_t *sc = v;
int cmd;
int s;
s = splhardusb();
cmd = UREAD2(sc, UHCI_CMD);
DPRINTF(("uhci_power: sc=%p, why=%d (was %d), cmd=0x%x\n",
sc, why, sc->sc_suspend, cmd));
if (why != PWR_RESUME) {
#ifdef USB_DEBUG
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
if (sc->sc_intr_xfer != NULL)
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub,
sc->sc_intr_xfer);
sc->sc_bus.use_polling++;
uhci_run(sc, 0); /* stop the controller */
/* save some state if BIOS doesn't */
sc->sc_saved_frnum = UREAD2(sc, UHCI_FRNUM);
sc->sc_saved_sof = UREAD1(sc, UHCI_SOF);
UWRITE2(sc, UHCI_INTR, 0); /* disable intrs */
UHCICMD(sc, cmd | UHCI_CMD_EGSM); /* enter global suspend */
usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
sc->sc_suspend = why;
sc->sc_bus.use_polling--;
DPRINTF(("uhci_power: cmd=0x%x\n", UREAD2(sc, UHCI_CMD)));
} else {
#ifdef DIAGNOSTIC
if (sc->sc_suspend == PWR_RESUME)
printf("uhci_power: weird, resume without suspend.\n");
#endif
sc->sc_bus.use_polling++;
sc->sc_suspend = why;
if (cmd & UHCI_CMD_RS)
uhci_run(sc, 0); /* in case BIOS has started it */
/* restore saved state */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));
UWRITE2(sc, UHCI_FRNUM, sc->sc_saved_frnum);
UWRITE1(sc, UHCI_SOF, sc->sc_saved_sof);
UHCICMD(sc, cmd | UHCI_CMD_FGR); /* force global resume */
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
UHCICMD(sc, cmd & ~UHCI_CMD_EGSM); /* back to normal */
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* re-enable intrs */
uhci_run(sc, 1); /* and start traffic again */
usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY);
sc->sc_bus.use_polling--;
if (sc->sc_intr_xfer != NULL)
usb_callout(sc->sc_poll_handle, sc->sc_ival,
uhci_poll_hub, sc->sc_intr_xfer);
#ifdef USB_DEBUG
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
}
splx(s);
}
#ifdef USB_DEBUG
Static void
uhci_dumpregs(uhci_softc_t *sc)
{
DPRINTFN(-1,("%s regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, "
"flbase=%08x, sof=%04x, portsc1=%04x, portsc2=%04x\n",
USBDEVNAME(sc->sc_bus.bdev),
UREAD2(sc, UHCI_CMD),
UREAD2(sc, UHCI_STS),
UREAD2(sc, UHCI_INTR),
UREAD2(sc, UHCI_FRNUM),
UREAD4(sc, UHCI_FLBASEADDR),
UREAD1(sc, UHCI_SOF),
UREAD2(sc, UHCI_PORTSC1),
UREAD2(sc, UHCI_PORTSC2)));
}
void
uhci_dump_td(uhci_soft_td_t *p)
{
char sbuf[128], sbuf2[128];
DPRINTFN(-1,("TD(%p) at %08lx = link=0x%08lx status=0x%08lx "
"token=0x%08lx buffer=0x%08lx\n",
p, (long)p->physaddr,
(long)le32toh(p->td.td_link),
(long)le32toh(p->td.td_status),
(long)le32toh(p->td.td_token),
(long)le32toh(p->td.td_buffer)));
bitmask_snprintf((u_int32_t)le32toh(p->td.td_link), "\20\1T\2Q\3VF",
sbuf, sizeof(sbuf));
bitmask_snprintf((u_int32_t)le32toh(p->td.td_status),
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD",
sbuf2, sizeof(sbuf2));
DPRINTFN(-1,(" %s %s,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d,"
"D=%d,maxlen=%d\n", sbuf, sbuf2,
UHCI_TD_GET_ERRCNT(le32toh(p->td.td_status)),
UHCI_TD_GET_ACTLEN(le32toh(p->td.td_status)),
UHCI_TD_GET_PID(le32toh(p->td.td_token)),
UHCI_TD_GET_DEVADDR(le32toh(p->td.td_token)),
UHCI_TD_GET_ENDPT(le32toh(p->td.td_token)),
UHCI_TD_GET_DT(le32toh(p->td.td_token)),
UHCI_TD_GET_MAXLEN(le32toh(p->td.td_token))));
}
void
uhci_dump_qh(uhci_soft_qh_t *sqh)
{
DPRINTFN(-1,("QH(%p) at %08x: hlink=%08x elink=%08x\n", sqh,
(int)sqh->physaddr, le32toh(sqh->qh.qh_hlink),
le32toh(sqh->qh.qh_elink)));
}
#if 1
void
uhci_dump(void)
{
uhci_dump_all(thesc);
}
#endif
void
uhci_dump_all(uhci_softc_t *sc)
{
uhci_dumpregs(sc);
printf("intrs=%d\n", sc->sc_bus.no_intrs);
/*printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link);*/
uhci_dump_qh(sc->sc_lctl_start);
}
void
uhci_dump_qhs(uhci_soft_qh_t *sqh)
{
uhci_dump_qh(sqh);
/* uhci_dump_qhs displays all the QHs and TDs from the given QH onwards
* Traverses sideways first, then down.
*
* QH1
* QH2
* No QH
* TD2.1
* TD2.2
* TD1.1
* etc.
*
* TD2.x being the TDs queued at QH2 and QH1 being referenced from QH1.
*/
if (sqh->hlink != NULL && !(le32toh(sqh->qh.qh_hlink) & UHCI_PTR_T))
uhci_dump_qhs(sqh->hlink);
else
DPRINTF(("No QH\n"));
if (sqh->elink != NULL && !(le32toh(sqh->qh.qh_elink) & UHCI_PTR_T))
uhci_dump_tds(sqh->elink);
else
DPRINTF(("No TD\n"));
}
void
uhci_dump_tds(uhci_soft_td_t *std)
{
uhci_soft_td_t *td;
for(td = std; td != NULL; td = td->link.std) {
uhci_dump_td(td);
/* Check whether the link pointer in this TD marks
* the link pointer as end of queue. This avoids
* printing the free list in case the queue/TD has
* already been moved there (seatbelt).
*/
if (le32toh(td->td.td_link) & UHCI_PTR_T ||
le32toh(td->td.td_link) == 0)
break;
}
}
Static void
uhci_dump_ii(uhci_intr_info_t *ii)
{
usbd_pipe_handle pipe;
usb_endpoint_descriptor_t *ed;
usbd_device_handle dev;
#ifdef DIAGNOSTIC
#define DONE ii->isdone
#else
#define DONE 0
#endif
if (ii == NULL) {
printf("ii NULL\n");
return;
}
if (ii->xfer == NULL) {
printf("ii %p: done=%d xfer=NULL\n",
ii, DONE);
return;
}
pipe = ii->xfer->pipe;
if (pipe == NULL) {
printf("ii %p: done=%d xfer=%p pipe=NULL\n",
ii, DONE, ii->xfer);
return;
}
if (pipe->endpoint == NULL) {
printf("ii %p: done=%d xfer=%p pipe=%p pipe->endpoint=NULL\n",
ii, DONE, ii->xfer, pipe);
return;
}
if (pipe->device == NULL) {
printf("ii %p: done=%d xfer=%p pipe=%p pipe->device=NULL\n",
ii, DONE, ii->xfer, pipe);
return;
}
ed = pipe->endpoint->edesc;
dev = pipe->device;
printf("ii %p: done=%d xfer=%p dev=%p vid=0x%04x pid=0x%04x addr=%d pipe=%p ep=0x%02x attr=0x%02x\n",
ii, DONE, ii->xfer, dev,
UGETW(dev->ddesc.idVendor),
UGETW(dev->ddesc.idProduct),
dev->address, pipe,
ed->bEndpointAddress, ed->bmAttributes);
#undef DONE
}
void uhci_dump_iis(struct uhci_softc *sc);
void
uhci_dump_iis(struct uhci_softc *sc)
{
uhci_intr_info_t *ii;
printf("intr_info list:\n");
for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list))
uhci_dump_ii(ii);
}
void iidump(void);
void iidump(void) { uhci_dump_iis(thesc); }
#endif
/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_poll_hub(void *addr)
{
usbd_xfer_handle xfer = addr;
usbd_pipe_handle pipe = xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
int s;
u_char *p;
DPRINTFN(20, ("uhci_poll_hub\n"));
usb_callout(sc->sc_poll_handle, sc->sc_ival, uhci_poll_hub, xfer);
p = KERNADDR(&xfer->dmabuf, 0);
p[0] = 0;
if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<1;
if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<2;
if (p[0] == 0)
/* No change, try again in a while */
return;
xfer->actlen = 1;
xfer->status = USBD_NORMAL_COMPLETION;
s = splusb();
xfer->device->bus->intr_context++;
usb_transfer_complete(xfer);
xfer->device->bus->intr_context--;
splx(s);
}
void
uhci_root_intr_done(usbd_xfer_handle xfer)
{
}
void
uhci_root_ctrl_done(usbd_xfer_handle xfer)
{
}
/*
* Let the last QH loop back to the high speed control transfer QH.
* This is what intel calls "bandwidth reclamation" and improves
* USB performance a lot for some devices.
* If we are already looping, just count it.
*/
void
uhci_add_loop(uhci_softc_t *sc) {
#ifdef USB_DEBUG
if (uhcinoloop)
return;
#endif
if (++sc->sc_loops == 1) {
DPRINTFN(5,("uhci_start_loop: add\n"));
/* Note, we don't loop back the soft pointer. */
sc->sc_last_qh->qh.qh_hlink =
htole32(sc->sc_hctl_start->physaddr | UHCI_PTR_QH);
}
}
void
uhci_rem_loop(uhci_softc_t *sc) {
#ifdef USB_DEBUG
if (uhcinoloop)
return;
#endif
if (--sc->sc_loops == 0) {
DPRINTFN(5,("uhci_end_loop: remove\n"));
sc->sc_last_qh->qh.qh_hlink = htole32(UHCI_PTR_T);
}
}
/* Add high speed control QH, called at splusb(). */
void
uhci_add_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_hctl_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_hctl_end = sqh;
#ifdef UHCI_CTL_LOOP
uhci_add_loop(sc);
#endif
}
/* Remove high speed control QH, called at splusb(). */
void
uhci_remove_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_hs_ctrl: sqh=%p\n", sqh));
#ifdef UHCI_CTL_LOOP
uhci_rem_loop(sc);
#endif
/*
* The T bit should be set in the elink of the QH so that the HC
* doesn't follow the pointer. This condition may fail if the
* the transferred packet was short so that the QH still points
* at the last used TD.
* In this case we set the T bit and wait a little for the HC
* to stop looking at the TD.
*/
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_hctl_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_hctl_end == sqh)
sc->sc_hctl_end = pqh;
}
/* Add low speed control QH, called at splusb(). */
void
uhci_add_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_ls_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_lctl_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_lctl_end = sqh;
}
/* Remove low speed control QH, called at splusb(). */
void
uhci_remove_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_ls_ctrl: sqh=%p\n", sqh));
/* See comment in uhci_remove_hs_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_lctl_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_lctl_end == sqh)
sc->sc_lctl_end = pqh;
}
/* Add bulk QH, called at splusb(). */
void
uhci_add_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh));
eqh = sc->sc_bulk_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_bulk_end = sqh;
uhci_add_loop(sc);
}
/* Remove bulk QH, called at splusb(). */
void
uhci_remove_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh));
uhci_rem_loop(sc);
/* See comment in uhci_remove_hs_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_bulk_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_bulk_end == sqh)
sc->sc_bulk_end = pqh;
}
Static int uhci_intr1(uhci_softc_t *);
int
uhci_intr(void *arg)
{
uhci_softc_t *sc = arg;
if (sc->sc_dying)
return (0);
DPRINTFN(15,("uhci_intr: real interrupt\n"));
if (sc->sc_bus.use_polling) {
#ifdef DIAGNOSTIC
printf("uhci_intr: ignored interrupt while polling\n");
#endif
return (0);
}
return (uhci_intr1(sc));
}
int
uhci_intr1(uhci_softc_t *sc)
{
int status;
int ack;
/*
* It can happen that an interrupt will be delivered to
* us before the device has been fully attached and the
* softc struct has been configured. Usually this happens
* when kldloading the USB support as a module after the
* system has been booted. If we detect this condition,
* we need to squelch the unwanted interrupts until we're
* ready for them.
*/
if (sc->sc_bus.bdev == NULL) {
UWRITE2(sc, UHCI_STS, 0xFFFF); /* ack pending interrupts */
uhci_run(sc, 0); /* stop the controller */
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
return(0);
}
#ifdef USB_DEBUG
if (uhcidebug > 15) {
DPRINTF(("%s: uhci_intr1\n", USBDEVNAME(sc->sc_bus.bdev)));
uhci_dumpregs(sc);
}
#endif
status = UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS;
if (status == 0) /* The interrupt was not for us. */
return (0);
#if defined(DIAGNOSTIC) && defined(__NetBSD__)
if (sc->sc_suspend != PWR_RESUME)
printf("uhci_intr: suspended sts=0x%x\n", status);
#endif
if (sc->sc_suspend != PWR_RESUME) {
printf("%s: interrupt while not operating ignored\n",
USBDEVNAME(sc->sc_bus.bdev));
UWRITE2(sc, UHCI_STS, status); /* acknowledge the ints */
return (0);
}
ack = 0;
if (status & UHCI_STS_USBINT)
ack |= UHCI_STS_USBINT;
if (status & UHCI_STS_USBEI)
ack |= UHCI_STS_USBEI;
if (status & UHCI_STS_RD) {
ack |= UHCI_STS_RD;
#ifdef USB_DEBUG
printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev));
#endif
}
if (status & UHCI_STS_HSE) {
ack |= UHCI_STS_HSE;
printf("%s: host system error\n", USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCPE) {
ack |= UHCI_STS_HCPE;
printf("%s: host controller process error\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCH) {
/* no acknowledge needed */
if (!sc->sc_dying) {
printf("%s: host controller halted\n",
USBDEVNAME(sc->sc_bus.bdev));
#ifdef USB_DEBUG
uhci_dump_all(sc);
#endif
}
sc->sc_dying = 1;
}
if (!ack)
return (0); /* nothing to acknowledge */
UWRITE2(sc, UHCI_STS, ack); /* acknowledge the ints */
sc->sc_bus.no_intrs++;
usb_schedsoftintr(&sc->sc_bus);
DPRINTFN(10, ("%s: uhci_intr: exit\n", USBDEVNAME(sc->sc_bus.bdev)));
return (1);
}
void
uhci_softintr(void *v)
{
uhci_softc_t *sc = v;
uhci_intr_info_t *ii;
DPRINTFN(10,("%s: uhci_softintr (%d)\n", USBDEVNAME(sc->sc_bus.bdev),
sc->sc_bus.intr_context));
sc->sc_bus.intr_context++;
/*
* Interrupts on UHCI really suck. When the host controller
* interrupts because a transfer is completed there is no
* way of knowing which transfer it was. You can scan down
* the TDs and QHs of the previous frame to limit the search,
* but that assumes that the interrupt was not delayed by more
* than 1 ms, which may not always be true (e.g. after debug
* output on a slow console).
* We scan all interrupt descriptors to see if any have
* completed.
*/
LIST_FOREACH(ii, &sc->sc_intrhead, list)
uhci_check_intr(sc, ii);
if (sc->sc_softwake) {
sc->sc_softwake = 0;
wakeup(&sc->sc_softwake);
}
sc->sc_bus.intr_context--;
}
/* Check for an interrupt. */
void
uhci_check_intr(uhci_softc_t *sc, uhci_intr_info_t *ii)
{
uhci_soft_td_t *std, *lstd;
u_int32_t status;
DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii));
#ifdef DIAGNOSTIC
if (ii == NULL) {
printf("uhci_check_intr: no ii? %p\n", ii);
return;
}
#endif
if (ii->xfer->status == USBD_CANCELLED ||
ii->xfer->status == USBD_TIMEOUT) {
DPRINTF(("uhci_check_intr: aborted xfer=%p\n", ii->xfer));
return;
}
if (ii->stdstart == NULL)
return;
lstd = ii->stdend;
#ifdef DIAGNOSTIC
if (lstd == NULL) {
printf("uhci_check_intr: std==0\n");
return;
}
#endif
/*
* If the last TD is still active we need to check whether there
* is a an error somewhere in the middle, or whether there was a
* short packet (SPD and not ACTIVE).
*/
if (le32toh(lstd->td.td_status) & UHCI_TD_ACTIVE) {
DPRINTFN(12, ("uhci_check_intr: active ii=%p\n", ii));
for (std = ii->stdstart; std != lstd; std = std->link.std) {
status = le32toh(std->td.td_status);
/* If there's an active TD the xfer isn't done. */
if (status & UHCI_TD_ACTIVE)
break;
/* Any kind of error makes the xfer done. */
if (status & UHCI_TD_STALLED)
goto done;
/* We want short packets, and it is short: it's done */
if ((status & UHCI_TD_SPD) &&
UHCI_TD_GET_ACTLEN(status) <
UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token)))
goto done;
}
DPRINTFN(12, ("uhci_check_intr: ii=%p std=%p still active\n",
ii, ii->stdstart));
return;
}
done:
DPRINTFN(12, ("uhci_check_intr: ii=%p done\n", ii));
usb_uncallout(ii->xfer->timeout_handle, uhci_timeout, ii);
uhci_idone(ii);
}
/* Called at splusb() */
void
uhci_idone(uhci_intr_info_t *ii)
{
usbd_xfer_handle xfer = ii->xfer;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_td_t *std;
u_int32_t status = 0, nstatus;
int actlen;
DPRINTFN(12, ("uhci_idone: ii=%p\n", ii));
#ifdef DIAGNOSTIC
{
int s = splhigh();
if (ii->isdone) {
splx(s);
#ifdef USB_DEBUG
printf("uhci_idone: ii is done!\n ");
uhci_dump_ii(ii);
#else
printf("uhci_idone: ii=%p is done!\n", ii);
#endif
return;
}
ii->isdone = 1;
splx(s);
}
#endif
if (xfer->nframes != 0) {
/* Isoc transfer, do things differently. */
uhci_soft_td_t **stds = upipe->u.iso.stds;
int i, n, nframes, len;
DPRINTFN(5,("uhci_idone: ii=%p isoc ready\n", ii));
nframes = xfer->nframes;
actlen = 0;
n = UXFER(xfer)->curframe;
for (i = 0; i < nframes; i++) {
std = stds[n];
#ifdef USB_DEBUG
if (uhcidebug > 5) {
DPRINTFN(-1,("uhci_idone: isoc TD %d\n", i));
uhci_dump_td(std);
}
#endif
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
status = le32toh(std->td.td_status);
len = UHCI_TD_GET_ACTLEN(status);
xfer->frlengths[i] = len;
actlen += len;
}
upipe->u.iso.inuse -= nframes;
xfer->actlen = actlen;
xfer->status = USBD_NORMAL_COMPLETION;
goto end;
}
#ifdef USB_DEBUG
DPRINTFN(10, ("uhci_idone: ii=%p, xfer=%p, pipe=%p ready\n",
ii, xfer, upipe));
if (uhcidebug > 10)
uhci_dump_tds(ii->stdstart);
#endif
/* The transfer is done, compute actual length and status. */
actlen = 0;
for (std = ii->stdstart; std != NULL; std = std->link.std) {
nstatus = le32toh(std->td.td_status);
if (nstatus & UHCI_TD_ACTIVE)
break;
status = nstatus;
if (UHCI_TD_GET_PID(le32toh(std->td.td_token)) !=
UHCI_TD_PID_SETUP)
actlen += UHCI_TD_GET_ACTLEN(status);
}
/* If there are left over TDs we need to update the toggle. */
if (std != NULL)
upipe->nexttoggle = UHCI_TD_GET_DT(le32toh(std->td.td_token));
status &= UHCI_TD_ERROR;
DPRINTFN(10, ("uhci_idone: actlen=%d, status=0x%x\n",
actlen, status));
xfer->actlen = actlen;
if (status != 0) {
#ifdef USB_DEBUG
char sbuf[128];
bitmask_snprintf((u_int32_t)status,
"\20\22BITSTUFF\23CRCTO\24NAK\25"
"BABBLE\26DBUFFER\27STALLED\30ACTIVE",
sbuf, sizeof(sbuf));
DPRINTFN((status == UHCI_TD_STALLED)*10,
("uhci_idone: error, addr=%d, endpt=0x%02x, "
"status 0x%s\n",
xfer->pipe->device->address,
xfer->pipe->endpoint->edesc->bEndpointAddress,
sbuf));
#endif
if (status == UHCI_TD_STALLED)
xfer->status = USBD_STALLED;
else
xfer->status = USBD_IOERROR; /* more info XXX */
} else {
xfer->status = USBD_NORMAL_COMPLETION;
}
end:
usb_transfer_complete(xfer);
DPRINTFN(12, ("uhci_idone: ii=%p done\n", ii));
}
/*
* Called when a request does not complete.
*/
void
uhci_timeout(void *addr)
{
uhci_intr_info_t *ii = addr;
struct uhci_xfer *uxfer = UXFER(ii->xfer);
struct uhci_pipe *upipe = (struct uhci_pipe *)uxfer->xfer.pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
DPRINTF(("uhci_timeout: uxfer=%p\n", uxfer));
if (sc->sc_dying) {
uhci_abort_xfer(&uxfer->xfer, USBD_TIMEOUT);
return;
}
/* Execute the abort in a process context. */
usb_init_task(&uxfer->abort_task, uhci_timeout_task, ii->xfer);
usb_add_task(uxfer->xfer.pipe->device, &uxfer->abort_task);
}
void
uhci_timeout_task(void *addr)
{
usbd_xfer_handle xfer = addr;
int s;
DPRINTF(("uhci_timeout_task: xfer=%p\n", xfer));
s = splusb();
uhci_abort_xfer(xfer, USBD_TIMEOUT);
splx(s);
}
/*
* Wait here until controller claims to have an interrupt.
* Then call uhci_intr and return. Use timeout to avoid waiting
* too long.
* Only used during boot when interrupts are not enabled yet.
*/
void
uhci_waitintr(uhci_softc_t *sc, usbd_xfer_handle xfer)
{
int timo = xfer->timeout;
uhci_intr_info_t *ii;
DPRINTFN(10,("uhci_waitintr: timeout = %dms\n", timo));
xfer->status = USBD_IN_PROGRESS;
for (; timo >= 0; timo--) {
usb_delay_ms(&sc->sc_bus, 1);
DPRINTFN(20,("uhci_waitintr: 0x%04x\n", UREAD2(sc, UHCI_STS)));
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) {
uhci_intr1(sc);
if (xfer->status != USBD_IN_PROGRESS)
return;
}
}
/* Timeout */
DPRINTF(("uhci_waitintr: timeout\n"));
for (ii = LIST_FIRST(&sc->sc_intrhead);
ii != NULL && ii->xfer != xfer;
ii = LIST_NEXT(ii, list))
;
#ifdef DIAGNOSTIC
if (ii == NULL)
panic("uhci_waitintr: lost intr_info\n");
#endif
uhci_idone(ii);
}
void
uhci_poll(struct usbd_bus *bus)
{
uhci_softc_t *sc = (uhci_softc_t *)bus;
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT)
uhci_intr1(sc);
}
void
uhci_reset(uhci_softc_t *sc)
{
int n;
UHCICMD(sc, UHCI_CMD_HCRESET);
/* The reset bit goes low when the controller is done. */
for (n = 0; n < UHCI_RESET_TIMEOUT &&
(UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
usb_delay_ms(&sc->sc_bus, 1);
if (n >= UHCI_RESET_TIMEOUT)
printf("%s: controller did not reset\n",
USBDEVNAME(sc->sc_bus.bdev));
}
usbd_status
uhci_run(uhci_softc_t *sc, int run)
{
int s, n, running;
u_int16_t cmd;
run = run != 0;
s = splhardusb();
DPRINTF(("uhci_run: setting run=%d\n", run));
cmd = UREAD2(sc, UHCI_CMD);
if (run)
cmd |= UHCI_CMD_RS;
else
cmd &= ~UHCI_CMD_RS;
UHCICMD(sc, cmd);
for(n = 0; n < 10; n++) {
running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
/* return when we've entered the state we want */
if (run == running) {
splx(s);
DPRINTF(("uhci_run: done cmd=0x%x sts=0x%x\n",
UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS)));
return (USBD_NORMAL_COMPLETION);
}
usb_delay_ms(&sc->sc_bus, 1);
}
splx(s);
printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev),
run ? "start" : "stop");
return (USBD_IOERROR);
}
/*
* Memory management routines.
* uhci_alloc_std allocates TDs
* uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularaity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/
uhci_soft_td_t *
uhci_alloc_std(uhci_softc_t *sc)
{
uhci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freetds == NULL) {
DPRINTFN(2,("uhci_alloc_std: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, UHCI_STD_SIZE * UHCI_STD_CHUNK,
UHCI_TD_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < UHCI_STD_CHUNK; i++) {
offs = i * UHCI_STD_SIZE;
std = KERNADDR(&dma, offs);
std->physaddr = DMAADDR(&dma, offs);
std->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->link.std;
memset(&std->td, 0, sizeof(uhci_td_t));
return std;
}
void
uhci_free_std(uhci_softc_t *sc, uhci_soft_td_t *std)
{
#ifdef DIAGNOSTIC
#define TD_IS_FREE 0x12345678
if (le32toh(std->td.td_token) == TD_IS_FREE) {
printf("uhci_free_std: freeing free TD %p\n", std);
return;
}
std->td.td_token = htole32(TD_IS_FREE);
#endif
std->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
uhci_soft_qh_t *
uhci_alloc_sqh(uhci_softc_t *sc)
{
uhci_soft_qh_t *sqh;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freeqhs == NULL) {
DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, UHCI_SQH_SIZE * UHCI_SQH_CHUNK,
UHCI_QH_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < UHCI_SQH_CHUNK; i++) {
offs = i * UHCI_SQH_SIZE;
sqh = KERNADDR(&dma, offs);
sqh->physaddr = DMAADDR(&dma, offs);
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
}
sqh = sc->sc_freeqhs;
sc->sc_freeqhs = sqh->hlink;
memset(&sqh->qh, 0, sizeof(uhci_qh_t));
return (sqh);
}
void
uhci_free_sqh(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
void
uhci_free_std_chain(uhci_softc_t *sc, uhci_soft_td_t *std,
uhci_soft_td_t *stdend)
{
uhci_soft_td_t *p;
for (; std != stdend; std = p) {
p = std->link.std;
uhci_free_std(sc, std);
}
}
usbd_status
uhci_alloc_std_chain(struct uhci_pipe *upipe, uhci_softc_t *sc, int len,
int rd, u_int16_t flags, usb_dma_t *dma,
uhci_soft_td_t **sp, uhci_soft_td_t **ep)
{
uhci_soft_td_t *p, *lastp;
uhci_physaddr_t lastlink;
int i, ntd, l, tog, maxp;
u_int32_t status;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
DPRINTFN(8, ("uhci_alloc_std_chain: addr=%d endpt=%d len=%d speed=%d "
"flags=0x%x\n", addr, UE_GET_ADDR(endpt), len,
upipe->pipe.device->speed, flags));
maxp = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize);
if (maxp == 0) {
printf("uhci_alloc_std_chain: maxp=0\n");
return (USBD_INVAL);
}
ntd = (len + maxp - 1) / maxp;
if ((flags & USBD_FORCE_SHORT_XFER) && len % maxp == 0)
ntd++;
DPRINTFN(10, ("uhci_alloc_std_chain: maxp=%d ntd=%d\n", maxp, ntd));
if (ntd == 0) {
*sp = *ep = 0;
DPRINTFN(-1,("uhci_alloc_std_chain: ntd=0\n"));
return (USBD_NORMAL_COMPLETION);
}
tog = upipe->nexttoggle;
if (ntd % 2 == 0)
tog ^= 1;
upipe->nexttoggle = tog ^ 1;
lastp = NULL;
lastlink = UHCI_PTR_T;
ntd--;
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE);
if (upipe->pipe.device->speed == USB_SPEED_LOW)
status |= UHCI_TD_LS;
if (flags & USBD_SHORT_XFER_OK)
status |= UHCI_TD_SPD;
for (i = ntd; i >= 0; i--) {
p = uhci_alloc_std(sc);
if (p == NULL) {
uhci_free_std_chain(sc, lastp, NULL);
return (USBD_NOMEM);
}
p->link.std = lastp;
p->td.td_link = htole32(lastlink | UHCI_PTR_VF | UHCI_PTR_TD);
lastp = p;
lastlink = p->physaddr;
p->td.td_status = htole32(status);
if (i == ntd) {
/* last TD */
l = len % maxp;
if (l == 0 && !(flags & USBD_FORCE_SHORT_XFER))
l = maxp;
*ep = p;
} else
l = maxp;
p->td.td_token =
htole32(rd ? UHCI_TD_IN (l, endpt, addr, tog) :
UHCI_TD_OUT(l, endpt, addr, tog));
p->td.td_buffer = htole32(DMAADDR(dma, i * maxp));
tog ^= 1;
}
*sp = lastp;
DPRINTFN(10, ("uhci_alloc_std_chain: nexttog=%d\n",
upipe->nexttoggle));
return (USBD_NORMAL_COMPLETION);
}
void
uhci_device_clear_toggle(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
upipe->nexttoggle = 0;
}
void
uhci_noop(usbd_pipe_handle pipe)
{
}
usbd_status
uhci_device_bulk_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_bulk_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
usbd_status err;
int len, isread, endpt;
int s;
DPRINTFN(3, ("uhci_device_bulk_transfer: xfer=%p len=%d flags=%d\n",
xfer, xfer->length, xfer->flags));
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("uhci_device_bulk_transfer: a request\n");
#endif
len = xfer->length;
endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sqh = upipe->u.bulk.sqh;
upipe->u.bulk.isread = isread;
upipe->u.bulk.length = len;
err = uhci_alloc_std_chain(upipe, sc, len, isread, xfer->flags,
&xfer->dmabuf, &data, &dataend);
if (err)
return (err);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 8) {
DPRINTF(("uhci_device_bulk_transfer: data(1)\n"));
uhci_dump_tds(data);
}
#endif
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_bulk_transfer: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
s = splusb();
uhci_add_bulk(sc, sqh);
uhci_add_intr_info(sc, ii);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, MS_TO_TICKS(xfer->timeout),
uhci_timeout, ii);
}
xfer->status = USBD_IN_PROGRESS;
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_bulk_transfer: data(2)\n"));
uhci_dump_tds(data);
}
#endif
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
/* Abort a device bulk request. */
void
uhci_device_bulk_abort(usbd_xfer_handle xfer)
{
DPRINTF(("uhci_device_bulk_abort:\n"));
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
*/
void
uhci_abort_xfer(usbd_xfer_handle xfer, usbd_status status)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
uhci_soft_td_t *std;
int s;
DPRINTFN(1,("uhci_abort_xfer: xfer=%p, status=%d\n", xfer, status));
if (sc->sc_dying) {
/* If we're dying, just do the software part. */
s = splusb();
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, uhci_timeout, xfer);
usb_transfer_complete(xfer);
splx(s);
return;
}
if (xfer->device->bus->intr_context || !curproc)
panic("uhci_abort_xfer: not in process context\n");
/*
* Step 1: Make interrupt routine and hardware ignore xfer.
*/
s = splusb();
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, uhci_timeout, ii);
DPRINTFN(1,("uhci_abort_xfer: stop ii=%p\n", ii));
for (std = ii->stdstart; std != NULL; std = std->link.std)
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
splx(s);
/*
* Step 2: Wait until we know hardware has finished any possible
* use of the xfer. Also make sure the soft interrupt routine
* has run.
*/
usb_delay_ms(upipe->pipe.device->bus, 2); /* Hardware finishes in 1ms */
s = splusb();
sc->sc_softwake = 1;
usb_schedsoftintr(&sc->sc_bus);
DPRINTFN(1,("uhci_abort_xfer: tsleep\n"));
tsleep(&sc->sc_softwake, PZERO, "uhciab", 0);
splx(s);
/*
* Step 3: Execute callback.
*/
xfer->hcpriv = ii;
DPRINTFN(1,("uhci_abort_xfer: callback\n"));
s = splusb();
#ifdef DIAGNOSTIC
ii->isdone = 1;
#endif
usb_transfer_complete(xfer);
splx(s);
}
/* Close a device bulk pipe. */
void
uhci_device_bulk_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_free_sqh(sc, upipe->u.bulk.sqh);
}
usbd_status
uhci_device_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_ctrl_start(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_device_ctrl_transfer: not a request\n");
#endif
err = uhci_device_request(xfer);
if (err)
return (err);
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
usbd_status
uhci_device_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_intr_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
usbd_status err;
int i, s;
if (sc->sc_dying)
return (USBD_IOERROR);
DPRINTFN(3,("uhci_device_intr_transfer: xfer=%p len=%d flags=%d\n",
xfer, xfer->length, xfer->flags));
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("uhci_device_intr_transfer: a request\n");
#endif
err = uhci_alloc_std_chain(upipe, sc, xfer->length, 1, xfer->flags,
&xfer->dmabuf, &data, &dataend);
if (err)
return (err);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_transfer: data(1)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_intr_transfer: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
DPRINTFN(10,("uhci_device_intr_transfer: qhs[0]=%p\n",
upipe->u.intr.qhs[0]));
for (i = 0; i < upipe->u.intr.npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
}
uhci_add_intr_info(sc, ii);
xfer->status = USBD_IN_PROGRESS;
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_transfer: data(2)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
void
uhci_device_ctrl_abort(usbd_xfer_handle xfer)
{
DPRINTF(("uhci_device_ctrl_abort:\n"));
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device control pipe. */
void
uhci_device_ctrl_close(usbd_pipe_handle pipe)
{
}
/* Abort a device interrupt request. */
void
uhci_device_intr_abort(usbd_xfer_handle xfer)
{
DPRINTFN(1,("uhci_device_intr_abort: xfer=%p\n", xfer));
if (xfer->pipe->intrxfer == xfer) {
DPRINTFN(1,("uhci_device_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device interrupt pipe. */
void
uhci_device_intr_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
int i, npoll;
int s;
/* Unlink descriptors from controller data structures. */
npoll = upipe->u.intr.npoll;
s = splusb();
for (i = 0; i < npoll; i++)
uhci_remove_intr(sc, upipe->u.intr.qhs[i]);
splx(s);
/*
* We now have to wait for any activity on the physical
* descriptors to stop.
*/
usb_delay_ms(&sc->sc_bus, 2);
for(i = 0; i < npoll; i++)
uhci_free_sqh(sc, upipe->u.intr.qhs[i]);
free(upipe->u.intr.qhs, M_USBHC);
/* XXX free other resources */
}
usbd_status
uhci_device_request(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usb_device_request_t *req = &xfer->request;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = dev->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *setup, *data, *stat, *next, *dataend;
uhci_soft_qh_t *sqh;
int len;
u_int32_t ls;
usbd_status err;
int isread;
int s;
DPRINTFN(3,("uhci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), UGETW(req->wLength),
addr, endpt));
ls = dev->speed == USB_SPEED_LOW ? UHCI_TD_LS : 0;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
setup = upipe->u.ctl.setup;
stat = upipe->u.ctl.stat;
sqh = upipe->u.ctl.sqh;
/* Set up data transaction */
if (len != 0) {
upipe->nexttoggle = 1;
err = uhci_alloc_std_chain(upipe, sc, len, isread, xfer->flags,
&xfer->dmabuf, &data, &dataend);
if (err)
return (err);
next = data;
dataend->link.std = stat;
dataend->td.td_link = htole32(stat->physaddr | UHCI_PTR_VF | UHCI_PTR_TD);
} else {
next = stat;
}
upipe->u.ctl.length = len;
memcpy(KERNADDR(&upipe->u.ctl.reqdma, 0), req, sizeof *req);
setup->link.std = next;
setup->td.td_link = htole32(next->physaddr | UHCI_PTR_VF | UHCI_PTR_TD);
setup->td.td_status = htole32(UHCI_TD_SET_ERRCNT(3) | ls |
UHCI_TD_ACTIVE);
setup->td.td_token = htole32(UHCI_TD_SETUP(sizeof *req, endpt, addr));
setup->td.td_buffer = htole32(DMAADDR(&upipe->u.ctl.reqdma, 0));
stat->link.std = NULL;
stat->td.td_link = htole32(UHCI_PTR_T);
stat->td.td_status = htole32(UHCI_TD_SET_ERRCNT(3) | ls |
UHCI_TD_ACTIVE | UHCI_TD_IOC);
stat->td.td_token =
htole32(isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
UHCI_TD_IN (0, endpt, addr, 1));
stat->td.td_buffer = htole32(0);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_request: before transfer\n"));
uhci_dump_tds(setup);
}
#endif
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = setup;
ii->stdend = stat;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_request: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
sqh->elink = setup;
sqh->qh.qh_elink = htole32(setup->physaddr | UHCI_PTR_TD);
s = splusb();
if (dev->speed == USB_SPEED_LOW)
uhci_add_ls_ctrl(sc, sqh);
else
uhci_add_hs_ctrl(sc, sqh);
uhci_add_intr_info(sc, ii);
#ifdef USB_DEBUG
if (uhcidebug > 12) {
uhci_soft_td_t *std;
uhci_soft_qh_t *xqh;
uhci_soft_qh_t *sxqh;
int maxqh = 0;
uhci_physaddr_t link;
DPRINTF(("uhci_enter_ctl_q: follow from [0]\n"));
for (std = sc->sc_vframes[0].htd, link = 0;
(link & UHCI_PTR_QH) == 0;
std = std->link.std) {
link = le32toh(std->td.td_link);
uhci_dump_td(std);
}
sxqh = (uhci_soft_qh_t *)std;
uhci_dump_qh(sxqh);
for (xqh = sxqh;
xqh != NULL;
xqh = (maxqh++ == 5 || xqh->hlink == sxqh ||
xqh->hlink == xqh ? NULL : xqh->hlink)) {
uhci_dump_qh(xqh);
}
DPRINTF(("Enqueued QH:\n"));
uhci_dump_qh(sqh);
uhci_dump_tds(sqh->elink);
}
#endif
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, MS_TO_TICKS(xfer->timeout),
uhci_timeout, ii);
}
xfer->status = USBD_IN_PROGRESS;
splx(s);
return (USBD_NORMAL_COMPLETION);
}
usbd_status
uhci_device_isoc_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
DPRINTFN(5,("uhci_device_isoc_transfer: xfer=%p\n", xfer));
/* Put it on our queue, */
err = usb_insert_transfer(xfer);
/* bail out on error, */
if (err && err != USBD_IN_PROGRESS)
return (err);
/* XXX should check inuse here */
/* insert into schedule, */
uhci_device_isoc_enter(xfer);
/* and start if the pipe wasn't running */
if (!err)
uhci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue));
return (err);
}
void
uhci_device_isoc_enter(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
struct iso *iso = &upipe->u.iso;
uhci_soft_td_t *std;
u_int32_t buf, len, status;
int s, i, next, nframes;
DPRINTFN(5,("uhci_device_isoc_enter: used=%d next=%d xfer=%p "
"nframes=%d\n",
iso->inuse, iso->next, xfer, xfer->nframes));
if (sc->sc_dying)
return;
if (xfer->status == USBD_IN_PROGRESS) {
/* This request has already been entered into the frame list */
printf("uhci_device_isoc_enter: xfer=%p in frame list\n", xfer);
/* XXX */
}
#ifdef DIAGNOSTIC
if (iso->inuse >= UHCI_VFRAMELIST_COUNT)
printf("uhci_device_isoc_enter: overflow!\n");
#endif
next = iso->next;
if (next == -1) {
/* Not in use yet, schedule it a few frames ahead. */
next = (UREAD2(sc, UHCI_FRNUM) + 3) % UHCI_VFRAMELIST_COUNT;
DPRINTFN(2,("uhci_device_isoc_enter: start next=%d\n", next));
}
xfer->status = USBD_IN_PROGRESS;
UXFER(xfer)->curframe = next;
buf = DMAADDR(&xfer->dmabuf, 0);
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(0) |
UHCI_TD_ACTIVE |
UHCI_TD_IOS);
nframes = xfer->nframes;
s = splusb();
for (i = 0; i < nframes; i++) {
std = iso->stds[next];
if (++next >= UHCI_VFRAMELIST_COUNT)
next = 0;
len = xfer->frlengths[i];
std->td.td_buffer = htole32(buf);
if (i == nframes - 1)
status |= UHCI_TD_IOC;
std->td.td_status = htole32(status);
std->td.td_token &= htole32(~UHCI_TD_MAXLEN_MASK);
std->td.td_token |= htole32(UHCI_TD_SET_MAXLEN(len));
#ifdef USB_DEBUG
if (uhcidebug > 5) {
DPRINTFN(5,("uhci_device_isoc_enter: TD %d\n", i));
uhci_dump_td(std);
}
#endif
buf += len;
}
iso->next = next;
iso->inuse += xfer->nframes;
splx(s);
}
usbd_status
uhci_device_isoc_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *end;
int s, i;
DPRINTFN(5,("uhci_device_isoc_start: xfer=%p\n", xfer));
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->status != USBD_IN_PROGRESS)
printf("uhci_device_isoc_start: not in progress %p\n", xfer);
#endif
/* Find the last TD */
i = UXFER(xfer)->curframe + xfer->nframes;
if (i >= UHCI_VFRAMELIST_COUNT)
i -= UHCI_VFRAMELIST_COUNT;
end = upipe->u.iso.stds[i];
#ifdef DIAGNOSTIC
if (end == NULL) {
printf("uhci_device_isoc_start: end == NULL\n");
return (USBD_INVAL);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = end;
ii->stdend = end;
#ifdef DIAGNOSTIC
if (!ii->isdone)
printf("uhci_device_isoc_start: not done, ii=%p\n", ii);
ii->isdone = 0;
#endif
uhci_add_intr_info(sc, ii);
splx(s);
return (USBD_IN_PROGRESS);
}
void
uhci_device_isoc_abort(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_td_t **stds = upipe->u.iso.stds;
uhci_soft_td_t *std;
int i, n, s, nframes, maxlen, len;
s = splusb();
/* Transfer is already done. */
if (xfer->status != USBD_NOT_STARTED &&
xfer->status != USBD_IN_PROGRESS) {
splx(s);
return;
}
/* Give xfer the requested abort code. */
xfer->status = USBD_CANCELLED;
/* make hardware ignore it, */
nframes = xfer->nframes;
n = UXFER(xfer)->curframe;
maxlen = 0;
for (i = 0; i < nframes; i++) {
std = stds[n];
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
len = UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token));
if (len > maxlen)
maxlen = len;
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
}
/* and wait until we are sure the hardware has finished. */
delay(maxlen);
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
#endif
/* Run callback and remove from interrupt list. */
usb_transfer_complete(xfer);
splx(s);
}
void
uhci_device_isoc_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_soft_td_t *std, *vstd;
struct iso *iso;
int i, s;
/*
* Make sure all TDs are marked as inactive.
* Wait for completion.
* Unschedule.
* Deallocate.
*/
iso = &upipe->u.iso;
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++)
iso->stds[i]->td.td_status &= htole32(~UHCI_TD_ACTIVE);
usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */
s = splusb();
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = iso->stds[i];
for (vstd = sc->sc_vframes[i].htd;
vstd != NULL && vstd->link.std != std;
vstd = vstd->link.std)
;
if (vstd == NULL) {
/*panic*/
printf("uhci_device_isoc_close: %p not found\n", std);
splx(s);
return;
}
vstd->link = std->link;
vstd->td.td_link = std->td.td_link;
uhci_free_std(sc, std);
}
splx(s);
free(iso->stds, M_USBHC);
}
usbd_status
uhci_setup_isoc(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
int rd = UE_GET_DIR(endpt) == UE_DIR_IN;
uhci_soft_td_t *std, *vstd;
u_int32_t token;
struct iso *iso;
int i, s;
iso = &upipe->u.iso;
iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *),
M_USBHC, M_WAITOK);
token = rd ? UHCI_TD_IN (0, endpt, addr, 0) :
UHCI_TD_OUT(0, endpt, addr, 0);
/* Allocate the TDs and mark as inactive; */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
if (std == 0)
goto bad;
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(token);
iso->stds[i] = std;
}
/* Insert TDs into schedule. */
s = splusb();
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = iso->stds[i];
vstd = sc->sc_vframes[i].htd;
std->link = vstd->link;
std->td.td_link = vstd->td.td_link;
vstd->link.std = std;
vstd->td.td_link = htole32(std->physaddr | UHCI_PTR_TD);
}
splx(s);
iso->next = -1;
iso->inuse = 0;
return (USBD_NORMAL_COMPLETION);
bad:
while (--i >= 0)
uhci_free_std(sc, iso->stds[i]);
free(iso->stds, M_USBHC);
return (USBD_NOMEM);
}
void
uhci_device_isoc_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
DPRINTFN(4, ("uhci_isoc_done: length=%d\n", xfer->actlen));
if (ii->xfer != xfer)
/* Not on interrupt list, ignore it. */
return;
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
printf("uhci_device_isoc_done: xfer=%p not busy 0x%08x\n",
xfer, xfer->busy_free);
return;
}
if (ii->stdend == NULL) {
printf("uhci_device_isoc_done: xfer=%p stdend==NULL\n", xfer);
#ifdef USB_DEBUG
uhci_dump_ii(ii);
#endif
return;
}
#endif
/* Turn off the interrupt since it is active even if the TD is not. */
ii->stdend->td.td_status &= htole32(~UHCI_TD_IOC);
uhci_del_intr_info(ii); /* remove from active list */
#ifdef DIAGNOSTIC
if (ii->stdend == NULL) {
printf("uhci_device_isoc_done: xfer=%p stdend==NULL\n", xfer);
#ifdef USB_DEBUG
uhci_dump_ii(ii);
#endif
return;
}
#endif
}
void
uhci_device_intr_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_qh_t *sqh;
int i, npoll;
DPRINTFN(5, ("uhci_intr_done: length=%d\n", xfer->actlen));
npoll = upipe->u.intr.npoll;
for(i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
}
uhci_free_std_chain(sc, ii->stdstart, NULL);
/* XXX Wasteful. */
if (xfer->pipe->repeat) {
uhci_soft_td_t *data, *dataend;
DPRINTFN(5,("uhci_device_intr_done: requeing\n"));
/* This alloc cannot fail since we freed the chain above. */
uhci_alloc_std_chain(upipe, sc, xfer->length, 1, xfer->flags,
&xfer->dmabuf, &data, &dataend);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_done: data(1)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_intr_done: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
for (i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
}
xfer->status = USBD_IN_PROGRESS;
/* The ii is already on the examined list, just leave it. */
} else {
DPRINTFN(5,("uhci_device_intr_done: removing\n"));
uhci_del_intr_info(ii);
}
}
/* Deallocate request data structures */
void
uhci_device_ctrl_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_ctrl_done: not a request\n");
#endif
uhci_del_intr_info(ii); /* remove from active list */
if (upipe->pipe.device->speed == USB_SPEED_LOW)
uhci_remove_ls_ctrl(sc, upipe->u.ctl.sqh);
else
uhci_remove_hs_ctrl(sc, upipe->u.ctl.sqh);
if (upipe->u.ctl.length != 0)
uhci_free_std_chain(sc, ii->stdstart->link.std, ii->stdend);
DPRINTFN(5, ("uhci_ctrl_done: length=%d\n", xfer->actlen));
}
/* Deallocate request data structures */
void
uhci_device_bulk_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_del_intr_info(ii); /* remove from active list */
uhci_remove_bulk(sc, upipe->u.bulk.sqh);
uhci_free_std_chain(sc, ii->stdstart, NULL);
DPRINTFN(5, ("uhci_bulk_done: length=%d\n", xfer->actlen));
}
/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *eqh;
DPRINTFN(4, ("uhci_add_intr: n=%d sqh=%p\n", sqh->pos, sqh));
eqh = vf->eqh;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
vf->eqh = sqh;
vf->bandwidth++;
}
/* Remove interrupt QH. */
void
uhci_remove_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *pqh;
DPRINTFN(4, ("uhci_remove_intr: n=%d sqh=%p\n", sqh->pos, sqh));
/* See comment in uhci_remove_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(vf->hqh, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (vf->eqh == sqh)
vf->eqh = pqh;
vf->bandwidth--;
}
usbd_status
uhci_device_setintr(uhci_softc_t *sc, struct uhci_pipe *upipe, int ival)
{
uhci_soft_qh_t *sqh;
int i, npoll, s;
u_int bestbw, bw, bestoffs, offs;
DPRINTFN(2, ("uhci_setintr: pipe=%p\n", upipe));
if (ival == 0) {
printf("uhci_setintr: 0 interval\n");
return (USBD_INVAL);
}
if (ival > UHCI_VFRAMELIST_COUNT)
ival = UHCI_VFRAMELIST_COUNT;
npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival;
DPRINTFN(2, ("uhci_setintr: ival=%d npoll=%d\n", ival, npoll));
upipe->u.intr.npoll = npoll;
upipe->u.intr.qhs =
malloc(npoll * sizeof(uhci_soft_qh_t *), M_USBHC, M_WAITOK);
/*
* Figure out which offset in the schedule that has most
* bandwidth left over.
*/
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
for (bw = i = 0; i < npoll; i++)
bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
if (bw < bestbw) {
bestbw = bw;
bestoffs = offs;
}
}
DPRINTFN(1, ("uhci_setintr: bw=%d offs=%d\n", bestbw, bestoffs));
for(i = 0; i < npoll; i++) {
upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
sqh->pos = MOD(i * ival + bestoffs);
}
#undef MOD
s = splusb();
/* Enter QHs into the controller data structures. */
for(i = 0; i < npoll; i++)
uhci_add_intr(sc, upipe->u.intr.qhs[i]);
splx(s);
DPRINTFN(5, ("uhci_setintr: returns %p\n", upipe));
return (USBD_NORMAL_COMPLETION);
}
/* Open a new pipe. */
usbd_status
uhci_open(usbd_pipe_handle pipe)
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
usbd_status err;
int ival;
DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, pipe->device->address,
ed->bEndpointAddress, sc->sc_addr));
upipe->aborting = 0;
upipe->nexttoggle = 0;
if (pipe->device->address == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &uhci_root_ctrl_methods;
break;
case UE_DIR_IN | UHCI_INTR_ENDPT:
pipe->methods = &uhci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->methods = &uhci_device_ctrl_methods;
upipe->u.ctl.sqh = uhci_alloc_sqh(sc);
if (upipe->u.ctl.sqh == NULL)
goto bad;
upipe->u.ctl.setup = uhci_alloc_std(sc);
if (upipe->u.ctl.setup == NULL) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
goto bad;
}
upipe->u.ctl.stat = uhci_alloc_std(sc);
if (upipe->u.ctl.stat == NULL) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
goto bad;
}
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t),
0, &upipe->u.ctl.reqdma);
if (err) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
uhci_free_std(sc, upipe->u.ctl.stat);
goto bad;
}
break;
case UE_INTERRUPT:
pipe->methods = &uhci_device_intr_methods;
ival = pipe->interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
return (uhci_device_setintr(sc, upipe, ival));
case UE_ISOCHRONOUS:
pipe->methods = &uhci_device_isoc_methods;
return (uhci_setup_isoc(pipe));
case UE_BULK:
pipe->methods = &uhci_device_bulk_methods;
upipe->u.bulk.sqh = uhci_alloc_sqh(sc);
if (upipe->u.bulk.sqh == NULL)
goto bad;
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
return (USBD_NOMEM);
}
/*
* Data structures and routines to emulate the root hub.
*/
usb_device_descriptor_t uhci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UDCLASS_HUB, /* class */
UDSUBCLASS_HUB, /* subclass */
UDPROTO_FSHUB, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
usb_config_descriptor_t uhci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
usb_interface_descriptor_t uhci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UICLASS_HUB,
UISUBCLASS_HUB,
UIPROTO_FSHUB,
0
};
usb_endpoint_descriptor_t uhci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_DIR_IN | UHCI_INTR_ENDPT,
UE_INTERRUPT,
{8},
255
};
usb_hub_descriptor_t uhci_hubd_piix = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
2,
{ UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 },
50, /* power on to power good */
0,
{ 0x00 }, /* both ports are removable */
};
int
uhci_str(usb_string_descriptor_t *p, int l, char *s)
{
int i;
if (l == 0)
return (0);
p->bLength = 2 * strlen(s) + 2;
if (l == 1)
return (1);
p->bDescriptorType = UDESC_STRING;
l -= 2;
for (i = 0; s[i] && l > 1; i++, l -= 2)
USETW2(p->bString[i], 0, s[i]);
return (2*i+2);
}
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
usbd_status
uhci_root_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_root_ctrl_start(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usb_device_request_t *req;
void *buf = NULL;
int port, x;
int s, len, value, index, status, change, l, totlen = 0;
usb_port_status_t ps;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_root_ctrl_transfer: not a request\n");
#endif
req = &xfer->request;
DPRINTFN(2,("uhci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
if (len != 0)
buf = KERNADDR(&xfer->dmabuf, 0);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
USETW(uhci_devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &uhci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_endpd, l);
break;
case UDESC_STRING:
if (len == 0)
break;
*(u_int8_t *)buf = 0;
totlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
totlen = uhci_str(buf, len, sc->sc_vendor);
break;
case 2: /* Product */
totlen = uhci_str(buf, len, "UHCI root hub");
break;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
break;
case UHF_C_PORT_CONNECTION:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
break;
case UHF_C_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
break;
case UHF_C_PORT_OVER_CURRENT:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
err = USBD_NORMAL_COMPLETION;
goto ret;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
if (len > 0) {
*(u_int8_t *)buf =
(UREAD2(sc, port) & UHCI_PORTSC_LS) >>
UHCI_PORTSC_LS_SHIFT;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (value != 0) {
err = USBD_IOERROR;
goto ret;
}
l = min(len, USB_HUB_DESCRIPTOR_SIZE);
totlen = l;
memcpy(buf, &uhci_hubd_piix, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
x = UREAD2(sc, port);
status = change = 0;
if (x & UHCI_PORTSC_CCS)
status |= UPS_CURRENT_CONNECT_STATUS;
if (x & UHCI_PORTSC_CSC)
change |= UPS_C_CONNECT_STATUS;
if (x & UHCI_PORTSC_PE)
status |= UPS_PORT_ENABLED;
if (x & UHCI_PORTSC_POEDC)
change |= UPS_C_PORT_ENABLED;
if (x & UHCI_PORTSC_OCI)
status |= UPS_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_OCIC)
change |= UPS_C_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_SUSP)
status |= UPS_SUSPEND;
if (x & UHCI_PORTSC_LSDA)
status |= UPS_LOW_SPEED;
status |= UPS_PORT_POWER;
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PR);
usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
delay(100);
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
usb_delay_ms(&sc->sc_bus, 10); /* XXX */
DPRINTFN(3,("uhci port %d reset, status = 0x%04x\n",
index, UREAD2(sc, port)));
sc->sc_isreset = 1;
break;
case UHF_PORT_POWER:
/* Pretend we turned on power */
err = USBD_NORMAL_COMPLETION;
goto ret;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
err = USBD_IOERROR;
goto ret;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
xfer->actlen = totlen;
err = USBD_NORMAL_COMPLETION;
ret:
xfer->status = err;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
void
uhci_root_ctrl_abort(usbd_xfer_handle xfer)
{
/* Nothing to do, all transfers are synchronous. */
}
/* Close the root pipe. */
void
uhci_root_ctrl_close(usbd_pipe_handle pipe)
{
DPRINTF(("uhci_root_ctrl_close\n"));
}
/* Abort a root interrupt request. */
void
uhci_root_intr_abort(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub, xfer);
sc->sc_intr_xfer = NULL;
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("uhci_root_intr_abort: remove\n"));
xfer->pipe->intrxfer = 0;
}
xfer->status = USBD_CANCELLED;
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
#endif
usb_transfer_complete(xfer);
}
usbd_status
uhci_root_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(usbd_xfer_handle xfer)
{
usbd_pipe_handle pipe = xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
DPRINTFN(3, ("uhci_root_intr_transfer: xfer=%p len=%d flags=%d\n",
xfer, xfer->length, xfer->flags));
if (sc->sc_dying)
return (USBD_IOERROR);
sc->sc_ival = MS_TO_TICKS(xfer->pipe->endpoint->edesc->bInterval);
usb_callout(sc->sc_poll_handle, sc->sc_ival, uhci_poll_hub, xfer);
sc->sc_intr_xfer = xfer;
return (USBD_IN_PROGRESS);
}
/* Close the root interrupt pipe. */
void
uhci_root_intr_close(usbd_pipe_handle pipe)
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub, sc->sc_intr_xfer);
sc->sc_intr_xfer = NULL;
DPRINTF(("uhci_root_intr_close\n"));
}