John-Mark Gurney fb17b4c55c change the KASSERT so it is meaningful, var is unsigned, so even
when it wraps, it's still >= 0...

Reported by:	Coverity
CID:		1017564
2015-06-19 22:42:26 +00:00

1578 lines
40 KiB
C

/*-
* Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Cryptographic Subsystem.
*
* This code is derived from the Openbsd Cryptographic Framework (OCF)
* that has the copyright shown below. Very little of the original
* code remains.
*/
/*-
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#define CRYPTO_TIMING /* enable timing support */
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <ddb/ddb.h>
#include <vm/uma.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h> /* XXX for M_XDATA */
#include <sys/kobj.h>
#include <sys/bus.h>
#include "cryptodev_if.h"
#if defined(__i386__) || defined(__amd64__)
#include <machine/pcb.h>
#endif
SDT_PROVIDER_DEFINE(opencrypto);
/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid() and then registering
* each algorithm they support with crypto_register() and crypto_kregister().
*/
static struct mtx crypto_drivers_mtx; /* lock on driver table */
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
#define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
/*
* Crypto device/driver capabilities structure.
*
* Synchronization:
* (d) - protected by CRYPTO_DRIVER_LOCK()
* (q) - protected by CRYPTO_Q_LOCK()
* Not tagged fields are read-only.
*/
struct cryptocap {
device_t cc_dev; /* (d) device/driver */
u_int32_t cc_sessions; /* (d) # of sessions */
u_int32_t cc_koperations; /* (d) # os asym operations */
/*
* Largest possible operator length (in bits) for each type of
* encryption algorithm. XXX not used
*/
u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
int cc_flags; /* (d) flags */
#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
int cc_qblocked; /* (q) symmetric q blocked */
int cc_kqblocked; /* (q) asymmetric q blocked */
};
static struct cryptocap *crypto_drivers = NULL;
static int crypto_drivers_num = 0;
/*
* There are two queues for crypto requests; one for symmetric (e.g.
* cipher) operations and one for asymmetric (e.g. MOD)operations.
* A single mutex is used to lock access to both queues. We could
* have one per-queue but having one simplifies handling of block/unblock
* operations.
*/
static int crp_sleep = 0;
static TAILQ_HEAD(,cryptop) crp_q; /* request queues */
static TAILQ_HEAD(,cryptkop) crp_kq;
static struct mtx crypto_q_mtx;
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
/*
* There are two queues for processing completed crypto requests; one
* for the symmetric and one for the asymmetric ops. We only need one
* but have two to avoid type futzing (cryptop vs. cryptkop). A single
* mutex is used to lock access to both queues. Note that this lock
* must be separate from the lock on request queues to insure driver
* callbacks don't generate lock order reversals.
*/
static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */
static TAILQ_HEAD(,cryptkop) crp_ret_kq;
static struct mtx crypto_ret_q_mtx;
#define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx)
#define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx)
#define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
static uma_zone_t cryptop_zone;
static uma_zone_t cryptodesc_zone;
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
&crypto_userasymcrypto, 0,
"Enable/disable user-mode access to asymmetric crypto support");
int crypto_devallowsoft = 0; /* only use hardware crypto */
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
&crypto_devallowsoft, 0,
"Enable/disable use of software crypto by /dev/crypto");
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
static void crypto_proc(void);
static struct proc *cryptoproc;
static void crypto_ret_proc(void);
static struct proc *cryptoretproc;
static void crypto_destroy(void);
static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
static int crypto_kinvoke(struct cryptkop *krp, int flags);
static struct cryptostats cryptostats;
SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
cryptostats, "Crypto system statistics");
#ifdef CRYPTO_TIMING
static int crypto_timing = 0;
SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
&crypto_timing, 0, "Enable/disable crypto timing support");
#endif
static int
crypto_init(void)
{
int error;
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
MTX_DEF|MTX_QUIET);
TAILQ_INIT(&crp_q);
TAILQ_INIT(&crp_kq);
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
TAILQ_INIT(&crp_ret_q);
TAILQ_INIT(&crp_ret_kq);
mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
0, 0, 0, 0,
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
0, 0, 0, 0,
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
printf("crypto_init: cannot setup crypto zones\n");
error = ENOMEM;
goto bad;
}
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
crypto_drivers = malloc(crypto_drivers_num *
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
if (crypto_drivers == NULL) {
printf("crypto_init: cannot setup crypto drivers\n");
error = ENOMEM;
goto bad;
}
error = kproc_create((void (*)(void *)) crypto_proc, NULL,
&cryptoproc, 0, 0, "crypto");
if (error) {
printf("crypto_init: cannot start crypto thread; error %d",
error);
goto bad;
}
error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
&cryptoretproc, 0, 0, "crypto returns");
if (error) {
printf("crypto_init: cannot start cryptoret thread; error %d",
error);
goto bad;
}
return 0;
bad:
crypto_destroy();
return error;
}
/*
* Signal a crypto thread to terminate. We use the driver
* table lock to synchronize the sleep/wakeups so that we
* are sure the threads have terminated before we release
* the data structures they use. See crypto_finis below
* for the other half of this song-and-dance.
*/
static void
crypto_terminate(struct proc **pp, void *q)
{
struct proc *p;
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
p = *pp;
*pp = NULL;
if (p) {
wakeup_one(q);
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
PROC_UNLOCK(p);
CRYPTO_DRIVER_LOCK();
}
}
static void
crypto_destroy(void)
{
/*
* Terminate any crypto threads.
*/
CRYPTO_DRIVER_LOCK();
crypto_terminate(&cryptoproc, &crp_q);
crypto_terminate(&cryptoretproc, &crp_ret_q);
CRYPTO_DRIVER_UNLOCK();
/* XXX flush queues??? */
/*
* Reclaim dynamically allocated resources.
*/
if (crypto_drivers != NULL)
free(crypto_drivers, M_CRYPTO_DATA);
if (cryptodesc_zone != NULL)
uma_zdestroy(cryptodesc_zone);
if (cryptop_zone != NULL)
uma_zdestroy(cryptop_zone);
mtx_destroy(&crypto_q_mtx);
mtx_destroy(&crypto_ret_q_mtx);
mtx_destroy(&crypto_drivers_mtx);
}
static struct cryptocap *
crypto_checkdriver(u_int32_t hid)
{
if (crypto_drivers == NULL)
return NULL;
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
}
/*
* Compare a driver's list of supported algorithms against another
* list; return non-zero if all algorithms are supported.
*/
static int
driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
{
const struct cryptoini *cr;
/* See if all the algorithms are supported. */
for (cr = cri; cr; cr = cr->cri_next)
if (cap->cc_alg[cr->cri_alg] == 0)
return 0;
return 1;
}
/*
* Select a driver for a new session that supports the specified
* algorithms and, optionally, is constrained according to the flags.
* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need. If there
* are multiple drivers we choose the driver with the fewest active
* sessions. We prefer hardware-backed drivers to software ones.
*
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
static struct cryptocap *
crypto_select_driver(const struct cryptoini *cri, int flags)
{
struct cryptocap *cap, *best;
int match, hid;
CRYPTO_DRIVER_ASSERT();
/*
* Look first for hardware crypto devices if permitted.
*/
if (flags & CRYPTOCAP_F_HARDWARE)
match = CRYPTOCAP_F_HARDWARE;
else
match = CRYPTOCAP_F_SOFTWARE;
best = NULL;
again:
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = &crypto_drivers[hid];
/*
* If it's not initialized, is in the process of
* going away, or is not appropriate (hardware
* or software based on match), then skip.
*/
if (cap->cc_dev == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
(cap->cc_flags & match) == 0)
continue;
/* verify all the algorithms are supported. */
if (driver_suitable(cap, cri)) {
if (best == NULL ||
cap->cc_sessions < best->cc_sessions)
best = cap;
}
}
if (best == NULL && match == CRYPTOCAP_F_HARDWARE &&
(flags & CRYPTOCAP_F_SOFTWARE)) {
/* sort of an Algol 68-style for loop */
match = CRYPTOCAP_F_SOFTWARE;
goto again;
}
return best;
}
/*
* Create a new session. The crid argument specifies a crypto
* driver to use or constraints on a driver to select (hardware
* only, software only, either). Whatever driver is selected
* must be capable of the requested crypto algorithms.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
{
struct cryptocap *cap;
u_int32_t hid, lid;
int err;
CRYPTO_DRIVER_LOCK();
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
/*
* Use specified driver; verify it is capable.
*/
cap = crypto_checkdriver(crid);
if (cap != NULL && !driver_suitable(cap, cri))
cap = NULL;
} else {
/*
* No requested driver; select based on crid flags.
*/
cap = crypto_select_driver(cri, crid);
/*
* if NULL then can't do everything in one session.
* XXX Fix this. We need to inject a "virtual" session
* XXX layer right about here.
*/
}
if (cap != NULL) {
/* Call the driver initialization routine. */
hid = cap - crypto_drivers;
lid = hid; /* Pass the driver ID. */
err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
if (err == 0) {
(*sid) = (cap->cc_flags & 0xff000000)
| (hid & 0x00ffffff);
(*sid) <<= 32;
(*sid) |= (lid & 0xffffffff);
cap->cc_sessions++;
} else
CRYPTDEB("dev newsession failed");
} else {
CRYPTDEB("no driver");
err = EINVAL;
}
CRYPTO_DRIVER_UNLOCK();
return err;
}
static void
crypto_remove(struct cryptocap *cap)
{
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
bzero(cap, sizeof(*cap));
}
/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
int
crypto_freesession(u_int64_t sid)
{
struct cryptocap *cap;
u_int32_t hid;
int err;
CRYPTO_DRIVER_LOCK();
if (crypto_drivers == NULL) {
err = EINVAL;
goto done;
}
/* Determine two IDs. */
hid = CRYPTO_SESID2HID(sid);
if (hid >= crypto_drivers_num) {
err = ENOENT;
goto done;
}
cap = &crypto_drivers[hid];
if (cap->cc_sessions)
cap->cc_sessions--;
/* Call the driver cleanup routine, if available. */
err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
crypto_remove(cap);
done:
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Return an unused driver id. Used by drivers prior to registering
* support for the algorithms they handle.
*/
int32_t
crypto_get_driverid(device_t dev, int flags)
{
struct cryptocap *newdrv;
int i;
if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
printf("%s: no flags specified when registering driver\n",
device_get_nameunit(dev));
return -1;
}
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_num; i++) {
if (crypto_drivers[i].cc_dev == NULL &&
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
break;
}
}
/* Out of entries, allocate some more. */
if (i == crypto_drivers_num) {
/* Be careful about wrap-around. */
if (2 * crypto_drivers_num <= crypto_drivers_num) {
CRYPTO_DRIVER_UNLOCK();
printf("crypto: driver count wraparound!\n");
return -1;
}
newdrv = malloc(2 * crypto_drivers_num *
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (newdrv == NULL) {
CRYPTO_DRIVER_UNLOCK();
printf("crypto: no space to expand driver table!\n");
return -1;
}
bcopy(crypto_drivers, newdrv,
crypto_drivers_num * sizeof(struct cryptocap));
crypto_drivers_num *= 2;
free(crypto_drivers, M_CRYPTO_DATA);
crypto_drivers = newdrv;
}
/* NB: state is zero'd on free */
crypto_drivers[i].cc_sessions = 1; /* Mark */
crypto_drivers[i].cc_dev = dev;
crypto_drivers[i].cc_flags = flags;
if (bootverbose)
printf("crypto: assign %s driver id %u, flags %u\n",
device_get_nameunit(dev), i, flags);
CRYPTO_DRIVER_UNLOCK();
return i;
}
/*
* Lookup a driver by name. We match against the full device
* name and unit, and against just the name. The latter gives
* us a simple widlcarding by device name. On success return the
* driver/hardware identifier; otherwise return -1.
*/
int
crypto_find_driver(const char *match)
{
int i, len = strlen(match);
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_num; i++) {
device_t dev = crypto_drivers[i].cc_dev;
if (dev == NULL ||
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
continue;
if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
strncmp(match, device_get_name(dev), len) == 0)
break;
}
CRYPTO_DRIVER_UNLOCK();
return i < crypto_drivers_num ? i : -1;
}
/*
* Return the device_t for the specified driver or NULL
* if the driver identifier is invalid.
*/
device_t
crypto_find_device_byhid(int hid)
{
struct cryptocap *cap = crypto_checkdriver(hid);
return cap != NULL ? cap->cc_dev : NULL;
}
/*
* Return the device/driver capabilities.
*/
int
crypto_getcaps(int hid)
{
struct cryptocap *cap = crypto_checkdriver(hid);
return cap != NULL ? cap->cc_flags : 0;
}
/*
* Register support for a key-related algorithm. This routine
* is called once for each algorithm supported a driver.
*/
int
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
{
struct cryptocap *cap;
int err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
if (bootverbose)
printf("crypto: %s registers key alg %u flags %u\n"
, device_get_nameunit(cap->cc_dev)
, kalg
, flags
);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Register support for a non-key-related algorithm. This routine
* is called once for each such algorithm supported by a driver.
*/
int
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
u_int32_t flags)
{
struct cryptocap *cap;
int err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
/* NB: algorithms are in the range [1..max] */
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
cap->cc_max_op_len[alg] = maxoplen;
if (bootverbose)
printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
, device_get_nameunit(cap->cc_dev)
, alg
, flags
, maxoplen
);
cap->cc_sessions = 0; /* Unmark */
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
static void
driver_finis(struct cryptocap *cap)
{
u_int32_t ses, kops;
CRYPTO_DRIVER_ASSERT();
ses = cap->cc_sessions;
kops = cap->cc_koperations;
bzero(cap, sizeof(*cap));
if (ses != 0 || kops != 0) {
/*
* If there are pending sessions,
* just mark as invalid.
*/
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
cap->cc_sessions = ses;
cap->cc_koperations = kops;
}
}
/*
* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver has been unregistered and
* reroute requests.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
{
struct cryptocap *cap;
int i, err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
cap->cc_alg[alg] != 0) {
cap->cc_alg[alg] = 0;
cap->cc_max_op_len[alg] = 0;
/* Was this the last algorithm ? */
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
if (cap->cc_alg[i] != 0)
break;
if (i == CRYPTO_ALGORITHM_MAX + 1)
driver_finis(cap);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(u_int32_t driverid)
{
struct cryptocap *cap;
int err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
driver_finis(cap);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Clear blockage on a driver. The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(u_int32_t driverid, int what)
{
struct cryptocap *cap;
int err;
CRYPTO_Q_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
if (what & CRYPTO_SYMQ)
cap->cc_qblocked = 0;
if (what & CRYPTO_ASYMQ)
cap->cc_kqblocked = 0;
if (crp_sleep)
wakeup_one(&crp_q);
err = 0;
} else
err = EINVAL;
CRYPTO_Q_UNLOCK();
return err;
}
/*
* Add a crypto request to a queue, to be processed by the kernel thread.
*/
int
crypto_dispatch(struct cryptop *crp)
{
struct cryptocap *cap;
u_int32_t hid;
int result;
cryptostats.cs_ops++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
binuptime(&crp->crp_tstamp);
#endif
hid = CRYPTO_SESID2HID(crp->crp_sid);
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
/*
* Caller marked the request to be processed
* immediately; dispatch it directly to the
* driver unless the driver is currently blocked.
*/
cap = crypto_checkdriver(hid);
/* Driver cannot disappeared when there is an active session. */
KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
if (!cap->cc_qblocked) {
result = crypto_invoke(cap, crp, 0);
if (result != ERESTART)
return (result);
/*
* The driver ran out of resources, put the request on
* the queue.
*/
}
}
CRYPTO_Q_LOCK();
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
if (crp_sleep)
wakeup_one(&crp_q);
CRYPTO_Q_UNLOCK();
return 0;
}
/*
* Add an asymetric crypto request to a queue,
* to be processed by the kernel thread.
*/
int
crypto_kdispatch(struct cryptkop *krp)
{
int error;
cryptostats.cs_kops++;
error = crypto_kinvoke(krp, krp->krp_crid);
if (error == ERESTART) {
CRYPTO_Q_LOCK();
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
if (crp_sleep)
wakeup_one(&crp_q);
CRYPTO_Q_UNLOCK();
error = 0;
}
return error;
}
/*
* Verify a driver is suitable for the specified operation.
*/
static __inline int
kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
{
return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
}
/*
* Select a driver for an asym operation. The driver must
* support the necessary algorithm. The caller can constrain
* which device is selected with the flags parameter. The
* algorithm we use here is pretty stupid; just use the first
* driver that supports the algorithms we need. If there are
* multiple suitable drivers we choose the driver with the
* fewest active operations. We prefer hardware-backed
* drivers to software ones when either may be used.
*/
static struct cryptocap *
crypto_select_kdriver(const struct cryptkop *krp, int flags)
{
struct cryptocap *cap, *best, *blocked;
int match, hid;
CRYPTO_DRIVER_ASSERT();
/*
* Look first for hardware crypto devices if permitted.
*/
if (flags & CRYPTOCAP_F_HARDWARE)
match = CRYPTOCAP_F_HARDWARE;
else
match = CRYPTOCAP_F_SOFTWARE;
best = NULL;
blocked = NULL;
again:
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = &crypto_drivers[hid];
/*
* If it's not initialized, is in the process of
* going away, or is not appropriate (hardware
* or software based on match), then skip.
*/
if (cap->cc_dev == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
(cap->cc_flags & match) == 0)
continue;
/* verify all the algorithms are supported. */
if (kdriver_suitable(cap, krp)) {
if (best == NULL ||
cap->cc_koperations < best->cc_koperations)
best = cap;
}
}
if (best != NULL)
return best;
if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
/* sort of an Algol 68-style for loop */
match = CRYPTOCAP_F_SOFTWARE;
goto again;
}
return best;
}
/*
* Dispatch an assymetric crypto request.
*/
static int
crypto_kinvoke(struct cryptkop *krp, int crid)
{
struct cryptocap *cap = NULL;
int error;
KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
KASSERT(krp->krp_callback != NULL,
("%s: krp->crp_callback == NULL", __func__));
CRYPTO_DRIVER_LOCK();
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
cap = crypto_checkdriver(crid);
if (cap != NULL) {
/*
* Driver present, it must support the necessary
* algorithm and, if s/w drivers are excluded,
* it must be registered as hardware-backed.
*/
if (!kdriver_suitable(cap, krp) ||
(!crypto_devallowsoft &&
(cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
cap = NULL;
}
} else {
/*
* No requested driver; select based on crid flags.
*/
if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
crid &= ~CRYPTOCAP_F_SOFTWARE;
cap = crypto_select_kdriver(krp, crid);
}
if (cap != NULL && !cap->cc_kqblocked) {
krp->krp_hid = cap - crypto_drivers;
cap->cc_koperations++;
CRYPTO_DRIVER_UNLOCK();
error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
CRYPTO_DRIVER_LOCK();
if (error == ERESTART) {
cap->cc_koperations--;
CRYPTO_DRIVER_UNLOCK();
return (error);
}
} else {
/*
* NB: cap is !NULL if device is blocked; in
* that case return ERESTART so the operation
* is resubmitted if possible.
*/
error = (cap == NULL) ? ENODEV : ERESTART;
}
CRYPTO_DRIVER_UNLOCK();
if (error) {
krp->krp_status = error;
crypto_kdone(krp);
}
return 0;
}
#ifdef CRYPTO_TIMING
static void
crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
{
struct bintime now, delta;
struct timespec t;
uint64_t u;
binuptime(&now);
u = now.frac;
delta.frac = now.frac - bt->frac;
delta.sec = now.sec - bt->sec;
if (u < delta.frac)
delta.sec--;
bintime2timespec(&delta, &t);
timespecadd(&ts->acc, &t);
if (timespeccmp(&t, &ts->min, <))
ts->min = t;
if (timespeccmp(&t, &ts->max, >))
ts->max = t;
ts->count++;
*bt = now;
}
#endif
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
{
KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
KASSERT(crp->crp_callback != NULL,
("%s: crp->crp_callback == NULL", __func__));
KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
#endif
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
struct cryptodesc *crd;
u_int64_t nid;
/*
* Driver has unregistered; migrate the session and return
* an error to the caller so they'll resubmit the op.
*
* XXX: What if there are more already queued requests for this
* session?
*/
crypto_freesession(crp->crp_sid);
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
/* XXX propagate flags from initial session? */
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
crp->crp_sid = nid;
crp->crp_etype = EAGAIN;
crypto_done(crp);
return 0;
} else {
/*
* Invoke the driver to process the request.
*/
return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
}
}
/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
{
struct cryptodesc *crd;
if (crp == NULL)
return;
#ifdef DIAGNOSTIC
{
struct cryptop *crp2;
CRYPTO_Q_LOCK();
TAILQ_FOREACH(crp2, &crp_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the crypto queue (%p).",
crp));
}
CRYPTO_Q_UNLOCK();
CRYPTO_RETQ_LOCK();
TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the return queue (%p).",
crp));
}
CRYPTO_RETQ_UNLOCK();
}
#endif
while ((crd = crp->crp_desc) != NULL) {
crp->crp_desc = crd->crd_next;
uma_zfree(cryptodesc_zone, crd);
}
uma_zfree(cryptop_zone, crp);
}
/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
{
struct cryptodesc *crd;
struct cryptop *crp;
crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
if (crp != NULL) {
while (num--) {
crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
if (crd == NULL) {
crypto_freereq(crp);
return NULL;
}
crd->crd_next = crp->crp_desc;
crp->crp_desc = crd;
}
}
return crp;
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
crp->crp_flags |= CRYPTO_F_DONE;
if (crp->crp_etype != 0)
cryptostats.cs_errs++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
#endif
/*
* CBIMM means unconditionally do the callback immediately;
* CBIFSYNC means do the callback immediately only if the
* operation was done synchronously. Both are used to avoid
* doing extraneous context switches; the latter is mostly
* used with the software crypto driver.
*/
if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
(CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct bintime t = crp->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crp->crp_callback(crp);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
crp->crp_callback(crp);
} else {
/*
* Normal case; queue the callback for the thread.
*/
CRYPTO_RETQ_LOCK();
if (CRYPTO_RETQ_EMPTY())
wakeup_one(&crp_ret_q); /* shared wait channel */
TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
CRYPTO_RETQ_UNLOCK();
}
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
{
struct cryptocap *cap;
if (krp->krp_status != 0)
cryptostats.cs_kerrs++;
CRYPTO_DRIVER_LOCK();
/* XXX: What if driver is loaded in the meantime? */
if (krp->krp_hid < crypto_drivers_num) {
cap = &crypto_drivers[krp->krp_hid];
KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
cap->cc_koperations--;
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
crypto_remove(cap);
}
CRYPTO_DRIVER_UNLOCK();
CRYPTO_RETQ_LOCK();
if (CRYPTO_RETQ_EMPTY())
wakeup_one(&crp_ret_q); /* shared wait channel */
TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
CRYPTO_RETQ_UNLOCK();
}
int
crypto_getfeat(int *featp)
{
int hid, kalg, feat = 0;
CRYPTO_DRIVER_LOCK();
for (hid = 0; hid < crypto_drivers_num; hid++) {
const struct cryptocap *cap = &crypto_drivers[hid];
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
!crypto_devallowsoft) {
continue;
}
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
feat |= 1 << kalg;
}
CRYPTO_DRIVER_UNLOCK();
*featp = feat;
return (0);
}
/*
* Terminate a thread at module unload. The process that
* initiated this is waiting for us to signal that we're gone;
* wake it up and exit. We use the driver table lock to insure
* we don't do the wakeup before they're waiting. There is no
* race here because the waiter sleeps on the proc lock for the
* thread so it gets notified at the right time because of an
* extra wakeup that's done in exit1().
*/
static void
crypto_finis(void *chan)
{
CRYPTO_DRIVER_LOCK();
wakeup_one(chan);
CRYPTO_DRIVER_UNLOCK();
kproc_exit(0);
}
/*
* Crypto thread, dispatches crypto requests.
*/
static void
crypto_proc(void)
{
struct cryptop *crp, *submit;
struct cryptkop *krp;
struct cryptocap *cap;
u_int32_t hid;
int result, hint;
#if defined(__i386__) || defined(__amd64__)
fpu_kern_thread(FPU_KERN_NORMAL);
#endif
CRYPTO_Q_LOCK();
for (;;) {
/*
* Find the first element in the queue that can be
* processed and look-ahead to see if multiple ops
* are ready for the same driver.
*/
submit = NULL;
hint = 0;
TAILQ_FOREACH(crp, &crp_q, crp_next) {
hid = CRYPTO_SESID2HID(crp->crp_sid);
cap = crypto_checkdriver(hid);
/*
* Driver cannot disappeared when there is an active
* session.
*/
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
if (cap == NULL || cap->cc_dev == NULL) {
/* Op needs to be migrated, process it. */
if (submit == NULL)
submit = crp;
break;
}
if (!cap->cc_qblocked) {
if (submit != NULL) {
/*
* We stop on finding another op,
* regardless whether its for the same
* driver or not. We could keep
* searching the queue but it might be
* better to just use a per-driver
* queue instead.
*/
if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
hint = CRYPTO_HINT_MORE;
break;
} else {
submit = crp;
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
break;
/* keep scanning for more are q'd */
}
}
}
if (submit != NULL) {
TAILQ_REMOVE(&crp_q, submit, crp_next);
hid = CRYPTO_SESID2HID(submit->crp_sid);
cap = crypto_checkdriver(hid);
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
result = crypto_invoke(cap, submit, hint);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
cryptostats.cs_blocks++;
}
}
/* As above, but for key ops */
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
cap = crypto_checkdriver(krp->krp_hid);
if (cap == NULL || cap->cc_dev == NULL) {
/*
* Operation needs to be migrated, invalidate
* the assigned device so it will reselect a
* new one below. Propagate the original
* crid selection flags if supplied.
*/
krp->krp_hid = krp->krp_crid &
(CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
if (krp->krp_hid == 0)
krp->krp_hid =
CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
break;
}
if (!cap->cc_kqblocked)
break;
}
if (krp != NULL) {
TAILQ_REMOVE(&crp_kq, krp, krp_next);
result = crypto_kinvoke(krp, krp->krp_hid);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptkop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
cryptostats.cs_kblocks++;
}
}
if (submit == NULL && krp == NULL) {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more ops to process.
* This happens either by submission or by a driver
* becoming unblocked and notifying us through
* crypto_unblock. Note that when we wakeup we
* start processing each queue again from the
* front. It's not clear that it's important to
* preserve this ordering since ops may finish
* out of order if dispatched to different devices
* and some become blocked while others do not.
*/
crp_sleep = 1;
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
crp_sleep = 0;
if (cryptoproc == NULL)
break;
cryptostats.cs_intrs++;
}
}
CRYPTO_Q_UNLOCK();
crypto_finis(&crp_q);
}
/*
* Crypto returns thread, does callbacks for processed crypto requests.
* Callbacks are done here, rather than in the crypto drivers, because
* callbacks typically are expensive and would slow interrupt handling.
*/
static void
crypto_ret_proc(void)
{
struct cryptop *crpt;
struct cryptkop *krpt;
CRYPTO_RETQ_LOCK();
for (;;) {
/* Harvest return q's for completed ops */
crpt = TAILQ_FIRST(&crp_ret_q);
if (crpt != NULL)
TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
krpt = TAILQ_FIRST(&crp_ret_kq);
if (krpt != NULL)
TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
if (crpt != NULL || krpt != NULL) {
CRYPTO_RETQ_UNLOCK();
/*
* Run callbacks unlocked.
*/
if (crpt != NULL) {
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct bintime t = crpt->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crpt->crp_callback(crpt);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
crpt->crp_callback(crpt);
}
if (krpt != NULL)
krpt->krp_callback(krpt);
CRYPTO_RETQ_LOCK();
} else {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more returns to process.
*/
msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
"crypto_ret_wait", 0);
if (cryptoretproc == NULL)
break;
cryptostats.cs_rets++;
}
}
CRYPTO_RETQ_UNLOCK();
crypto_finis(&crp_ret_q);
}
#ifdef DDB
static void
db_show_drivers(void)
{
int hid;
db_printf("%12s %4s %4s %8s %2s %2s\n"
, "Device"
, "Ses"
, "Kops"
, "Flags"
, "QB"
, "KB"
);
for (hid = 0; hid < crypto_drivers_num; hid++) {
const struct cryptocap *cap = &crypto_drivers[hid];
if (cap->cc_dev == NULL)
continue;
db_printf("%-12s %4u %4u %08x %2u %2u\n"
, device_get_nameunit(cap->cc_dev)
, cap->cc_sessions
, cap->cc_koperations
, cap->cc_flags
, cap->cc_qblocked
, cap->cc_kqblocked
);
}
}
DB_SHOW_COMMAND(crypto, db_show_crypto)
{
struct cryptop *crp;
db_show_drivers();
db_printf("\n");
db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
"HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
"Desc", "Callback");
TAILQ_FOREACH(crp, &crp_q, crp_next) {
db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
, (int) CRYPTO_SESID2HID(crp->crp_sid)
, (int) CRYPTO_SESID2CAPS(crp->crp_sid)
, crp->crp_ilen, crp->crp_olen
, crp->crp_etype
, crp->crp_flags
, crp->crp_desc
, crp->crp_callback
);
}
if (!TAILQ_EMPTY(&crp_ret_q)) {
db_printf("\n%4s %4s %4s %8s\n",
"HID", "Etype", "Flags", "Callback");
TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
db_printf("%4u %4u %04x %8p\n"
, (int) CRYPTO_SESID2HID(crp->crp_sid)
, crp->crp_etype
, crp->crp_flags
, crp->crp_callback
);
}
}
}
DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
{
struct cryptkop *krp;
db_show_drivers();
db_printf("\n");
db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
"Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
, krp->krp_op
, krp->krp_status
, krp->krp_iparams, krp->krp_oparams
, krp->krp_crid, krp->krp_hid
, krp->krp_callback
);
}
if (!TAILQ_EMPTY(&crp_ret_q)) {
db_printf("%4s %5s %8s %4s %8s\n",
"Op", "Status", "CRID", "HID", "Callback");
TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
db_printf("%4u %5u %08x %4u %8p\n"
, krp->krp_op
, krp->krp_status
, krp->krp_crid, krp->krp_hid
, krp->krp_callback
);
}
}
}
#endif
int crypto_modevent(module_t mod, int type, void *unused);
/*
* Initialization code, both for static and dynamic loading.
* Note this is not invoked with the usual MODULE_DECLARE
* mechanism but instead is listed as a dependency by the
* cryptosoft driver. This guarantees proper ordering of
* calls on module load/unload.
*/
int
crypto_modevent(module_t mod, int type, void *unused)
{
int error = EINVAL;
switch (type) {
case MOD_LOAD:
error = crypto_init();
if (error == 0 && bootverbose)
printf("crypto: <crypto core>\n");
break;
case MOD_UNLOAD:
/*XXX disallow if active sessions */
error = 0;
crypto_destroy();
return 0;
}
return error;
}
MODULE_VERSION(crypto, 1);
MODULE_DEPEND(crypto, zlib, 1, 1, 1);