Justin Hibbits 2dd1bdf183 Convert rman to use rman_res_t instead of u_long
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources.  For
now, this is still compatible with u_long.

This is step one in migrating rman to use uintmax_t for resources instead of
u_long.

Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.

This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.

Reviewed By: jhb
Sponsored by:	Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
2016-01-27 02:23:54 +00:00

467 lines
9.7 KiB
C

/*-
* Copyright (c) 2006 Olivier Houchard
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#define _ARM32_BUS_DMA_PRIVATE
#include <machine/armreg.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/xscale/i8134x/i81342reg.h>
#include <arm/xscale/i8134x/i81342var.h>
#define WDTCR_ENABLE1 0x1e1e1e1e
#define WDTCR_ENABLE2 0xe1e1e1e1
static volatile int intr_enabled0;
static volatile int intr_enabled1;
static volatile int intr_enabled2;
static volatile int intr_enabled3;
struct bus_space i81342_bs_tag;
/* Read the interrupt pending register */
static __inline
uint32_t intpnd0_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c0, c3, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intpnd1_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c1, c3, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intpnd2_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c2, c3, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intpnd3_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c3, c3, 0"
: "=r" (ret));
return (ret);
}
/* Read the interrupt control register */
/* 0 masked, 1 unmasked */
static __inline
uint32_t intctl0_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c0, c4, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intctl1_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c1, c4, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intctl2_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c2, c4, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intctl3_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c3, c4, 0"
: "=r" (ret));
return (ret);
}
/* Write the interrupt control register */
static __inline
void intctl0_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c0, c4, 0"
: : "r" (val));
}
static __inline
void intctl1_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c1, c4, 0"
: : "r" (val));
}
static __inline
void intctl2_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c2, c4, 0"
: : "r" (val));
}
static __inline
void intctl3_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c3, c4, 0"
: : "r" (val));
}
/* Read the interrupt steering register */
/* 0 IRQ 1 FIQ */
static __inline
uint32_t intstr0_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c0, c5, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intstr1_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c1, c5, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intstr2_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c2, c5, 0"
: "=r" (ret));
return (ret);
}
static __inline
uint32_t intstr3_read(void)
{
uint32_t ret;
__asm __volatile("mrc p6, 0, %0, c3, c5, 0"
: "=r" (ret));
return (ret);
}
/* Write the interrupt steering register */
static __inline
void intstr0_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c0, c5, 0"
: : "r" (val));
}
static __inline
void intstr1_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c1, c5, 0"
: : "r" (val));
}
static __inline
void intstr2_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c2, c5, 0"
: : "r" (val));
}
static __inline
void intstr3_write(uint32_t val)
{
__asm __volatile("mcr p6, 0, %0, c3, c5, 0"
: : "r" (val));
}
void
cpu_reset(void)
{
disable_interrupts(PSR_I);
/* XXX: Use the watchdog to reset for now */
__asm __volatile("mcr p6, 0, %0, c8, c9, 0\n"
"mcr p6, 0, %1, c7, c9, 0\n"
"mcr p6, 0, %2, c7, c9, 0\n"
: : "r" (1), "r" (WDTCR_ENABLE1), "r" (WDTCR_ENABLE2));
while (1);
}
void
arm_mask_irq(uintptr_t nb)
{
if (nb < 32) {
intr_enabled0 &= ~(1 << nb);
intctl0_write(intr_enabled0);
} else if (nb < 64) {
intr_enabled1 &= ~(1 << (nb - 32));
intctl1_write(intr_enabled1);
} else if (nb < 96) {
intr_enabled2 &= ~(1 << (nb - 64));
intctl2_write(intr_enabled2);
} else {
intr_enabled3 &= ~(1 << (nb - 96));
intctl3_write(intr_enabled3);
}
}
void
arm_unmask_irq(uintptr_t nb)
{
if (nb < 32) {
intr_enabled0 |= (1 << nb);
intctl0_write(intr_enabled0);
} else if (nb < 64) {
intr_enabled1 |= (1 << (nb - 32));
intctl1_write(intr_enabled1);
} else if (nb < 96) {
intr_enabled2 |= (1 << (nb - 64));
intctl2_write(intr_enabled2);
} else {
intr_enabled3 |= (1 << (nb - 96));
intctl3_write(intr_enabled3);
}
}
int
arm_get_next_irq(int last __unused)
{
uint32_t val;
val = intpnd0_read() & intr_enabled0;
if (val)
return (ffs(val) - 1);
val = intpnd1_read() & intr_enabled1;
if (val)
return (32 + ffs(val) - 1);
val = intpnd2_read() & intr_enabled2;
if (val)
return (64 + ffs(val) - 1);
val = intpnd3_read() & intr_enabled3;
if (val)
return (96 + ffs(val) - 1);
return (-1);
}
int
bus_dma_get_range_nb(void)
{
return (0);
}
struct arm32_dma_range *
bus_dma_get_range(void)
{
return (NULL);
}
static int
i81342_probe(device_t dev)
{
unsigned int freq;
freq = *(volatile unsigned int *)(IOP34X_VADDR + IOP34X_PFR);
switch (freq & IOP34X_FREQ_MASK) {
case IOP34X_FREQ_600:
device_set_desc(dev, "Intel 81342 600MHz");
break;
case IOP34X_FREQ_667:
device_set_desc(dev, "Intel 81342 667MHz");
break;
case IOP34X_FREQ_800:
device_set_desc(dev, "Intel 81342 800MHz");
break;
case IOP34X_FREQ_833:
device_set_desc(dev, "Intel 81342 833MHz");
break;
case IOP34X_FREQ_1000:
device_set_desc(dev, "Intel 81342 1000MHz");
break;
case IOP34X_FREQ_1200:
device_set_desc(dev, "Intel 81342 1200MHz");
break;
default:
device_set_desc(dev, "Intel 81342 unknown frequency");
break;
}
return (0);
}
static void
i81342_identify(driver_t *driver, device_t parent)
{
BUS_ADD_CHILD(parent, 0, "iq", 0);
}
static int
i81342_attach(device_t dev)
{
struct i81342_softc *sc = device_get_softc(dev);
uint32_t esstrsr;
i81342_bs_init(&i81342_bs_tag, sc);
sc->sc_st = &i81342_bs_tag;
sc->sc_sh = IOP34X_VADDR;
esstrsr = bus_space_read_4(sc->sc_st, sc->sc_sh, IOP34X_ESSTSR0);
sc->sc_atux_sh = IOP34X_ATUX_ADDR(esstrsr) - IOP34X_HWADDR +
IOP34X_VADDR;
sc->sc_atue_sh = IOP34X_ATUE_ADDR(esstrsr) - IOP34X_HWADDR +
IOP34X_VADDR;
/* Disable all interrupts. */
intctl0_write(0);
intctl1_write(0);
intctl2_write(0);
intctl3_write(0);
/* Defaults to IRQ */
intstr0_write(0);
intstr1_write(0);
intstr2_write(0);
intstr3_write(0);
sc->sc_irq_rman.rm_type = RMAN_ARRAY;
sc->sc_irq_rman.rm_descr = "i81342 IRQs";
if (rman_init(&sc->sc_irq_rman) != 0 ||
rman_manage_region(&sc->sc_irq_rman, 0, 127) != 0)
panic("i81342_attach: failed to set up IRQ rman");
device_add_child(dev, "obio", 0);
device_add_child(dev, "itimer", 0);
device_add_child(dev, "iopwdog", 0);
device_add_child(dev, "pcib", 0);
device_add_child(dev, "pcib", 1);
device_add_child(dev, "iqseg", 0);
bus_generic_probe(dev);
bus_generic_attach(dev);
return (0);
}
static struct resource *
i81342_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct i81342_softc *sc = device_get_softc(dev);
struct resource *rv;
if (type == SYS_RES_IRQ) {
rv = rman_reserve_resource(&sc->sc_irq_rman,
start, end, count, flags, child);
if (rv != NULL)
rman_set_rid(rv, *rid);
return (rv);
}
return (NULL);
}
static int
i81342_setup_intr(device_t dev, device_t child, struct resource *ires,
int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
void **cookiep)
{
int error;
error = BUS_SETUP_INTR(device_get_parent(dev), child, ires, flags,
filt, intr, arg, cookiep);
if (error)
return (error);
return (0);
}
static int
i81342_teardown_intr(device_t dev, device_t child, struct resource *res,
void *cookie)
{
return (BUS_TEARDOWN_INTR(device_get_parent(dev), child, res, cookie));
}
static device_method_t i81342_methods[] = {
DEVMETHOD(device_probe, i81342_probe),
DEVMETHOD(device_attach, i81342_attach),
DEVMETHOD(device_identify, i81342_identify),
DEVMETHOD(bus_alloc_resource, i81342_alloc_resource),
DEVMETHOD(bus_setup_intr, i81342_setup_intr),
DEVMETHOD(bus_teardown_intr, i81342_teardown_intr),
{0, 0},
};
static driver_t i81342_driver = {
"iq",
i81342_methods,
sizeof(struct i81342_softc),
};
static devclass_t i81342_devclass;
DRIVER_MODULE(iq, nexus, i81342_driver, i81342_devclass, 0, 0);