feeec74df7
resist easy conversion since they implement a great deal of their attach logic inside probe(). Some of this could be fixed by moving it to attach(), but some requires something more subtle than BUS_PROBE_NOWILDCARD.
597 lines
15 KiB
C
597 lines
15 KiB
C
/*-
|
|
* Copyright (c) 2009 Adrian Chadd
|
|
* Copyright (c) 2012 Spectra Logic Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* \file dev/xen/timer/timer.c
|
|
* \brief A timer driver for the Xen hypervisor's PV clock.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/timeet.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/clock.h>
|
|
|
|
#include <xen/xen-os.h>
|
|
#include <xen/features.h>
|
|
#include <xen/xen_intr.h>
|
|
#include <xen/hypervisor.h>
|
|
#include <xen/interface/io/xenbus.h>
|
|
#include <xen/interface/vcpu.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/_inttypes.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include "clock_if.h"
|
|
|
|
static devclass_t xentimer_devclass;
|
|
|
|
#define NSEC_IN_SEC 1000000000ULL
|
|
#define NSEC_IN_USEC 1000ULL
|
|
/* 18446744073 = int(2^64 / NSEC_IN_SC) = 1 ns in 64-bit fractions */
|
|
#define FRAC_IN_NSEC 18446744073LL
|
|
|
|
/* Xen timers may fire up to 100us off */
|
|
#define XENTIMER_MIN_PERIOD_IN_NSEC 100*NSEC_IN_USEC
|
|
#define XENCLOCK_RESOLUTION 10000000
|
|
|
|
#define ETIME 62 /* Xen "bad time" error */
|
|
|
|
#define XENTIMER_QUALITY 950
|
|
|
|
struct xentimer_pcpu_data {
|
|
uint64_t timer;
|
|
uint64_t last_processed;
|
|
void *irq_handle;
|
|
};
|
|
|
|
DPCPU_DEFINE(struct xentimer_pcpu_data, xentimer_pcpu);
|
|
|
|
DPCPU_DECLARE(struct vcpu_info *, vcpu_info);
|
|
|
|
struct xentimer_softc {
|
|
device_t dev;
|
|
struct timecounter tc;
|
|
struct eventtimer et;
|
|
};
|
|
|
|
/* Last time; this guarantees a monotonically increasing clock. */
|
|
volatile uint64_t xen_timer_last_time = 0;
|
|
|
|
static void
|
|
xentimer_identify(driver_t *driver, device_t parent)
|
|
{
|
|
if (!xen_domain())
|
|
return;
|
|
|
|
/* Handle all Xen PV timers in one device instance. */
|
|
if (devclass_get_device(xentimer_devclass, 0))
|
|
return;
|
|
|
|
BUS_ADD_CHILD(parent, 0, "xen_et", 0);
|
|
}
|
|
|
|
static int
|
|
xentimer_probe(device_t dev)
|
|
{
|
|
KASSERT((xen_domain()), ("Trying to use Xen timer on bare metal"));
|
|
/*
|
|
* In order to attach, this driver requires the following:
|
|
* - Vector callback support by the hypervisor, in order to deliver
|
|
* timer interrupts to the correct CPU for CPUs other than 0.
|
|
* - Access to the hypervisor shared info page, in order to look up
|
|
* each VCPU's timer information and the Xen wallclock time.
|
|
* - The hypervisor must say its PV clock is "safe" to use.
|
|
* - The hypervisor must support VCPUOP hypercalls.
|
|
* - The maximum number of CPUs supported by FreeBSD must not exceed
|
|
* the number of VCPUs supported by the hypervisor.
|
|
*/
|
|
#define XTREQUIRES(condition, reason...) \
|
|
if (!(condition)) { \
|
|
device_printf(dev, ## reason); \
|
|
device_detach(dev); \
|
|
return (ENXIO); \
|
|
}
|
|
|
|
if (xen_hvm_domain()) {
|
|
XTREQUIRES(xen_vector_callback_enabled,
|
|
"vector callbacks unavailable\n");
|
|
XTREQUIRES(xen_feature(XENFEAT_hvm_safe_pvclock),
|
|
"HVM safe pvclock unavailable\n");
|
|
}
|
|
XTREQUIRES(HYPERVISOR_shared_info != NULL,
|
|
"shared info page unavailable\n");
|
|
XTREQUIRES(HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 0, NULL) == 0,
|
|
"VCPUOPs interface unavailable\n");
|
|
#undef XTREQUIRES
|
|
device_set_desc(dev, "Xen PV Clock");
|
|
return (BUS_PROBE_NOWILDCARD);
|
|
}
|
|
|
|
/*
|
|
* Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
|
|
* yielding a 64-bit result.
|
|
*/
|
|
static inline uint64_t
|
|
scale_delta(uint64_t delta, uint32_t mul_frac, int shift)
|
|
{
|
|
uint64_t product;
|
|
|
|
if (shift < 0)
|
|
delta >>= -shift;
|
|
else
|
|
delta <<= shift;
|
|
|
|
#if defined(__i386__)
|
|
{
|
|
uint32_t tmp1, tmp2;
|
|
|
|
/**
|
|
* For i386, the formula looks like:
|
|
*
|
|
* lower = (mul_frac * (delta & UINT_MAX)) >> 32
|
|
* upper = mul_frac * (delta >> 32)
|
|
* product = lower + upper
|
|
*/
|
|
__asm__ (
|
|
"mul %5 ; "
|
|
"mov %4,%%eax ; "
|
|
"mov %%edx,%4 ; "
|
|
"mul %5 ; "
|
|
"xor %5,%5 ; "
|
|
"add %4,%%eax ; "
|
|
"adc %5,%%edx ; "
|
|
: "=A" (product), "=r" (tmp1), "=r" (tmp2)
|
|
: "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)),
|
|
"2" (mul_frac) );
|
|
}
|
|
#elif defined(__amd64__)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
__asm__ (
|
|
"mulq %[mul_frac] ; shrd $32, %[hi], %[lo]"
|
|
: [lo]"=a" (product), [hi]"=d" (tmp)
|
|
: "0" (delta), [mul_frac]"rm"((uint64_t)mul_frac));
|
|
}
|
|
#else
|
|
#error "xentimer: unsupported architecture"
|
|
#endif
|
|
|
|
return (product);
|
|
}
|
|
|
|
static uint64_t
|
|
get_nsec_offset(struct vcpu_time_info *tinfo)
|
|
{
|
|
|
|
return (scale_delta(rdtsc() - tinfo->tsc_timestamp,
|
|
tinfo->tsc_to_system_mul, tinfo->tsc_shift));
|
|
}
|
|
|
|
/*
|
|
* Read the current hypervisor system uptime value from Xen.
|
|
* See <xen/interface/xen.h> for a description of how this works.
|
|
*/
|
|
static uint32_t
|
|
xen_fetch_vcpu_tinfo(struct vcpu_time_info *dst, struct vcpu_time_info *src)
|
|
{
|
|
|
|
do {
|
|
dst->version = src->version;
|
|
rmb();
|
|
dst->tsc_timestamp = src->tsc_timestamp;
|
|
dst->system_time = src->system_time;
|
|
dst->tsc_to_system_mul = src->tsc_to_system_mul;
|
|
dst->tsc_shift = src->tsc_shift;
|
|
rmb();
|
|
} while ((src->version & 1) | (dst->version ^ src->version));
|
|
|
|
return (dst->version);
|
|
}
|
|
|
|
/**
|
|
* \brief Get the current time, in nanoseconds, since the hypervisor booted.
|
|
*
|
|
* \note This function returns the current CPU's idea of this value, unless
|
|
* it happens to be less than another CPU's previously determined value.
|
|
*/
|
|
static uint64_t
|
|
xen_fetch_vcpu_time(void)
|
|
{
|
|
struct vcpu_time_info dst;
|
|
struct vcpu_time_info *src;
|
|
uint32_t pre_version;
|
|
uint64_t now;
|
|
volatile uint64_t last;
|
|
struct vcpu_info *vcpu = DPCPU_GET(vcpu_info);
|
|
|
|
src = &vcpu->time;
|
|
|
|
critical_enter();
|
|
do {
|
|
pre_version = xen_fetch_vcpu_tinfo(&dst, src);
|
|
barrier();
|
|
now = dst.system_time + get_nsec_offset(&dst);
|
|
barrier();
|
|
} while (pre_version != src->version);
|
|
|
|
/*
|
|
* Enforce a monotonically increasing clock time across all
|
|
* VCPUs. If our time is too old, use the last time and return.
|
|
* Otherwise, try to update the last time.
|
|
*/
|
|
do {
|
|
last = xen_timer_last_time;
|
|
if (last > now) {
|
|
now = last;
|
|
break;
|
|
}
|
|
} while (!atomic_cmpset_64(&xen_timer_last_time, last, now));
|
|
|
|
critical_exit();
|
|
|
|
return (now);
|
|
}
|
|
|
|
static uint32_t
|
|
xentimer_get_timecount(struct timecounter *tc)
|
|
{
|
|
|
|
return ((uint32_t)xen_fetch_vcpu_time() & UINT_MAX);
|
|
}
|
|
|
|
/**
|
|
* \brief Fetch the hypervisor boot time, known as the "Xen wallclock".
|
|
*
|
|
* \param ts Timespec to store the current stable value.
|
|
* \param version Pointer to store the corresponding wallclock version.
|
|
*
|
|
* \note This value is updated when Domain-0 shifts its clock to follow
|
|
* clock drift, e.g. as detected by NTP.
|
|
*/
|
|
static void
|
|
xen_fetch_wallclock(struct timespec *ts)
|
|
{
|
|
shared_info_t *src = HYPERVISOR_shared_info;
|
|
uint32_t version = 0;
|
|
|
|
do {
|
|
version = src->wc_version;
|
|
rmb();
|
|
ts->tv_sec = src->wc_sec;
|
|
ts->tv_nsec = src->wc_nsec;
|
|
rmb();
|
|
} while ((src->wc_version & 1) | (version ^ src->wc_version));
|
|
}
|
|
|
|
static void
|
|
xen_fetch_uptime(struct timespec *ts)
|
|
{
|
|
uint64_t uptime = xen_fetch_vcpu_time();
|
|
ts->tv_sec = uptime / NSEC_IN_SEC;
|
|
ts->tv_nsec = uptime % NSEC_IN_SEC;
|
|
}
|
|
|
|
static int
|
|
xentimer_settime(device_t dev __unused, struct timespec *ts)
|
|
{
|
|
/*
|
|
* Don't return EINVAL here; just silently fail if the domain isn't
|
|
* privileged enough to set the TOD.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* \brief Return current time according to the Xen Hypervisor wallclock.
|
|
*
|
|
* \param dev Xentimer device.
|
|
* \param ts Pointer to store the wallclock time.
|
|
*
|
|
* \note The Xen time structures document the hypervisor start time and the
|
|
* uptime-since-hypervisor-start (in nsec.) They need to be combined
|
|
* in order to calculate a TOD clock.
|
|
*/
|
|
static int
|
|
xentimer_gettime(device_t dev, struct timespec *ts)
|
|
{
|
|
struct timespec u_ts;
|
|
|
|
timespecclear(ts);
|
|
xen_fetch_wallclock(ts);
|
|
xen_fetch_uptime(&u_ts);
|
|
timespecadd(ts, &u_ts);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* \brief Handle a timer interrupt for the Xen PV timer driver.
|
|
*
|
|
* \param arg Xen timer driver softc that is expecting the interrupt.
|
|
*/
|
|
static int
|
|
xentimer_intr(void *arg)
|
|
{
|
|
struct xentimer_softc *sc = (struct xentimer_softc *)arg;
|
|
struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu);
|
|
|
|
pcpu->last_processed = xen_fetch_vcpu_time();
|
|
if (pcpu->timer != 0 && sc->et.et_active)
|
|
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static int
|
|
xentimer_vcpu_start_timer(int vcpu, uint64_t next_time)
|
|
{
|
|
struct vcpu_set_singleshot_timer single;
|
|
|
|
single.timeout_abs_ns = next_time;
|
|
single.flags = VCPU_SSHOTTMR_future;
|
|
return (HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, vcpu, &single));
|
|
}
|
|
|
|
static int
|
|
xentimer_vcpu_stop_timer(int vcpu)
|
|
{
|
|
|
|
return (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, vcpu, NULL));
|
|
}
|
|
|
|
/**
|
|
* \brief Set the next oneshot time for the current CPU.
|
|
*
|
|
* \param et Xen timer driver event timer to schedule on.
|
|
* \param first Delta to the next time to schedule the interrupt for.
|
|
* \param period Not used.
|
|
*
|
|
* \note See eventtimers(9) for more information.
|
|
* \note
|
|
*
|
|
* \returns 0
|
|
*/
|
|
static int
|
|
xentimer_et_start(struct eventtimer *et,
|
|
sbintime_t first, sbintime_t period)
|
|
{
|
|
int error = 0, i = 0;
|
|
struct xentimer_softc *sc = et->et_priv;
|
|
int cpu = PCPU_GET(vcpu_id);
|
|
struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu);
|
|
uint64_t first_in_ns, next_time;
|
|
|
|
/* See sbttots() for this formula. */
|
|
first_in_ns = (((first >> 32) * NSEC_IN_SEC) +
|
|
(((uint64_t)NSEC_IN_SEC * (uint32_t)first) >> 32));
|
|
|
|
/*
|
|
* Retry any timer scheduling failures, where the hypervisor
|
|
* returns -ETIME. Sometimes even a 100us timer period isn't large
|
|
* enough, but larger period instances are relatively uncommon.
|
|
*
|
|
* XXX Remove the panics once et_start() and its consumers are
|
|
* equipped to deal with start failures.
|
|
*/
|
|
do {
|
|
if (++i == 60)
|
|
panic("can't schedule timer");
|
|
next_time = xen_fetch_vcpu_time() + first_in_ns;
|
|
error = xentimer_vcpu_start_timer(cpu, next_time);
|
|
} while (error == -ETIME);
|
|
|
|
if (error)
|
|
panic("%s: Error %d setting singleshot timer to %"PRIu64"\n",
|
|
device_get_nameunit(sc->dev), error, next_time);
|
|
|
|
pcpu->timer = next_time;
|
|
return (error);
|
|
}
|
|
|
|
/**
|
|
* \brief Cancel the event timer's currently running timer, if any.
|
|
*/
|
|
static int
|
|
xentimer_et_stop(struct eventtimer *et)
|
|
{
|
|
int cpu = PCPU_GET(vcpu_id);
|
|
struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu);
|
|
|
|
pcpu->timer = 0;
|
|
return (xentimer_vcpu_stop_timer(cpu));
|
|
}
|
|
|
|
/**
|
|
* \brief Attach a Xen PV timer driver instance.
|
|
*
|
|
* \param dev Bus device object to attach.
|
|
*
|
|
* \note
|
|
* \returns EINVAL
|
|
*/
|
|
static int
|
|
xentimer_attach(device_t dev)
|
|
{
|
|
struct xentimer_softc *sc = device_get_softc(dev);
|
|
int error, i;
|
|
|
|
sc->dev = dev;
|
|
|
|
/* Bind an event channel to a VIRQ on each VCPU. */
|
|
CPU_FOREACH(i) {
|
|
struct xentimer_pcpu_data *pcpu;
|
|
|
|
pcpu = DPCPU_ID_PTR(i, xentimer_pcpu);
|
|
error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, i, NULL);
|
|
if (error) {
|
|
device_printf(dev, "Error disabling Xen periodic timer "
|
|
"on CPU %d\n", i);
|
|
return (error);
|
|
}
|
|
|
|
error = xen_intr_bind_virq(dev, VIRQ_TIMER, i, xentimer_intr,
|
|
NULL, sc, INTR_TYPE_CLK, &pcpu->irq_handle);
|
|
if (error) {
|
|
device_printf(dev, "Error %d binding VIRQ_TIMER "
|
|
"to VCPU %d\n", error, i);
|
|
return (error);
|
|
}
|
|
xen_intr_describe(pcpu->irq_handle, "c%d", i);
|
|
}
|
|
|
|
/* Register the event timer. */
|
|
sc->et.et_name = "XENTIMER";
|
|
sc->et.et_quality = XENTIMER_QUALITY;
|
|
sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
|
|
sc->et.et_frequency = NSEC_IN_SEC;
|
|
/* See tstosbt() for this formula */
|
|
sc->et.et_min_period = (XENTIMER_MIN_PERIOD_IN_NSEC *
|
|
(((uint64_t)1 << 63) / 500000000) >> 32);
|
|
sc->et.et_max_period = ((sbintime_t)4 << 32);
|
|
sc->et.et_start = xentimer_et_start;
|
|
sc->et.et_stop = xentimer_et_stop;
|
|
sc->et.et_priv = sc;
|
|
et_register(&sc->et);
|
|
|
|
/* Register the timecounter. */
|
|
sc->tc.tc_name = "XENTIMER";
|
|
sc->tc.tc_quality = XENTIMER_QUALITY;
|
|
sc->tc.tc_flags = TC_FLAGS_SUSPEND_SAFE;
|
|
/*
|
|
* The underlying resolution is in nanoseconds, since the timer info
|
|
* scales TSC frequencies using a fraction that represents time in
|
|
* terms of nanoseconds.
|
|
*/
|
|
sc->tc.tc_frequency = NSEC_IN_SEC;
|
|
sc->tc.tc_counter_mask = ~0u;
|
|
sc->tc.tc_get_timecount = xentimer_get_timecount;
|
|
sc->tc.tc_priv = sc;
|
|
tc_init(&sc->tc);
|
|
|
|
/* Register the Hypervisor wall clock */
|
|
clock_register(dev, XENCLOCK_RESOLUTION);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xentimer_detach(device_t dev)
|
|
{
|
|
|
|
/* Implement Xen PV clock teardown - XXX see hpet_detach ? */
|
|
/* If possible:
|
|
* 1. need to deregister timecounter
|
|
* 2. need to deregister event timer
|
|
* 3. need to deregister virtual IRQ event channels
|
|
*/
|
|
return (EBUSY);
|
|
}
|
|
|
|
static void
|
|
xentimer_percpu_resume(void *arg)
|
|
{
|
|
device_t dev = (device_t) arg;
|
|
struct xentimer_softc *sc = device_get_softc(dev);
|
|
|
|
xentimer_et_start(&sc->et, sc->et.et_min_period, 0);
|
|
}
|
|
|
|
static int
|
|
xentimer_resume(device_t dev)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
/* Disable the periodic timer */
|
|
CPU_FOREACH(i) {
|
|
error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, i, NULL);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"Error disabling Xen periodic timer on CPU %d\n",
|
|
i);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Reset the last uptime value */
|
|
xen_timer_last_time = 0;
|
|
|
|
/* Reset the RTC clock */
|
|
inittodr(time_second);
|
|
|
|
/* Kick the timers on all CPUs */
|
|
smp_rendezvous(NULL, xentimer_percpu_resume, NULL, dev);
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "resumed operation after suspension\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xentimer_suspend(device_t dev)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t xentimer_methods[] = {
|
|
DEVMETHOD(device_identify, xentimer_identify),
|
|
DEVMETHOD(device_probe, xentimer_probe),
|
|
DEVMETHOD(device_attach, xentimer_attach),
|
|
DEVMETHOD(device_detach, xentimer_detach),
|
|
DEVMETHOD(device_suspend, xentimer_suspend),
|
|
DEVMETHOD(device_resume, xentimer_resume),
|
|
/* clock interface */
|
|
DEVMETHOD(clock_gettime, xentimer_gettime),
|
|
DEVMETHOD(clock_settime, xentimer_settime),
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t xentimer_driver = {
|
|
"xen_et",
|
|
xentimer_methods,
|
|
sizeof(struct xentimer_softc),
|
|
};
|
|
|
|
DRIVER_MODULE(xentimer, nexus, xentimer_driver, xentimer_devclass, 0, 0);
|
|
MODULE_DEPEND(xentimer, nexus, 1, 1, 1);
|