freebsd-nq/sys/net80211/ieee80211_freebsd.c

973 lines
25 KiB
C

/*-
* Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 support (FreeBSD-specific code)
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_clone.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net/route.h>
#include <net/vnet.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_input.h>
SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
#ifdef IEEE80211_DEBUG
static int ieee80211_debug = 0;
SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
0, "debugging printfs");
#endif
static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
static const char wlanname[] = "wlan";
static struct if_clone *wlan_cloner;
static int
wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
{
struct ieee80211_clone_params cp;
struct ieee80211vap *vap;
struct ieee80211com *ic;
int error;
error = copyin(params, &cp, sizeof(cp));
if (error)
return error;
ic = ieee80211_find_com(cp.icp_parent);
if (ic == NULL)
return ENXIO;
if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
ic_printf(ic, "%s: invalid opmode %d\n", __func__,
cp.icp_opmode);
return EINVAL;
}
if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
ic_printf(ic, "%s mode not supported\n",
ieee80211_opmode_name[cp.icp_opmode]);
return EOPNOTSUPP;
}
if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
#ifdef IEEE80211_SUPPORT_TDMA
(ic->ic_caps & IEEE80211_C_TDMA) == 0
#else
(1)
#endif
) {
ic_printf(ic, "TDMA not supported\n");
return EOPNOTSUPP;
}
vap = ic->ic_vap_create(ic, wlanname, unit,
cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
cp.icp_flags & IEEE80211_CLONE_MACADDR ?
cp.icp_macaddr : ic->ic_macaddr);
return (vap == NULL ? EIO : 0);
}
static void
wlan_clone_destroy(struct ifnet *ifp)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
ic->ic_vap_delete(vap);
}
void
ieee80211_vap_destroy(struct ieee80211vap *vap)
{
CURVNET_SET(vap->iv_ifp->if_vnet);
if_clone_destroyif(wlan_cloner, vap->iv_ifp);
CURVNET_RESTORE();
}
int
ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
{
int msecs = ticks_to_msecs(*(int *)arg1);
int error, t;
error = sysctl_handle_int(oidp, &msecs, 0, req);
if (error || !req->newptr)
return error;
t = msecs_to_ticks(msecs);
*(int *)arg1 = (t < 1) ? 1 : t;
return 0;
}
static int
ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
{
int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
int error;
error = sysctl_handle_int(oidp, &inact, 0, req);
if (error || !req->newptr)
return error;
*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
return 0;
}
static int
ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
{
struct ieee80211com *ic = arg1;
return SYSCTL_OUT_STR(req, ic->ic_name);
}
static int
ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
{
struct ieee80211com *ic = arg1;
int t = 0, error;
error = sysctl_handle_int(oidp, &t, 0, req);
if (error || !req->newptr)
return error;
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
IEEE80211_UNLOCK(ic);
return 0;
}
void
ieee80211_sysctl_attach(struct ieee80211com *ic)
{
}
void
ieee80211_sysctl_detach(struct ieee80211com *ic)
{
}
void
ieee80211_sysctl_vattach(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ifp;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
char num[14]; /* sufficient for 32 bits */
ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (ctx == NULL) {
if_printf(ifp, "%s: cannot allocate sysctl context!\n",
__func__);
return;
}
sysctl_ctx_init(ctx);
snprintf(num, sizeof(num), "%u", ifp->if_dunit);
oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
OID_AUTO, num, CTLFLAG_RD, NULL, "");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
ieee80211_sysctl_parent, "A", "parent device");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
"driver capabilities");
#ifdef IEEE80211_DEBUG
vap->iv_debug = ieee80211_debug;
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"debug", CTLFLAG_RW, &vap->iv_debug, 0,
"control debugging printfs");
#endif
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
"consecutive beacon misses before scanning");
/* XXX inherit from tunables */
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
ieee80211_sysctl_inact, "I",
"station inactivity timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
ieee80211_sysctl_inact, "I",
"station inactivity probe timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
ieee80211_sysctl_inact, "I",
"station authentication timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
ieee80211_sysctl_inact, "I",
"station initial state timeout (sec)");
if (vap->iv_htcaps & IEEE80211_HTC_HT) {
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_bk", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
"BK traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_be", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
"BE traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_vo", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
"VO traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_vi", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
"VI traffic tx aggr threshold (pps)");
}
if (vap->iv_caps & IEEE80211_C_DFS) {
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
ieee80211_sysctl_radar, "I", "simulate radar event");
}
vap->iv_sysctl = ctx;
vap->iv_oid = oid;
}
void
ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
{
if (vap->iv_sysctl != NULL) {
sysctl_ctx_free(vap->iv_sysctl);
IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
vap->iv_sysctl = NULL;
}
}
int
ieee80211_node_dectestref(struct ieee80211_node *ni)
{
/* XXX need equivalent of atomic_dec_and_test */
atomic_subtract_int(&ni->ni_refcnt, 1);
return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
}
void
ieee80211_drain_ifq(struct ifqueue *ifq)
{
struct ieee80211_node *ni;
struct mbuf *m;
for (;;) {
IF_DEQUEUE(ifq, m);
if (m == NULL)
break;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
KASSERT(ni != NULL, ("frame w/o node"));
ieee80211_free_node(ni);
m->m_pkthdr.rcvif = NULL;
m_freem(m);
}
}
void
ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
{
struct ieee80211_node *ni;
struct mbuf *m, **mprev;
IF_LOCK(ifq);
mprev = &ifq->ifq_head;
while ((m = *mprev) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (ni != NULL && ni->ni_vap == vap) {
*mprev = m->m_nextpkt; /* remove from list */
ifq->ifq_len--;
m_freem(m);
ieee80211_free_node(ni); /* reclaim ref */
} else
mprev = &m->m_nextpkt;
}
/* recalculate tail ptr */
m = ifq->ifq_head;
for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
;
ifq->ifq_tail = m;
IF_UNLOCK(ifq);
}
/*
* As above, for mbufs allocated with m_gethdr/MGETHDR
* or initialized by M_COPY_PKTHDR.
*/
#define MC_ALIGN(m, len) \
do { \
(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \
} while (/* CONSTCOND */ 0)
/*
* Allocate and setup a management frame of the specified
* size. We return the mbuf and a pointer to the start
* of the contiguous data area that's been reserved based
* on the packet length. The data area is forced to 32-bit
* alignment and the buffer length to a multiple of 4 bytes.
* This is done mainly so beacon frames (that require this)
* can use this interface too.
*/
struct mbuf *
ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
{
struct mbuf *m;
u_int len;
/*
* NB: we know the mbuf routines will align the data area
* so we don't need to do anything special.
*/
len = roundup2(headroom + pktlen, 4);
KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
if (len < MINCLSIZE) {
m = m_gethdr(M_NOWAIT, MT_DATA);
/*
* Align the data in case additional headers are added.
* This should only happen when a WEP header is added
* which only happens for shared key authentication mgt
* frames which all fit in MHLEN.
*/
if (m != NULL)
M_ALIGN(m, len);
} else {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL)
MC_ALIGN(m, len);
}
if (m != NULL) {
m->m_data += headroom;
*frm = m->m_data;
}
return m;
}
#ifndef __NO_STRICT_ALIGNMENT
/*
* Re-align the payload in the mbuf. This is mainly used (right now)
* to handle IP header alignment requirements on certain architectures.
*/
struct mbuf *
ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
{
int pktlen, space;
struct mbuf *n;
pktlen = m->m_pkthdr.len;
space = pktlen + align;
if (space < MINCLSIZE)
n = m_gethdr(M_NOWAIT, MT_DATA);
else {
n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
space <= MCLBYTES ? MCLBYTES :
#if MJUMPAGESIZE != MCLBYTES
space <= MJUMPAGESIZE ? MJUMPAGESIZE :
#endif
space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
}
if (__predict_true(n != NULL)) {
m_move_pkthdr(n, m);
n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
m_copydata(m, 0, pktlen, mtod(n, caddr_t));
n->m_len = pktlen;
} else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
mtod(m, const struct ieee80211_frame *), NULL,
"%s", "no mbuf to realign");
vap->iv_stats.is_rx_badalign++;
}
m_freem(m);
return n;
}
#endif /* !__NO_STRICT_ALIGNMENT */
int
ieee80211_add_callback(struct mbuf *m,
void (*func)(struct ieee80211_node *, void *, int), void *arg)
{
struct m_tag *mtag;
struct ieee80211_cb *cb;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
sizeof(struct ieee80211_cb), M_NOWAIT);
if (mtag == NULL)
return 0;
cb = (struct ieee80211_cb *)(mtag+1);
cb->func = func;
cb->arg = arg;
m_tag_prepend(m, mtag);
m->m_flags |= M_TXCB;
return 1;
}
int
ieee80211_add_xmit_params(struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct m_tag *mtag;
struct ieee80211_tx_params *tx;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
sizeof(struct ieee80211_tx_params), M_NOWAIT);
if (mtag == NULL)
return (0);
tx = (struct ieee80211_tx_params *)(mtag+1);
memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_xmit_params(struct mbuf *m,
struct ieee80211_bpf_params *params)
{
struct m_tag *mtag;
struct ieee80211_tx_params *tx;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
NULL);
if (mtag == NULL)
return (-1);
tx = (struct ieee80211_tx_params *)(mtag + 1);
memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
return (0);
}
void
ieee80211_process_callback(struct ieee80211_node *ni,
struct mbuf *m, int status)
{
struct m_tag *mtag;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
if (mtag != NULL) {
struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
cb->func(ni, cb->arg, status);
}
}
/*
* Add RX parameters to the given mbuf.
*
* Returns 1 if OK, 0 on error.
*/
int
ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
{
struct m_tag *mtag;
struct ieee80211_rx_params *rx;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
sizeof(struct ieee80211_rx_stats), M_NOWAIT);
if (mtag == NULL)
return (0);
rx = (struct ieee80211_rx_params *)(mtag + 1);
memcpy(&rx->params, rxs, sizeof(*rxs));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
{
struct m_tag *mtag;
struct ieee80211_rx_params *rx;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
NULL);
if (mtag == NULL)
return (-1);
rx = (struct ieee80211_rx_params *)(mtag + 1);
memcpy(rxs, &rx->params, sizeof(*rxs));
return (0);
}
/*
* Add TOA parameters to the given mbuf.
*/
int
ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
{
struct m_tag *mtag;
struct ieee80211_toa_params *rp;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
sizeof(struct ieee80211_toa_params), M_NOWAIT);
if (mtag == NULL)
return (0);
rp = (struct ieee80211_toa_params *)(mtag + 1);
memcpy(rp, p, sizeof(*rp));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
{
struct m_tag *mtag;
struct ieee80211_toa_params *rp;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
NULL);
if (mtag == NULL)
return (0);
rp = (struct ieee80211_toa_params *)(mtag + 1);
if (p != NULL)
memcpy(p, rp, sizeof(*p));
return (1);
}
/*
* Transmit a frame to the parent interface.
*/
int
ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
{
int error;
/*
* Assert the IC TX lock is held - this enforces the
* processing -> queuing order is maintained
*/
IEEE80211_TX_LOCK_ASSERT(ic);
error = ic->ic_transmit(ic, m);
if (error) {
struct ieee80211_node *ni;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
/* XXX number of fragments */
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
ieee80211_free_mbuf(m);
}
return (error);
}
/*
* Transmit a frame to the VAP interface.
*/
int
ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
{
struct ifnet *ifp = vap->iv_ifp;
/*
* When transmitting via the VAP, we shouldn't hold
* any IC TX lock as the VAP TX path will acquire it.
*/
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
return (ifp->if_transmit(ifp, m));
}
#include <sys/libkern.h>
void
get_random_bytes(void *p, size_t n)
{
uint8_t *dp = p;
while (n > 0) {
uint32_t v = arc4random();
size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
dp += sizeof(uint32_t), n -= nb;
}
}
/*
* Helper function for events that pass just a single mac address.
*/
static void
notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211_join_event iev;
CURVNET_SET(ifp->if_vnet);
memset(&iev, 0, sizeof(iev));
IEEE80211_ADDR_COPY(iev.iev_addr, mac);
rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
CURVNET_RESTORE();
}
void
ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
CURVNET_SET_QUIET(ifp->if_vnet);
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
(ni == vap->iv_bss) ? "bss " : "");
if (ni == vap->iv_bss) {
notify_macaddr(ifp, newassoc ?
RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
if_link_state_change(ifp, LINK_STATE_UP);
} else {
notify_macaddr(ifp, newassoc ?
RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
}
CURVNET_RESTORE();
}
void
ieee80211_notify_node_leave(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
CURVNET_SET_QUIET(ifp->if_vnet);
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
(ni == vap->iv_bss) ? "bss " : "");
if (ni == vap->iv_bss) {
rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
if_link_state_change(ifp, LINK_STATE_DOWN);
} else {
/* fire off wireless event station leaving */
notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
}
CURVNET_RESTORE();
}
void
ieee80211_notify_scan_done(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
/* dispatch wireless event indicating scan completed */
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
CURVNET_RESTORE();
}
void
ieee80211_notify_replay_failure(struct ieee80211vap *vap,
const struct ieee80211_frame *wh, const struct ieee80211_key *k,
u_int64_t rsc, int tid)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
k->wk_cipher->ic_name, tid, (intmax_t) rsc,
(intmax_t) k->wk_keyrsc[tid],
k->wk_keyix, k->wk_rxkeyix);
if (ifp != NULL) { /* NB: for cipher test modules */
struct ieee80211_replay_event iev;
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
iev.iev_cipher = k->wk_cipher->ic_cipher;
if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
iev.iev_keyix = k->wk_rxkeyix;
else
iev.iev_keyix = k->wk_keyix;
iev.iev_keyrsc = k->wk_keyrsc[tid];
iev.iev_rsc = rsc;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_michael_failure(struct ieee80211vap *vap,
const struct ieee80211_frame *wh, u_int keyix)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"michael MIC verification failed <keyix %u>", keyix);
vap->iv_stats.is_rx_tkipmic++;
if (ifp != NULL) { /* NB: for cipher test modules */
struct ieee80211_michael_event iev;
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
iev.iev_cipher = IEEE80211_CIPHER_TKIP;
iev.iev_keyix = keyix;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_wds_discover(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
}
void
ieee80211_notify_csa(struct ieee80211com *ic,
const struct ieee80211_channel *c, int mode, int count)
{
struct ieee80211_csa_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
iev.iev_mode = mode;
iev.iev_count = count;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_radar(struct ieee80211com *ic,
const struct ieee80211_channel *c)
{
struct ieee80211_radar_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_cac(struct ieee80211com *ic,
const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
{
struct ieee80211_cac_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
iev.iev_type = type;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_node_deauth(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
}
void
ieee80211_notify_node_auth(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
}
void
ieee80211_notify_country(struct ieee80211vap *vap,
const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_country_event iev;
memset(&iev, 0, sizeof(iev));
IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
iev.iev_cc[0] = cc[0];
iev.iev_cc[1] = cc[1];
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
CURVNET_RESTORE();
}
void
ieee80211_notify_radio(struct ieee80211com *ic, int state)
{
struct ieee80211_radio_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_state = state;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_load_module(const char *modname)
{
#ifdef notyet
(void)kern_kldload(curthread, modname, NULL);
#else
printf("%s: load the %s module by hand for now.\n", __func__, modname);
#endif
}
static eventhandler_tag wlan_bpfevent;
static eventhandler_tag wlan_ifllevent;
static void
bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
{
/* NB: identify vap's by if_init */
if (dlt == DLT_IEEE802_11_RADIO &&
ifp->if_init == ieee80211_init) {
struct ieee80211vap *vap = ifp->if_softc;
/*
* Track bpf radiotap listener state. We mark the vap
* to indicate if any listener is present and the com
* to indicate if any listener exists on any associated
* vap. This flag is used by drivers to prepare radiotap
* state only when needed.
*/
if (attach) {
ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
if (vap->iv_opmode == IEEE80211_M_MONITOR)
atomic_add_int(&vap->iv_ic->ic_montaps, 1);
} else if (!bpf_peers_present(vap->iv_rawbpf)) {
ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
if (vap->iv_opmode == IEEE80211_M_MONITOR)
atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
}
}
}
/*
* Change MAC address on the vap (if was not started).
*/
static void
wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
{
/* NB: identify vap's by if_init */
if (ifp->if_init == ieee80211_init &&
(ifp->if_flags & IFF_UP) == 0) {
struct ieee80211vap *vap = ifp->if_softc;
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
}
}
/*
* Module glue.
*
* NB: the module name is "wlan" for compatibility with NetBSD.
*/
static int
wlan_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
if (bootverbose)
printf("wlan: <802.11 Link Layer>\n");
wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
bpf_track, 0, EVENTHANDLER_PRI_ANY);
wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
wlan_clone_destroy, 0);
return 0;
case MOD_UNLOAD:
if_clone_detach(wlan_cloner);
EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
return 0;
}
return EINVAL;
}
static moduledata_t wlan_mod = {
wlanname,
wlan_modevent,
0
};
DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(wlan, 1);
MODULE_DEPEND(wlan, ether, 1, 1, 1);
#ifdef IEEE80211_ALQ
MODULE_DEPEND(wlan, alq, 1, 1, 1);
#endif /* IEEE80211_ALQ */